linux/arch/x86/kvm/mmu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * This module enables machines with Intel VT-x extensions to run virtual
   6 * machines without emulation or binary translation.
   7 *
   8 * MMU support
   9 *
  10 * Copyright (C) 2006 Qumranet, Inc.
  11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  12 *
  13 * Authors:
  14 *   Yaniv Kamay  <yaniv@qumranet.com>
  15 *   Avi Kivity   <avi@qumranet.com>
  16 */
  17
  18#include "irq.h"
  19#include "mmu.h"
  20#include "x86.h"
  21#include "kvm_cache_regs.h"
  22#include "cpuid.h"
  23
  24#include <linux/kvm_host.h>
  25#include <linux/types.h>
  26#include <linux/string.h>
  27#include <linux/mm.h>
  28#include <linux/highmem.h>
  29#include <linux/moduleparam.h>
  30#include <linux/export.h>
  31#include <linux/swap.h>
  32#include <linux/hugetlb.h>
  33#include <linux/compiler.h>
  34#include <linux/srcu.h>
  35#include <linux/slab.h>
  36#include <linux/sched/signal.h>
  37#include <linux/uaccess.h>
  38#include <linux/hash.h>
  39#include <linux/kern_levels.h>
  40#include <linux/kthread.h>
  41
  42#include <asm/page.h>
  43#include <asm/pat.h>
  44#include <asm/cmpxchg.h>
  45#include <asm/e820/api.h>
  46#include <asm/io.h>
  47#include <asm/vmx.h>
  48#include <asm/kvm_page_track.h>
  49#include "trace.h"
  50
  51extern bool itlb_multihit_kvm_mitigation;
  52
  53static int __read_mostly nx_huge_pages = -1;
  54#ifdef CONFIG_PREEMPT_RT
  55/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
  56static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
  57#else
  58static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
  59#endif
  60
  61static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
  62static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
  63
  64static struct kernel_param_ops nx_huge_pages_ops = {
  65        .set = set_nx_huge_pages,
  66        .get = param_get_bool,
  67};
  68
  69static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
  70        .set = set_nx_huge_pages_recovery_ratio,
  71        .get = param_get_uint,
  72};
  73
  74module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
  75__MODULE_PARM_TYPE(nx_huge_pages, "bool");
  76module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
  77                &nx_huge_pages_recovery_ratio, 0644);
  78__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
  79
  80/*
  81 * When setting this variable to true it enables Two-Dimensional-Paging
  82 * where the hardware walks 2 page tables:
  83 * 1. the guest-virtual to guest-physical
  84 * 2. while doing 1. it walks guest-physical to host-physical
  85 * If the hardware supports that we don't need to do shadow paging.
  86 */
  87bool tdp_enabled = false;
  88
  89enum {
  90        AUDIT_PRE_PAGE_FAULT,
  91        AUDIT_POST_PAGE_FAULT,
  92        AUDIT_PRE_PTE_WRITE,
  93        AUDIT_POST_PTE_WRITE,
  94        AUDIT_PRE_SYNC,
  95        AUDIT_POST_SYNC
  96};
  97
  98#undef MMU_DEBUG
  99
 100#ifdef MMU_DEBUG
 101static bool dbg = 0;
 102module_param(dbg, bool, 0644);
 103
 104#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
 105#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
 106#define MMU_WARN_ON(x) WARN_ON(x)
 107#else
 108#define pgprintk(x...) do { } while (0)
 109#define rmap_printk(x...) do { } while (0)
 110#define MMU_WARN_ON(x) do { } while (0)
 111#endif
 112
 113#define PTE_PREFETCH_NUM                8
 114
 115#define PT_FIRST_AVAIL_BITS_SHIFT 10
 116#define PT64_SECOND_AVAIL_BITS_SHIFT 54
 117
 118/*
 119 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
 120 * Access Tracking SPTEs.
 121 */
 122#define SPTE_SPECIAL_MASK (3ULL << 52)
 123#define SPTE_AD_ENABLED_MASK (0ULL << 52)
 124#define SPTE_AD_DISABLED_MASK (1ULL << 52)
 125#define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
 126#define SPTE_MMIO_MASK (3ULL << 52)
 127
 128#define PT64_LEVEL_BITS 9
 129
 130#define PT64_LEVEL_SHIFT(level) \
 131                (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
 132
 133#define PT64_INDEX(address, level)\
 134        (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
 135
 136
 137#define PT32_LEVEL_BITS 10
 138
 139#define PT32_LEVEL_SHIFT(level) \
 140                (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
 141
 142#define PT32_LVL_OFFSET_MASK(level) \
 143        (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
 144                                                * PT32_LEVEL_BITS))) - 1))
 145
 146#define PT32_INDEX(address, level)\
 147        (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
 148
 149
 150#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
 151#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
 152#else
 153#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
 154#endif
 155#define PT64_LVL_ADDR_MASK(level) \
 156        (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
 157                                                * PT64_LEVEL_BITS))) - 1))
 158#define PT64_LVL_OFFSET_MASK(level) \
 159        (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
 160                                                * PT64_LEVEL_BITS))) - 1))
 161
 162#define PT32_BASE_ADDR_MASK PAGE_MASK
 163#define PT32_DIR_BASE_ADDR_MASK \
 164        (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
 165#define PT32_LVL_ADDR_MASK(level) \
 166        (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
 167                                            * PT32_LEVEL_BITS))) - 1))
 168
 169#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
 170                        | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
 171
 172#define ACC_EXEC_MASK    1
 173#define ACC_WRITE_MASK   PT_WRITABLE_MASK
 174#define ACC_USER_MASK    PT_USER_MASK
 175#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
 176
 177/* The mask for the R/X bits in EPT PTEs */
 178#define PT64_EPT_READABLE_MASK                  0x1ull
 179#define PT64_EPT_EXECUTABLE_MASK                0x4ull
 180
 181#include <trace/events/kvm.h>
 182
 183#define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
 184#define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
 185
 186#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
 187
 188/* make pte_list_desc fit well in cache line */
 189#define PTE_LIST_EXT 3
 190
 191/*
 192 * Return values of handle_mmio_page_fault and mmu.page_fault:
 193 * RET_PF_RETRY: let CPU fault again on the address.
 194 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
 195 *
 196 * For handle_mmio_page_fault only:
 197 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
 198 */
 199enum {
 200        RET_PF_RETRY = 0,
 201        RET_PF_EMULATE = 1,
 202        RET_PF_INVALID = 2,
 203};
 204
 205struct pte_list_desc {
 206        u64 *sptes[PTE_LIST_EXT];
 207        struct pte_list_desc *more;
 208};
 209
 210struct kvm_shadow_walk_iterator {
 211        u64 addr;
 212        hpa_t shadow_addr;
 213        u64 *sptep;
 214        int level;
 215        unsigned index;
 216};
 217
 218static const union kvm_mmu_page_role mmu_base_role_mask = {
 219        .cr0_wp = 1,
 220        .gpte_is_8_bytes = 1,
 221        .nxe = 1,
 222        .smep_andnot_wp = 1,
 223        .smap_andnot_wp = 1,
 224        .smm = 1,
 225        .guest_mode = 1,
 226        .ad_disabled = 1,
 227};
 228
 229#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
 230        for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
 231                                         (_root), (_addr));                \
 232             shadow_walk_okay(&(_walker));                                 \
 233             shadow_walk_next(&(_walker)))
 234
 235#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
 236        for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
 237             shadow_walk_okay(&(_walker));                      \
 238             shadow_walk_next(&(_walker)))
 239
 240#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
 241        for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
 242             shadow_walk_okay(&(_walker)) &&                            \
 243                ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
 244             __shadow_walk_next(&(_walker), spte))
 245
 246static struct kmem_cache *pte_list_desc_cache;
 247static struct kmem_cache *mmu_page_header_cache;
 248static struct percpu_counter kvm_total_used_mmu_pages;
 249
 250static u64 __read_mostly shadow_nx_mask;
 251static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
 252static u64 __read_mostly shadow_user_mask;
 253static u64 __read_mostly shadow_accessed_mask;
 254static u64 __read_mostly shadow_dirty_mask;
 255static u64 __read_mostly shadow_mmio_mask;
 256static u64 __read_mostly shadow_mmio_value;
 257static u64 __read_mostly shadow_mmio_access_mask;
 258static u64 __read_mostly shadow_present_mask;
 259static u64 __read_mostly shadow_me_mask;
 260
 261/*
 262 * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
 263 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
 264 * pages.
 265 */
 266static u64 __read_mostly shadow_acc_track_mask;
 267
 268/*
 269 * The mask/shift to use for saving the original R/X bits when marking the PTE
 270 * as not-present for access tracking purposes. We do not save the W bit as the
 271 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
 272 * restored only when a write is attempted to the page.
 273 */
 274static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
 275                                                    PT64_EPT_EXECUTABLE_MASK;
 276static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
 277
 278/*
 279 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
 280 * to guard against L1TF attacks.
 281 */
 282static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
 283
 284/*
 285 * The number of high-order 1 bits to use in the mask above.
 286 */
 287static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
 288
 289/*
 290 * In some cases, we need to preserve the GFN of a non-present or reserved
 291 * SPTE when we usurp the upper five bits of the physical address space to
 292 * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
 293 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
 294 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
 295 * high and low parts.  This mask covers the lower bits of the GFN.
 296 */
 297static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
 298
 299/*
 300 * The number of non-reserved physical address bits irrespective of features
 301 * that repurpose legal bits, e.g. MKTME.
 302 */
 303static u8 __read_mostly shadow_phys_bits;
 304
 305static void mmu_spte_set(u64 *sptep, u64 spte);
 306static bool is_executable_pte(u64 spte);
 307static union kvm_mmu_page_role
 308kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
 309
 310#define CREATE_TRACE_POINTS
 311#include "mmutrace.h"
 312
 313
 314static inline bool kvm_available_flush_tlb_with_range(void)
 315{
 316        return kvm_x86_ops->tlb_remote_flush_with_range;
 317}
 318
 319static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
 320                struct kvm_tlb_range *range)
 321{
 322        int ret = -ENOTSUPP;
 323
 324        if (range && kvm_x86_ops->tlb_remote_flush_with_range)
 325                ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);
 326
 327        if (ret)
 328                kvm_flush_remote_tlbs(kvm);
 329}
 330
 331static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
 332                u64 start_gfn, u64 pages)
 333{
 334        struct kvm_tlb_range range;
 335
 336        range.start_gfn = start_gfn;
 337        range.pages = pages;
 338
 339        kvm_flush_remote_tlbs_with_range(kvm, &range);
 340}
 341
 342void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask)
 343{
 344        BUG_ON((u64)(unsigned)access_mask != access_mask);
 345        BUG_ON((mmio_mask & mmio_value) != mmio_value);
 346        shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
 347        shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
 348        shadow_mmio_access_mask = access_mask;
 349}
 350EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
 351
 352static bool is_mmio_spte(u64 spte)
 353{
 354        return (spte & shadow_mmio_mask) == shadow_mmio_value;
 355}
 356
 357static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
 358{
 359        return sp->role.ad_disabled;
 360}
 361
 362static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
 363{
 364        /*
 365         * When using the EPT page-modification log, the GPAs in the log
 366         * would come from L2 rather than L1.  Therefore, we need to rely
 367         * on write protection to record dirty pages.  This also bypasses
 368         * PML, since writes now result in a vmexit.
 369         */
 370        return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
 371}
 372
 373static inline bool spte_ad_enabled(u64 spte)
 374{
 375        MMU_WARN_ON(is_mmio_spte(spte));
 376        return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
 377}
 378
 379static inline bool spte_ad_need_write_protect(u64 spte)
 380{
 381        MMU_WARN_ON(is_mmio_spte(spte));
 382        return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
 383}
 384
 385static bool is_nx_huge_page_enabled(void)
 386{
 387        return READ_ONCE(nx_huge_pages);
 388}
 389
 390static inline u64 spte_shadow_accessed_mask(u64 spte)
 391{
 392        MMU_WARN_ON(is_mmio_spte(spte));
 393        return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
 394}
 395
 396static inline u64 spte_shadow_dirty_mask(u64 spte)
 397{
 398        MMU_WARN_ON(is_mmio_spte(spte));
 399        return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
 400}
 401
 402static inline bool is_access_track_spte(u64 spte)
 403{
 404        return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
 405}
 406
 407/*
 408 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
 409 * the memslots generation and is derived as follows:
 410 *
 411 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
 412 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
 413 *
 414 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
 415 * the MMIO generation number, as doing so would require stealing a bit from
 416 * the "real" generation number and thus effectively halve the maximum number
 417 * of MMIO generations that can be handled before encountering a wrap (which
 418 * requires a full MMU zap).  The flag is instead explicitly queried when
 419 * checking for MMIO spte cache hits.
 420 */
 421#define MMIO_SPTE_GEN_MASK              GENMASK_ULL(18, 0)
 422
 423#define MMIO_SPTE_GEN_LOW_START         3
 424#define MMIO_SPTE_GEN_LOW_END           11
 425#define MMIO_SPTE_GEN_LOW_MASK          GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
 426                                                    MMIO_SPTE_GEN_LOW_START)
 427
 428#define MMIO_SPTE_GEN_HIGH_START        52
 429#define MMIO_SPTE_GEN_HIGH_END          61
 430#define MMIO_SPTE_GEN_HIGH_MASK         GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
 431                                                    MMIO_SPTE_GEN_HIGH_START)
 432static u64 generation_mmio_spte_mask(u64 gen)
 433{
 434        u64 mask;
 435
 436        WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
 437
 438        mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
 439        mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
 440        return mask;
 441}
 442
 443static u64 get_mmio_spte_generation(u64 spte)
 444{
 445        u64 gen;
 446
 447        spte &= ~shadow_mmio_mask;
 448
 449        gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
 450        gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
 451        return gen;
 452}
 453
 454static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
 455                           unsigned access)
 456{
 457        u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
 458        u64 mask = generation_mmio_spte_mask(gen);
 459        u64 gpa = gfn << PAGE_SHIFT;
 460
 461        access &= shadow_mmio_access_mask;
 462        mask |= shadow_mmio_value | access;
 463        mask |= gpa | shadow_nonpresent_or_rsvd_mask;
 464        mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
 465                << shadow_nonpresent_or_rsvd_mask_len;
 466
 467        trace_mark_mmio_spte(sptep, gfn, access, gen);
 468        mmu_spte_set(sptep, mask);
 469}
 470
 471static gfn_t get_mmio_spte_gfn(u64 spte)
 472{
 473        u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
 474
 475        gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
 476               & shadow_nonpresent_or_rsvd_mask;
 477
 478        return gpa >> PAGE_SHIFT;
 479}
 480
 481static unsigned get_mmio_spte_access(u64 spte)
 482{
 483        return spte & shadow_mmio_access_mask;
 484}
 485
 486static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
 487                          kvm_pfn_t pfn, unsigned access)
 488{
 489        if (unlikely(is_noslot_pfn(pfn))) {
 490                mark_mmio_spte(vcpu, sptep, gfn, access);
 491                return true;
 492        }
 493
 494        return false;
 495}
 496
 497static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
 498{
 499        u64 kvm_gen, spte_gen, gen;
 500
 501        gen = kvm_vcpu_memslots(vcpu)->generation;
 502        if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
 503                return false;
 504
 505        kvm_gen = gen & MMIO_SPTE_GEN_MASK;
 506        spte_gen = get_mmio_spte_generation(spte);
 507
 508        trace_check_mmio_spte(spte, kvm_gen, spte_gen);
 509        return likely(kvm_gen == spte_gen);
 510}
 511
 512/*
 513 * Sets the shadow PTE masks used by the MMU.
 514 *
 515 * Assumptions:
 516 *  - Setting either @accessed_mask or @dirty_mask requires setting both
 517 *  - At least one of @accessed_mask or @acc_track_mask must be set
 518 */
 519void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
 520                u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
 521                u64 acc_track_mask, u64 me_mask)
 522{
 523        BUG_ON(!dirty_mask != !accessed_mask);
 524        BUG_ON(!accessed_mask && !acc_track_mask);
 525        BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
 526
 527        shadow_user_mask = user_mask;
 528        shadow_accessed_mask = accessed_mask;
 529        shadow_dirty_mask = dirty_mask;
 530        shadow_nx_mask = nx_mask;
 531        shadow_x_mask = x_mask;
 532        shadow_present_mask = p_mask;
 533        shadow_acc_track_mask = acc_track_mask;
 534        shadow_me_mask = me_mask;
 535}
 536EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
 537
 538static u8 kvm_get_shadow_phys_bits(void)
 539{
 540        /*
 541         * boot_cpu_data.x86_phys_bits is reduced when MKTME is detected
 542         * in CPU detection code, but MKTME treats those reduced bits as
 543         * 'keyID' thus they are not reserved bits. Therefore for MKTME
 544         * we should still return physical address bits reported by CPUID.
 545         */
 546        if (!boot_cpu_has(X86_FEATURE_TME) ||
 547            WARN_ON_ONCE(boot_cpu_data.extended_cpuid_level < 0x80000008))
 548                return boot_cpu_data.x86_phys_bits;
 549
 550        return cpuid_eax(0x80000008) & 0xff;
 551}
 552
 553static void kvm_mmu_reset_all_pte_masks(void)
 554{
 555        u8 low_phys_bits;
 556
 557        shadow_user_mask = 0;
 558        shadow_accessed_mask = 0;
 559        shadow_dirty_mask = 0;
 560        shadow_nx_mask = 0;
 561        shadow_x_mask = 0;
 562        shadow_mmio_mask = 0;
 563        shadow_present_mask = 0;
 564        shadow_acc_track_mask = 0;
 565
 566        shadow_phys_bits = kvm_get_shadow_phys_bits();
 567
 568        /*
 569         * If the CPU has 46 or less physical address bits, then set an
 570         * appropriate mask to guard against L1TF attacks. Otherwise, it is
 571         * assumed that the CPU is not vulnerable to L1TF.
 572         *
 573         * Some Intel CPUs address the L1 cache using more PA bits than are
 574         * reported by CPUID. Use the PA width of the L1 cache when possible
 575         * to achieve more effective mitigation, e.g. if system RAM overlaps
 576         * the most significant bits of legal physical address space.
 577         */
 578        shadow_nonpresent_or_rsvd_mask = 0;
 579        low_phys_bits = boot_cpu_data.x86_cache_bits;
 580        if (boot_cpu_data.x86_cache_bits <
 581            52 - shadow_nonpresent_or_rsvd_mask_len) {
 582                shadow_nonpresent_or_rsvd_mask =
 583                        rsvd_bits(boot_cpu_data.x86_cache_bits -
 584                                  shadow_nonpresent_or_rsvd_mask_len,
 585                                  boot_cpu_data.x86_cache_bits - 1);
 586                low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
 587        } else
 588                WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));
 589
 590        shadow_nonpresent_or_rsvd_lower_gfn_mask =
 591                GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
 592}
 593
 594static int is_cpuid_PSE36(void)
 595{
 596        return 1;
 597}
 598
 599static int is_nx(struct kvm_vcpu *vcpu)
 600{
 601        return vcpu->arch.efer & EFER_NX;
 602}
 603
 604static int is_shadow_present_pte(u64 pte)
 605{
 606        return (pte != 0) && !is_mmio_spte(pte);
 607}
 608
 609static int is_large_pte(u64 pte)
 610{
 611        return pte & PT_PAGE_SIZE_MASK;
 612}
 613
 614static int is_last_spte(u64 pte, int level)
 615{
 616        if (level == PT_PAGE_TABLE_LEVEL)
 617                return 1;
 618        if (is_large_pte(pte))
 619                return 1;
 620        return 0;
 621}
 622
 623static bool is_executable_pte(u64 spte)
 624{
 625        return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
 626}
 627
 628static kvm_pfn_t spte_to_pfn(u64 pte)
 629{
 630        return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
 631}
 632
 633static gfn_t pse36_gfn_delta(u32 gpte)
 634{
 635        int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
 636
 637        return (gpte & PT32_DIR_PSE36_MASK) << shift;
 638}
 639
 640#ifdef CONFIG_X86_64
 641static void __set_spte(u64 *sptep, u64 spte)
 642{
 643        WRITE_ONCE(*sptep, spte);
 644}
 645
 646static void __update_clear_spte_fast(u64 *sptep, u64 spte)
 647{
 648        WRITE_ONCE(*sptep, spte);
 649}
 650
 651static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
 652{
 653        return xchg(sptep, spte);
 654}
 655
 656static u64 __get_spte_lockless(u64 *sptep)
 657{
 658        return READ_ONCE(*sptep);
 659}
 660#else
 661union split_spte {
 662        struct {
 663                u32 spte_low;
 664                u32 spte_high;
 665        };
 666        u64 spte;
 667};
 668
 669static void count_spte_clear(u64 *sptep, u64 spte)
 670{
 671        struct kvm_mmu_page *sp =  page_header(__pa(sptep));
 672
 673        if (is_shadow_present_pte(spte))
 674                return;
 675
 676        /* Ensure the spte is completely set before we increase the count */
 677        smp_wmb();
 678        sp->clear_spte_count++;
 679}
 680
 681static void __set_spte(u64 *sptep, u64 spte)
 682{
 683        union split_spte *ssptep, sspte;
 684
 685        ssptep = (union split_spte *)sptep;
 686        sspte = (union split_spte)spte;
 687
 688        ssptep->spte_high = sspte.spte_high;
 689
 690        /*
 691         * If we map the spte from nonpresent to present, We should store
 692         * the high bits firstly, then set present bit, so cpu can not
 693         * fetch this spte while we are setting the spte.
 694         */
 695        smp_wmb();
 696
 697        WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
 698}
 699
 700static void __update_clear_spte_fast(u64 *sptep, u64 spte)
 701{
 702        union split_spte *ssptep, sspte;
 703
 704        ssptep = (union split_spte *)sptep;
 705        sspte = (union split_spte)spte;
 706
 707        WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
 708
 709        /*
 710         * If we map the spte from present to nonpresent, we should clear
 711         * present bit firstly to avoid vcpu fetch the old high bits.
 712         */
 713        smp_wmb();
 714
 715        ssptep->spte_high = sspte.spte_high;
 716        count_spte_clear(sptep, spte);
 717}
 718
 719static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
 720{
 721        union split_spte *ssptep, sspte, orig;
 722
 723        ssptep = (union split_spte *)sptep;
 724        sspte = (union split_spte)spte;
 725
 726        /* xchg acts as a barrier before the setting of the high bits */
 727        orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
 728        orig.spte_high = ssptep->spte_high;
 729        ssptep->spte_high = sspte.spte_high;
 730        count_spte_clear(sptep, spte);
 731
 732        return orig.spte;
 733}
 734
 735/*
 736 * The idea using the light way get the spte on x86_32 guest is from
 737 * gup_get_pte (mm/gup.c).
 738 *
 739 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 740 * coalesces them and we are running out of the MMU lock.  Therefore
 741 * we need to protect against in-progress updates of the spte.
 742 *
 743 * Reading the spte while an update is in progress may get the old value
 744 * for the high part of the spte.  The race is fine for a present->non-present
 745 * change (because the high part of the spte is ignored for non-present spte),
 746 * but for a present->present change we must reread the spte.
 747 *
 748 * All such changes are done in two steps (present->non-present and
 749 * non-present->present), hence it is enough to count the number of
 750 * present->non-present updates: if it changed while reading the spte,
 751 * we might have hit the race.  This is done using clear_spte_count.
 752 */
 753static u64 __get_spte_lockless(u64 *sptep)
 754{
 755        struct kvm_mmu_page *sp =  page_header(__pa(sptep));
 756        union split_spte spte, *orig = (union split_spte *)sptep;
 757        int count;
 758
 759retry:
 760        count = sp->clear_spte_count;
 761        smp_rmb();
 762
 763        spte.spte_low = orig->spte_low;
 764        smp_rmb();
 765
 766        spte.spte_high = orig->spte_high;
 767        smp_rmb();
 768
 769        if (unlikely(spte.spte_low != orig->spte_low ||
 770              count != sp->clear_spte_count))
 771                goto retry;
 772
 773        return spte.spte;
 774}
 775#endif
 776
 777static bool spte_can_locklessly_be_made_writable(u64 spte)
 778{
 779        return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
 780                (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
 781}
 782
 783static bool spte_has_volatile_bits(u64 spte)
 784{
 785        if (!is_shadow_present_pte(spte))
 786                return false;
 787
 788        /*
 789         * Always atomically update spte if it can be updated
 790         * out of mmu-lock, it can ensure dirty bit is not lost,
 791         * also, it can help us to get a stable is_writable_pte()
 792         * to ensure tlb flush is not missed.
 793         */
 794        if (spte_can_locklessly_be_made_writable(spte) ||
 795            is_access_track_spte(spte))
 796                return true;
 797
 798        if (spte_ad_enabled(spte)) {
 799                if ((spte & shadow_accessed_mask) == 0 ||
 800                    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
 801                        return true;
 802        }
 803
 804        return false;
 805}
 806
 807static bool is_accessed_spte(u64 spte)
 808{
 809        u64 accessed_mask = spte_shadow_accessed_mask(spte);
 810
 811        return accessed_mask ? spte & accessed_mask
 812                             : !is_access_track_spte(spte);
 813}
 814
 815static bool is_dirty_spte(u64 spte)
 816{
 817        u64 dirty_mask = spte_shadow_dirty_mask(spte);
 818
 819        return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
 820}
 821
 822/* Rules for using mmu_spte_set:
 823 * Set the sptep from nonpresent to present.
 824 * Note: the sptep being assigned *must* be either not present
 825 * or in a state where the hardware will not attempt to update
 826 * the spte.
 827 */
 828static void mmu_spte_set(u64 *sptep, u64 new_spte)
 829{
 830        WARN_ON(is_shadow_present_pte(*sptep));
 831        __set_spte(sptep, new_spte);
 832}
 833
 834/*
 835 * Update the SPTE (excluding the PFN), but do not track changes in its
 836 * accessed/dirty status.
 837 */
 838static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
 839{
 840        u64 old_spte = *sptep;
 841
 842        WARN_ON(!is_shadow_present_pte(new_spte));
 843
 844        if (!is_shadow_present_pte(old_spte)) {
 845                mmu_spte_set(sptep, new_spte);
 846                return old_spte;
 847        }
 848
 849        if (!spte_has_volatile_bits(old_spte))
 850                __update_clear_spte_fast(sptep, new_spte);
 851        else
 852                old_spte = __update_clear_spte_slow(sptep, new_spte);
 853
 854        WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
 855
 856        return old_spte;
 857}
 858
 859/* Rules for using mmu_spte_update:
 860 * Update the state bits, it means the mapped pfn is not changed.
 861 *
 862 * Whenever we overwrite a writable spte with a read-only one we
 863 * should flush remote TLBs. Otherwise rmap_write_protect
 864 * will find a read-only spte, even though the writable spte
 865 * might be cached on a CPU's TLB, the return value indicates this
 866 * case.
 867 *
 868 * Returns true if the TLB needs to be flushed
 869 */
 870static bool mmu_spte_update(u64 *sptep, u64 new_spte)
 871{
 872        bool flush = false;
 873        u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
 874
 875        if (!is_shadow_present_pte(old_spte))
 876                return false;
 877
 878        /*
 879         * For the spte updated out of mmu-lock is safe, since
 880         * we always atomically update it, see the comments in
 881         * spte_has_volatile_bits().
 882         */
 883        if (spte_can_locklessly_be_made_writable(old_spte) &&
 884              !is_writable_pte(new_spte))
 885                flush = true;
 886
 887        /*
 888         * Flush TLB when accessed/dirty states are changed in the page tables,
 889         * to guarantee consistency between TLB and page tables.
 890         */
 891
 892        if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
 893                flush = true;
 894                kvm_set_pfn_accessed(spte_to_pfn(old_spte));
 895        }
 896
 897        if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
 898                flush = true;
 899                kvm_set_pfn_dirty(spte_to_pfn(old_spte));
 900        }
 901
 902        return flush;
 903}
 904
 905/*
 906 * Rules for using mmu_spte_clear_track_bits:
 907 * It sets the sptep from present to nonpresent, and track the
 908 * state bits, it is used to clear the last level sptep.
 909 * Returns non-zero if the PTE was previously valid.
 910 */
 911static int mmu_spte_clear_track_bits(u64 *sptep)
 912{
 913        kvm_pfn_t pfn;
 914        u64 old_spte = *sptep;
 915
 916        if (!spte_has_volatile_bits(old_spte))
 917                __update_clear_spte_fast(sptep, 0ull);
 918        else
 919                old_spte = __update_clear_spte_slow(sptep, 0ull);
 920
 921        if (!is_shadow_present_pte(old_spte))
 922                return 0;
 923
 924        pfn = spte_to_pfn(old_spte);
 925
 926        /*
 927         * KVM does not hold the refcount of the page used by
 928         * kvm mmu, before reclaiming the page, we should
 929         * unmap it from mmu first.
 930         */
 931        WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
 932
 933        if (is_accessed_spte(old_spte))
 934                kvm_set_pfn_accessed(pfn);
 935
 936        if (is_dirty_spte(old_spte))
 937                kvm_set_pfn_dirty(pfn);
 938
 939        return 1;
 940}
 941
 942/*
 943 * Rules for using mmu_spte_clear_no_track:
 944 * Directly clear spte without caring the state bits of sptep,
 945 * it is used to set the upper level spte.
 946 */
 947static void mmu_spte_clear_no_track(u64 *sptep)
 948{
 949        __update_clear_spte_fast(sptep, 0ull);
 950}
 951
 952static u64 mmu_spte_get_lockless(u64 *sptep)
 953{
 954        return __get_spte_lockless(sptep);
 955}
 956
 957static u64 mark_spte_for_access_track(u64 spte)
 958{
 959        if (spte_ad_enabled(spte))
 960                return spte & ~shadow_accessed_mask;
 961
 962        if (is_access_track_spte(spte))
 963                return spte;
 964
 965        /*
 966         * Making an Access Tracking PTE will result in removal of write access
 967         * from the PTE. So, verify that we will be able to restore the write
 968         * access in the fast page fault path later on.
 969         */
 970        WARN_ONCE((spte & PT_WRITABLE_MASK) &&
 971                  !spte_can_locklessly_be_made_writable(spte),
 972                  "kvm: Writable SPTE is not locklessly dirty-trackable\n");
 973
 974        WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
 975                          shadow_acc_track_saved_bits_shift),
 976                  "kvm: Access Tracking saved bit locations are not zero\n");
 977
 978        spte |= (spte & shadow_acc_track_saved_bits_mask) <<
 979                shadow_acc_track_saved_bits_shift;
 980        spte &= ~shadow_acc_track_mask;
 981
 982        return spte;
 983}
 984
 985/* Restore an acc-track PTE back to a regular PTE */
 986static u64 restore_acc_track_spte(u64 spte)
 987{
 988        u64 new_spte = spte;
 989        u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
 990                         & shadow_acc_track_saved_bits_mask;
 991
 992        WARN_ON_ONCE(spte_ad_enabled(spte));
 993        WARN_ON_ONCE(!is_access_track_spte(spte));
 994
 995        new_spte &= ~shadow_acc_track_mask;
 996        new_spte &= ~(shadow_acc_track_saved_bits_mask <<
 997                      shadow_acc_track_saved_bits_shift);
 998        new_spte |= saved_bits;
 999
1000        return new_spte;
1001}
1002
1003/* Returns the Accessed status of the PTE and resets it at the same time. */
1004static bool mmu_spte_age(u64 *sptep)
1005{
1006        u64 spte = mmu_spte_get_lockless(sptep);
1007
1008        if (!is_accessed_spte(spte))
1009                return false;
1010
1011        if (spte_ad_enabled(spte)) {
1012                clear_bit((ffs(shadow_accessed_mask) - 1),
1013                          (unsigned long *)sptep);
1014        } else {
1015                /*
1016                 * Capture the dirty status of the page, so that it doesn't get
1017                 * lost when the SPTE is marked for access tracking.
1018                 */
1019                if (is_writable_pte(spte))
1020                        kvm_set_pfn_dirty(spte_to_pfn(spte));
1021
1022                spte = mark_spte_for_access_track(spte);
1023                mmu_spte_update_no_track(sptep, spte);
1024        }
1025
1026        return true;
1027}
1028
1029static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
1030{
1031        /*
1032         * Prevent page table teardown by making any free-er wait during
1033         * kvm_flush_remote_tlbs() IPI to all active vcpus.
1034         */
1035        local_irq_disable();
1036
1037        /*
1038         * Make sure a following spte read is not reordered ahead of the write
1039         * to vcpu->mode.
1040         */
1041        smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
1042}
1043
1044static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
1045{
1046        /*
1047         * Make sure the write to vcpu->mode is not reordered in front of
1048         * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
1049         * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
1050         */
1051        smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
1052        local_irq_enable();
1053}
1054
1055static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
1056                                  struct kmem_cache *base_cache, int min)
1057{
1058        void *obj;
1059
1060        if (cache->nobjs >= min)
1061                return 0;
1062        while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1063                obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
1064                if (!obj)
1065                        return cache->nobjs >= min ? 0 : -ENOMEM;
1066                cache->objects[cache->nobjs++] = obj;
1067        }
1068        return 0;
1069}
1070
1071static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
1072{
1073        return cache->nobjs;
1074}
1075
1076static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
1077                                  struct kmem_cache *cache)
1078{
1079        while (mc->nobjs)
1080                kmem_cache_free(cache, mc->objects[--mc->nobjs]);
1081}
1082
1083static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
1084                                       int min)
1085{
1086        void *page;
1087
1088        if (cache->nobjs >= min)
1089                return 0;
1090        while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1091                page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1092                if (!page)
1093                        return cache->nobjs >= min ? 0 : -ENOMEM;
1094                cache->objects[cache->nobjs++] = page;
1095        }
1096        return 0;
1097}
1098
1099static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1100{
1101        while (mc->nobjs)
1102                free_page((unsigned long)mc->objects[--mc->nobjs]);
1103}
1104
1105static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1106{
1107        int r;
1108
1109        r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1110                                   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1111        if (r)
1112                goto out;
1113        r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1114        if (r)
1115                goto out;
1116        r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1117                                   mmu_page_header_cache, 4);
1118out:
1119        return r;
1120}
1121
1122static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1123{
1124        mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1125                                pte_list_desc_cache);
1126        mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1127        mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1128                                mmu_page_header_cache);
1129}
1130
1131static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1132{
1133        void *p;
1134
1135        BUG_ON(!mc->nobjs);
1136        p = mc->objects[--mc->nobjs];
1137        return p;
1138}
1139
1140static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1141{
1142        return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1143}
1144
1145static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1146{
1147        kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1148}
1149
1150static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1151{
1152        if (!sp->role.direct)
1153                return sp->gfns[index];
1154
1155        return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1156}
1157
1158static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1159{
1160        if (!sp->role.direct) {
1161                sp->gfns[index] = gfn;
1162                return;
1163        }
1164
1165        if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1166                pr_err_ratelimited("gfn mismatch under direct page %llx "
1167                                   "(expected %llx, got %llx)\n",
1168                                   sp->gfn,
1169                                   kvm_mmu_page_get_gfn(sp, index), gfn);
1170}
1171
1172/*
1173 * Return the pointer to the large page information for a given gfn,
1174 * handling slots that are not large page aligned.
1175 */
1176static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1177                                              struct kvm_memory_slot *slot,
1178                                              int level)
1179{
1180        unsigned long idx;
1181
1182        idx = gfn_to_index(gfn, slot->base_gfn, level);
1183        return &slot->arch.lpage_info[level - 2][idx];
1184}
1185
1186static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1187                                            gfn_t gfn, int count)
1188{
1189        struct kvm_lpage_info *linfo;
1190        int i;
1191
1192        for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1193                linfo = lpage_info_slot(gfn, slot, i);
1194                linfo->disallow_lpage += count;
1195                WARN_ON(linfo->disallow_lpage < 0);
1196        }
1197}
1198
1199void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1200{
1201        update_gfn_disallow_lpage_count(slot, gfn, 1);
1202}
1203
1204void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1205{
1206        update_gfn_disallow_lpage_count(slot, gfn, -1);
1207}
1208
1209static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1210{
1211        struct kvm_memslots *slots;
1212        struct kvm_memory_slot *slot;
1213        gfn_t gfn;
1214
1215        kvm->arch.indirect_shadow_pages++;
1216        gfn = sp->gfn;
1217        slots = kvm_memslots_for_spte_role(kvm, sp->role);
1218        slot = __gfn_to_memslot(slots, gfn);
1219
1220        /* the non-leaf shadow pages are keeping readonly. */
1221        if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1222                return kvm_slot_page_track_add_page(kvm, slot, gfn,
1223                                                    KVM_PAGE_TRACK_WRITE);
1224
1225        kvm_mmu_gfn_disallow_lpage(slot, gfn);
1226}
1227
1228static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1229{
1230        if (sp->lpage_disallowed)
1231                return;
1232
1233        ++kvm->stat.nx_lpage_splits;
1234        list_add_tail(&sp->lpage_disallowed_link,
1235                      &kvm->arch.lpage_disallowed_mmu_pages);
1236        sp->lpage_disallowed = true;
1237}
1238
1239static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1240{
1241        struct kvm_memslots *slots;
1242        struct kvm_memory_slot *slot;
1243        gfn_t gfn;
1244
1245        kvm->arch.indirect_shadow_pages--;
1246        gfn = sp->gfn;
1247        slots = kvm_memslots_for_spte_role(kvm, sp->role);
1248        slot = __gfn_to_memslot(slots, gfn);
1249        if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1250                return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1251                                                       KVM_PAGE_TRACK_WRITE);
1252
1253        kvm_mmu_gfn_allow_lpage(slot, gfn);
1254}
1255
1256static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1257{
1258        --kvm->stat.nx_lpage_splits;
1259        sp->lpage_disallowed = false;
1260        list_del(&sp->lpage_disallowed_link);
1261}
1262
1263static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1264                                          struct kvm_memory_slot *slot)
1265{
1266        struct kvm_lpage_info *linfo;
1267
1268        if (slot) {
1269                linfo = lpage_info_slot(gfn, slot, level);
1270                return !!linfo->disallow_lpage;
1271        }
1272
1273        return true;
1274}
1275
1276static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1277                                        int level)
1278{
1279        struct kvm_memory_slot *slot;
1280
1281        slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1282        return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1283}
1284
1285static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1286{
1287        unsigned long page_size;
1288        int i, ret = 0;
1289
1290        page_size = kvm_host_page_size(kvm, gfn);
1291
1292        for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1293                if (page_size >= KVM_HPAGE_SIZE(i))
1294                        ret = i;
1295                else
1296                        break;
1297        }
1298
1299        return ret;
1300}
1301
1302static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1303                                          bool no_dirty_log)
1304{
1305        if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1306                return false;
1307        if (no_dirty_log && slot->dirty_bitmap)
1308                return false;
1309
1310        return true;
1311}
1312
1313static struct kvm_memory_slot *
1314gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1315                            bool no_dirty_log)
1316{
1317        struct kvm_memory_slot *slot;
1318
1319        slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1320        if (!memslot_valid_for_gpte(slot, no_dirty_log))
1321                slot = NULL;
1322
1323        return slot;
1324}
1325
1326static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1327                         bool *force_pt_level)
1328{
1329        int host_level, level, max_level;
1330        struct kvm_memory_slot *slot;
1331
1332        if (unlikely(*force_pt_level))
1333                return PT_PAGE_TABLE_LEVEL;
1334
1335        slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1336        *force_pt_level = !memslot_valid_for_gpte(slot, true);
1337        if (unlikely(*force_pt_level))
1338                return PT_PAGE_TABLE_LEVEL;
1339
1340        host_level = host_mapping_level(vcpu->kvm, large_gfn);
1341
1342        if (host_level == PT_PAGE_TABLE_LEVEL)
1343                return host_level;
1344
1345        max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1346
1347        for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1348                if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1349                        break;
1350
1351        return level - 1;
1352}
1353
1354/*
1355 * About rmap_head encoding:
1356 *
1357 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1358 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1359 * pte_list_desc containing more mappings.
1360 */
1361
1362/*
1363 * Returns the number of pointers in the rmap chain, not counting the new one.
1364 */
1365static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1366                        struct kvm_rmap_head *rmap_head)
1367{
1368        struct pte_list_desc *desc;
1369        int i, count = 0;
1370
1371        if (!rmap_head->val) {
1372                rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1373                rmap_head->val = (unsigned long)spte;
1374        } else if (!(rmap_head->val & 1)) {
1375                rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1376                desc = mmu_alloc_pte_list_desc(vcpu);
1377                desc->sptes[0] = (u64 *)rmap_head->val;
1378                desc->sptes[1] = spte;
1379                rmap_head->val = (unsigned long)desc | 1;
1380                ++count;
1381        } else {
1382                rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1383                desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1384                while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1385                        desc = desc->more;
1386                        count += PTE_LIST_EXT;
1387                }
1388                if (desc->sptes[PTE_LIST_EXT-1]) {
1389                        desc->more = mmu_alloc_pte_list_desc(vcpu);
1390                        desc = desc->more;
1391                }
1392                for (i = 0; desc->sptes[i]; ++i)
1393                        ++count;
1394                desc->sptes[i] = spte;
1395        }
1396        return count;
1397}
1398
1399static void
1400pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1401                           struct pte_list_desc *desc, int i,
1402                           struct pte_list_desc *prev_desc)
1403{
1404        int j;
1405
1406        for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1407                ;
1408        desc->sptes[i] = desc->sptes[j];
1409        desc->sptes[j] = NULL;
1410        if (j != 0)
1411                return;
1412        if (!prev_desc && !desc->more)
1413                rmap_head->val = (unsigned long)desc->sptes[0];
1414        else
1415                if (prev_desc)
1416                        prev_desc->more = desc->more;
1417                else
1418                        rmap_head->val = (unsigned long)desc->more | 1;
1419        mmu_free_pte_list_desc(desc);
1420}
1421
1422static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1423{
1424        struct pte_list_desc *desc;
1425        struct pte_list_desc *prev_desc;
1426        int i;
1427
1428        if (!rmap_head->val) {
1429                pr_err("%s: %p 0->BUG\n", __func__, spte);
1430                BUG();
1431        } else if (!(rmap_head->val & 1)) {
1432                rmap_printk("%s:  %p 1->0\n", __func__, spte);
1433                if ((u64 *)rmap_head->val != spte) {
1434                        pr_err("%s:  %p 1->BUG\n", __func__, spte);
1435                        BUG();
1436                }
1437                rmap_head->val = 0;
1438        } else {
1439                rmap_printk("%s:  %p many->many\n", __func__, spte);
1440                desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1441                prev_desc = NULL;
1442                while (desc) {
1443                        for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1444                                if (desc->sptes[i] == spte) {
1445                                        pte_list_desc_remove_entry(rmap_head,
1446                                                        desc, i, prev_desc);
1447                                        return;
1448                                }
1449                        }
1450                        prev_desc = desc;
1451                        desc = desc->more;
1452                }
1453                pr_err("%s: %p many->many\n", __func__, spte);
1454                BUG();
1455        }
1456}
1457
1458static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1459{
1460        mmu_spte_clear_track_bits(sptep);
1461        __pte_list_remove(sptep, rmap_head);
1462}
1463
1464static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1465                                           struct kvm_memory_slot *slot)
1466{
1467        unsigned long idx;
1468
1469        idx = gfn_to_index(gfn, slot->base_gfn, level);
1470        return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1471}
1472
1473static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1474                                         struct kvm_mmu_page *sp)
1475{
1476        struct kvm_memslots *slots;
1477        struct kvm_memory_slot *slot;
1478
1479        slots = kvm_memslots_for_spte_role(kvm, sp->role);
1480        slot = __gfn_to_memslot(slots, gfn);
1481        return __gfn_to_rmap(gfn, sp->role.level, slot);
1482}
1483
1484static bool rmap_can_add(struct kvm_vcpu *vcpu)
1485{
1486        struct kvm_mmu_memory_cache *cache;
1487
1488        cache = &vcpu->arch.mmu_pte_list_desc_cache;
1489        return mmu_memory_cache_free_objects(cache);
1490}
1491
1492static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1493{
1494        struct kvm_mmu_page *sp;
1495        struct kvm_rmap_head *rmap_head;
1496
1497        sp = page_header(__pa(spte));
1498        kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1499        rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1500        return pte_list_add(vcpu, spte, rmap_head);
1501}
1502
1503static void rmap_remove(struct kvm *kvm, u64 *spte)
1504{
1505        struct kvm_mmu_page *sp;
1506        gfn_t gfn;
1507        struct kvm_rmap_head *rmap_head;
1508
1509        sp = page_header(__pa(spte));
1510        gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1511        rmap_head = gfn_to_rmap(kvm, gfn, sp);
1512        __pte_list_remove(spte, rmap_head);
1513}
1514
1515/*
1516 * Used by the following functions to iterate through the sptes linked by a
1517 * rmap.  All fields are private and not assumed to be used outside.
1518 */
1519struct rmap_iterator {
1520        /* private fields */
1521        struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1522        int pos;                        /* index of the sptep */
1523};
1524
1525/*
1526 * Iteration must be started by this function.  This should also be used after
1527 * removing/dropping sptes from the rmap link because in such cases the
1528 * information in the itererator may not be valid.
1529 *
1530 * Returns sptep if found, NULL otherwise.
1531 */
1532static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1533                           struct rmap_iterator *iter)
1534{
1535        u64 *sptep;
1536
1537        if (!rmap_head->val)
1538                return NULL;
1539
1540        if (!(rmap_head->val & 1)) {
1541                iter->desc = NULL;
1542                sptep = (u64 *)rmap_head->val;
1543                goto out;
1544        }
1545
1546        iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1547        iter->pos = 0;
1548        sptep = iter->desc->sptes[iter->pos];
1549out:
1550        BUG_ON(!is_shadow_present_pte(*sptep));
1551        return sptep;
1552}
1553
1554/*
1555 * Must be used with a valid iterator: e.g. after rmap_get_first().
1556 *
1557 * Returns sptep if found, NULL otherwise.
1558 */
1559static u64 *rmap_get_next(struct rmap_iterator *iter)
1560{
1561        u64 *sptep;
1562
1563        if (iter->desc) {
1564                if (iter->pos < PTE_LIST_EXT - 1) {
1565                        ++iter->pos;
1566                        sptep = iter->desc->sptes[iter->pos];
1567                        if (sptep)
1568                                goto out;
1569                }
1570
1571                iter->desc = iter->desc->more;
1572
1573                if (iter->desc) {
1574                        iter->pos = 0;
1575                        /* desc->sptes[0] cannot be NULL */
1576                        sptep = iter->desc->sptes[iter->pos];
1577                        goto out;
1578                }
1579        }
1580
1581        return NULL;
1582out:
1583        BUG_ON(!is_shadow_present_pte(*sptep));
1584        return sptep;
1585}
1586
1587#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1588        for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1589             _spte_; _spte_ = rmap_get_next(_iter_))
1590
1591static void drop_spte(struct kvm *kvm, u64 *sptep)
1592{
1593        if (mmu_spte_clear_track_bits(sptep))
1594                rmap_remove(kvm, sptep);
1595}
1596
1597
1598static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1599{
1600        if (is_large_pte(*sptep)) {
1601                WARN_ON(page_header(__pa(sptep))->role.level ==
1602                        PT_PAGE_TABLE_LEVEL);
1603                drop_spte(kvm, sptep);
1604                --kvm->stat.lpages;
1605                return true;
1606        }
1607
1608        return false;
1609}
1610
1611static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1612{
1613        if (__drop_large_spte(vcpu->kvm, sptep)) {
1614                struct kvm_mmu_page *sp = page_header(__pa(sptep));
1615
1616                kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1617                        KVM_PAGES_PER_HPAGE(sp->role.level));
1618        }
1619}
1620
1621/*
1622 * Write-protect on the specified @sptep, @pt_protect indicates whether
1623 * spte write-protection is caused by protecting shadow page table.
1624 *
1625 * Note: write protection is difference between dirty logging and spte
1626 * protection:
1627 * - for dirty logging, the spte can be set to writable at anytime if
1628 *   its dirty bitmap is properly set.
1629 * - for spte protection, the spte can be writable only after unsync-ing
1630 *   shadow page.
1631 *
1632 * Return true if tlb need be flushed.
1633 */
1634static bool spte_write_protect(u64 *sptep, bool pt_protect)
1635{
1636        u64 spte = *sptep;
1637
1638        if (!is_writable_pte(spte) &&
1639              !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1640                return false;
1641
1642        rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1643
1644        if (pt_protect)
1645                spte &= ~SPTE_MMU_WRITEABLE;
1646        spte = spte & ~PT_WRITABLE_MASK;
1647
1648        return mmu_spte_update(sptep, spte);
1649}
1650
1651static bool __rmap_write_protect(struct kvm *kvm,
1652                                 struct kvm_rmap_head *rmap_head,
1653                                 bool pt_protect)
1654{
1655        u64 *sptep;
1656        struct rmap_iterator iter;
1657        bool flush = false;
1658
1659        for_each_rmap_spte(rmap_head, &iter, sptep)
1660                flush |= spte_write_protect(sptep, pt_protect);
1661
1662        return flush;
1663}
1664
1665static bool spte_clear_dirty(u64 *sptep)
1666{
1667        u64 spte = *sptep;
1668
1669        rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1670
1671        MMU_WARN_ON(!spte_ad_enabled(spte));
1672        spte &= ~shadow_dirty_mask;
1673        return mmu_spte_update(sptep, spte);
1674}
1675
1676static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1677{
1678        bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1679                                               (unsigned long *)sptep);
1680        if (was_writable && !spte_ad_enabled(*sptep))
1681                kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1682
1683        return was_writable;
1684}
1685
1686/*
1687 * Gets the GFN ready for another round of dirty logging by clearing the
1688 *      - D bit on ad-enabled SPTEs, and
1689 *      - W bit on ad-disabled SPTEs.
1690 * Returns true iff any D or W bits were cleared.
1691 */
1692static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1693{
1694        u64 *sptep;
1695        struct rmap_iterator iter;
1696        bool flush = false;
1697
1698        for_each_rmap_spte(rmap_head, &iter, sptep)
1699                if (spte_ad_need_write_protect(*sptep))
1700                        flush |= spte_wrprot_for_clear_dirty(sptep);
1701                else
1702                        flush |= spte_clear_dirty(sptep);
1703
1704        return flush;
1705}
1706
1707static bool spte_set_dirty(u64 *sptep)
1708{
1709        u64 spte = *sptep;
1710
1711        rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1712
1713        /*
1714         * Similar to the !kvm_x86_ops->slot_disable_log_dirty case,
1715         * do not bother adding back write access to pages marked
1716         * SPTE_AD_WRPROT_ONLY_MASK.
1717         */
1718        spte |= shadow_dirty_mask;
1719
1720        return mmu_spte_update(sptep, spte);
1721}
1722
1723static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1724{
1725        u64 *sptep;
1726        struct rmap_iterator iter;
1727        bool flush = false;
1728
1729        for_each_rmap_spte(rmap_head, &iter, sptep)
1730                if (spte_ad_enabled(*sptep))
1731                        flush |= spte_set_dirty(sptep);
1732
1733        return flush;
1734}
1735
1736/**
1737 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1738 * @kvm: kvm instance
1739 * @slot: slot to protect
1740 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1741 * @mask: indicates which pages we should protect
1742 *
1743 * Used when we do not need to care about huge page mappings: e.g. during dirty
1744 * logging we do not have any such mappings.
1745 */
1746static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1747                                     struct kvm_memory_slot *slot,
1748                                     gfn_t gfn_offset, unsigned long mask)
1749{
1750        struct kvm_rmap_head *rmap_head;
1751
1752        while (mask) {
1753                rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1754                                          PT_PAGE_TABLE_LEVEL, slot);
1755                __rmap_write_protect(kvm, rmap_head, false);
1756
1757                /* clear the first set bit */
1758                mask &= mask - 1;
1759        }
1760}
1761
1762/**
1763 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1764 * protect the page if the D-bit isn't supported.
1765 * @kvm: kvm instance
1766 * @slot: slot to clear D-bit
1767 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1768 * @mask: indicates which pages we should clear D-bit
1769 *
1770 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1771 */
1772void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1773                                     struct kvm_memory_slot *slot,
1774                                     gfn_t gfn_offset, unsigned long mask)
1775{
1776        struct kvm_rmap_head *rmap_head;
1777
1778        while (mask) {
1779                rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1780                                          PT_PAGE_TABLE_LEVEL, slot);
1781                __rmap_clear_dirty(kvm, rmap_head);
1782
1783                /* clear the first set bit */
1784                mask &= mask - 1;
1785        }
1786}
1787EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1788
1789/**
1790 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1791 * PT level pages.
1792 *
1793 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1794 * enable dirty logging for them.
1795 *
1796 * Used when we do not need to care about huge page mappings: e.g. during dirty
1797 * logging we do not have any such mappings.
1798 */
1799void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1800                                struct kvm_memory_slot *slot,
1801                                gfn_t gfn_offset, unsigned long mask)
1802{
1803        if (kvm_x86_ops->enable_log_dirty_pt_masked)
1804                kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1805                                mask);
1806        else
1807                kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1808}
1809
1810/**
1811 * kvm_arch_write_log_dirty - emulate dirty page logging
1812 * @vcpu: Guest mode vcpu
1813 *
1814 * Emulate arch specific page modification logging for the
1815 * nested hypervisor
1816 */
1817int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1818{
1819        if (kvm_x86_ops->write_log_dirty)
1820                return kvm_x86_ops->write_log_dirty(vcpu);
1821
1822        return 0;
1823}
1824
1825bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1826                                    struct kvm_memory_slot *slot, u64 gfn)
1827{
1828        struct kvm_rmap_head *rmap_head;
1829        int i;
1830        bool write_protected = false;
1831
1832        for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1833                rmap_head = __gfn_to_rmap(gfn, i, slot);
1834                write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1835        }
1836
1837        return write_protected;
1838}
1839
1840static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1841{
1842        struct kvm_memory_slot *slot;
1843
1844        slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1845        return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1846}
1847
1848static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1849{
1850        u64 *sptep;
1851        struct rmap_iterator iter;
1852        bool flush = false;
1853
1854        while ((sptep = rmap_get_first(rmap_head, &iter))) {
1855                rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1856
1857                pte_list_remove(rmap_head, sptep);
1858                flush = true;
1859        }
1860
1861        return flush;
1862}
1863
1864static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1865                           struct kvm_memory_slot *slot, gfn_t gfn, int level,
1866                           unsigned long data)
1867{
1868        return kvm_zap_rmapp(kvm, rmap_head);
1869}
1870
1871static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1872                             struct kvm_memory_slot *slot, gfn_t gfn, int level,
1873                             unsigned long data)
1874{
1875        u64 *sptep;
1876        struct rmap_iterator iter;
1877        int need_flush = 0;
1878        u64 new_spte;
1879        pte_t *ptep = (pte_t *)data;
1880        kvm_pfn_t new_pfn;
1881
1882        WARN_ON(pte_huge(*ptep));
1883        new_pfn = pte_pfn(*ptep);
1884
1885restart:
1886        for_each_rmap_spte(rmap_head, &iter, sptep) {
1887                rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1888                            sptep, *sptep, gfn, level);
1889
1890                need_flush = 1;
1891
1892                if (pte_write(*ptep)) {
1893                        pte_list_remove(rmap_head, sptep);
1894                        goto restart;
1895                } else {
1896                        new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1897                        new_spte |= (u64)new_pfn << PAGE_SHIFT;
1898
1899                        new_spte &= ~PT_WRITABLE_MASK;
1900                        new_spte &= ~SPTE_HOST_WRITEABLE;
1901
1902                        new_spte = mark_spte_for_access_track(new_spte);
1903
1904                        mmu_spte_clear_track_bits(sptep);
1905                        mmu_spte_set(sptep, new_spte);
1906                }
1907        }
1908
1909        if (need_flush && kvm_available_flush_tlb_with_range()) {
1910                kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1911                return 0;
1912        }
1913
1914        return need_flush;
1915}
1916
1917struct slot_rmap_walk_iterator {
1918        /* input fields. */
1919        struct kvm_memory_slot *slot;
1920        gfn_t start_gfn;
1921        gfn_t end_gfn;
1922        int start_level;
1923        int end_level;
1924
1925        /* output fields. */
1926        gfn_t gfn;
1927        struct kvm_rmap_head *rmap;
1928        int level;
1929
1930        /* private field. */
1931        struct kvm_rmap_head *end_rmap;
1932};
1933
1934static void
1935rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1936{
1937        iterator->level = level;
1938        iterator->gfn = iterator->start_gfn;
1939        iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1940        iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1941                                           iterator->slot);
1942}
1943
1944static void
1945slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1946                    struct kvm_memory_slot *slot, int start_level,
1947                    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1948{
1949        iterator->slot = slot;
1950        iterator->start_level = start_level;
1951        iterator->end_level = end_level;
1952        iterator->start_gfn = start_gfn;
1953        iterator->end_gfn = end_gfn;
1954
1955        rmap_walk_init_level(iterator, iterator->start_level);
1956}
1957
1958static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1959{
1960        return !!iterator->rmap;
1961}
1962
1963static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1964{
1965        if (++iterator->rmap <= iterator->end_rmap) {
1966                iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1967                return;
1968        }
1969
1970        if (++iterator->level > iterator->end_level) {
1971                iterator->rmap = NULL;
1972                return;
1973        }
1974
1975        rmap_walk_init_level(iterator, iterator->level);
1976}
1977
1978#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1979           _start_gfn, _end_gfn, _iter_)                                \
1980        for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1981                                 _end_level_, _start_gfn, _end_gfn);    \
1982             slot_rmap_walk_okay(_iter_);                               \
1983             slot_rmap_walk_next(_iter_))
1984
1985static int kvm_handle_hva_range(struct kvm *kvm,
1986                                unsigned long start,
1987                                unsigned long end,
1988                                unsigned long data,
1989                                int (*handler)(struct kvm *kvm,
1990                                               struct kvm_rmap_head *rmap_head,
1991                                               struct kvm_memory_slot *slot,
1992                                               gfn_t gfn,
1993                                               int level,
1994                                               unsigned long data))
1995{
1996        struct kvm_memslots *slots;
1997        struct kvm_memory_slot *memslot;
1998        struct slot_rmap_walk_iterator iterator;
1999        int ret = 0;
2000        int i;
2001
2002        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
2003                slots = __kvm_memslots(kvm, i);
2004                kvm_for_each_memslot(memslot, slots) {
2005                        unsigned long hva_start, hva_end;
2006                        gfn_t gfn_start, gfn_end;
2007
2008                        hva_start = max(start, memslot->userspace_addr);
2009                        hva_end = min(end, memslot->userspace_addr +
2010                                      (memslot->npages << PAGE_SHIFT));
2011                        if (hva_start >= hva_end)
2012                                continue;
2013                        /*
2014                         * {gfn(page) | page intersects with [hva_start, hva_end)} =
2015                         * {gfn_start, gfn_start+1, ..., gfn_end-1}.
2016                         */
2017                        gfn_start = hva_to_gfn_memslot(hva_start, memslot);
2018                        gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
2019
2020                        for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
2021                                                 PT_MAX_HUGEPAGE_LEVEL,
2022                                                 gfn_start, gfn_end - 1,
2023                                                 &iterator)
2024                                ret |= handler(kvm, iterator.rmap, memslot,
2025                                               iterator.gfn, iterator.level, data);
2026                }
2027        }
2028
2029        return ret;
2030}
2031
2032static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
2033                          unsigned long data,
2034                          int (*handler)(struct kvm *kvm,
2035                                         struct kvm_rmap_head *rmap_head,
2036                                         struct kvm_memory_slot *slot,
2037                                         gfn_t gfn, int level,
2038                                         unsigned long data))
2039{
2040        return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
2041}
2042
2043int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
2044{
2045        return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
2046}
2047
2048int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
2049{
2050        return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
2051}
2052
2053static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2054                         struct kvm_memory_slot *slot, gfn_t gfn, int level,
2055                         unsigned long data)
2056{
2057        u64 *sptep;
2058        struct rmap_iterator uninitialized_var(iter);
2059        int young = 0;
2060
2061        for_each_rmap_spte(rmap_head, &iter, sptep)
2062                young |= mmu_spte_age(sptep);
2063
2064        trace_kvm_age_page(gfn, level, slot, young);
2065        return young;
2066}
2067
2068static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2069                              struct kvm_memory_slot *slot, gfn_t gfn,
2070                              int level, unsigned long data)
2071{
2072        u64 *sptep;
2073        struct rmap_iterator iter;
2074
2075        for_each_rmap_spte(rmap_head, &iter, sptep)
2076                if (is_accessed_spte(*sptep))
2077                        return 1;
2078        return 0;
2079}
2080
2081#define RMAP_RECYCLE_THRESHOLD 1000
2082
2083static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
2084{
2085        struct kvm_rmap_head *rmap_head;
2086        struct kvm_mmu_page *sp;
2087
2088        sp = page_header(__pa(spte));
2089
2090        rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
2091
2092        kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
2093        kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
2094                        KVM_PAGES_PER_HPAGE(sp->role.level));
2095}
2096
2097int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2098{
2099        return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
2100}
2101
2102int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2103{
2104        return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2105}
2106
2107#ifdef MMU_DEBUG
2108static int is_empty_shadow_page(u64 *spt)
2109{
2110        u64 *pos;
2111        u64 *end;
2112
2113        for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
2114                if (is_shadow_present_pte(*pos)) {
2115                        printk(KERN_ERR "%s: %p %llx\n", __func__,
2116                               pos, *pos);
2117                        return 0;
2118                }
2119        return 1;
2120}
2121#endif
2122
2123/*
2124 * This value is the sum of all of the kvm instances's
2125 * kvm->arch.n_used_mmu_pages values.  We need a global,
2126 * aggregate version in order to make the slab shrinker
2127 * faster
2128 */
2129static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2130{
2131        kvm->arch.n_used_mmu_pages += nr;
2132        percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2133}
2134
2135static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2136{
2137        MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2138        hlist_del(&sp->hash_link);
2139        list_del(&sp->link);
2140        free_page((unsigned long)sp->spt);
2141        if (!sp->role.direct)
2142                free_page((unsigned long)sp->gfns);
2143        kmem_cache_free(mmu_page_header_cache, sp);
2144}
2145
2146static unsigned kvm_page_table_hashfn(gfn_t gfn)
2147{
2148        return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2149}
2150
2151static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2152                                    struct kvm_mmu_page *sp, u64 *parent_pte)
2153{
2154        if (!parent_pte)
2155                return;
2156
2157        pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2158}
2159
2160static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2161                                       u64 *parent_pte)
2162{
2163        __pte_list_remove(parent_pte, &sp->parent_ptes);
2164}
2165
2166static void drop_parent_pte(struct kvm_mmu_page *sp,
2167                            u64 *parent_pte)
2168{
2169        mmu_page_remove_parent_pte(sp, parent_pte);
2170        mmu_spte_clear_no_track(parent_pte);
2171}
2172
2173static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2174{
2175        struct kvm_mmu_page *sp;
2176
2177        sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2178        sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2179        if (!direct)
2180                sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2181        set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2182
2183        /*
2184         * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2185         * depends on valid pages being added to the head of the list.  See
2186         * comments in kvm_zap_obsolete_pages().
2187         */
2188        sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2189        list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2190        kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2191        return sp;
2192}
2193
2194static void mark_unsync(u64 *spte);
2195static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2196{
2197        u64 *sptep;
2198        struct rmap_iterator iter;
2199
2200        for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2201                mark_unsync(sptep);
2202        }
2203}
2204
2205static void mark_unsync(u64 *spte)
2206{
2207        struct kvm_mmu_page *sp;
2208        unsigned int index;
2209
2210        sp = page_header(__pa(spte));
2211        index = spte - sp->spt;
2212        if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2213                return;
2214        if (sp->unsync_children++)
2215                return;
2216        kvm_mmu_mark_parents_unsync(sp);
2217}
2218
2219static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2220                               struct kvm_mmu_page *sp)
2221{
2222        return 0;
2223}
2224
2225static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
2226{
2227}
2228
2229static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2230                                 struct kvm_mmu_page *sp, u64 *spte,
2231                                 const void *pte)
2232{
2233        WARN_ON(1);
2234}
2235
2236#define KVM_PAGE_ARRAY_NR 16
2237
2238struct kvm_mmu_pages {
2239        struct mmu_page_and_offset {
2240                struct kvm_mmu_page *sp;
2241                unsigned int idx;
2242        } page[KVM_PAGE_ARRAY_NR];
2243        unsigned int nr;
2244};
2245
2246static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2247                         int idx)
2248{
2249        int i;
2250
2251        if (sp->unsync)
2252                for (i=0; i < pvec->nr; i++)
2253                        if (pvec->page[i].sp == sp)
2254                                return 0;
2255
2256        pvec->page[pvec->nr].sp = sp;
2257        pvec->page[pvec->nr].idx = idx;
2258        pvec->nr++;
2259        return (pvec->nr == KVM_PAGE_ARRAY_NR);
2260}
2261
2262static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2263{
2264        --sp->unsync_children;
2265        WARN_ON((int)sp->unsync_children < 0);
2266        __clear_bit(idx, sp->unsync_child_bitmap);
2267}
2268
2269static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2270                           struct kvm_mmu_pages *pvec)
2271{
2272        int i, ret, nr_unsync_leaf = 0;
2273
2274        for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2275                struct kvm_mmu_page *child;
2276                u64 ent = sp->spt[i];
2277
2278                if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2279                        clear_unsync_child_bit(sp, i);
2280                        continue;
2281                }
2282
2283                child = page_header(ent & PT64_BASE_ADDR_MASK);
2284
2285                if (child->unsync_children) {
2286                        if (mmu_pages_add(pvec, child, i))
2287                                return -ENOSPC;
2288
2289                        ret = __mmu_unsync_walk(child, pvec);
2290                        if (!ret) {
2291                                clear_unsync_child_bit(sp, i);
2292                                continue;
2293                        } else if (ret > 0) {
2294                                nr_unsync_leaf += ret;
2295                        } else
2296                                return ret;
2297                } else if (child->unsync) {
2298                        nr_unsync_leaf++;
2299                        if (mmu_pages_add(pvec, child, i))
2300                                return -ENOSPC;
2301                } else
2302                        clear_unsync_child_bit(sp, i);
2303        }
2304
2305        return nr_unsync_leaf;
2306}
2307
2308#define INVALID_INDEX (-1)
2309
2310static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2311                           struct kvm_mmu_pages *pvec)
2312{
2313        pvec->nr = 0;
2314        if (!sp->unsync_children)
2315                return 0;
2316
2317        mmu_pages_add(pvec, sp, INVALID_INDEX);
2318        return __mmu_unsync_walk(sp, pvec);
2319}
2320
2321static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2322{
2323        WARN_ON(!sp->unsync);
2324        trace_kvm_mmu_sync_page(sp);
2325        sp->unsync = 0;
2326        --kvm->stat.mmu_unsync;
2327}
2328
2329static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2330                                     struct list_head *invalid_list);
2331static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2332                                    struct list_head *invalid_list);
2333
2334
2335#define for_each_valid_sp(_kvm, _sp, _gfn)                              \
2336        hlist_for_each_entry(_sp,                                       \
2337          &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2338                if (is_obsolete_sp((_kvm), (_sp))) {                    \
2339                } else
2340
2341#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2342        for_each_valid_sp(_kvm, _sp, _gfn)                              \
2343                if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2344
2345static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2346{
2347        return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2348}
2349
2350/* @sp->gfn should be write-protected at the call site */
2351static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2352                            struct list_head *invalid_list)
2353{
2354        if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2355            vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2356                kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2357                return false;
2358        }
2359
2360        return true;
2361}
2362
2363static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2364                                        struct list_head *invalid_list,
2365                                        bool remote_flush)
2366{
2367        if (!remote_flush && list_empty(invalid_list))
2368                return false;
2369
2370        if (!list_empty(invalid_list))
2371                kvm_mmu_commit_zap_page(kvm, invalid_list);
2372        else
2373                kvm_flush_remote_tlbs(kvm);
2374        return true;
2375}
2376
2377static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2378                                 struct list_head *invalid_list,
2379                                 bool remote_flush, bool local_flush)
2380{
2381        if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2382                return;
2383
2384        if (local_flush)
2385                kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2386}
2387
2388#ifdef CONFIG_KVM_MMU_AUDIT
2389#include "mmu_audit.c"
2390#else
2391static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2392static void mmu_audit_disable(void) { }
2393#endif
2394
2395static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2396{
2397        return sp->role.invalid ||
2398               unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2399}
2400
2401static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2402                         struct list_head *invalid_list)
2403{
2404        kvm_unlink_unsync_page(vcpu->kvm, sp);
2405        return __kvm_sync_page(vcpu, sp, invalid_list);
2406}
2407
2408/* @gfn should be write-protected at the call site */
2409static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2410                           struct list_head *invalid_list)
2411{
2412        struct kvm_mmu_page *s;
2413        bool ret = false;
2414
2415        for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2416                if (!s->unsync)
2417                        continue;
2418
2419                WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2420                ret |= kvm_sync_page(vcpu, s, invalid_list);
2421        }
2422
2423        return ret;
2424}
2425
2426struct mmu_page_path {
2427        struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2428        unsigned int idx[PT64_ROOT_MAX_LEVEL];
2429};
2430
2431#define for_each_sp(pvec, sp, parents, i)                       \
2432                for (i = mmu_pages_first(&pvec, &parents);      \
2433                        i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2434                        i = mmu_pages_next(&pvec, &parents, i))
2435
2436static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2437                          struct mmu_page_path *parents,
2438                          int i)
2439{
2440        int n;
2441
2442        for (n = i+1; n < pvec->nr; n++) {
2443                struct kvm_mmu_page *sp = pvec->page[n].sp;
2444                unsigned idx = pvec->page[n].idx;
2445                int level = sp->role.level;
2446
2447                parents->idx[level-1] = idx;
2448                if (level == PT_PAGE_TABLE_LEVEL)
2449                        break;
2450
2451                parents->parent[level-2] = sp;
2452        }
2453
2454        return n;
2455}
2456
2457static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2458                           struct mmu_page_path *parents)
2459{
2460        struct kvm_mmu_page *sp;
2461        int level;
2462
2463        if (pvec->nr == 0)
2464                return 0;
2465
2466        WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2467
2468        sp = pvec->page[0].sp;
2469        level = sp->role.level;
2470        WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2471
2472        parents->parent[level-2] = sp;
2473
2474        /* Also set up a sentinel.  Further entries in pvec are all
2475         * children of sp, so this element is never overwritten.
2476         */
2477        parents->parent[level-1] = NULL;
2478        return mmu_pages_next(pvec, parents, 0);
2479}
2480
2481static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2482{
2483        struct kvm_mmu_page *sp;
2484        unsigned int level = 0;
2485
2486        do {
2487                unsigned int idx = parents->idx[level];
2488                sp = parents->parent[level];
2489                if (!sp)
2490                        return;
2491
2492                WARN_ON(idx == INVALID_INDEX);
2493                clear_unsync_child_bit(sp, idx);
2494                level++;
2495        } while (!sp->unsync_children);
2496}
2497
2498static void mmu_sync_children(struct kvm_vcpu *vcpu,
2499                              struct kvm_mmu_page *parent)
2500{
2501        int i;
2502        struct kvm_mmu_page *sp;
2503        struct mmu_page_path parents;
2504        struct kvm_mmu_pages pages;
2505        LIST_HEAD(invalid_list);
2506        bool flush = false;
2507
2508        while (mmu_unsync_walk(parent, &pages)) {
2509                bool protected = false;
2510
2511                for_each_sp(pages, sp, parents, i)
2512                        protected |= rmap_write_protect(vcpu, sp->gfn);
2513
2514                if (protected) {
2515                        kvm_flush_remote_tlbs(vcpu->kvm);
2516                        flush = false;
2517                }
2518
2519                for_each_sp(pages, sp, parents, i) {
2520                        flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2521                        mmu_pages_clear_parents(&parents);
2522                }
2523                if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2524                        kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2525                        cond_resched_lock(&vcpu->kvm->mmu_lock);
2526                        flush = false;
2527                }
2528        }
2529
2530        kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2531}
2532
2533static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2534{
2535        atomic_set(&sp->write_flooding_count,  0);
2536}
2537
2538static void clear_sp_write_flooding_count(u64 *spte)
2539{
2540        struct kvm_mmu_page *sp =  page_header(__pa(spte));
2541
2542        __clear_sp_write_flooding_count(sp);
2543}
2544
2545static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2546                                             gfn_t gfn,
2547                                             gva_t gaddr,
2548                                             unsigned level,
2549                                             int direct,
2550                                             unsigned access)
2551{
2552        union kvm_mmu_page_role role;
2553        unsigned quadrant;
2554        struct kvm_mmu_page *sp;
2555        bool need_sync = false;
2556        bool flush = false;
2557        int collisions = 0;
2558        LIST_HEAD(invalid_list);
2559
2560        role = vcpu->arch.mmu->mmu_role.base;
2561        role.level = level;
2562        role.direct = direct;
2563        if (role.direct)
2564                role.gpte_is_8_bytes = true;
2565        role.access = access;
2566        if (!vcpu->arch.mmu->direct_map
2567            && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2568                quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2569                quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2570                role.quadrant = quadrant;
2571        }
2572        for_each_valid_sp(vcpu->kvm, sp, gfn) {
2573                if (sp->gfn != gfn) {
2574                        collisions++;
2575                        continue;
2576                }
2577
2578                if (!need_sync && sp->unsync)
2579                        need_sync = true;
2580
2581                if (sp->role.word != role.word)
2582                        continue;
2583
2584                if (sp->unsync) {
2585                        /* The page is good, but __kvm_sync_page might still end
2586                         * up zapping it.  If so, break in order to rebuild it.
2587                         */
2588                        if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2589                                break;
2590
2591                        WARN_ON(!list_empty(&invalid_list));
2592                        kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2593                }
2594
2595                if (sp->unsync_children)
2596                        kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2597
2598                __clear_sp_write_flooding_count(sp);
2599                trace_kvm_mmu_get_page(sp, false);
2600                goto out;
2601        }
2602
2603        ++vcpu->kvm->stat.mmu_cache_miss;
2604
2605        sp = kvm_mmu_alloc_page(vcpu, direct);
2606
2607        sp->gfn = gfn;
2608        sp->role = role;
2609        hlist_add_head(&sp->hash_link,
2610                &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2611        if (!direct) {
2612                /*
2613                 * we should do write protection before syncing pages
2614                 * otherwise the content of the synced shadow page may
2615                 * be inconsistent with guest page table.
2616                 */
2617                account_shadowed(vcpu->kvm, sp);
2618                if (level == PT_PAGE_TABLE_LEVEL &&
2619                      rmap_write_protect(vcpu, gfn))
2620                        kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2621
2622                if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2623                        flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2624        }
2625        clear_page(sp->spt);
2626        trace_kvm_mmu_get_page(sp, true);
2627
2628        kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2629out:
2630        if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2631                vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2632        return sp;
2633}
2634
2635static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2636                                        struct kvm_vcpu *vcpu, hpa_t root,
2637                                        u64 addr)
2638{
2639        iterator->addr = addr;
2640        iterator->shadow_addr = root;
2641        iterator->level = vcpu->arch.mmu->shadow_root_level;
2642
2643        if (iterator->level == PT64_ROOT_4LEVEL &&
2644            vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2645            !vcpu->arch.mmu->direct_map)
2646                --iterator->level;
2647
2648        if (iterator->level == PT32E_ROOT_LEVEL) {
2649                /*
2650                 * prev_root is currently only used for 64-bit hosts. So only
2651                 * the active root_hpa is valid here.
2652                 */
2653                BUG_ON(root != vcpu->arch.mmu->root_hpa);
2654
2655                iterator->shadow_addr
2656                        = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2657                iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2658                --iterator->level;
2659                if (!iterator->shadow_addr)
2660                        iterator->level = 0;
2661        }
2662}
2663
2664static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2665                             struct kvm_vcpu *vcpu, u64 addr)
2666{
2667        shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2668                                    addr);
2669}
2670
2671static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2672{
2673        if (iterator->level < PT_PAGE_TABLE_LEVEL)
2674                return false;
2675
2676        iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2677        iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2678        return true;
2679}
2680
2681static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2682                               u64 spte)
2683{
2684        if (is_last_spte(spte, iterator->level)) {
2685                iterator->level = 0;
2686                return;
2687        }
2688
2689        iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2690        --iterator->level;
2691}
2692
2693static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2694{
2695        __shadow_walk_next(iterator, *iterator->sptep);
2696}
2697
2698static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2699                             struct kvm_mmu_page *sp)
2700{
2701        u64 spte;
2702
2703        BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2704
2705        spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2706               shadow_user_mask | shadow_x_mask | shadow_me_mask;
2707
2708        if (sp_ad_disabled(sp))
2709                spte |= SPTE_AD_DISABLED_MASK;
2710        else
2711                spte |= shadow_accessed_mask;
2712
2713        mmu_spte_set(sptep, spte);
2714
2715        mmu_page_add_parent_pte(vcpu, sp, sptep);
2716
2717        if (sp->unsync_children || sp->unsync)
2718                mark_unsync(sptep);
2719}
2720
2721static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2722                                   unsigned direct_access)
2723{
2724        if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2725                struct kvm_mmu_page *child;
2726
2727                /*
2728                 * For the direct sp, if the guest pte's dirty bit
2729                 * changed form clean to dirty, it will corrupt the
2730                 * sp's access: allow writable in the read-only sp,
2731                 * so we should update the spte at this point to get
2732                 * a new sp with the correct access.
2733                 */
2734                child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2735                if (child->role.access == direct_access)
2736                        return;
2737
2738                drop_parent_pte(child, sptep);
2739                kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2740        }
2741}
2742
2743static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2744                             u64 *spte)
2745{
2746        u64 pte;
2747        struct kvm_mmu_page *child;
2748
2749        pte = *spte;
2750        if (is_shadow_present_pte(pte)) {
2751                if (is_last_spte(pte, sp->role.level)) {
2752                        drop_spte(kvm, spte);
2753                        if (is_large_pte(pte))
2754                                --kvm->stat.lpages;
2755                } else {
2756                        child = page_header(pte & PT64_BASE_ADDR_MASK);
2757                        drop_parent_pte(child, spte);
2758                }
2759                return true;
2760        }
2761
2762        if (is_mmio_spte(pte))
2763                mmu_spte_clear_no_track(spte);
2764
2765        return false;
2766}
2767
2768static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2769                                         struct kvm_mmu_page *sp)
2770{
2771        unsigned i;
2772
2773        for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2774                mmu_page_zap_pte(kvm, sp, sp->spt + i);
2775}
2776
2777static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2778{
2779        u64 *sptep;
2780        struct rmap_iterator iter;
2781
2782        while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2783                drop_parent_pte(sp, sptep);
2784}
2785
2786static int mmu_zap_unsync_children(struct kvm *kvm,
2787                                   struct kvm_mmu_page *parent,
2788                                   struct list_head *invalid_list)
2789{
2790        int i, zapped = 0;
2791        struct mmu_page_path parents;
2792        struct kvm_mmu_pages pages;
2793
2794        if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2795                return 0;
2796
2797        while (mmu_unsync_walk(parent, &pages)) {
2798                struct kvm_mmu_page *sp;
2799
2800                for_each_sp(pages, sp, parents, i) {
2801                        kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2802                        mmu_pages_clear_parents(&parents);
2803                        zapped++;
2804                }
2805        }
2806
2807        return zapped;
2808}
2809
2810static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2811                                       struct kvm_mmu_page *sp,
2812                                       struct list_head *invalid_list,
2813                                       int *nr_zapped)
2814{
2815        bool list_unstable;
2816
2817        trace_kvm_mmu_prepare_zap_page(sp);
2818        ++kvm->stat.mmu_shadow_zapped;
2819        *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2820        kvm_mmu_page_unlink_children(kvm, sp);
2821        kvm_mmu_unlink_parents(kvm, sp);
2822
2823        /* Zapping children means active_mmu_pages has become unstable. */
2824        list_unstable = *nr_zapped;
2825
2826        if (!sp->role.invalid && !sp->role.direct)
2827                unaccount_shadowed(kvm, sp);
2828
2829        if (sp->unsync)
2830                kvm_unlink_unsync_page(kvm, sp);
2831        if (!sp->root_count) {
2832                /* Count self */
2833                (*nr_zapped)++;
2834                list_move(&sp->link, invalid_list);
2835                kvm_mod_used_mmu_pages(kvm, -1);
2836        } else {
2837                list_move(&sp->link, &kvm->arch.active_mmu_pages);
2838
2839                /*
2840                 * Obsolete pages cannot be used on any vCPUs, see the comment
2841                 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2842                 * treats invalid shadow pages as being obsolete.
2843                 */
2844                if (!is_obsolete_sp(kvm, sp))
2845                        kvm_reload_remote_mmus(kvm);
2846        }
2847
2848        if (sp->lpage_disallowed)
2849                unaccount_huge_nx_page(kvm, sp);
2850
2851        sp->role.invalid = 1;
2852        return list_unstable;
2853}
2854
2855static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2856                                     struct list_head *invalid_list)
2857{
2858        int nr_zapped;
2859
2860        __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2861        return nr_zapped;
2862}
2863
2864static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2865                                    struct list_head *invalid_list)
2866{
2867        struct kvm_mmu_page *sp, *nsp;
2868
2869        if (list_empty(invalid_list))
2870                return;
2871
2872        /*
2873         * We need to make sure everyone sees our modifications to
2874         * the page tables and see changes to vcpu->mode here. The barrier
2875         * in the kvm_flush_remote_tlbs() achieves this. This pairs
2876         * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2877         *
2878         * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2879         * guest mode and/or lockless shadow page table walks.
2880         */
2881        kvm_flush_remote_tlbs(kvm);
2882
2883        list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2884                WARN_ON(!sp->role.invalid || sp->root_count);
2885                kvm_mmu_free_page(sp);
2886        }
2887}
2888
2889static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2890                                        struct list_head *invalid_list)
2891{
2892        struct kvm_mmu_page *sp;
2893
2894        if (list_empty(&kvm->arch.active_mmu_pages))
2895                return false;
2896
2897        sp = list_last_entry(&kvm->arch.active_mmu_pages,
2898                             struct kvm_mmu_page, link);
2899        return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2900}
2901
2902/*
2903 * Changing the number of mmu pages allocated to the vm
2904 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2905 */
2906void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2907{
2908        LIST_HEAD(invalid_list);
2909
2910        spin_lock(&kvm->mmu_lock);
2911
2912        if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2913                /* Need to free some mmu pages to achieve the goal. */
2914                while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2915                        if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2916                                break;
2917
2918                kvm_mmu_commit_zap_page(kvm, &invalid_list);
2919                goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2920        }
2921
2922        kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2923
2924        spin_unlock(&kvm->mmu_lock);
2925}
2926
2927int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2928{
2929        struct kvm_mmu_page *sp;
2930        LIST_HEAD(invalid_list);
2931        int r;
2932
2933        pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2934        r = 0;
2935        spin_lock(&kvm->mmu_lock);
2936        for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2937                pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2938                         sp->role.word);
2939                r = 1;
2940                kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2941        }
2942        kvm_mmu_commit_zap_page(kvm, &invalid_list);
2943        spin_unlock(&kvm->mmu_lock);
2944
2945        return r;
2946}
2947EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2948
2949static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2950{
2951        trace_kvm_mmu_unsync_page(sp);
2952        ++vcpu->kvm->stat.mmu_unsync;
2953        sp->unsync = 1;
2954
2955        kvm_mmu_mark_parents_unsync(sp);
2956}
2957
2958static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2959                                   bool can_unsync)
2960{
2961        struct kvm_mmu_page *sp;
2962
2963        if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2964                return true;
2965
2966        for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2967                if (!can_unsync)
2968                        return true;
2969
2970                if (sp->unsync)
2971                        continue;
2972
2973                WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2974                kvm_unsync_page(vcpu, sp);
2975        }
2976
2977        /*
2978         * We need to ensure that the marking of unsync pages is visible
2979         * before the SPTE is updated to allow writes because
2980         * kvm_mmu_sync_roots() checks the unsync flags without holding
2981         * the MMU lock and so can race with this. If the SPTE was updated
2982         * before the page had been marked as unsync-ed, something like the
2983         * following could happen:
2984         *
2985         * CPU 1                    CPU 2
2986         * ---------------------------------------------------------------------
2987         * 1.2 Host updates SPTE
2988         *     to be writable
2989         *                      2.1 Guest writes a GPTE for GVA X.
2990         *                          (GPTE being in the guest page table shadowed
2991         *                           by the SP from CPU 1.)
2992         *                          This reads SPTE during the page table walk.
2993         *                          Since SPTE.W is read as 1, there is no
2994         *                          fault.
2995         *
2996         *                      2.2 Guest issues TLB flush.
2997         *                          That causes a VM Exit.
2998         *
2999         *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
3000         *                          Since it is false, so it just returns.
3001         *
3002         *                      2.4 Guest accesses GVA X.
3003         *                          Since the mapping in the SP was not updated,
3004         *                          so the old mapping for GVA X incorrectly
3005         *                          gets used.
3006         * 1.1 Host marks SP
3007         *     as unsync
3008         *     (sp->unsync = true)
3009         *
3010         * The write barrier below ensures that 1.1 happens before 1.2 and thus
3011         * the situation in 2.4 does not arise. The implicit barrier in 2.2
3012         * pairs with this write barrier.
3013         */
3014        smp_wmb();
3015
3016        return false;
3017}
3018
3019static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
3020{
3021        if (pfn_valid(pfn))
3022                return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
3023                        /*
3024                         * Some reserved pages, such as those from NVDIMM
3025                         * DAX devices, are not for MMIO, and can be mapped
3026                         * with cached memory type for better performance.
3027                         * However, the above check misconceives those pages
3028                         * as MMIO, and results in KVM mapping them with UC
3029                         * memory type, which would hurt the performance.
3030                         * Therefore, we check the host memory type in addition
3031                         * and only treat UC/UC-/WC pages as MMIO.
3032                         */
3033                        (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
3034
3035        return !e820__mapped_raw_any(pfn_to_hpa(pfn),
3036                                     pfn_to_hpa(pfn + 1) - 1,
3037                                     E820_TYPE_RAM);
3038}
3039
3040/* Bits which may be returned by set_spte() */
3041#define SET_SPTE_WRITE_PROTECTED_PT     BIT(0)
3042#define SET_SPTE_NEED_REMOTE_TLB_FLUSH  BIT(1)
3043
3044static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3045                    unsigned pte_access, int level,
3046                    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3047                    bool can_unsync, bool host_writable)
3048{
3049        u64 spte = 0;
3050        int ret = 0;
3051        struct kvm_mmu_page *sp;
3052
3053        if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
3054                return 0;
3055
3056        sp = page_header(__pa(sptep));
3057        if (sp_ad_disabled(sp))
3058                spte |= SPTE_AD_DISABLED_MASK;
3059        else if (kvm_vcpu_ad_need_write_protect(vcpu))
3060                spte |= SPTE_AD_WRPROT_ONLY_MASK;
3061
3062        /*
3063         * For the EPT case, shadow_present_mask is 0 if hardware
3064         * supports exec-only page table entries.  In that case,
3065         * ACC_USER_MASK and shadow_user_mask are used to represent
3066         * read access.  See FNAME(gpte_access) in paging_tmpl.h.
3067         */
3068        spte |= shadow_present_mask;
3069        if (!speculative)
3070                spte |= spte_shadow_accessed_mask(spte);
3071
3072        if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) &&
3073            is_nx_huge_page_enabled()) {
3074                pte_access &= ~ACC_EXEC_MASK;
3075        }
3076
3077        if (pte_access & ACC_EXEC_MASK)
3078                spte |= shadow_x_mask;
3079        else
3080                spte |= shadow_nx_mask;
3081
3082        if (pte_access & ACC_USER_MASK)
3083                spte |= shadow_user_mask;
3084
3085        if (level > PT_PAGE_TABLE_LEVEL)
3086                spte |= PT_PAGE_SIZE_MASK;
3087        if (tdp_enabled)
3088                spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
3089                        kvm_is_mmio_pfn(pfn));
3090
3091        if (host_writable)
3092                spte |= SPTE_HOST_WRITEABLE;
3093        else
3094                pte_access &= ~ACC_WRITE_MASK;
3095
3096        if (!kvm_is_mmio_pfn(pfn))
3097                spte |= shadow_me_mask;
3098
3099        spte |= (u64)pfn << PAGE_SHIFT;
3100
3101        if (pte_access & ACC_WRITE_MASK) {
3102
3103                /*
3104                 * Other vcpu creates new sp in the window between
3105                 * mapping_level() and acquiring mmu-lock. We can
3106                 * allow guest to retry the access, the mapping can
3107                 * be fixed if guest refault.
3108                 */
3109                if (level > PT_PAGE_TABLE_LEVEL &&
3110                    mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
3111                        goto done;
3112
3113                spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3114
3115                /*
3116                 * Optimization: for pte sync, if spte was writable the hash
3117                 * lookup is unnecessary (and expensive). Write protection
3118                 * is responsibility of mmu_get_page / kvm_sync_page.
3119                 * Same reasoning can be applied to dirty page accounting.
3120                 */
3121                if (!can_unsync && is_writable_pte(*sptep))
3122                        goto set_pte;
3123
3124                if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3125                        pgprintk("%s: found shadow page for %llx, marking ro\n",
3126                                 __func__, gfn);
3127                        ret |= SET_SPTE_WRITE_PROTECTED_PT;
3128                        pte_access &= ~ACC_WRITE_MASK;
3129                        spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3130                }
3131        }
3132
3133        if (pte_access & ACC_WRITE_MASK) {
3134                kvm_vcpu_mark_page_dirty(vcpu, gfn);
3135                spte |= spte_shadow_dirty_mask(spte);
3136        }
3137
3138        if (speculative)
3139                spte = mark_spte_for_access_track(spte);
3140
3141set_pte:
3142        if (mmu_spte_update(sptep, spte))
3143                ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
3144done:
3145        return ret;
3146}
3147
3148static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
3149                        int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
3150                        bool speculative, bool host_writable)
3151{
3152        int was_rmapped = 0;
3153        int rmap_count;
3154        int set_spte_ret;
3155        int ret = RET_PF_RETRY;
3156        bool flush = false;
3157
3158        pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3159                 *sptep, write_fault, gfn);
3160
3161        if (is_shadow_present_pte(*sptep)) {
3162                /*
3163                 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3164                 * the parent of the now unreachable PTE.
3165                 */
3166                if (level > PT_PAGE_TABLE_LEVEL &&
3167                    !is_large_pte(*sptep)) {
3168                        struct kvm_mmu_page *child;
3169                        u64 pte = *sptep;
3170
3171                        child = page_header(pte & PT64_BASE_ADDR_MASK);
3172                        drop_parent_pte(child, sptep);
3173                        flush = true;
3174                } else if (pfn != spte_to_pfn(*sptep)) {
3175                        pgprintk("hfn old %llx new %llx\n",
3176                                 spte_to_pfn(*sptep), pfn);
3177                        drop_spte(vcpu->kvm, sptep);
3178                        flush = true;
3179                } else
3180                        was_rmapped = 1;
3181        }
3182
3183        set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3184                                speculative, true, host_writable);
3185        if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
3186                if (write_fault)
3187                        ret = RET_PF_EMULATE;
3188                kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3189        }
3190
3191        if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3192                kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3193                                KVM_PAGES_PER_HPAGE(level));
3194
3195        if (unlikely(is_mmio_spte(*sptep)))
3196                ret = RET_PF_EMULATE;
3197
3198        pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3199        trace_kvm_mmu_set_spte(level, gfn, sptep);
3200        if (!was_rmapped && is_large_pte(*sptep))
3201                ++vcpu->kvm->stat.lpages;
3202
3203        if (is_shadow_present_pte(*sptep)) {
3204                if (!was_rmapped) {
3205                        rmap_count = rmap_add(vcpu, sptep, gfn);
3206                        if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3207                                rmap_recycle(vcpu, sptep, gfn);
3208                }
3209        }
3210
3211        return ret;
3212}
3213
3214static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3215                                     bool no_dirty_log)
3216{
3217        struct kvm_memory_slot *slot;
3218
3219        slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3220        if (!slot)
3221                return KVM_PFN_ERR_FAULT;
3222
3223        return gfn_to_pfn_memslot_atomic(slot, gfn);
3224}
3225
3226static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3227                                    struct kvm_mmu_page *sp,
3228                                    u64 *start, u64 *end)
3229{
3230        struct page *pages[PTE_PREFETCH_NUM];
3231        struct kvm_memory_slot *slot;
3232        unsigned access = sp->role.access;
3233        int i, ret;
3234        gfn_t gfn;
3235
3236        gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3237        slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3238        if (!slot)
3239                return -1;
3240
3241        ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3242        if (ret <= 0)
3243                return -1;
3244
3245        for (i = 0; i < ret; i++, gfn++, start++) {
3246                mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3247                             page_to_pfn(pages[i]), true, true);
3248                put_page(pages[i]);
3249        }
3250
3251        return 0;
3252}
3253
3254static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3255                                  struct kvm_mmu_page *sp, u64 *sptep)
3256{
3257        u64 *spte, *start = NULL;
3258        int i;
3259
3260        WARN_ON(!sp->role.direct);
3261
3262        i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3263        spte = sp->spt + i;
3264
3265        for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3266                if (is_shadow_present_pte(*spte) || spte == sptep) {
3267                        if (!start)
3268                                continue;
3269                        if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3270                                break;
3271                        start = NULL;
3272                } else if (!start)
3273                        start = spte;
3274        }
3275}
3276
3277static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3278{
3279        struct kvm_mmu_page *sp;
3280
3281        sp = page_header(__pa(sptep));
3282
3283        /*
3284         * Without accessed bits, there's no way to distinguish between
3285         * actually accessed translations and prefetched, so disable pte
3286         * prefetch if accessed bits aren't available.
3287         */
3288        if (sp_ad_disabled(sp))
3289                return;
3290
3291        if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3292                return;
3293
3294        __direct_pte_prefetch(vcpu, sp, sptep);
3295}
3296
3297static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3298                                       gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3299{
3300        int level = *levelp;
3301        u64 spte = *it.sptep;
3302
3303        if (it.level == level && level > PT_PAGE_TABLE_LEVEL &&
3304            is_nx_huge_page_enabled() &&
3305            is_shadow_present_pte(spte) &&
3306            !is_large_pte(spte)) {
3307                /*
3308                 * A small SPTE exists for this pfn, but FNAME(fetch)
3309                 * and __direct_map would like to create a large PTE
3310                 * instead: just force them to go down another level,
3311                 * patching back for them into pfn the next 9 bits of
3312                 * the address.
3313                 */
3314                u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3315                *pfnp |= gfn & page_mask;
3316                (*levelp)--;
3317        }
3318}
3319
3320static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3321                        int map_writable, int level, kvm_pfn_t pfn,
3322                        bool prefault, bool lpage_disallowed)
3323{
3324        struct kvm_shadow_walk_iterator it;
3325        struct kvm_mmu_page *sp;
3326        int ret;
3327        gfn_t gfn = gpa >> PAGE_SHIFT;
3328        gfn_t base_gfn = gfn;
3329
3330        if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3331                return RET_PF_RETRY;
3332
3333        trace_kvm_mmu_spte_requested(gpa, level, pfn);
3334        for_each_shadow_entry(vcpu, gpa, it) {
3335                /*
3336                 * We cannot overwrite existing page tables with an NX
3337                 * large page, as the leaf could be executable.
3338                 */
3339                disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3340
3341                base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3342                if (it.level == level)
3343                        break;
3344
3345                drop_large_spte(vcpu, it.sptep);
3346                if (!is_shadow_present_pte(*it.sptep)) {
3347                        sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3348                                              it.level - 1, true, ACC_ALL);
3349
3350                        link_shadow_page(vcpu, it.sptep, sp);
3351                        if (lpage_disallowed)
3352                                account_huge_nx_page(vcpu->kvm, sp);
3353                }
3354        }
3355
3356        ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3357                           write, level, base_gfn, pfn, prefault,
3358                           map_writable);
3359        direct_pte_prefetch(vcpu, it.sptep);
3360        ++vcpu->stat.pf_fixed;
3361        return ret;
3362}
3363
3364static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3365{
3366        send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3367}
3368
3369static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3370{
3371        /*
3372         * Do not cache the mmio info caused by writing the readonly gfn
3373         * into the spte otherwise read access on readonly gfn also can
3374         * caused mmio page fault and treat it as mmio access.
3375         */
3376        if (pfn == KVM_PFN_ERR_RO_FAULT)
3377                return RET_PF_EMULATE;
3378
3379        if (pfn == KVM_PFN_ERR_HWPOISON) {
3380                kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3381                return RET_PF_RETRY;
3382        }
3383
3384        return -EFAULT;
3385}
3386
3387static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3388                                        gfn_t gfn, kvm_pfn_t *pfnp,
3389                                        int *levelp)
3390{
3391        kvm_pfn_t pfn = *pfnp;
3392        int level = *levelp;
3393
3394        /*
3395         * Check if it's a transparent hugepage. If this would be an
3396         * hugetlbfs page, level wouldn't be set to
3397         * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3398         * here.
3399         */
3400        if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3401            !kvm_is_zone_device_pfn(pfn) && level == PT_PAGE_TABLE_LEVEL &&
3402            PageTransCompoundMap(pfn_to_page(pfn)) &&
3403            !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3404                unsigned long mask;
3405                /*
3406                 * mmu_notifier_retry was successful and we hold the
3407                 * mmu_lock here, so the pmd can't become splitting
3408                 * from under us, and in turn
3409                 * __split_huge_page_refcount() can't run from under
3410                 * us and we can safely transfer the refcount from
3411                 * PG_tail to PG_head as we switch the pfn to tail to
3412                 * head.
3413                 */
3414                *levelp = level = PT_DIRECTORY_LEVEL;
3415                mask = KVM_PAGES_PER_HPAGE(level) - 1;
3416                VM_BUG_ON((gfn & mask) != (pfn & mask));
3417                if (pfn & mask) {
3418                        kvm_release_pfn_clean(pfn);
3419                        pfn &= ~mask;
3420                        kvm_get_pfn(pfn);
3421                        *pfnp = pfn;
3422                }
3423        }
3424}
3425
3426static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3427                                kvm_pfn_t pfn, unsigned access, int *ret_val)
3428{
3429        /* The pfn is invalid, report the error! */
3430        if (unlikely(is_error_pfn(pfn))) {
3431                *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3432                return true;
3433        }
3434
3435        if (unlikely(is_noslot_pfn(pfn)))
3436                vcpu_cache_mmio_info(vcpu, gva, gfn,
3437                                     access & shadow_mmio_access_mask);
3438
3439        return false;
3440}
3441
3442static bool page_fault_can_be_fast(u32 error_code)
3443{
3444        /*
3445         * Do not fix the mmio spte with invalid generation number which
3446         * need to be updated by slow page fault path.
3447         */
3448        if (unlikely(error_code & PFERR_RSVD_MASK))
3449                return false;
3450
3451        /* See if the page fault is due to an NX violation */
3452        if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3453                      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3454                return false;
3455
3456        /*
3457         * #PF can be fast if:
3458         * 1. The shadow page table entry is not present, which could mean that
3459         *    the fault is potentially caused by access tracking (if enabled).
3460         * 2. The shadow page table entry is present and the fault
3461         *    is caused by write-protect, that means we just need change the W
3462         *    bit of the spte which can be done out of mmu-lock.
3463         *
3464         * However, if access tracking is disabled we know that a non-present
3465         * page must be a genuine page fault where we have to create a new SPTE.
3466         * So, if access tracking is disabled, we return true only for write
3467         * accesses to a present page.
3468         */
3469
3470        return shadow_acc_track_mask != 0 ||
3471               ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3472                == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3473}
3474
3475/*
3476 * Returns true if the SPTE was fixed successfully. Otherwise,
3477 * someone else modified the SPTE from its original value.
3478 */
3479static bool
3480fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3481                        u64 *sptep, u64 old_spte, u64 new_spte)
3482{
3483        gfn_t gfn;
3484
3485        WARN_ON(!sp->role.direct);
3486
3487        /*
3488         * Theoretically we could also set dirty bit (and flush TLB) here in
3489         * order to eliminate unnecessary PML logging. See comments in
3490         * set_spte. But fast_page_fault is very unlikely to happen with PML
3491         * enabled, so we do not do this. This might result in the same GPA
3492         * to be logged in PML buffer again when the write really happens, and
3493         * eventually to be called by mark_page_dirty twice. But it's also no
3494         * harm. This also avoids the TLB flush needed after setting dirty bit
3495         * so non-PML cases won't be impacted.
3496         *
3497         * Compare with set_spte where instead shadow_dirty_mask is set.
3498         */
3499        if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3500                return false;
3501
3502        if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3503                /*
3504                 * The gfn of direct spte is stable since it is
3505                 * calculated by sp->gfn.
3506                 */
3507                gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3508                kvm_vcpu_mark_page_dirty(vcpu, gfn);
3509        }
3510
3511        return true;
3512}
3513
3514static bool is_access_allowed(u32 fault_err_code, u64 spte)
3515{
3516        if (fault_err_code & PFERR_FETCH_MASK)
3517                return is_executable_pte(spte);
3518
3519        if (fault_err_code & PFERR_WRITE_MASK)
3520                return is_writable_pte(spte);
3521
3522        /* Fault was on Read access */
3523        return spte & PT_PRESENT_MASK;
3524}
3525
3526/*
3527 * Return value:
3528 * - true: let the vcpu to access on the same address again.
3529 * - false: let the real page fault path to fix it.
3530 */
3531static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3532                            u32 error_code)
3533{
3534        struct kvm_shadow_walk_iterator iterator;
3535        struct kvm_mmu_page *sp;
3536        bool fault_handled = false;
3537        u64 spte = 0ull;
3538        uint retry_count = 0;
3539
3540        if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3541                return false;
3542
3543        if (!page_fault_can_be_fast(error_code))
3544                return false;
3545
3546        walk_shadow_page_lockless_begin(vcpu);
3547
3548        do {
3549                u64 new_spte;
3550
3551                for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3552                        if (!is_shadow_present_pte(spte) ||
3553                            iterator.level < level)
3554                                break;
3555
3556                sp = page_header(__pa(iterator.sptep));
3557                if (!is_last_spte(spte, sp->role.level))
3558                        break;
3559
3560                /*
3561                 * Check whether the memory access that caused the fault would
3562                 * still cause it if it were to be performed right now. If not,
3563                 * then this is a spurious fault caused by TLB lazily flushed,
3564                 * or some other CPU has already fixed the PTE after the
3565                 * current CPU took the fault.
3566                 *
3567                 * Need not check the access of upper level table entries since
3568                 * they are always ACC_ALL.
3569                 */
3570                if (is_access_allowed(error_code, spte)) {
3571                        fault_handled = true;
3572                        break;
3573                }
3574
3575                new_spte = spte;
3576
3577                if (is_access_track_spte(spte))
3578                        new_spte = restore_acc_track_spte(new_spte);
3579
3580                /*
3581                 * Currently, to simplify the code, write-protection can
3582                 * be removed in the fast path only if the SPTE was
3583                 * write-protected for dirty-logging or access tracking.
3584                 */
3585                if ((error_code & PFERR_WRITE_MASK) &&
3586                    spte_can_locklessly_be_made_writable(spte))
3587                {
3588                        new_spte |= PT_WRITABLE_MASK;
3589
3590                        /*
3591                         * Do not fix write-permission on the large spte.  Since
3592                         * we only dirty the first page into the dirty-bitmap in
3593                         * fast_pf_fix_direct_spte(), other pages are missed
3594                         * if its slot has dirty logging enabled.
3595                         *
3596                         * Instead, we let the slow page fault path create a
3597                         * normal spte to fix the access.
3598                         *
3599                         * See the comments in kvm_arch_commit_memory_region().
3600                         */
3601                        if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3602                                break;
3603                }
3604
3605                /* Verify that the fault can be handled in the fast path */
3606                if (new_spte == spte ||
3607                    !is_access_allowed(error_code, new_spte))
3608                        break;
3609
3610                /*
3611                 * Currently, fast page fault only works for direct mapping
3612                 * since the gfn is not stable for indirect shadow page. See
3613                 * Documentation/virt/kvm/locking.txt to get more detail.
3614                 */
3615                fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3616                                                        iterator.sptep, spte,
3617                                                        new_spte);
3618                if (fault_handled)
3619                        break;
3620
3621                if (++retry_count > 4) {
3622                        printk_once(KERN_WARNING
3623                                "kvm: Fast #PF retrying more than 4 times.\n");
3624                        break;
3625                }
3626
3627        } while (true);
3628
3629        trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3630                              spte, fault_handled);
3631        walk_shadow_page_lockless_end(vcpu);
3632
3633        return fault_handled;
3634}
3635
3636static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3637                         gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3638static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3639
3640static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3641                         gfn_t gfn, bool prefault)
3642{
3643        int r;
3644        int level;
3645        bool force_pt_level;
3646        kvm_pfn_t pfn;
3647        unsigned long mmu_seq;
3648        bool map_writable, write = error_code & PFERR_WRITE_MASK;
3649        bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
3650                                is_nx_huge_page_enabled();
3651
3652        force_pt_level = lpage_disallowed;
3653        level = mapping_level(vcpu, gfn, &force_pt_level);
3654        if (likely(!force_pt_level)) {
3655                /*
3656                 * This path builds a PAE pagetable - so we can map
3657                 * 2mb pages at maximum. Therefore check if the level
3658                 * is larger than that.
3659                 */
3660                if (level > PT_DIRECTORY_LEVEL)
3661                        level = PT_DIRECTORY_LEVEL;
3662
3663                gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3664        }
3665
3666        if (fast_page_fault(vcpu, v, level, error_code))
3667                return RET_PF_RETRY;
3668
3669        mmu_seq = vcpu->kvm->mmu_notifier_seq;
3670        smp_rmb();
3671
3672        if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3673                return RET_PF_RETRY;
3674
3675        if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3676                return r;
3677
3678        r = RET_PF_RETRY;
3679        spin_lock(&vcpu->kvm->mmu_lock);
3680        if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3681                goto out_unlock;
3682        if (make_mmu_pages_available(vcpu) < 0)
3683                goto out_unlock;
3684        if (likely(!force_pt_level))
3685                transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
3686        r = __direct_map(vcpu, v, write, map_writable, level, pfn,
3687                         prefault, false);
3688out_unlock:
3689        spin_unlock(&vcpu->kvm->mmu_lock);
3690        kvm_release_pfn_clean(pfn);
3691        return r;
3692}
3693
3694static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3695                               struct list_head *invalid_list)
3696{
3697        struct kvm_mmu_page *sp;
3698
3699        if (!VALID_PAGE(*root_hpa))
3700                return;
3701
3702        sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3703        --sp->root_count;
3704        if (!sp->root_count && sp->role.invalid)
3705                kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3706
3707        *root_hpa = INVALID_PAGE;
3708}
3709
3710/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3711void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3712                        ulong roots_to_free)
3713{
3714        int i;
3715        LIST_HEAD(invalid_list);
3716        bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3717
3718        BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3719
3720        /* Before acquiring the MMU lock, see if we need to do any real work. */
3721        if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3722                for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3723                        if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3724                            VALID_PAGE(mmu->prev_roots[i].hpa))
3725                                break;
3726
3727                if (i == KVM_MMU_NUM_PREV_ROOTS)
3728                        return;
3729        }
3730
3731        spin_lock(&vcpu->kvm->mmu_lock);
3732
3733        for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3734                if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3735                        mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3736                                           &invalid_list);
3737
3738        if (free_active_root) {
3739                if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3740                    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3741                        mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3742                                           &invalid_list);
3743                } else {
3744                        for (i = 0; i < 4; ++i)
3745                                if (mmu->pae_root[i] != 0)
3746                                        mmu_free_root_page(vcpu->kvm,
3747                                                           &mmu->pae_root[i],
3748                                                           &invalid_list);
3749                        mmu->root_hpa = INVALID_PAGE;
3750                }
3751                mmu->root_cr3 = 0;
3752        }
3753
3754        kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3755        spin_unlock(&vcpu->kvm->mmu_lock);
3756}
3757EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3758
3759static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3760{
3761        int ret = 0;
3762
3763        if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3764                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3765                ret = 1;
3766        }
3767
3768        return ret;
3769}
3770
3771static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3772{
3773        struct kvm_mmu_page *sp;
3774        unsigned i;
3775
3776        if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3777                spin_lock(&vcpu->kvm->mmu_lock);
3778                if(make_mmu_pages_available(vcpu) < 0) {
3779                        spin_unlock(&vcpu->kvm->mmu_lock);
3780                        return -ENOSPC;
3781                }
3782                sp = kvm_mmu_get_page(vcpu, 0, 0,
3783                                vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
3784                ++sp->root_count;
3785                spin_unlock(&vcpu->kvm->mmu_lock);
3786                vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3787        } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
3788                for (i = 0; i < 4; ++i) {
3789                        hpa_t root = vcpu->arch.mmu->pae_root[i];
3790
3791                        MMU_WARN_ON(VALID_PAGE(root));
3792                        spin_lock(&vcpu->kvm->mmu_lock);
3793                        if (make_mmu_pages_available(vcpu) < 0) {
3794                                spin_unlock(&vcpu->kvm->mmu_lock);
3795                                return -ENOSPC;
3796                        }
3797                        sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3798                                        i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3799                        root = __pa(sp->spt);
3800                        ++sp->root_count;
3801                        spin_unlock(&vcpu->kvm->mmu_lock);
3802                        vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3803                }
3804                vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3805        } else
3806                BUG();
3807        vcpu->arch.mmu->root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3808
3809        return 0;
3810}
3811
3812static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3813{
3814        struct kvm_mmu_page *sp;
3815        u64 pdptr, pm_mask;
3816        gfn_t root_gfn, root_cr3;
3817        int i;
3818
3819        root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3820        root_gfn = root_cr3 >> PAGE_SHIFT;
3821
3822        if (mmu_check_root(vcpu, root_gfn))
3823                return 1;
3824
3825        /*
3826         * Do we shadow a long mode page table? If so we need to
3827         * write-protect the guests page table root.
3828         */
3829        if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3830                hpa_t root = vcpu->arch.mmu->root_hpa;
3831
3832                MMU_WARN_ON(VALID_PAGE(root));
3833
3834                spin_lock(&vcpu->kvm->mmu_lock);
3835                if (make_mmu_pages_available(vcpu) < 0) {
3836                        spin_unlock(&vcpu->kvm->mmu_lock);
3837                        return -ENOSPC;
3838                }
3839                sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3840                                vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
3841                root = __pa(sp->spt);
3842                ++sp->root_count;
3843                spin_unlock(&vcpu->kvm->mmu_lock);
3844                vcpu->arch.mmu->root_hpa = root;
3845                goto set_root_cr3;
3846        }
3847
3848        /*
3849         * We shadow a 32 bit page table. This may be a legacy 2-level
3850         * or a PAE 3-level page table. In either case we need to be aware that
3851         * the shadow page table may be a PAE or a long mode page table.
3852         */
3853        pm_mask = PT_PRESENT_MASK;
3854        if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3855                pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3856
3857        for (i = 0; i < 4; ++i) {
3858                hpa_t root = vcpu->arch.mmu->pae_root[i];
3859
3860                MMU_WARN_ON(VALID_PAGE(root));
3861                if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3862                        pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3863                        if (!(pdptr & PT_PRESENT_MASK)) {
3864                                vcpu->arch.mmu->pae_root[i] = 0;
3865                                continue;
3866                        }
3867                        root_gfn = pdptr >> PAGE_SHIFT;
3868                        if (mmu_check_root(vcpu, root_gfn))
3869                                return 1;
3870                }
3871                spin_lock(&vcpu->kvm->mmu_lock);
3872                if (make_mmu_pages_available(vcpu) < 0) {
3873                        spin_unlock(&vcpu->kvm->mmu_lock);
3874                        return -ENOSPC;
3875                }
3876                sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3877                                      0, ACC_ALL);
3878                root = __pa(sp->spt);
3879                ++sp->root_count;
3880                spin_unlock(&vcpu->kvm->mmu_lock);
3881
3882                vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3883        }
3884        vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3885
3886        /*
3887         * If we shadow a 32 bit page table with a long mode page
3888         * table we enter this path.
3889         */
3890        if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3891                if (vcpu->arch.mmu->lm_root == NULL) {
3892                        /*
3893                         * The additional page necessary for this is only
3894                         * allocated on demand.
3895                         */
3896
3897                        u64 *lm_root;
3898
3899                        lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3900                        if (lm_root == NULL)
3901                                return 1;
3902
3903                        lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3904
3905                        vcpu->arch.mmu->lm_root = lm_root;
3906                }
3907
3908                vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3909        }
3910
3911set_root_cr3:
3912        vcpu->arch.mmu->root_cr3 = root_cr3;
3913
3914        return 0;
3915}
3916
3917static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3918{
3919        if (vcpu->arch.mmu->direct_map)
3920                return mmu_alloc_direct_roots(vcpu);
3921        else
3922                return mmu_alloc_shadow_roots(vcpu);
3923}
3924
3925void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3926{
3927        int i;
3928        struct kvm_mmu_page *sp;
3929
3930        if (vcpu->arch.mmu->direct_map)
3931                return;
3932
3933        if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3934                return;
3935
3936        vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3937
3938        if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3939                hpa_t root = vcpu->arch.mmu->root_hpa;
3940                sp = page_header(root);
3941
3942                /*
3943                 * Even if another CPU was marking the SP as unsync-ed
3944                 * simultaneously, any guest page table changes are not
3945                 * guaranteed to be visible anyway until this VCPU issues a TLB
3946                 * flush strictly after those changes are made. We only need to
3947                 * ensure that the other CPU sets these flags before any actual
3948                 * changes to the page tables are made. The comments in
3949                 * mmu_need_write_protect() describe what could go wrong if this
3950                 * requirement isn't satisfied.
3951                 */
3952                if (!smp_load_acquire(&sp->unsync) &&
3953                    !smp_load_acquire(&sp->unsync_children))
3954                        return;
3955
3956                spin_lock(&vcpu->kvm->mmu_lock);
3957                kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3958
3959                mmu_sync_children(vcpu, sp);
3960
3961                kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3962                spin_unlock(&vcpu->kvm->mmu_lock);
3963                return;
3964        }
3965
3966        spin_lock(&vcpu->kvm->mmu_lock);
3967        kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3968
3969        for (i = 0; i < 4; ++i) {
3970                hpa_t root = vcpu->arch.mmu->pae_root[i];
3971
3972                if (root && VALID_PAGE(root)) {
3973                        root &= PT64_BASE_ADDR_MASK;
3974                        sp = page_header(root);
3975                        mmu_sync_children(vcpu, sp);
3976                }
3977        }
3978
3979        kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3980        spin_unlock(&vcpu->kvm->mmu_lock);
3981}
3982EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3983
3984static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3985                                  u32 access, struct x86_exception *exception)
3986{
3987        if (exception)
3988                exception->error_code = 0;
3989        return vaddr;
3990}
3991
3992static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3993                                         u32 access,
3994                                         struct x86_exception *exception)
3995{
3996        if (exception)
3997                exception->error_code = 0;
3998        return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3999}
4000
4001static bool
4002__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
4003{
4004        int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
4005
4006        return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
4007                ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
4008}
4009
4010static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
4011{
4012        return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
4013}
4014
4015static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
4016{
4017        return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
4018}
4019
4020static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4021{
4022        /*
4023         * A nested guest cannot use the MMIO cache if it is using nested
4024         * page tables, because cr2 is a nGPA while the cache stores GPAs.
4025         */
4026        if (mmu_is_nested(vcpu))
4027                return false;
4028
4029        if (direct)
4030                return vcpu_match_mmio_gpa(vcpu, addr);
4031
4032        return vcpu_match_mmio_gva(vcpu, addr);
4033}
4034
4035/* return true if reserved bit is detected on spte. */
4036static bool
4037walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
4038{
4039        struct kvm_shadow_walk_iterator iterator;
4040        u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
4041        int root, leaf;
4042        bool reserved = false;
4043
4044        if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
4045                goto exit;
4046
4047        walk_shadow_page_lockless_begin(vcpu);
4048
4049        for (shadow_walk_init(&iterator, vcpu, addr),
4050                 leaf = root = iterator.level;
4051             shadow_walk_okay(&iterator);
4052             __shadow_walk_next(&iterator, spte)) {
4053                spte = mmu_spte_get_lockless(iterator.sptep);
4054
4055                sptes[leaf - 1] = spte;
4056                leaf--;
4057
4058                if (!is_shadow_present_pte(spte))
4059                        break;
4060
4061                reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
4062                                                    iterator.level);
4063        }
4064
4065        walk_shadow_page_lockless_end(vcpu);
4066
4067        if (reserved) {
4068                pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
4069                       __func__, addr);
4070                while (root > leaf) {
4071                        pr_err("------ spte 0x%llx level %d.\n",
4072                               sptes[root - 1], root);
4073                        root--;
4074                }
4075        }
4076exit:
4077        *sptep = spte;
4078        return reserved;
4079}
4080
4081static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4082{
4083        u64 spte;
4084        bool reserved;
4085
4086        if (mmio_info_in_cache(vcpu, addr, direct))
4087                return RET_PF_EMULATE;
4088
4089        reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
4090        if (WARN_ON(reserved))
4091                return -EINVAL;
4092
4093        if (is_mmio_spte(spte)) {
4094                gfn_t gfn = get_mmio_spte_gfn(spte);
4095                unsigned access = get_mmio_spte_access(spte);
4096
4097                if (!check_mmio_spte(vcpu, spte))
4098                        return RET_PF_INVALID;
4099
4100                if (direct)
4101                        addr = 0;
4102
4103                trace_handle_mmio_page_fault(addr, gfn, access);
4104                vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4105                return RET_PF_EMULATE;
4106        }
4107
4108        /*
4109         * If the page table is zapped by other cpus, let CPU fault again on
4110         * the address.
4111         */
4112        return RET_PF_RETRY;
4113}
4114
4115static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4116                                         u32 error_code, gfn_t gfn)
4117{
4118        if (unlikely(error_code & PFERR_RSVD_MASK))
4119                return false;
4120
4121        if (!(error_code & PFERR_PRESENT_MASK) ||
4122              !(error_code & PFERR_WRITE_MASK))
4123                return false;
4124
4125        /*
4126         * guest is writing the page which is write tracked which can
4127         * not be fixed by page fault handler.
4128         */
4129        if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
4130                return true;
4131
4132        return false;
4133}
4134
4135static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4136{
4137        struct kvm_shadow_walk_iterator iterator;
4138        u64 spte;
4139
4140        if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
4141                return;
4142
4143        walk_shadow_page_lockless_begin(vcpu);
4144        for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4145                clear_sp_write_flooding_count(iterator.sptep);
4146                if (!is_shadow_present_pte(spte))
4147                        break;
4148        }
4149        walk_shadow_page_lockless_end(vcpu);
4150}
4151
4152static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
4153                                u32 error_code, bool prefault)
4154{
4155        gfn_t gfn = gva >> PAGE_SHIFT;
4156        int r;
4157
4158        pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
4159
4160        if (page_fault_handle_page_track(vcpu, error_code, gfn))
4161                return RET_PF_EMULATE;
4162
4163        r = mmu_topup_memory_caches(vcpu);
4164        if (r)
4165                return r;
4166
4167        MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
4168
4169
4170        return nonpaging_map(vcpu, gva & PAGE_MASK,
4171                             error_code, gfn, prefault);
4172}
4173
4174static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
4175{
4176        struct kvm_arch_async_pf arch;
4177
4178        arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4179        arch.gfn = gfn;
4180        arch.direct_map = vcpu->arch.mmu->direct_map;
4181        arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
4182
4183        return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4184}
4185
4186static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4187                         gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
4188{
4189        struct kvm_memory_slot *slot;
4190        bool async;
4191
4192        /*
4193         * Don't expose private memslots to L2.
4194         */
4195        if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4196                *pfn = KVM_PFN_NOSLOT;
4197                return false;
4198        }
4199
4200        slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4201        async = false;
4202        *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4203        if (!async)
4204                return false; /* *pfn has correct page already */
4205
4206        if (!prefault && kvm_can_do_async_pf(vcpu)) {
4207                trace_kvm_try_async_get_page(gva, gfn);
4208                if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4209                        trace_kvm_async_pf_doublefault(gva, gfn);
4210                        kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4211                        return true;
4212                } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
4213                        return true;
4214        }
4215
4216        *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4217        return false;
4218}
4219
4220int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4221                                u64 fault_address, char *insn, int insn_len)
4222{
4223        int r = 1;
4224
4225        vcpu->arch.l1tf_flush_l1d = true;
4226        switch (vcpu->arch.apf.host_apf_reason) {
4227        default:
4228                trace_kvm_page_fault(fault_address, error_code);
4229
4230                if (kvm_event_needs_reinjection(vcpu))
4231                        kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4232                r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4233                                insn_len);
4234                break;
4235        case KVM_PV_REASON_PAGE_NOT_PRESENT:
4236                vcpu->arch.apf.host_apf_reason = 0;
4237                local_irq_disable();
4238                kvm_async_pf_task_wait(fault_address, 0);
4239                local_irq_enable();
4240                break;
4241        case KVM_PV_REASON_PAGE_READY:
4242                vcpu->arch.apf.host_apf_reason = 0;
4243                local_irq_disable();
4244                kvm_async_pf_task_wake(fault_address);
4245                local_irq_enable();
4246                break;
4247        }
4248        return r;
4249}
4250EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4251
4252static bool
4253check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4254{
4255        int page_num = KVM_PAGES_PER_HPAGE(level);
4256
4257        gfn &= ~(page_num - 1);
4258
4259        return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4260}
4261
4262static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
4263                          bool prefault)
4264{
4265        kvm_pfn_t pfn;
4266        int r;
4267        int level;
4268        bool force_pt_level;
4269        gfn_t gfn = gpa >> PAGE_SHIFT;
4270        unsigned long mmu_seq;
4271        int write = error_code & PFERR_WRITE_MASK;
4272        bool map_writable;
4273        bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
4274                                is_nx_huge_page_enabled();
4275
4276        MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
4277
4278        if (page_fault_handle_page_track(vcpu, error_code, gfn))
4279                return RET_PF_EMULATE;
4280
4281        r = mmu_topup_memory_caches(vcpu);
4282        if (r)
4283                return r;
4284
4285        force_pt_level =
4286                lpage_disallowed ||
4287                !check_hugepage_cache_consistency(vcpu, gfn, PT_DIRECTORY_LEVEL);
4288        level = mapping_level(vcpu, gfn, &force_pt_level);
4289        if (likely(!force_pt_level)) {
4290                if (level > PT_DIRECTORY_LEVEL &&
4291                    !check_hugepage_cache_consistency(vcpu, gfn, level))
4292                        level = PT_DIRECTORY_LEVEL;
4293                gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
4294        }
4295
4296        if (fast_page_fault(vcpu, gpa, level, error_code))
4297                return RET_PF_RETRY;
4298
4299        mmu_seq = vcpu->kvm->mmu_notifier_seq;
4300        smp_rmb();
4301
4302        if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4303                return RET_PF_RETRY;
4304
4305        if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4306                return r;
4307
4308        r = RET_PF_RETRY;
4309        spin_lock(&vcpu->kvm->mmu_lock);
4310        if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4311                goto out_unlock;
4312        if (make_mmu_pages_available(vcpu) < 0)
4313                goto out_unlock;
4314        if (likely(!force_pt_level))
4315                transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
4316        r = __direct_map(vcpu, gpa, write, map_writable, level, pfn,
4317                         prefault, lpage_disallowed);
4318out_unlock:
4319        spin_unlock(&vcpu->kvm->mmu_lock);
4320        kvm_release_pfn_clean(pfn);
4321        return r;
4322}
4323
4324static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4325                                   struct kvm_mmu *context)
4326{
4327        context->page_fault = nonpaging_page_fault;
4328        context->gva_to_gpa = nonpaging_gva_to_gpa;
4329        context->sync_page = nonpaging_sync_page;
4330        context->invlpg = nonpaging_invlpg;
4331        context->update_pte = nonpaging_update_pte;
4332        context->root_level = 0;
4333        context->shadow_root_level = PT32E_ROOT_LEVEL;
4334        context->direct_map = true;
4335        context->nx = false;
4336}
4337
4338/*
4339 * Find out if a previously cached root matching the new CR3/role is available.
4340 * The current root is also inserted into the cache.
4341 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4342 * returned.
4343 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4344 * false is returned. This root should now be freed by the caller.
4345 */
4346static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4347                                  union kvm_mmu_page_role new_role)
4348{
4349        uint i;
4350        struct kvm_mmu_root_info root;
4351        struct kvm_mmu *mmu = vcpu->arch.mmu;
4352
4353        root.cr3 = mmu->root_cr3;
4354        root.hpa = mmu->root_hpa;
4355
4356        for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4357                swap(root, mmu->prev_roots[i]);
4358
4359                if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4360                    page_header(root.hpa) != NULL &&
4361                    new_role.word == page_header(root.hpa)->role.word)
4362                        break;
4363        }
4364
4365        mmu->root_hpa = root.hpa;
4366        mmu->root_cr3 = root.cr3;
4367
4368        return i < KVM_MMU_NUM_PREV_ROOTS;
4369}
4370
4371static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4372                            union kvm_mmu_page_role new_role,
4373                            bool skip_tlb_flush)
4374{
4375        struct kvm_mmu *mmu = vcpu->arch.mmu;
4376
4377        /*
4378         * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4379         * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4380         * later if necessary.
4381         */
4382        if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4383            mmu->root_level >= PT64_ROOT_4LEVEL) {
4384                if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4385                        return false;
4386
4387                if (cached_root_available(vcpu, new_cr3, new_role)) {
4388                        /*
4389                         * It is possible that the cached previous root page is
4390                         * obsolete because of a change in the MMU generation
4391                         * number. However, changing the generation number is
4392                         * accompanied by KVM_REQ_MMU_RELOAD, which will free
4393                         * the root set here and allocate a new one.
4394                         */
4395                        kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
4396                        if (!skip_tlb_flush) {
4397                                kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4398                                kvm_x86_ops->tlb_flush(vcpu, true);
4399                        }
4400
4401                        /*
4402                         * The last MMIO access's GVA and GPA are cached in the
4403                         * VCPU. When switching to a new CR3, that GVA->GPA
4404                         * mapping may no longer be valid. So clear any cached
4405                         * MMIO info even when we don't need to sync the shadow
4406                         * page tables.
4407                         */
4408                        vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4409
4410                        __clear_sp_write_flooding_count(
4411                                page_header(mmu->root_hpa));
4412
4413                        return true;
4414                }
4415        }
4416
4417        return false;
4418}
4419
4420static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4421                              union kvm_mmu_page_role new_role,
4422                              bool skip_tlb_flush)
4423{
4424        if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4425                kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4426                                   KVM_MMU_ROOT_CURRENT);
4427}
4428
4429void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4430{
4431        __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4432                          skip_tlb_flush);
4433}
4434EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4435
4436static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4437{
4438        return kvm_read_cr3(vcpu);
4439}
4440
4441static void inject_page_fault(struct kvm_vcpu *vcpu,
4442                              struct x86_exception *fault)
4443{
4444        vcpu->arch.mmu->inject_page_fault(vcpu, fault);
4445}
4446
4447static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4448                           unsigned access, int *nr_present)
4449{
4450        if (unlikely(is_mmio_spte(*sptep))) {
4451                if (gfn != get_mmio_spte_gfn(*sptep)) {
4452                        mmu_spte_clear_no_track(sptep);
4453                        return true;
4454                }
4455
4456                (*nr_present)++;
4457                mark_mmio_spte(vcpu, sptep, gfn, access);
4458                return true;
4459        }
4460
4461        return false;
4462}
4463
4464static inline bool is_last_gpte(struct kvm_mmu *mmu,
4465                                unsigned level, unsigned gpte)
4466{
4467        /*
4468         * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4469         * If it is clear, there are no large pages at this level, so clear
4470         * PT_PAGE_SIZE_MASK in gpte if that is the case.
4471         */
4472        gpte &= level - mmu->last_nonleaf_level;
4473
4474        /*
4475         * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
4476         * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4477         * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4478         */
4479        gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4480
4481        return gpte & PT_PAGE_SIZE_MASK;
4482}
4483
4484#define PTTYPE_EPT 18 /* arbitrary */
4485#define PTTYPE PTTYPE_EPT
4486#include "paging_tmpl.h"
4487#undef PTTYPE
4488
4489#define PTTYPE 64
4490#include "paging_tmpl.h"
4491#undef PTTYPE
4492
4493#define PTTYPE 32
4494#include "paging_tmpl.h"
4495#undef PTTYPE
4496
4497static void
4498__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4499                        struct rsvd_bits_validate *rsvd_check,
4500                        int maxphyaddr, int level, bool nx, bool gbpages,
4501                        bool pse, bool amd)
4502{
4503        u64 exb_bit_rsvd = 0;
4504        u64 gbpages_bit_rsvd = 0;
4505        u64 nonleaf_bit8_rsvd = 0;
4506
4507        rsvd_check->bad_mt_xwr = 0;
4508
4509        if (!nx)
4510                exb_bit_rsvd = rsvd_bits(63, 63);
4511        if (!gbpages)
4512                gbpages_bit_rsvd = rsvd_bits(7, 7);
4513
4514        /*
4515         * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4516         * leaf entries) on AMD CPUs only.
4517         */
4518        if (amd)
4519                nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4520
4521        switch (level) {
4522        case PT32_ROOT_LEVEL:
4523                /* no rsvd bits for 2 level 4K page table entries */
4524                rsvd_check->rsvd_bits_mask[0][1] = 0;
4525                rsvd_check->rsvd_bits_mask[0][0] = 0;
4526                rsvd_check->rsvd_bits_mask[1][0] =
4527                        rsvd_check->rsvd_bits_mask[0][0];
4528
4529                if (!pse) {
4530                        rsvd_check->rsvd_bits_mask[1][1] = 0;
4531                        break;
4532                }
4533
4534                if (is_cpuid_PSE36())
4535                        /* 36bits PSE 4MB page */
4536                        rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4537                else
4538                        /* 32 bits PSE 4MB page */
4539                        rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4540                break;
4541        case PT32E_ROOT_LEVEL:
4542                rsvd_check->rsvd_bits_mask[0][2] =
4543                        rsvd_bits(maxphyaddr, 63) |
4544                        rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4545                rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4546                        rsvd_bits(maxphyaddr, 62);      /* PDE */
4547                rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4548                        rsvd_bits(maxphyaddr, 62);      /* PTE */
4549                rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4550                        rsvd_bits(maxphyaddr, 62) |
4551                        rsvd_bits(13, 20);              /* large page */
4552                rsvd_check->rsvd_bits_mask[1][0] =
4553                        rsvd_check->rsvd_bits_mask[0][0];
4554                break;
4555        case PT64_ROOT_5LEVEL:
4556                rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4557                        nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4558                        rsvd_bits(maxphyaddr, 51);
4559                rsvd_check->rsvd_bits_mask[1][4] =
4560                        rsvd_check->rsvd_bits_mask[0][4];
4561                /* fall through */
4562        case PT64_ROOT_4LEVEL:
4563                rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4564                        nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4565                        rsvd_bits(maxphyaddr, 51);
4566                rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4567                        nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4568                        rsvd_bits(maxphyaddr, 51);
4569                rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4570                        rsvd_bits(maxphyaddr, 51);
4571                rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4572                        rsvd_bits(maxphyaddr, 51);
4573                rsvd_check->rsvd_bits_mask[1][3] =
4574                        rsvd_check->rsvd_bits_mask[0][3];
4575                rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4576                        gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4577                        rsvd_bits(13, 29);
4578                rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4579                        rsvd_bits(maxphyaddr, 51) |
4580                        rsvd_bits(13, 20);              /* large page */
4581                rsvd_check->rsvd_bits_mask[1][0] =
4582                        rsvd_check->rsvd_bits_mask[0][0];
4583                break;
4584        }
4585}
4586
4587static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4588                                  struct kvm_mmu *context)
4589{
4590        __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4591                                cpuid_maxphyaddr(vcpu), context->root_level,
4592                                context->nx,
4593                                guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4594                                is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4595}
4596
4597static void
4598__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4599                            int maxphyaddr, bool execonly)
4600{
4601        u64 bad_mt_xwr;
4602
4603        rsvd_check->rsvd_bits_mask[0][4] =
4604                rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4605        rsvd_check->rsvd_bits_mask[0][3] =
4606                rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4607        rsvd_check->rsvd_bits_mask[0][2] =
4608                rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4609        rsvd_check->rsvd_bits_mask[0][1] =
4610                rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4611        rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4612
4613        /* large page */
4614        rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4615        rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4616        rsvd_check->rsvd_bits_mask[1][2] =
4617                rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4618        rsvd_check->rsvd_bits_mask[1][1] =
4619                rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4620        rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4621
4622        bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4623        bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4624        bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4625        bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4626        bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4627        if (!execonly) {
4628                /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4629                bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4630        }
4631        rsvd_check->bad_mt_xwr = bad_mt_xwr;
4632}
4633
4634static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4635                struct kvm_mmu *context, bool execonly)
4636{
4637        __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4638                                    cpuid_maxphyaddr(vcpu), execonly);
4639}
4640
4641/*
4642 * the page table on host is the shadow page table for the page
4643 * table in guest or amd nested guest, its mmu features completely
4644 * follow the features in guest.
4645 */
4646void
4647reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4648{
4649        bool uses_nx = context->nx ||
4650                context->mmu_role.base.smep_andnot_wp;
4651        struct rsvd_bits_validate *shadow_zero_check;
4652        int i;
4653
4654        /*
4655         * Passing "true" to the last argument is okay; it adds a check
4656         * on bit 8 of the SPTEs which KVM doesn't use anyway.
4657         */
4658        shadow_zero_check = &context->shadow_zero_check;
4659        __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4660                                shadow_phys_bits,
4661                                context->shadow_root_level, uses_nx,
4662                                guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4663                                is_pse(vcpu), true);
4664
4665        if (!shadow_me_mask)
4666                return;
4667
4668        for (i = context->shadow_root_level; --i >= 0;) {
4669                shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4670                shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4671        }
4672
4673}
4674EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4675
4676static inline bool boot_cpu_is_amd(void)
4677{
4678        WARN_ON_ONCE(!tdp_enabled);
4679        return shadow_x_mask == 0;
4680}
4681
4682/*
4683 * the direct page table on host, use as much mmu features as
4684 * possible, however, kvm currently does not do execution-protection.
4685 */
4686static void
4687reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4688                                struct kvm_mmu *context)
4689{
4690        struct rsvd_bits_validate *shadow_zero_check;
4691        int i;
4692
4693        shadow_zero_check = &context->shadow_zero_check;
4694
4695        if (boot_cpu_is_amd())
4696                __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4697                                        shadow_phys_bits,
4698                                        context->shadow_root_level, false,
4699                                        boot_cpu_has(X86_FEATURE_GBPAGES),
4700                                        true, true);
4701        else
4702                __reset_rsvds_bits_mask_ept(shadow_zero_check,
4703                                            shadow_phys_bits,
4704                                            false);
4705
4706        if (!shadow_me_mask)
4707                return;
4708
4709        for (i = context->shadow_root_level; --i >= 0;) {
4710                shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4711                shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4712        }
4713}
4714
4715/*
4716 * as the comments in reset_shadow_zero_bits_mask() except it
4717 * is the shadow page table for intel nested guest.
4718 */
4719static void
4720reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4721                                struct kvm_mmu *context, bool execonly)
4722{
4723        __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4724                                    shadow_phys_bits, execonly);
4725}
4726
4727#define BYTE_MASK(access) \
4728        ((1 & (access) ? 2 : 0) | \
4729         (2 & (access) ? 4 : 0) | \
4730         (3 & (access) ? 8 : 0) | \
4731         (4 & (access) ? 16 : 0) | \
4732         (5 & (access) ? 32 : 0) | \
4733         (6 & (access) ? 64 : 0) | \
4734         (7 & (access) ? 128 : 0))
4735
4736
4737static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4738                                      struct kvm_mmu *mmu, bool ept)
4739{
4740        unsigned byte;
4741
4742        const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4743        const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4744        const u8 u = BYTE_MASK(ACC_USER_MASK);
4745
4746        bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4747        bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4748        bool cr0_wp = is_write_protection(vcpu);
4749
4750        for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4751                unsigned pfec = byte << 1;
4752
4753                /*
4754                 * Each "*f" variable has a 1 bit for each UWX value
4755                 * that causes a fault with the given PFEC.
4756                 */
4757
4758                /* Faults from writes to non-writable pages */
4759                u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4760                /* Faults from user mode accesses to supervisor pages */
4761                u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4762                /* Faults from fetches of non-executable pages*/
4763                u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4764                /* Faults from kernel mode fetches of user pages */
4765                u8 smepf = 0;
4766                /* Faults from kernel mode accesses of user pages */
4767                u8 smapf = 0;
4768
4769                if (!ept) {
4770                        /* Faults from kernel mode accesses to user pages */
4771                        u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4772
4773                        /* Not really needed: !nx will cause pte.nx to fault */
4774                        if (!mmu->nx)
4775                                ff = 0;
4776
4777                        /* Allow supervisor writes if !cr0.wp */
4778                        if (!cr0_wp)
4779                                wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4780
4781                        /* Disallow supervisor fetches of user code if cr4.smep */
4782                        if (cr4_smep)
4783                                smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4784
4785                        /*
4786                         * SMAP:kernel-mode data accesses from user-mode
4787                         * mappings should fault. A fault is considered
4788                         * as a SMAP violation if all of the following
4789                         * conditions are true:
4790                         *   - X86_CR4_SMAP is set in CR4
4791                         *   - A user page is accessed
4792                         *   - The access is not a fetch
4793                         *   - Page fault in kernel mode
4794                         *   - if CPL = 3 or X86_EFLAGS_AC is clear
4795                         *
4796                         * Here, we cover the first three conditions.
4797                         * The fourth is computed dynamically in permission_fault();
4798                         * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4799                         * *not* subject to SMAP restrictions.
4800                         */
4801                        if (cr4_smap)
4802                                smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4803                }
4804
4805                mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4806        }
4807}
4808
4809/*
4810* PKU is an additional mechanism by which the paging controls access to
4811* user-mode addresses based on the value in the PKRU register.  Protection
4812* key violations are reported through a bit in the page fault error code.
4813* Unlike other bits of the error code, the PK bit is not known at the
4814* call site of e.g. gva_to_gpa; it must be computed directly in
4815* permission_fault based on two bits of PKRU, on some machine state (CR4,
4816* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4817*
4818* In particular the following conditions come from the error code, the
4819* page tables and the machine state:
4820* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4821* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4822* - PK is always zero if U=0 in the page tables
4823* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4824*
4825* The PKRU bitmask caches the result of these four conditions.  The error
4826* code (minus the P bit) and the page table's U bit form an index into the
4827* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4828* with the two bits of the PKRU register corresponding to the protection key.
4829* For the first three conditions above the bits will be 00, thus masking
4830* away both AD and WD.  For all reads or if the last condition holds, WD
4831* only will be masked away.
4832*/
4833static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4834                                bool ept)
4835{
4836        unsigned bit;
4837        bool wp;
4838
4839        if (ept) {
4840                mmu->pkru_mask = 0;
4841                return;
4842        }
4843
4844        /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4845        if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4846                mmu->pkru_mask = 0;
4847                return;
4848        }
4849
4850        wp = is_write_protection(vcpu);
4851
4852        for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4853                unsigned pfec, pkey_bits;
4854                bool check_pkey, check_write, ff, uf, wf, pte_user;
4855
4856                pfec = bit << 1;
4857                ff = pfec & PFERR_FETCH_MASK;
4858                uf = pfec & PFERR_USER_MASK;
4859                wf = pfec & PFERR_WRITE_MASK;
4860
4861                /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4862                pte_user = pfec & PFERR_RSVD_MASK;
4863
4864                /*
4865                 * Only need to check the access which is not an
4866                 * instruction fetch and is to a user page.
4867                 */
4868                check_pkey = (!ff && pte_user);
4869                /*
4870                 * write access is controlled by PKRU if it is a
4871                 * user access or CR0.WP = 1.
4872                 */
4873                check_write = check_pkey && wf && (uf || wp);
4874
4875                /* PKRU.AD stops both read and write access. */
4876                pkey_bits = !!check_pkey;
4877                /* PKRU.WD stops write access. */
4878                pkey_bits |= (!!check_write) << 1;
4879
4880                mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4881        }
4882}
4883
4884static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4885{
4886        unsigned root_level = mmu->root_level;
4887
4888        mmu->last_nonleaf_level = root_level;
4889        if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4890                mmu->last_nonleaf_level++;
4891}
4892
4893static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4894                                         struct kvm_mmu *context,
4895                                         int level)
4896{
4897        context->nx = is_nx(vcpu);
4898        context->root_level = level;
4899
4900        reset_rsvds_bits_mask(vcpu, context);
4901        update_permission_bitmask(vcpu, context, false);
4902        update_pkru_bitmask(vcpu, context, false);
4903        update_last_nonleaf_level(vcpu, context);
4904
4905        MMU_WARN_ON(!is_pae(vcpu));
4906        context->page_fault = paging64_page_fault;
4907        context->gva_to_gpa = paging64_gva_to_gpa;
4908        context->sync_page = paging64_sync_page;
4909        context->invlpg = paging64_invlpg;
4910        context->update_pte = paging64_update_pte;
4911        context->shadow_root_level = level;
4912        context->direct_map = false;
4913}
4914
4915static void paging64_init_context(struct kvm_vcpu *vcpu,
4916                                  struct kvm_mmu *context)
4917{
4918        int root_level = is_la57_mode(vcpu) ?
4919                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4920
4921        paging64_init_context_common(vcpu, context, root_level);
4922}
4923
4924static void paging32_init_context(struct kvm_vcpu *vcpu,
4925                                  struct kvm_mmu *context)
4926{
4927        context->nx = false;
4928        context->root_level = PT32_ROOT_LEVEL;
4929
4930        reset_rsvds_bits_mask(vcpu, context);
4931        update_permission_bitmask(vcpu, context, false);
4932        update_pkru_bitmask(vcpu, context, false);
4933        update_last_nonleaf_level(vcpu, context);
4934
4935        context->page_fault = paging32_page_fault;
4936        context->gva_to_gpa = paging32_gva_to_gpa;
4937        context->sync_page = paging32_sync_page;
4938        context->invlpg = paging32_invlpg;
4939        context->update_pte = paging32_update_pte;
4940        context->shadow_root_level = PT32E_ROOT_LEVEL;
4941        context->direct_map = false;
4942}
4943
4944static void paging32E_init_context(struct kvm_vcpu *vcpu,
4945                                   struct kvm_mmu *context)
4946{
4947        paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4948}
4949
4950static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4951{
4952        union kvm_mmu_extended_role ext = {0};
4953
4954        ext.cr0_pg = !!is_paging(vcpu);
4955        ext.cr4_pae = !!is_pae(vcpu);
4956        ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4957        ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4958        ext.cr4_pse = !!is_pse(vcpu);
4959        ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4960        ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
4961        ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4962
4963        ext.valid = 1;
4964
4965        return ext;
4966}
4967
4968static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4969                                                   bool base_only)
4970{
4971        union kvm_mmu_role role = {0};
4972
4973        role.base.access = ACC_ALL;
4974        role.base.nxe = !!is_nx(vcpu);
4975        role.base.cr0_wp = is_write_protection(vcpu);
4976        role.base.smm = is_smm(vcpu);
4977        role.base.guest_mode = is_guest_mode(vcpu);
4978
4979        if (base_only)
4980                return role;
4981
4982        role.ext = kvm_calc_mmu_role_ext(vcpu);
4983
4984        return role;
4985}
4986
4987static union kvm_mmu_role
4988kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4989{
4990        union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4991
4992        role.base.ad_disabled = (shadow_accessed_mask == 0);
4993        role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
4994        role.base.direct = true;
4995        role.base.gpte_is_8_bytes = true;
4996
4997        return role;
4998}
4999
5000static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
5001{
5002        struct kvm_mmu *context = vcpu->arch.mmu;
5003        union kvm_mmu_role new_role =
5004                kvm_calc_tdp_mmu_root_page_role(vcpu, false);
5005
5006        new_role.base.word &= mmu_base_role_mask.word;
5007        if (new_role.as_u64 == context->mmu_role.as_u64)
5008                return;
5009
5010        context->mmu_role.as_u64 = new_role.as_u64;
5011        context->page_fault = tdp_page_fault;
5012        context->sync_page = nonpaging_sync_page;
5013        context->invlpg = nonpaging_invlpg;
5014        context->update_pte = nonpaging_update_pte;
5015        context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
5016        context->direct_map = true;
5017        context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5018        context->get_cr3 = get_cr3;
5019        context->get_pdptr = kvm_pdptr_read;
5020        context->inject_page_fault = kvm_inject_page_fault;
5021
5022        if (!is_paging(vcpu)) {
5023                context->nx = false;
5024                context->gva_to_gpa = nonpaging_gva_to_gpa;
5025                context->root_level = 0;
5026        } else if (is_long_mode(vcpu)) {
5027                context->nx = is_nx(vcpu);
5028                context->root_level = is_la57_mode(vcpu) ?
5029                                PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5030                reset_rsvds_bits_mask(vcpu, context);
5031                context->gva_to_gpa = paging64_gva_to_gpa;
5032        } else if (is_pae(vcpu)) {
5033                context->nx = is_nx(vcpu);
5034                context->root_level = PT32E_ROOT_LEVEL;
5035                reset_rsvds_bits_mask(vcpu, context);
5036                context->gva_to_gpa = paging64_gva_to_gpa;
5037        } else {
5038                context->nx = false;
5039                context->root_level = PT32_ROOT_LEVEL;
5040                reset_rsvds_bits_mask(vcpu, context);
5041                context->gva_to_gpa = paging32_gva_to_gpa;
5042        }
5043
5044        update_permission_bitmask(vcpu, context, false);
5045        update_pkru_bitmask(vcpu, context, false);
5046        update_last_nonleaf_level(vcpu, context);
5047        reset_tdp_shadow_zero_bits_mask(vcpu, context);
5048}
5049
5050static union kvm_mmu_role
5051kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
5052{
5053        union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
5054
5055        role.base.smep_andnot_wp = role.ext.cr4_smep &&
5056                !is_write_protection(vcpu);
5057        role.base.smap_andnot_wp = role.ext.cr4_smap &&
5058                !is_write_protection(vcpu);
5059        role.base.direct = !is_paging(vcpu);
5060        role.base.gpte_is_8_bytes = !!is_pae(vcpu);
5061
5062        if (!is_long_mode(vcpu))
5063                role.base.level = PT32E_ROOT_LEVEL;
5064        else if (is_la57_mode(vcpu))
5065                role.base.level = PT64_ROOT_5LEVEL;
5066        else
5067                role.base.level = PT64_ROOT_4LEVEL;
5068
5069        return role;
5070}
5071
5072void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
5073{
5074        struct kvm_mmu *context = vcpu->arch.mmu;
5075        union kvm_mmu_role new_role =
5076                kvm_calc_shadow_mmu_root_page_role(vcpu, false);
5077
5078        new_role.base.word &= mmu_base_role_mask.word;
5079        if (new_role.as_u64 == context->mmu_role.as_u64)
5080                return;
5081
5082        if (!is_paging(vcpu))
5083                nonpaging_init_context(vcpu, context);
5084        else if (is_long_mode(vcpu))
5085                paging64_init_context(vcpu, context);
5086        else if (is_pae(vcpu))
5087                paging32E_init_context(vcpu, context);
5088        else
5089                paging32_init_context(vcpu, context);
5090
5091        context->mmu_role.as_u64 = new_role.as_u64;
5092        reset_shadow_zero_bits_mask(vcpu, context);
5093}
5094EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
5095
5096static union kvm_mmu_role
5097kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5098                                   bool execonly)
5099{
5100        union kvm_mmu_role role = {0};
5101
5102        /* SMM flag is inherited from root_mmu */
5103        role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
5104
5105        role.base.level = PT64_ROOT_4LEVEL;
5106        role.base.gpte_is_8_bytes = true;
5107        role.base.direct = false;
5108        role.base.ad_disabled = !accessed_dirty;
5109        role.base.guest_mode = true;
5110        role.base.access = ACC_ALL;
5111
5112        /*
5113         * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
5114         * SMAP variation to denote shadow EPT entries.
5115         */
5116        role.base.cr0_wp = true;
5117        role.base.smap_andnot_wp = true;
5118
5119        role.ext = kvm_calc_mmu_role_ext(vcpu);
5120        role.ext.execonly = execonly;
5121
5122        return role;
5123}
5124
5125void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5126                             bool accessed_dirty, gpa_t new_eptp)
5127{
5128        struct kvm_mmu *context = vcpu->arch.mmu;
5129        union kvm_mmu_role new_role =
5130                kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5131                                                   execonly);
5132
5133        __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
5134
5135        new_role.base.word &= mmu_base_role_mask.word;
5136        if (new_role.as_u64 == context->mmu_role.as_u64)
5137                return;
5138
5139        context->shadow_root_level = PT64_ROOT_4LEVEL;
5140
5141        context->nx = true;
5142        context->ept_ad = accessed_dirty;
5143        context->page_fault = ept_page_fault;
5144        context->gva_to_gpa = ept_gva_to_gpa;
5145        context->sync_page = ept_sync_page;
5146        context->invlpg = ept_invlpg;
5147        context->update_pte = ept_update_pte;
5148        context->root_level = PT64_ROOT_4LEVEL;
5149        context->direct_map = false;
5150        context->mmu_role.as_u64 = new_role.as_u64;
5151
5152        update_permission_bitmask(vcpu, context, true);
5153        update_pkru_bitmask(vcpu, context, true);
5154        update_last_nonleaf_level(vcpu, context);
5155        reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5156        reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
5157}
5158EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5159
5160static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5161{
5162        struct kvm_mmu *context = vcpu->arch.mmu;
5163
5164        kvm_init_shadow_mmu(vcpu);
5165        context->set_cr3           = kvm_x86_ops->set_cr3;
5166        context->get_cr3           = get_cr3;
5167        context->get_pdptr         = kvm_pdptr_read;
5168        context->inject_page_fault = kvm_inject_page_fault;
5169}
5170
5171static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5172{
5173        union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5174        struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5175
5176        new_role.base.word &= mmu_base_role_mask.word;
5177        if (new_role.as_u64 == g_context->mmu_role.as_u64)
5178                return;
5179
5180        g_context->mmu_role.as_u64 = new_role.as_u64;
5181        g_context->get_cr3           = get_cr3;
5182        g_context->get_pdptr         = kvm_pdptr_read;
5183        g_context->inject_page_fault = kvm_inject_page_fault;
5184
5185        /*
5186         * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5187         * L1's nested page tables (e.g. EPT12). The nested translation
5188         * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5189         * L2's page tables as the first level of translation and L1's
5190         * nested page tables as the second level of translation. Basically
5191         * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5192         */
5193        if (!is_paging(vcpu)) {
5194                g_context->nx = false;
5195                g_context->root_level = 0;
5196                g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5197        } else if (is_long_mode(vcpu)) {
5198                g_context->nx = is_nx(vcpu);
5199                g_context->root_level = is_la57_mode(vcpu) ?
5200                                        PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5201                reset_rsvds_bits_mask(vcpu, g_context);
5202                g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5203        } else if (is_pae(vcpu)) {
5204                g_context->nx = is_nx(vcpu);
5205                g_context->root_level = PT32E_ROOT_LEVEL;
5206                reset_rsvds_bits_mask(vcpu, g_context);
5207                g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5208        } else {
5209                g_context->nx = false;
5210                g_context->root_level = PT32_ROOT_LEVEL;
5211                reset_rsvds_bits_mask(vcpu, g_context);
5212                g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5213        }
5214
5215        update_permission_bitmask(vcpu, g_context, false);
5216        update_pkru_bitmask(vcpu, g_context, false);
5217        update_last_nonleaf_level(vcpu, g_context);
5218}
5219
5220void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5221{
5222        if (reset_roots) {
5223                uint i;
5224
5225                vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5226
5227                for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5228                        vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5229        }
5230
5231        if (mmu_is_nested(vcpu))
5232                init_kvm_nested_mmu(vcpu);
5233        else if (tdp_enabled)
5234                init_kvm_tdp_mmu(vcpu);
5235        else
5236                init_kvm_softmmu(vcpu);
5237}
5238EXPORT_SYMBOL_GPL(kvm_init_mmu);
5239
5240static union kvm_mmu_page_role
5241kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5242{
5243        union kvm_mmu_role role;
5244
5245        if (tdp_enabled)
5246                role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5247        else
5248                role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5249
5250        return role.base;
5251}
5252
5253void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5254{
5255        kvm_mmu_unload(vcpu);
5256        kvm_init_mmu(vcpu, true);
5257}
5258EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5259
5260int kvm_mmu_load(struct kvm_vcpu *vcpu)
5261{
5262        int r;
5263
5264        r = mmu_topup_memory_caches(vcpu);
5265        if (r)
5266                goto out;
5267        r = mmu_alloc_roots(vcpu);
5268        kvm_mmu_sync_roots(vcpu);
5269        if (r)
5270                goto out;
5271        kvm_mmu_load_cr3(vcpu);
5272        kvm_x86_ops->tlb_flush(vcpu, true);
5273out:
5274        return r;
5275}
5276EXPORT_SYMBOL_GPL(kvm_mmu_load);
5277
5278void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5279{
5280        kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5281        WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5282        kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5283        WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5284}
5285EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5286
5287static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5288                                  struct kvm_mmu_page *sp, u64 *spte,
5289                                  const void *new)
5290{
5291        if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
5292                ++vcpu->kvm->stat.mmu_pde_zapped;
5293                return;
5294        }
5295
5296        ++vcpu->kvm->stat.mmu_pte_updated;
5297        vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5298}
5299
5300static bool need_remote_flush(u64 old, u64 new)
5301{
5302        if (!is_shadow_present_pte(old))
5303                return false;
5304        if (!is_shadow_present_pte(new))
5305                return true;
5306        if ((old ^ new) & PT64_BASE_ADDR_MASK)
5307                return true;
5308        old ^= shadow_nx_mask;
5309        new ^= shadow_nx_mask;
5310        return (old & ~new & PT64_PERM_MASK) != 0;
5311}
5312
5313static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5314                                    int *bytes)
5315{
5316        u64 gentry = 0;
5317        int r;
5318
5319        /*
5320         * Assume that the pte write on a page table of the same type
5321         * as the current vcpu paging mode since we update the sptes only
5322         * when they have the same mode.
5323         */
5324        if (is_pae(vcpu) && *bytes == 4) {
5325                /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5326                *gpa &= ~(gpa_t)7;
5327                *bytes = 8;
5328        }
5329
5330        if (*bytes == 4 || *bytes == 8) {
5331                r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5332                if (r)
5333                        gentry = 0;
5334        }
5335
5336        return gentry;
5337}
5338
5339/*
5340 * If we're seeing too many writes to a page, it may no longer be a page table,
5341 * or we may be forking, in which case it is better to unmap the page.
5342 */
5343static bool detect_write_flooding(struct kvm_mmu_page *sp)
5344{
5345        /*
5346         * Skip write-flooding detected for the sp whose level is 1, because
5347         * it can become unsync, then the guest page is not write-protected.
5348         */
5349        if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5350                return false;
5351
5352        atomic_inc(&sp->write_flooding_count);
5353        return atomic_read(&sp->write_flooding_count) >= 3;
5354}
5355
5356/*
5357 * Misaligned accesses are too much trouble to fix up; also, they usually
5358 * indicate a page is not used as a page table.
5359 */
5360static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5361                                    int bytes)
5362{
5363        unsigned offset, pte_size, misaligned;
5364
5365        pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5366                 gpa, bytes, sp->role.word);
5367
5368        offset = offset_in_page(gpa);
5369        pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5370
5371        /*
5372         * Sometimes, the OS only writes the last one bytes to update status
5373         * bits, for example, in linux, andb instruction is used in clear_bit().
5374         */
5375        if (!(offset & (pte_size - 1)) && bytes == 1)
5376                return false;
5377
5378        misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5379        misaligned |= bytes < 4;
5380
5381        return misaligned;
5382}
5383
5384static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5385{
5386        unsigned page_offset, quadrant;
5387        u64 *spte;
5388        int level;
5389
5390        page_offset = offset_in_page(gpa);
5391        level = sp->role.level;
5392        *nspte = 1;
5393        if (!sp->role.gpte_is_8_bytes) {
5394                page_offset <<= 1;      /* 32->64 */
5395                /*
5396                 * A 32-bit pde maps 4MB while the shadow pdes map
5397                 * only 2MB.  So we need to double the offset again
5398                 * and zap two pdes instead of one.
5399                 */
5400                if (level == PT32_ROOT_LEVEL) {
5401                        page_offset &= ~7; /* kill rounding error */
5402                        page_offset <<= 1;
5403                        *nspte = 2;
5404                }
5405                quadrant = page_offset >> PAGE_SHIFT;
5406                page_offset &= ~PAGE_MASK;
5407                if (quadrant != sp->role.quadrant)
5408                        return NULL;
5409        }
5410
5411        spte = &sp->spt[page_offset / sizeof(*spte)];
5412        return spte;
5413}
5414
5415static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5416                              const u8 *new, int bytes,
5417                              struct kvm_page_track_notifier_node *node)
5418{
5419        gfn_t gfn = gpa >> PAGE_SHIFT;
5420        struct kvm_mmu_page *sp;
5421        LIST_HEAD(invalid_list);
5422        u64 entry, gentry, *spte;
5423        int npte;
5424        bool remote_flush, local_flush;
5425
5426        /*
5427         * If we don't have indirect shadow pages, it means no page is
5428         * write-protected, so we can exit simply.
5429         */
5430        if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5431                return;
5432
5433        remote_flush = local_flush = false;
5434
5435        pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5436
5437        /*
5438         * No need to care whether allocation memory is successful
5439         * or not since pte prefetch is skiped if it does not have
5440         * enough objects in the cache.
5441         */
5442        mmu_topup_memory_caches(vcpu);
5443
5444        spin_lock(&vcpu->kvm->mmu_lock);
5445
5446        gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5447
5448        ++vcpu->kvm->stat.mmu_pte_write;
5449        kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5450
5451        for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5452                if (detect_write_misaligned(sp, gpa, bytes) ||
5453                      detect_write_flooding(sp)) {
5454                        kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5455                        ++vcpu->kvm->stat.mmu_flooded;
5456                        continue;
5457                }
5458
5459                spte = get_written_sptes(sp, gpa, &npte);
5460                if (!spte)
5461                        continue;
5462
5463                local_flush = true;
5464                while (npte--) {
5465                        u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5466
5467                        entry = *spte;
5468                        mmu_page_zap_pte(vcpu->kvm, sp, spte);
5469                        if (gentry &&
5470                              !((sp->role.word ^ base_role)
5471                              & mmu_base_role_mask.word) && rmap_can_add(vcpu))
5472                                mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5473                        if (need_remote_flush(entry, *spte))
5474                                remote_flush = true;
5475                        ++spte;
5476                }
5477        }
5478        kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5479        kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5480        spin_unlock(&vcpu->kvm->mmu_lock);
5481}
5482
5483int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5484{
5485        gpa_t gpa;
5486        int r;
5487
5488        if (vcpu->arch.mmu->direct_map)
5489                return 0;
5490
5491        gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5492
5493        r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5494
5495        return r;
5496}
5497EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5498
5499static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
5500{
5501        LIST_HEAD(invalid_list);
5502
5503        if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
5504                return 0;
5505
5506        while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5507                if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5508                        break;
5509
5510                ++vcpu->kvm->stat.mmu_recycled;
5511        }
5512        kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
5513
5514        if (!kvm_mmu_available_pages(vcpu->kvm))
5515                return -ENOSPC;
5516        return 0;
5517}
5518
5519int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
5520                       void *insn, int insn_len)
5521{
5522        int r, emulation_type = 0;
5523        bool direct = vcpu->arch.mmu->direct_map;
5524
5525        /* With shadow page tables, fault_address contains a GVA or nGPA.  */
5526        if (vcpu->arch.mmu->direct_map) {
5527                vcpu->arch.gpa_available = true;
5528                vcpu->arch.gpa_val = cr2;
5529        }
5530
5531        r = RET_PF_INVALID;
5532        if (unlikely(error_code & PFERR_RSVD_MASK)) {
5533                r = handle_mmio_page_fault(vcpu, cr2, direct);
5534                if (r == RET_PF_EMULATE)
5535                        goto emulate;
5536        }
5537
5538        if (r == RET_PF_INVALID) {
5539                r = vcpu->arch.mmu->page_fault(vcpu, cr2,
5540                                               lower_32_bits(error_code),
5541                                               false);
5542                WARN_ON(r == RET_PF_INVALID);
5543        }
5544
5545        if (r == RET_PF_RETRY)
5546                return 1;
5547        if (r < 0)
5548                return r;
5549
5550        /*
5551         * Before emulating the instruction, check if the error code
5552         * was due to a RO violation while translating the guest page.
5553         * This can occur when using nested virtualization with nested
5554         * paging in both guests. If true, we simply unprotect the page
5555         * and resume the guest.
5556         */
5557        if (vcpu->arch.mmu->direct_map &&
5558            (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5559                kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
5560                return 1;
5561        }
5562
5563        /*
5564         * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5565         * optimistically try to just unprotect the page and let the processor
5566         * re-execute the instruction that caused the page fault.  Do not allow
5567         * retrying MMIO emulation, as it's not only pointless but could also
5568         * cause us to enter an infinite loop because the processor will keep
5569         * faulting on the non-existent MMIO address.  Retrying an instruction
5570         * from a nested guest is also pointless and dangerous as we are only
5571         * explicitly shadowing L1's page tables, i.e. unprotecting something
5572         * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5573         */
5574        if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
5575                emulation_type = EMULTYPE_ALLOW_RETRY;
5576emulate:
5577        /*
5578         * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5579         * This can happen if a guest gets a page-fault on data access but the HW
5580         * table walker is not able to read the instruction page (e.g instruction
5581         * page is not present in memory). In those cases we simply restart the
5582         * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5583         */
5584        if (unlikely(insn && !insn_len)) {
5585                if (!kvm_x86_ops->need_emulation_on_page_fault(vcpu))
5586                        return 1;
5587        }
5588
5589        return x86_emulate_instruction(vcpu, cr2, emulation_type, insn,
5590                                       insn_len);
5591}
5592EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5593
5594void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5595{
5596        struct kvm_mmu *mmu = vcpu->arch.mmu;
5597        int i;
5598
5599        /* INVLPG on a * non-canonical address is a NOP according to the SDM.  */
5600        if (is_noncanonical_address(gva, vcpu))
5601                return;
5602
5603        mmu->invlpg(vcpu, gva, mmu->root_hpa);
5604
5605        /*
5606         * INVLPG is required to invalidate any global mappings for the VA,
5607         * irrespective of PCID. Since it would take us roughly similar amount
5608         * of work to determine whether any of the prev_root mappings of the VA
5609         * is marked global, or to just sync it blindly, so we might as well
5610         * just always sync it.
5611         *
5612         * Mappings not reachable via the current cr3 or the prev_roots will be
5613         * synced when switching to that cr3, so nothing needs to be done here
5614         * for them.
5615         */
5616        for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5617                if (VALID_PAGE(mmu->prev_roots[i].hpa))
5618                        mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5619
5620        kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5621        ++vcpu->stat.invlpg;
5622}
5623EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5624
5625void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5626{
5627        struct kvm_mmu *mmu = vcpu->arch.mmu;
5628        bool tlb_flush = false;
5629        uint i;
5630
5631        if (pcid == kvm_get_active_pcid(vcpu)) {
5632                mmu->invlpg(vcpu, gva, mmu->root_hpa);
5633                tlb_flush = true;
5634        }
5635
5636        for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5637                if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5638                    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5639                        mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5640                        tlb_flush = true;
5641                }
5642        }
5643
5644        if (tlb_flush)
5645                kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5646
5647        ++vcpu->stat.invlpg;
5648
5649        /*
5650         * Mappings not reachable via the current cr3 or the prev_roots will be
5651         * synced when switching to that cr3, so nothing needs to be done here
5652         * for them.
5653         */
5654}
5655EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5656
5657void kvm_enable_tdp(void)
5658{
5659        tdp_enabled = true;
5660}
5661EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5662
5663void kvm_disable_tdp(void)
5664{
5665        tdp_enabled = false;
5666}
5667EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5668
5669
5670/* The return value indicates if tlb flush on all vcpus is needed. */
5671typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5672
5673/* The caller should hold mmu-lock before calling this function. */
5674static __always_inline bool
5675slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5676                        slot_level_handler fn, int start_level, int end_level,
5677                        gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5678{
5679        struct slot_rmap_walk_iterator iterator;
5680        bool flush = false;
5681
5682        for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5683                        end_gfn, &iterator) {
5684                if (iterator.rmap)
5685                        flush |= fn(kvm, iterator.rmap);
5686
5687                if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5688                        if (flush && lock_flush_tlb) {
5689                                kvm_flush_remote_tlbs_with_address(kvm,
5690                                                start_gfn,
5691                                                iterator.gfn - start_gfn + 1);
5692                                flush = false;
5693                        }
5694                        cond_resched_lock(&kvm->mmu_lock);
5695                }
5696        }
5697
5698        if (flush && lock_flush_tlb) {
5699                kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5700                                                   end_gfn - start_gfn + 1);
5701                flush = false;
5702        }
5703
5704        return flush;
5705}
5706
5707static __always_inline bool
5708slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5709                  slot_level_handler fn, int start_level, int end_level,
5710                  bool lock_flush_tlb)
5711{
5712        return slot_handle_level_range(kvm, memslot, fn, start_level,
5713                        end_level, memslot->base_gfn,
5714                        memslot->base_gfn + memslot->npages - 1,
5715                        lock_flush_tlb);
5716}
5717
5718static __always_inline bool
5719slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5720                      slot_level_handler fn, bool lock_flush_tlb)
5721{
5722        return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5723                                 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5724}
5725
5726static __always_inline bool
5727slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5728                        slot_level_handler fn, bool lock_flush_tlb)
5729{
5730        return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5731                                 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5732}
5733
5734static __always_inline bool
5735slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5736                 slot_level_handler fn, bool lock_flush_tlb)
5737{
5738        return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5739                                 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5740}
5741
5742static void free_mmu_pages(struct kvm_mmu *mmu)
5743{
5744        free_page((unsigned long)mmu->pae_root);
5745        free_page((unsigned long)mmu->lm_root);
5746}
5747
5748static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5749{
5750        struct page *page;
5751        int i;
5752
5753        /*
5754         * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5755         * while the PDP table is a per-vCPU construct that's allocated at MMU
5756         * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5757         * x86_64.  Therefore we need to allocate the PDP table in the first
5758         * 4GB of memory, which happens to fit the DMA32 zone.  Except for
5759         * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5760         * skip allocating the PDP table.
5761         */
5762        if (tdp_enabled && kvm_x86_ops->get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5763                return 0;
5764
5765        page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5766        if (!page)
5767                return -ENOMEM;
5768
5769        mmu->pae_root = page_address(page);
5770        for (i = 0; i < 4; ++i)
5771                mmu->pae_root[i] = INVALID_PAGE;
5772
5773        return 0;
5774}
5775
5776int kvm_mmu_create(struct kvm_vcpu *vcpu)
5777{
5778        uint i;
5779        int ret;
5780
5781        vcpu->arch.mmu = &vcpu->arch.root_mmu;
5782        vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5783
5784        vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5785        vcpu->arch.root_mmu.root_cr3 = 0;
5786        vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5787        for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5788                vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5789
5790        vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5791        vcpu->arch.guest_mmu.root_cr3 = 0;
5792        vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5793        for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5794                vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5795
5796        vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5797
5798        ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
5799        if (ret)
5800                return ret;
5801
5802        ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
5803        if (ret)
5804                goto fail_allocate_root;
5805
5806        return ret;
5807 fail_allocate_root:
5808        free_mmu_pages(&vcpu->arch.guest_mmu);
5809        return ret;
5810}
5811
5812#define BATCH_ZAP_PAGES 10
5813static void kvm_zap_obsolete_pages(struct kvm *kvm)
5814{
5815        struct kvm_mmu_page *sp, *node;
5816        int nr_zapped, batch = 0;
5817
5818restart:
5819        list_for_each_entry_safe_reverse(sp, node,
5820              &kvm->arch.active_mmu_pages, link) {
5821                /*
5822                 * No obsolete valid page exists before a newly created page
5823                 * since active_mmu_pages is a FIFO list.
5824                 */
5825                if (!is_obsolete_sp(kvm, sp))
5826                        break;
5827
5828                /*
5829                 * Skip invalid pages with a non-zero root count, zapping pages
5830                 * with a non-zero root count will never succeed, i.e. the page
5831                 * will get thrown back on active_mmu_pages and we'll get stuck
5832                 * in an infinite loop.
5833                 */
5834                if (sp->role.invalid && sp->root_count)
5835                        continue;
5836
5837                /*
5838                 * No need to flush the TLB since we're only zapping shadow
5839                 * pages with an obsolete generation number and all vCPUS have
5840                 * loaded a new root, i.e. the shadow pages being zapped cannot
5841                 * be in active use by the guest.
5842                 */
5843                if (batch >= BATCH_ZAP_PAGES &&
5844                    cond_resched_lock(&kvm->mmu_lock)) {
5845                        batch = 0;
5846                        goto restart;
5847                }
5848
5849                if (__kvm_mmu_prepare_zap_page(kvm, sp,
5850                                &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5851                        batch += nr_zapped;
5852                        goto restart;
5853                }
5854        }
5855
5856        /*
5857         * Trigger a remote TLB flush before freeing the page tables to ensure
5858         * KVM is not in the middle of a lockless shadow page table walk, which
5859         * may reference the pages.
5860         */
5861        kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5862}
5863
5864/*
5865 * Fast invalidate all shadow pages and use lock-break technique
5866 * to zap obsolete pages.
5867 *
5868 * It's required when memslot is being deleted or VM is being
5869 * destroyed, in these cases, we should ensure that KVM MMU does
5870 * not use any resource of the being-deleted slot or all slots
5871 * after calling the function.
5872 */
5873static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5874{
5875        lockdep_assert_held(&kvm->slots_lock);
5876
5877        spin_lock(&kvm->mmu_lock);
5878        trace_kvm_mmu_zap_all_fast(kvm);
5879
5880        /*
5881         * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5882         * held for the entire duration of zapping obsolete pages, it's
5883         * impossible for there to be multiple invalid generations associated
5884         * with *valid* shadow pages at any given time, i.e. there is exactly
5885         * one valid generation and (at most) one invalid generation.
5886         */
5887        kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5888
5889        /*
5890         * Notify all vcpus to reload its shadow page table and flush TLB.
5891         * Then all vcpus will switch to new shadow page table with the new
5892         * mmu_valid_gen.
5893         *
5894         * Note: we need to do this under the protection of mmu_lock,
5895         * otherwise, vcpu would purge shadow page but miss tlb flush.
5896         */
5897        kvm_reload_remote_mmus(kvm);
5898
5899        kvm_zap_obsolete_pages(kvm);
5900        spin_unlock(&kvm->mmu_lock);
5901}
5902
5903static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5904{
5905        return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5906}
5907
5908static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5909                        struct kvm_memory_slot *slot,
5910                        struct kvm_page_track_notifier_node *node)
5911{
5912        kvm_mmu_zap_all_fast(kvm);
5913}
5914
5915void kvm_mmu_init_vm(struct kvm *kvm)
5916{
5917        struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5918
5919        node->track_write = kvm_mmu_pte_write;
5920        node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5921        kvm_page_track_register_notifier(kvm, node);
5922}
5923
5924void kvm_mmu_uninit_vm(struct kvm *kvm)
5925{
5926        struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5927
5928        kvm_page_track_unregister_notifier(kvm, node);
5929}
5930
5931void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5932{
5933        struct kvm_memslots *slots;
5934        struct kvm_memory_slot *memslot;
5935        int i;
5936
5937        spin_lock(&kvm->mmu_lock);
5938        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5939                slots = __kvm_memslots(kvm, i);
5940                kvm_for_each_memslot(memslot, slots) {
5941                        gfn_t start, end;
5942
5943                        start = max(gfn_start, memslot->base_gfn);
5944                        end = min(gfn_end, memslot->base_gfn + memslot->npages);
5945                        if (start >= end)
5946                                continue;
5947
5948                        slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5949                                                PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5950                                                start, end - 1, true);
5951                }
5952        }
5953
5954        spin_unlock(&kvm->mmu_lock);
5955}
5956
5957static bool slot_rmap_write_protect(struct kvm *kvm,
5958                                    struct kvm_rmap_head *rmap_head)
5959{
5960        return __rmap_write_protect(kvm, rmap_head, false);
5961}
5962
5963void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5964                                      struct kvm_memory_slot *memslot)
5965{
5966        bool flush;
5967
5968        spin_lock(&kvm->mmu_lock);
5969        flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5970                                      false);
5971        spin_unlock(&kvm->mmu_lock);
5972
5973        /*
5974         * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5975         * which do tlb flush out of mmu-lock should be serialized by
5976         * kvm->slots_lock otherwise tlb flush would be missed.
5977         */
5978        lockdep_assert_held(&kvm->slots_lock);
5979
5980        /*
5981         * We can flush all the TLBs out of the mmu lock without TLB
5982         * corruption since we just change the spte from writable to
5983         * readonly so that we only need to care the case of changing
5984         * spte from present to present (changing the spte from present
5985         * to nonpresent will flush all the TLBs immediately), in other
5986         * words, the only case we care is mmu_spte_update() where we
5987         * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5988         * instead of PT_WRITABLE_MASK, that means it does not depend
5989         * on PT_WRITABLE_MASK anymore.
5990         */
5991        if (flush)
5992                kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5993                        memslot->npages);
5994}
5995
5996static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5997                                         struct kvm_rmap_head *rmap_head)
5998{
5999        u64 *sptep;
6000        struct rmap_iterator iter;
6001        int need_tlb_flush = 0;
6002        kvm_pfn_t pfn;
6003        struct kvm_mmu_page *sp;
6004
6005restart:
6006        for_each_rmap_spte(rmap_head, &iter, sptep) {
6007                sp = page_header(__pa(sptep));
6008                pfn = spte_to_pfn(*sptep);
6009
6010                /*
6011                 * We cannot do huge page mapping for indirect shadow pages,
6012                 * which are found on the last rmap (level = 1) when not using
6013                 * tdp; such shadow pages are synced with the page table in
6014                 * the guest, and the guest page table is using 4K page size
6015                 * mapping if the indirect sp has level = 1.
6016                 */
6017                if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
6018                    !kvm_is_zone_device_pfn(pfn) &&
6019                    PageTransCompoundMap(pfn_to_page(pfn))) {
6020                        pte_list_remove(rmap_head, sptep);
6021
6022                        if (kvm_available_flush_tlb_with_range())
6023                                kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
6024                                        KVM_PAGES_PER_HPAGE(sp->role.level));
6025                        else
6026                                need_tlb_flush = 1;
6027
6028                        goto restart;
6029                }
6030        }
6031
6032        return need_tlb_flush;
6033}
6034
6035void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
6036                                   const struct kvm_memory_slot *memslot)
6037{
6038        /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
6039        spin_lock(&kvm->mmu_lock);
6040        slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
6041                         kvm_mmu_zap_collapsible_spte, true);
6042        spin_unlock(&kvm->mmu_lock);
6043}
6044
6045void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
6046                                   struct kvm_memory_slot *memslot)
6047{
6048        bool flush;
6049
6050        spin_lock(&kvm->mmu_lock);
6051        flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
6052        spin_unlock(&kvm->mmu_lock);
6053
6054        lockdep_assert_held(&kvm->slots_lock);
6055
6056        /*
6057         * It's also safe to flush TLBs out of mmu lock here as currently this
6058         * function is only used for dirty logging, in which case flushing TLB
6059         * out of mmu lock also guarantees no dirty pages will be lost in
6060         * dirty_bitmap.
6061         */
6062        if (flush)
6063                kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6064                                memslot->npages);
6065}
6066EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
6067
6068void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
6069                                        struct kvm_memory_slot *memslot)
6070{
6071        bool flush;
6072
6073        spin_lock(&kvm->mmu_lock);
6074        flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
6075                                        false);
6076        spin_unlock(&kvm->mmu_lock);
6077
6078        /* see kvm_mmu_slot_remove_write_access */
6079        lockdep_assert_held(&kvm->slots_lock);
6080
6081        if (flush)
6082                kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6083                                memslot->npages);
6084}
6085EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
6086
6087void kvm_mmu_slot_set_dirty(struct kvm *kvm,
6088                            struct kvm_memory_slot *memslot)
6089{
6090        bool flush;
6091
6092        spin_lock(&kvm->mmu_lock);
6093        flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
6094        spin_unlock(&kvm->mmu_lock);
6095
6096        lockdep_assert_held(&kvm->slots_lock);
6097
6098        /* see kvm_mmu_slot_leaf_clear_dirty */
6099        if (flush)
6100                kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6101                                memslot->npages);
6102}
6103EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
6104
6105void kvm_mmu_zap_all(struct kvm *kvm)
6106{
6107        struct kvm_mmu_page *sp, *node;
6108        LIST_HEAD(invalid_list);
6109        int ign;
6110
6111        spin_lock(&kvm->mmu_lock);
6112restart:
6113        list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6114                if (sp->role.invalid && sp->root_count)
6115                        continue;
6116                if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6117                        goto restart;
6118                if (cond_resched_lock(&kvm->mmu_lock))
6119                        goto restart;
6120        }
6121
6122        kvm_mmu_commit_zap_page(kvm, &invalid_list);
6123        spin_unlock(&kvm->mmu_lock);
6124}
6125
6126void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6127{
6128        WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6129
6130        gen &= MMIO_SPTE_GEN_MASK;
6131
6132        /*
6133         * Generation numbers are incremented in multiples of the number of
6134         * address spaces in order to provide unique generations across all
6135         * address spaces.  Strip what is effectively the address space
6136         * modifier prior to checking for a wrap of the MMIO generation so
6137         * that a wrap in any address space is detected.
6138         */
6139        gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6140
6141        /*
6142         * The very rare case: if the MMIO generation number has wrapped,
6143         * zap all shadow pages.
6144         */
6145        if (unlikely(gen == 0)) {
6146                kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6147                kvm_mmu_zap_all_fast(kvm);
6148        }
6149}
6150
6151static unsigned long
6152mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6153{
6154        struct kvm *kvm;
6155        int nr_to_scan = sc->nr_to_scan;
6156        unsigned long freed = 0;
6157
6158        mutex_lock(&kvm_lock);
6159
6160        list_for_each_entry(kvm, &vm_list, vm_list) {
6161                int idx;
6162                LIST_HEAD(invalid_list);
6163
6164                /*
6165                 * Never scan more than sc->nr_to_scan VM instances.
6166                 * Will not hit this condition practically since we do not try
6167                 * to shrink more than one VM and it is very unlikely to see
6168                 * !n_used_mmu_pages so many times.
6169                 */
6170                if (!nr_to_scan--)
6171                        break;
6172                /*
6173                 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6174                 * here. We may skip a VM instance errorneosly, but we do not
6175                 * want to shrink a VM that only started to populate its MMU
6176                 * anyway.
6177                 */
6178                if (!kvm->arch.n_used_mmu_pages &&
6179                    !kvm_has_zapped_obsolete_pages(kvm))
6180                        continue;
6181
6182                idx = srcu_read_lock(&kvm->srcu);
6183                spin_lock(&kvm->mmu_lock);
6184
6185                if (kvm_has_zapped_obsolete_pages(kvm)) {
6186                        kvm_mmu_commit_zap_page(kvm,
6187                              &kvm->arch.zapped_obsolete_pages);
6188                        goto unlock;
6189                }
6190
6191                if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
6192                        freed++;
6193                kvm_mmu_commit_zap_page(kvm, &invalid_list);
6194
6195unlock:
6196                spin_unlock(&kvm->mmu_lock);
6197                srcu_read_unlock(&kvm->srcu, idx);
6198
6199                /*
6200                 * unfair on small ones
6201                 * per-vm shrinkers cry out
6202                 * sadness comes quickly
6203                 */
6204                list_move_tail(&kvm->vm_list, &vm_list);
6205                break;
6206        }
6207
6208        mutex_unlock(&kvm_lock);
6209        return freed;
6210}
6211
6212static unsigned long
6213mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6214{
6215        return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6216}
6217
6218static struct shrinker mmu_shrinker = {
6219        .count_objects = mmu_shrink_count,
6220        .scan_objects = mmu_shrink_scan,
6221        .seeks = DEFAULT_SEEKS * 10,
6222};
6223
6224static void mmu_destroy_caches(void)
6225{
6226        kmem_cache_destroy(pte_list_desc_cache);
6227        kmem_cache_destroy(mmu_page_header_cache);
6228}
6229
6230static void kvm_set_mmio_spte_mask(void)
6231{
6232        u64 mask;
6233
6234        /*
6235         * Set the reserved bits and the present bit of an paging-structure
6236         * entry to generate page fault with PFER.RSV = 1.
6237         */
6238
6239        /*
6240         * Mask the uppermost physical address bit, which would be reserved as
6241         * long as the supported physical address width is less than 52.
6242         */
6243        mask = 1ull << 51;
6244
6245        /* Set the present bit. */
6246        mask |= 1ull;
6247
6248        /*
6249         * If reserved bit is not supported, clear the present bit to disable
6250         * mmio page fault.
6251         */
6252        if (IS_ENABLED(CONFIG_X86_64) && shadow_phys_bits == 52)
6253                mask &= ~1ull;
6254
6255        kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
6256}
6257
6258static bool get_nx_auto_mode(void)
6259{
6260        /* Return true when CPU has the bug, and mitigations are ON */
6261        return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6262}
6263
6264static void __set_nx_huge_pages(bool val)
6265{
6266        nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6267}
6268
6269static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6270{
6271        bool old_val = nx_huge_pages;
6272        bool new_val;
6273
6274        /* In "auto" mode deploy workaround only if CPU has the bug. */
6275        if (sysfs_streq(val, "off"))
6276                new_val = 0;
6277        else if (sysfs_streq(val, "force"))
6278                new_val = 1;
6279        else if (sysfs_streq(val, "auto"))
6280                new_val = get_nx_auto_mode();
6281        else if (strtobool(val, &new_val) < 0)
6282                return -EINVAL;
6283
6284        __set_nx_huge_pages(new_val);
6285
6286        if (new_val != old_val) {
6287                struct kvm *kvm;
6288
6289                mutex_lock(&kvm_lock);
6290
6291                list_for_each_entry(kvm, &vm_list, vm_list) {
6292                        mutex_lock(&kvm->slots_lock);
6293                        kvm_mmu_zap_all_fast(kvm);
6294                        mutex_unlock(&kvm->slots_lock);
6295
6296                        wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6297                }
6298                mutex_unlock(&kvm_lock);
6299        }
6300
6301        return 0;
6302}
6303
6304int kvm_mmu_module_init(void)
6305{
6306        int ret = -ENOMEM;
6307
6308        if (nx_huge_pages == -1)
6309                __set_nx_huge_pages(get_nx_auto_mode());
6310
6311        /*
6312         * MMU roles use union aliasing which is, generally speaking, an
6313         * undefined behavior. However, we supposedly know how compilers behave
6314         * and the current status quo is unlikely to change. Guardians below are
6315         * supposed to let us know if the assumption becomes false.
6316         */
6317        BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6318        BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6319        BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6320
6321        kvm_mmu_reset_all_pte_masks();
6322
6323        kvm_set_mmio_spte_mask();
6324
6325        pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6326                                            sizeof(struct pte_list_desc),
6327                                            0, SLAB_ACCOUNT, NULL);
6328        if (!pte_list_desc_cache)
6329                goto out;
6330
6331        mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6332                                                  sizeof(struct kvm_mmu_page),
6333                                                  0, SLAB_ACCOUNT, NULL);
6334        if (!mmu_page_header_cache)
6335                goto out;
6336
6337        if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6338                goto out;
6339
6340        ret = register_shrinker(&mmu_shrinker);
6341        if (ret)
6342                goto out;
6343
6344        return 0;
6345
6346out:
6347        mmu_destroy_caches();
6348        return ret;
6349}
6350
6351/*
6352 * Calculate mmu pages needed for kvm.
6353 */
6354unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6355{
6356        unsigned long nr_mmu_pages;
6357        unsigned long nr_pages = 0;
6358        struct kvm_memslots *slots;
6359        struct kvm_memory_slot *memslot;
6360        int i;
6361
6362        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6363                slots = __kvm_memslots(kvm, i);
6364
6365                kvm_for_each_memslot(memslot, slots)
6366                        nr_pages += memslot->npages;
6367        }
6368
6369        nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6370        nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6371
6372        return nr_mmu_pages;
6373}
6374
6375void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6376{
6377        kvm_mmu_unload(vcpu);
6378        free_mmu_pages(&vcpu->arch.root_mmu);
6379        free_mmu_pages(&vcpu->arch.guest_mmu);
6380        mmu_free_memory_caches(vcpu);
6381}
6382
6383void kvm_mmu_module_exit(void)
6384{
6385        mmu_destroy_caches();
6386        percpu_counter_destroy(&kvm_total_used_mmu_pages);
6387        unregister_shrinker(&mmu_shrinker);
6388        mmu_audit_disable();
6389}
6390
6391static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6392{
6393        unsigned int old_val;
6394        int err;
6395
6396        old_val = nx_huge_pages_recovery_ratio;
6397        err = param_set_uint(val, kp);
6398        if (err)
6399                return err;
6400
6401        if (READ_ONCE(nx_huge_pages) &&
6402            !old_val && nx_huge_pages_recovery_ratio) {
6403                struct kvm *kvm;
6404
6405                mutex_lock(&kvm_lock);
6406
6407                list_for_each_entry(kvm, &vm_list, vm_list)
6408                        wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6409
6410                mutex_unlock(&kvm_lock);
6411        }
6412
6413        return err;
6414}
6415
6416static void kvm_recover_nx_lpages(struct kvm *kvm)
6417{
6418        int rcu_idx;
6419        struct kvm_mmu_page *sp;
6420        unsigned int ratio;
6421        LIST_HEAD(invalid_list);
6422        ulong to_zap;
6423
6424        rcu_idx = srcu_read_lock(&kvm->srcu);
6425        spin_lock(&kvm->mmu_lock);
6426
6427        ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6428        to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6429        while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
6430                /*
6431                 * We use a separate list instead of just using active_mmu_pages
6432                 * because the number of lpage_disallowed pages is expected to
6433                 * be relatively small compared to the total.
6434                 */
6435                sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6436                                      struct kvm_mmu_page,
6437                                      lpage_disallowed_link);
6438                WARN_ON_ONCE(!sp->lpage_disallowed);
6439                kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6440                WARN_ON_ONCE(sp->lpage_disallowed);
6441
6442                if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6443                        kvm_mmu_commit_zap_page(kvm, &invalid_list);
6444                        if (to_zap)
6445                                cond_resched_lock(&kvm->mmu_lock);
6446                }
6447        }
6448
6449        spin_unlock(&kvm->mmu_lock);
6450        srcu_read_unlock(&kvm->srcu, rcu_idx);
6451}
6452
6453static long get_nx_lpage_recovery_timeout(u64 start_time)
6454{
6455        return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6456                ? start_time + 60 * HZ - get_jiffies_64()
6457                : MAX_SCHEDULE_TIMEOUT;
6458}
6459
6460static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6461{
6462        u64 start_time;
6463        long remaining_time;
6464
6465        while (true) {
6466                start_time = get_jiffies_64();
6467                remaining_time = get_nx_lpage_recovery_timeout(start_time);
6468
6469                set_current_state(TASK_INTERRUPTIBLE);
6470                while (!kthread_should_stop() && remaining_time > 0) {
6471                        schedule_timeout(remaining_time);
6472                        remaining_time = get_nx_lpage_recovery_timeout(start_time);
6473                        set_current_state(TASK_INTERRUPTIBLE);
6474                }
6475
6476                set_current_state(TASK_RUNNING);
6477
6478                if (kthread_should_stop())
6479                        return 0;
6480
6481                kvm_recover_nx_lpages(kvm);
6482        }
6483}
6484
6485int kvm_mmu_post_init_vm(struct kvm *kvm)
6486{
6487        int err;
6488
6489        err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6490                                          "kvm-nx-lpage-recovery",
6491                                          &kvm->arch.nx_lpage_recovery_thread);
6492        if (!err)
6493                kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6494
6495        return err;
6496}
6497
6498void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6499{
6500        if (kvm->arch.nx_lpage_recovery_thread)
6501                kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6502}
6503