linux/arch/x86/mm/pageattr.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright 2002 Andi Kleen, SuSE Labs.
   4 * Thanks to Ben LaHaise for precious feedback.
   5 */
   6#include <linux/highmem.h>
   7#include <linux/memblock.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/interrupt.h>
  11#include <linux/seq_file.h>
  12#include <linux/debugfs.h>
  13#include <linux/pfn.h>
  14#include <linux/percpu.h>
  15#include <linux/gfp.h>
  16#include <linux/pci.h>
  17#include <linux/vmalloc.h>
  18
  19#include <asm/e820/api.h>
  20#include <asm/processor.h>
  21#include <asm/tlbflush.h>
  22#include <asm/sections.h>
  23#include <asm/setup.h>
  24#include <linux/uaccess.h>
  25#include <asm/pgalloc.h>
  26#include <asm/proto.h>
  27#include <asm/pat.h>
  28#include <asm/set_memory.h>
  29
  30#include "mm_internal.h"
  31
  32/*
  33 * The current flushing context - we pass it instead of 5 arguments:
  34 */
  35struct cpa_data {
  36        unsigned long   *vaddr;
  37        pgd_t           *pgd;
  38        pgprot_t        mask_set;
  39        pgprot_t        mask_clr;
  40        unsigned long   numpages;
  41        unsigned long   curpage;
  42        unsigned long   pfn;
  43        unsigned int    flags;
  44        unsigned int    force_split             : 1,
  45                        force_static_prot       : 1;
  46        struct page     **pages;
  47};
  48
  49enum cpa_warn {
  50        CPA_CONFLICT,
  51        CPA_PROTECT,
  52        CPA_DETECT,
  53};
  54
  55static const int cpa_warn_level = CPA_PROTECT;
  56
  57/*
  58 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
  59 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
  60 * entries change the page attribute in parallel to some other cpu
  61 * splitting a large page entry along with changing the attribute.
  62 */
  63static DEFINE_SPINLOCK(cpa_lock);
  64
  65#define CPA_FLUSHTLB 1
  66#define CPA_ARRAY 2
  67#define CPA_PAGES_ARRAY 4
  68#define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
  69
  70#ifdef CONFIG_PROC_FS
  71static unsigned long direct_pages_count[PG_LEVEL_NUM];
  72
  73void update_page_count(int level, unsigned long pages)
  74{
  75        /* Protect against CPA */
  76        spin_lock(&pgd_lock);
  77        direct_pages_count[level] += pages;
  78        spin_unlock(&pgd_lock);
  79}
  80
  81static void split_page_count(int level)
  82{
  83        if (direct_pages_count[level] == 0)
  84                return;
  85
  86        direct_pages_count[level]--;
  87        direct_pages_count[level - 1] += PTRS_PER_PTE;
  88}
  89
  90void arch_report_meminfo(struct seq_file *m)
  91{
  92        seq_printf(m, "DirectMap4k:    %8lu kB\n",
  93                        direct_pages_count[PG_LEVEL_4K] << 2);
  94#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
  95        seq_printf(m, "DirectMap2M:    %8lu kB\n",
  96                        direct_pages_count[PG_LEVEL_2M] << 11);
  97#else
  98        seq_printf(m, "DirectMap4M:    %8lu kB\n",
  99                        direct_pages_count[PG_LEVEL_2M] << 12);
 100#endif
 101        if (direct_gbpages)
 102                seq_printf(m, "DirectMap1G:    %8lu kB\n",
 103                        direct_pages_count[PG_LEVEL_1G] << 20);
 104}
 105#else
 106static inline void split_page_count(int level) { }
 107#endif
 108
 109#ifdef CONFIG_X86_CPA_STATISTICS
 110
 111static unsigned long cpa_1g_checked;
 112static unsigned long cpa_1g_sameprot;
 113static unsigned long cpa_1g_preserved;
 114static unsigned long cpa_2m_checked;
 115static unsigned long cpa_2m_sameprot;
 116static unsigned long cpa_2m_preserved;
 117static unsigned long cpa_4k_install;
 118
 119static inline void cpa_inc_1g_checked(void)
 120{
 121        cpa_1g_checked++;
 122}
 123
 124static inline void cpa_inc_2m_checked(void)
 125{
 126        cpa_2m_checked++;
 127}
 128
 129static inline void cpa_inc_4k_install(void)
 130{
 131        cpa_4k_install++;
 132}
 133
 134static inline void cpa_inc_lp_sameprot(int level)
 135{
 136        if (level == PG_LEVEL_1G)
 137                cpa_1g_sameprot++;
 138        else
 139                cpa_2m_sameprot++;
 140}
 141
 142static inline void cpa_inc_lp_preserved(int level)
 143{
 144        if (level == PG_LEVEL_1G)
 145                cpa_1g_preserved++;
 146        else
 147                cpa_2m_preserved++;
 148}
 149
 150static int cpastats_show(struct seq_file *m, void *p)
 151{
 152        seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
 153        seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
 154        seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
 155        seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
 156        seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
 157        seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
 158        seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
 159        return 0;
 160}
 161
 162static int cpastats_open(struct inode *inode, struct file *file)
 163{
 164        return single_open(file, cpastats_show, NULL);
 165}
 166
 167static const struct file_operations cpastats_fops = {
 168        .open           = cpastats_open,
 169        .read           = seq_read,
 170        .llseek         = seq_lseek,
 171        .release        = single_release,
 172};
 173
 174static int __init cpa_stats_init(void)
 175{
 176        debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
 177                            &cpastats_fops);
 178        return 0;
 179}
 180late_initcall(cpa_stats_init);
 181#else
 182static inline void cpa_inc_1g_checked(void) { }
 183static inline void cpa_inc_2m_checked(void) { }
 184static inline void cpa_inc_4k_install(void) { }
 185static inline void cpa_inc_lp_sameprot(int level) { }
 186static inline void cpa_inc_lp_preserved(int level) { }
 187#endif
 188
 189
 190static inline int
 191within(unsigned long addr, unsigned long start, unsigned long end)
 192{
 193        return addr >= start && addr < end;
 194}
 195
 196static inline int
 197within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
 198{
 199        return addr >= start && addr <= end;
 200}
 201
 202#ifdef CONFIG_X86_64
 203
 204static inline unsigned long highmap_start_pfn(void)
 205{
 206        return __pa_symbol(_text) >> PAGE_SHIFT;
 207}
 208
 209static inline unsigned long highmap_end_pfn(void)
 210{
 211        /* Do not reference physical address outside the kernel. */
 212        return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
 213}
 214
 215static bool __cpa_pfn_in_highmap(unsigned long pfn)
 216{
 217        /*
 218         * Kernel text has an alias mapping at a high address, known
 219         * here as "highmap".
 220         */
 221        return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
 222}
 223
 224#else
 225
 226static bool __cpa_pfn_in_highmap(unsigned long pfn)
 227{
 228        /* There is no highmap on 32-bit */
 229        return false;
 230}
 231
 232#endif
 233
 234/*
 235 * See set_mce_nospec().
 236 *
 237 * Machine check recovery code needs to change cache mode of poisoned pages to
 238 * UC to avoid speculative access logging another error. But passing the
 239 * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
 240 * speculative access. So we cheat and flip the top bit of the address. This
 241 * works fine for the code that updates the page tables. But at the end of the
 242 * process we need to flush the TLB and cache and the non-canonical address
 243 * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
 244 *
 245 * But in the common case we already have a canonical address. This code
 246 * will fix the top bit if needed and is a no-op otherwise.
 247 */
 248static inline unsigned long fix_addr(unsigned long addr)
 249{
 250#ifdef CONFIG_X86_64
 251        return (long)(addr << 1) >> 1;
 252#else
 253        return addr;
 254#endif
 255}
 256
 257static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
 258{
 259        if (cpa->flags & CPA_PAGES_ARRAY) {
 260                struct page *page = cpa->pages[idx];
 261
 262                if (unlikely(PageHighMem(page)))
 263                        return 0;
 264
 265                return (unsigned long)page_address(page);
 266        }
 267
 268        if (cpa->flags & CPA_ARRAY)
 269                return cpa->vaddr[idx];
 270
 271        return *cpa->vaddr + idx * PAGE_SIZE;
 272}
 273
 274/*
 275 * Flushing functions
 276 */
 277
 278static void clflush_cache_range_opt(void *vaddr, unsigned int size)
 279{
 280        const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
 281        void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
 282        void *vend = vaddr + size;
 283
 284        if (p >= vend)
 285                return;
 286
 287        for (; p < vend; p += clflush_size)
 288                clflushopt(p);
 289}
 290
 291/**
 292 * clflush_cache_range - flush a cache range with clflush
 293 * @vaddr:      virtual start address
 294 * @size:       number of bytes to flush
 295 *
 296 * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
 297 * SFENCE to avoid ordering issues.
 298 */
 299void clflush_cache_range(void *vaddr, unsigned int size)
 300{
 301        mb();
 302        clflush_cache_range_opt(vaddr, size);
 303        mb();
 304}
 305EXPORT_SYMBOL_GPL(clflush_cache_range);
 306
 307void arch_invalidate_pmem(void *addr, size_t size)
 308{
 309        clflush_cache_range(addr, size);
 310}
 311EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
 312
 313static void __cpa_flush_all(void *arg)
 314{
 315        unsigned long cache = (unsigned long)arg;
 316
 317        /*
 318         * Flush all to work around Errata in early athlons regarding
 319         * large page flushing.
 320         */
 321        __flush_tlb_all();
 322
 323        if (cache && boot_cpu_data.x86 >= 4)
 324                wbinvd();
 325}
 326
 327static void cpa_flush_all(unsigned long cache)
 328{
 329        BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
 330
 331        on_each_cpu(__cpa_flush_all, (void *) cache, 1);
 332}
 333
 334void __cpa_flush_tlb(void *data)
 335{
 336        struct cpa_data *cpa = data;
 337        unsigned int i;
 338
 339        for (i = 0; i < cpa->numpages; i++)
 340                __flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
 341}
 342
 343static void cpa_flush(struct cpa_data *data, int cache)
 344{
 345        struct cpa_data *cpa = data;
 346        unsigned int i;
 347
 348        BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
 349
 350        if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
 351                cpa_flush_all(cache);
 352                return;
 353        }
 354
 355        if (cpa->numpages <= tlb_single_page_flush_ceiling)
 356                on_each_cpu(__cpa_flush_tlb, cpa, 1);
 357        else
 358                flush_tlb_all();
 359
 360        if (!cache)
 361                return;
 362
 363        mb();
 364        for (i = 0; i < cpa->numpages; i++) {
 365                unsigned long addr = __cpa_addr(cpa, i);
 366                unsigned int level;
 367
 368                pte_t *pte = lookup_address(addr, &level);
 369
 370                /*
 371                 * Only flush present addresses:
 372                 */
 373                if (pte && (pte_val(*pte) & _PAGE_PRESENT))
 374                        clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
 375        }
 376        mb();
 377}
 378
 379static bool overlaps(unsigned long r1_start, unsigned long r1_end,
 380                     unsigned long r2_start, unsigned long r2_end)
 381{
 382        return (r1_start <= r2_end && r1_end >= r2_start) ||
 383                (r2_start <= r1_end && r2_end >= r1_start);
 384}
 385
 386#ifdef CONFIG_PCI_BIOS
 387/*
 388 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
 389 * based config access (CONFIG_PCI_GOBIOS) support.
 390 */
 391#define BIOS_PFN        PFN_DOWN(BIOS_BEGIN)
 392#define BIOS_PFN_END    PFN_DOWN(BIOS_END - 1)
 393
 394static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
 395{
 396        if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
 397                return _PAGE_NX;
 398        return 0;
 399}
 400#else
 401static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
 402{
 403        return 0;
 404}
 405#endif
 406
 407/*
 408 * The .rodata section needs to be read-only. Using the pfn catches all
 409 * aliases.  This also includes __ro_after_init, so do not enforce until
 410 * kernel_set_to_readonly is true.
 411 */
 412static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
 413{
 414        unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
 415
 416        /*
 417         * Note: __end_rodata is at page aligned and not inclusive, so
 418         * subtract 1 to get the last enforced PFN in the rodata area.
 419         */
 420        epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
 421
 422        if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
 423                return _PAGE_RW;
 424        return 0;
 425}
 426
 427/*
 428 * Protect kernel text against becoming non executable by forbidding
 429 * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
 430 * out of which the kernel actually executes.  Do not protect the low
 431 * mapping.
 432 *
 433 * This does not cover __inittext since that is gone after boot.
 434 */
 435static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
 436{
 437        unsigned long t_end = (unsigned long)_etext - 1;
 438        unsigned long t_start = (unsigned long)_text;
 439
 440        if (overlaps(start, end, t_start, t_end))
 441                return _PAGE_NX;
 442        return 0;
 443}
 444
 445#if defined(CONFIG_X86_64)
 446/*
 447 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
 448 * kernel text mappings for the large page aligned text, rodata sections
 449 * will be always read-only. For the kernel identity mappings covering the
 450 * holes caused by this alignment can be anything that user asks.
 451 *
 452 * This will preserve the large page mappings for kernel text/data at no
 453 * extra cost.
 454 */
 455static pgprotval_t protect_kernel_text_ro(unsigned long start,
 456                                          unsigned long end)
 457{
 458        unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
 459        unsigned long t_start = (unsigned long)_text;
 460        unsigned int level;
 461
 462        if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
 463                return 0;
 464        /*
 465         * Don't enforce the !RW mapping for the kernel text mapping, if
 466         * the current mapping is already using small page mapping.  No
 467         * need to work hard to preserve large page mappings in this case.
 468         *
 469         * This also fixes the Linux Xen paravirt guest boot failure caused
 470         * by unexpected read-only mappings for kernel identity
 471         * mappings. In this paravirt guest case, the kernel text mapping
 472         * and the kernel identity mapping share the same page-table pages,
 473         * so the protections for kernel text and identity mappings have to
 474         * be the same.
 475         */
 476        if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
 477                return _PAGE_RW;
 478        return 0;
 479}
 480#else
 481static pgprotval_t protect_kernel_text_ro(unsigned long start,
 482                                          unsigned long end)
 483{
 484        return 0;
 485}
 486#endif
 487
 488static inline bool conflicts(pgprot_t prot, pgprotval_t val)
 489{
 490        return (pgprot_val(prot) & ~val) != pgprot_val(prot);
 491}
 492
 493static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
 494                                  unsigned long start, unsigned long end,
 495                                  unsigned long pfn, const char *txt)
 496{
 497        static const char *lvltxt[] = {
 498                [CPA_CONFLICT]  = "conflict",
 499                [CPA_PROTECT]   = "protect",
 500                [CPA_DETECT]    = "detect",
 501        };
 502
 503        if (warnlvl > cpa_warn_level || !conflicts(prot, val))
 504                return;
 505
 506        pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
 507                lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
 508                (unsigned long long)val);
 509}
 510
 511/*
 512 * Certain areas of memory on x86 require very specific protection flags,
 513 * for example the BIOS area or kernel text. Callers don't always get this
 514 * right (again, ioremap() on BIOS memory is not uncommon) so this function
 515 * checks and fixes these known static required protection bits.
 516 */
 517static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
 518                                          unsigned long pfn, unsigned long npg,
 519                                          unsigned long lpsize, int warnlvl)
 520{
 521        pgprotval_t forbidden, res;
 522        unsigned long end;
 523
 524        /*
 525         * There is no point in checking RW/NX conflicts when the requested
 526         * mapping is setting the page !PRESENT.
 527         */
 528        if (!(pgprot_val(prot) & _PAGE_PRESENT))
 529                return prot;
 530
 531        /* Operate on the virtual address */
 532        end = start + npg * PAGE_SIZE - 1;
 533
 534        res = protect_kernel_text(start, end);
 535        check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
 536        forbidden = res;
 537
 538        /*
 539         * Special case to preserve a large page. If the change spawns the
 540         * full large page mapping then there is no point to split it
 541         * up. Happens with ftrace and is going to be removed once ftrace
 542         * switched to text_poke().
 543         */
 544        if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
 545                res = protect_kernel_text_ro(start, end);
 546                check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
 547                forbidden |= res;
 548        }
 549
 550        /* Check the PFN directly */
 551        res = protect_pci_bios(pfn, pfn + npg - 1);
 552        check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
 553        forbidden |= res;
 554
 555        res = protect_rodata(pfn, pfn + npg - 1);
 556        check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
 557        forbidden |= res;
 558
 559        return __pgprot(pgprot_val(prot) & ~forbidden);
 560}
 561
 562/*
 563 * Lookup the page table entry for a virtual address in a specific pgd.
 564 * Return a pointer to the entry and the level of the mapping.
 565 */
 566pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
 567                             unsigned int *level)
 568{
 569        p4d_t *p4d;
 570        pud_t *pud;
 571        pmd_t *pmd;
 572
 573        *level = PG_LEVEL_NONE;
 574
 575        if (pgd_none(*pgd))
 576                return NULL;
 577
 578        p4d = p4d_offset(pgd, address);
 579        if (p4d_none(*p4d))
 580                return NULL;
 581
 582        *level = PG_LEVEL_512G;
 583        if (p4d_large(*p4d) || !p4d_present(*p4d))
 584                return (pte_t *)p4d;
 585
 586        pud = pud_offset(p4d, address);
 587        if (pud_none(*pud))
 588                return NULL;
 589
 590        *level = PG_LEVEL_1G;
 591        if (pud_large(*pud) || !pud_present(*pud))
 592                return (pte_t *)pud;
 593
 594        pmd = pmd_offset(pud, address);
 595        if (pmd_none(*pmd))
 596                return NULL;
 597
 598        *level = PG_LEVEL_2M;
 599        if (pmd_large(*pmd) || !pmd_present(*pmd))
 600                return (pte_t *)pmd;
 601
 602        *level = PG_LEVEL_4K;
 603
 604        return pte_offset_kernel(pmd, address);
 605}
 606
 607/*
 608 * Lookup the page table entry for a virtual address. Return a pointer
 609 * to the entry and the level of the mapping.
 610 *
 611 * Note: We return pud and pmd either when the entry is marked large
 612 * or when the present bit is not set. Otherwise we would return a
 613 * pointer to a nonexisting mapping.
 614 */
 615pte_t *lookup_address(unsigned long address, unsigned int *level)
 616{
 617        return lookup_address_in_pgd(pgd_offset_k(address), address, level);
 618}
 619EXPORT_SYMBOL_GPL(lookup_address);
 620
 621static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
 622                                  unsigned int *level)
 623{
 624        if (cpa->pgd)
 625                return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
 626                                               address, level);
 627
 628        return lookup_address(address, level);
 629}
 630
 631/*
 632 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
 633 * or NULL if not present.
 634 */
 635pmd_t *lookup_pmd_address(unsigned long address)
 636{
 637        pgd_t *pgd;
 638        p4d_t *p4d;
 639        pud_t *pud;
 640
 641        pgd = pgd_offset_k(address);
 642        if (pgd_none(*pgd))
 643                return NULL;
 644
 645        p4d = p4d_offset(pgd, address);
 646        if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
 647                return NULL;
 648
 649        pud = pud_offset(p4d, address);
 650        if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
 651                return NULL;
 652
 653        return pmd_offset(pud, address);
 654}
 655
 656/*
 657 * This is necessary because __pa() does not work on some
 658 * kinds of memory, like vmalloc() or the alloc_remap()
 659 * areas on 32-bit NUMA systems.  The percpu areas can
 660 * end up in this kind of memory, for instance.
 661 *
 662 * This could be optimized, but it is only intended to be
 663 * used at inititalization time, and keeping it
 664 * unoptimized should increase the testing coverage for
 665 * the more obscure platforms.
 666 */
 667phys_addr_t slow_virt_to_phys(void *__virt_addr)
 668{
 669        unsigned long virt_addr = (unsigned long)__virt_addr;
 670        phys_addr_t phys_addr;
 671        unsigned long offset;
 672        enum pg_level level;
 673        pte_t *pte;
 674
 675        pte = lookup_address(virt_addr, &level);
 676        BUG_ON(!pte);
 677
 678        /*
 679         * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
 680         * before being left-shifted PAGE_SHIFT bits -- this trick is to
 681         * make 32-PAE kernel work correctly.
 682         */
 683        switch (level) {
 684        case PG_LEVEL_1G:
 685                phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
 686                offset = virt_addr & ~PUD_PAGE_MASK;
 687                break;
 688        case PG_LEVEL_2M:
 689                phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
 690                offset = virt_addr & ~PMD_PAGE_MASK;
 691                break;
 692        default:
 693                phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
 694                offset = virt_addr & ~PAGE_MASK;
 695        }
 696
 697        return (phys_addr_t)(phys_addr | offset);
 698}
 699EXPORT_SYMBOL_GPL(slow_virt_to_phys);
 700
 701/*
 702 * Set the new pmd in all the pgds we know about:
 703 */
 704static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
 705{
 706        /* change init_mm */
 707        set_pte_atomic(kpte, pte);
 708#ifdef CONFIG_X86_32
 709        if (!SHARED_KERNEL_PMD) {
 710                struct page *page;
 711
 712                list_for_each_entry(page, &pgd_list, lru) {
 713                        pgd_t *pgd;
 714                        p4d_t *p4d;
 715                        pud_t *pud;
 716                        pmd_t *pmd;
 717
 718                        pgd = (pgd_t *)page_address(page) + pgd_index(address);
 719                        p4d = p4d_offset(pgd, address);
 720                        pud = pud_offset(p4d, address);
 721                        pmd = pmd_offset(pud, address);
 722                        set_pte_atomic((pte_t *)pmd, pte);
 723                }
 724        }
 725#endif
 726}
 727
 728static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
 729{
 730        /*
 731         * _PAGE_GLOBAL means "global page" for present PTEs.
 732         * But, it is also used to indicate _PAGE_PROTNONE
 733         * for non-present PTEs.
 734         *
 735         * This ensures that a _PAGE_GLOBAL PTE going from
 736         * present to non-present is not confused as
 737         * _PAGE_PROTNONE.
 738         */
 739        if (!(pgprot_val(prot) & _PAGE_PRESENT))
 740                pgprot_val(prot) &= ~_PAGE_GLOBAL;
 741
 742        return prot;
 743}
 744
 745static int __should_split_large_page(pte_t *kpte, unsigned long address,
 746                                     struct cpa_data *cpa)
 747{
 748        unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
 749        pgprot_t old_prot, new_prot, req_prot, chk_prot;
 750        pte_t new_pte, *tmp;
 751        enum pg_level level;
 752
 753        /*
 754         * Check for races, another CPU might have split this page
 755         * up already:
 756         */
 757        tmp = _lookup_address_cpa(cpa, address, &level);
 758        if (tmp != kpte)
 759                return 1;
 760
 761        switch (level) {
 762        case PG_LEVEL_2M:
 763                old_prot = pmd_pgprot(*(pmd_t *)kpte);
 764                old_pfn = pmd_pfn(*(pmd_t *)kpte);
 765                cpa_inc_2m_checked();
 766                break;
 767        case PG_LEVEL_1G:
 768                old_prot = pud_pgprot(*(pud_t *)kpte);
 769                old_pfn = pud_pfn(*(pud_t *)kpte);
 770                cpa_inc_1g_checked();
 771                break;
 772        default:
 773                return -EINVAL;
 774        }
 775
 776        psize = page_level_size(level);
 777        pmask = page_level_mask(level);
 778
 779        /*
 780         * Calculate the number of pages, which fit into this large
 781         * page starting at address:
 782         */
 783        lpaddr = (address + psize) & pmask;
 784        numpages = (lpaddr - address) >> PAGE_SHIFT;
 785        if (numpages < cpa->numpages)
 786                cpa->numpages = numpages;
 787
 788        /*
 789         * We are safe now. Check whether the new pgprot is the same:
 790         * Convert protection attributes to 4k-format, as cpa->mask* are set
 791         * up accordingly.
 792         */
 793
 794        /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
 795        req_prot = pgprot_large_2_4k(old_prot);
 796
 797        pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
 798        pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
 799
 800        /*
 801         * req_prot is in format of 4k pages. It must be converted to large
 802         * page format: the caching mode includes the PAT bit located at
 803         * different bit positions in the two formats.
 804         */
 805        req_prot = pgprot_4k_2_large(req_prot);
 806        req_prot = pgprot_clear_protnone_bits(req_prot);
 807        if (pgprot_val(req_prot) & _PAGE_PRESENT)
 808                pgprot_val(req_prot) |= _PAGE_PSE;
 809
 810        /*
 811         * old_pfn points to the large page base pfn. So we need to add the
 812         * offset of the virtual address:
 813         */
 814        pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
 815        cpa->pfn = pfn;
 816
 817        /*
 818         * Calculate the large page base address and the number of 4K pages
 819         * in the large page
 820         */
 821        lpaddr = address & pmask;
 822        numpages = psize >> PAGE_SHIFT;
 823
 824        /*
 825         * Sanity check that the existing mapping is correct versus the static
 826         * protections. static_protections() guards against !PRESENT, so no
 827         * extra conditional required here.
 828         */
 829        chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
 830                                      psize, CPA_CONFLICT);
 831
 832        if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
 833                /*
 834                 * Split the large page and tell the split code to
 835                 * enforce static protections.
 836                 */
 837                cpa->force_static_prot = 1;
 838                return 1;
 839        }
 840
 841        /*
 842         * Optimization: If the requested pgprot is the same as the current
 843         * pgprot, then the large page can be preserved and no updates are
 844         * required independent of alignment and length of the requested
 845         * range. The above already established that the current pgprot is
 846         * correct, which in consequence makes the requested pgprot correct
 847         * as well if it is the same. The static protection scan below will
 848         * not come to a different conclusion.
 849         */
 850        if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
 851                cpa_inc_lp_sameprot(level);
 852                return 0;
 853        }
 854
 855        /*
 856         * If the requested range does not cover the full page, split it up
 857         */
 858        if (address != lpaddr || cpa->numpages != numpages)
 859                return 1;
 860
 861        /*
 862         * Check whether the requested pgprot is conflicting with a static
 863         * protection requirement in the large page.
 864         */
 865        new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
 866                                      psize, CPA_DETECT);
 867
 868        /*
 869         * If there is a conflict, split the large page.
 870         *
 871         * There used to be a 4k wise evaluation trying really hard to
 872         * preserve the large pages, but experimentation has shown, that this
 873         * does not help at all. There might be corner cases which would
 874         * preserve one large page occasionally, but it's really not worth the
 875         * extra code and cycles for the common case.
 876         */
 877        if (pgprot_val(req_prot) != pgprot_val(new_prot))
 878                return 1;
 879
 880        /* All checks passed. Update the large page mapping. */
 881        new_pte = pfn_pte(old_pfn, new_prot);
 882        __set_pmd_pte(kpte, address, new_pte);
 883        cpa->flags |= CPA_FLUSHTLB;
 884        cpa_inc_lp_preserved(level);
 885        return 0;
 886}
 887
 888static int should_split_large_page(pte_t *kpte, unsigned long address,
 889                                   struct cpa_data *cpa)
 890{
 891        int do_split;
 892
 893        if (cpa->force_split)
 894                return 1;
 895
 896        spin_lock(&pgd_lock);
 897        do_split = __should_split_large_page(kpte, address, cpa);
 898        spin_unlock(&pgd_lock);
 899
 900        return do_split;
 901}
 902
 903static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
 904                          pgprot_t ref_prot, unsigned long address,
 905                          unsigned long size)
 906{
 907        unsigned int npg = PFN_DOWN(size);
 908        pgprot_t prot;
 909
 910        /*
 911         * If should_split_large_page() discovered an inconsistent mapping,
 912         * remove the invalid protection in the split mapping.
 913         */
 914        if (!cpa->force_static_prot)
 915                goto set;
 916
 917        /* Hand in lpsize = 0 to enforce the protection mechanism */
 918        prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
 919
 920        if (pgprot_val(prot) == pgprot_val(ref_prot))
 921                goto set;
 922
 923        /*
 924         * If this is splitting a PMD, fix it up. PUD splits cannot be
 925         * fixed trivially as that would require to rescan the newly
 926         * installed PMD mappings after returning from split_large_page()
 927         * so an eventual further split can allocate the necessary PTE
 928         * pages. Warn for now and revisit it in case this actually
 929         * happens.
 930         */
 931        if (size == PAGE_SIZE)
 932                ref_prot = prot;
 933        else
 934                pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
 935set:
 936        set_pte(pte, pfn_pte(pfn, ref_prot));
 937}
 938
 939static int
 940__split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
 941                   struct page *base)
 942{
 943        unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
 944        pte_t *pbase = (pte_t *)page_address(base);
 945        unsigned int i, level;
 946        pgprot_t ref_prot;
 947        pte_t *tmp;
 948
 949        spin_lock(&pgd_lock);
 950        /*
 951         * Check for races, another CPU might have split this page
 952         * up for us already:
 953         */
 954        tmp = _lookup_address_cpa(cpa, address, &level);
 955        if (tmp != kpte) {
 956                spin_unlock(&pgd_lock);
 957                return 1;
 958        }
 959
 960        paravirt_alloc_pte(&init_mm, page_to_pfn(base));
 961
 962        switch (level) {
 963        case PG_LEVEL_2M:
 964                ref_prot = pmd_pgprot(*(pmd_t *)kpte);
 965                /*
 966                 * Clear PSE (aka _PAGE_PAT) and move
 967                 * PAT bit to correct position.
 968                 */
 969                ref_prot = pgprot_large_2_4k(ref_prot);
 970                ref_pfn = pmd_pfn(*(pmd_t *)kpte);
 971                lpaddr = address & PMD_MASK;
 972                lpinc = PAGE_SIZE;
 973                break;
 974
 975        case PG_LEVEL_1G:
 976                ref_prot = pud_pgprot(*(pud_t *)kpte);
 977                ref_pfn = pud_pfn(*(pud_t *)kpte);
 978                pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
 979                lpaddr = address & PUD_MASK;
 980                lpinc = PMD_SIZE;
 981                /*
 982                 * Clear the PSE flags if the PRESENT flag is not set
 983                 * otherwise pmd_present/pmd_huge will return true
 984                 * even on a non present pmd.
 985                 */
 986                if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
 987                        pgprot_val(ref_prot) &= ~_PAGE_PSE;
 988                break;
 989
 990        default:
 991                spin_unlock(&pgd_lock);
 992                return 1;
 993        }
 994
 995        ref_prot = pgprot_clear_protnone_bits(ref_prot);
 996
 997        /*
 998         * Get the target pfn from the original entry:
 999         */
1000        pfn = ref_pfn;
1001        for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1002                split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1003
1004        if (virt_addr_valid(address)) {
1005                unsigned long pfn = PFN_DOWN(__pa(address));
1006
1007                if (pfn_range_is_mapped(pfn, pfn + 1))
1008                        split_page_count(level);
1009        }
1010
1011        /*
1012         * Install the new, split up pagetable.
1013         *
1014         * We use the standard kernel pagetable protections for the new
1015         * pagetable protections, the actual ptes set above control the
1016         * primary protection behavior:
1017         */
1018        __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1019
1020        /*
1021         * Do a global flush tlb after splitting the large page
1022         * and before we do the actual change page attribute in the PTE.
1023         *
1024         * Without this, we violate the TLB application note, that says:
1025         * "The TLBs may contain both ordinary and large-page
1026         *  translations for a 4-KByte range of linear addresses. This
1027         *  may occur if software modifies the paging structures so that
1028         *  the page size used for the address range changes. If the two
1029         *  translations differ with respect to page frame or attributes
1030         *  (e.g., permissions), processor behavior is undefined and may
1031         *  be implementation-specific."
1032         *
1033         * We do this global tlb flush inside the cpa_lock, so that we
1034         * don't allow any other cpu, with stale tlb entries change the
1035         * page attribute in parallel, that also falls into the
1036         * just split large page entry.
1037         */
1038        flush_tlb_all();
1039        spin_unlock(&pgd_lock);
1040
1041        return 0;
1042}
1043
1044static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1045                            unsigned long address)
1046{
1047        struct page *base;
1048
1049        if (!debug_pagealloc_enabled())
1050                spin_unlock(&cpa_lock);
1051        base = alloc_pages(GFP_KERNEL, 0);
1052        if (!debug_pagealloc_enabled())
1053                spin_lock(&cpa_lock);
1054        if (!base)
1055                return -ENOMEM;
1056
1057        if (__split_large_page(cpa, kpte, address, base))
1058                __free_page(base);
1059
1060        return 0;
1061}
1062
1063static bool try_to_free_pte_page(pte_t *pte)
1064{
1065        int i;
1066
1067        for (i = 0; i < PTRS_PER_PTE; i++)
1068                if (!pte_none(pte[i]))
1069                        return false;
1070
1071        free_page((unsigned long)pte);
1072        return true;
1073}
1074
1075static bool try_to_free_pmd_page(pmd_t *pmd)
1076{
1077        int i;
1078
1079        for (i = 0; i < PTRS_PER_PMD; i++)
1080                if (!pmd_none(pmd[i]))
1081                        return false;
1082
1083        free_page((unsigned long)pmd);
1084        return true;
1085}
1086
1087static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1088{
1089        pte_t *pte = pte_offset_kernel(pmd, start);
1090
1091        while (start < end) {
1092                set_pte(pte, __pte(0));
1093
1094                start += PAGE_SIZE;
1095                pte++;
1096        }
1097
1098        if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1099                pmd_clear(pmd);
1100                return true;
1101        }
1102        return false;
1103}
1104
1105static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1106                              unsigned long start, unsigned long end)
1107{
1108        if (unmap_pte_range(pmd, start, end))
1109                if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1110                        pud_clear(pud);
1111}
1112
1113static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1114{
1115        pmd_t *pmd = pmd_offset(pud, start);
1116
1117        /*
1118         * Not on a 2MB page boundary?
1119         */
1120        if (start & (PMD_SIZE - 1)) {
1121                unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1122                unsigned long pre_end = min_t(unsigned long, end, next_page);
1123
1124                __unmap_pmd_range(pud, pmd, start, pre_end);
1125
1126                start = pre_end;
1127                pmd++;
1128        }
1129
1130        /*
1131         * Try to unmap in 2M chunks.
1132         */
1133        while (end - start >= PMD_SIZE) {
1134                if (pmd_large(*pmd))
1135                        pmd_clear(pmd);
1136                else
1137                        __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1138
1139                start += PMD_SIZE;
1140                pmd++;
1141        }
1142
1143        /*
1144         * 4K leftovers?
1145         */
1146        if (start < end)
1147                return __unmap_pmd_range(pud, pmd, start, end);
1148
1149        /*
1150         * Try again to free the PMD page if haven't succeeded above.
1151         */
1152        if (!pud_none(*pud))
1153                if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1154                        pud_clear(pud);
1155}
1156
1157static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1158{
1159        pud_t *pud = pud_offset(p4d, start);
1160
1161        /*
1162         * Not on a GB page boundary?
1163         */
1164        if (start & (PUD_SIZE - 1)) {
1165                unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1166                unsigned long pre_end   = min_t(unsigned long, end, next_page);
1167
1168                unmap_pmd_range(pud, start, pre_end);
1169
1170                start = pre_end;
1171                pud++;
1172        }
1173
1174        /*
1175         * Try to unmap in 1G chunks?
1176         */
1177        while (end - start >= PUD_SIZE) {
1178
1179                if (pud_large(*pud))
1180                        pud_clear(pud);
1181                else
1182                        unmap_pmd_range(pud, start, start + PUD_SIZE);
1183
1184                start += PUD_SIZE;
1185                pud++;
1186        }
1187
1188        /*
1189         * 2M leftovers?
1190         */
1191        if (start < end)
1192                unmap_pmd_range(pud, start, end);
1193
1194        /*
1195         * No need to try to free the PUD page because we'll free it in
1196         * populate_pgd's error path
1197         */
1198}
1199
1200static int alloc_pte_page(pmd_t *pmd)
1201{
1202        pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1203        if (!pte)
1204                return -1;
1205
1206        set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1207        return 0;
1208}
1209
1210static int alloc_pmd_page(pud_t *pud)
1211{
1212        pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1213        if (!pmd)
1214                return -1;
1215
1216        set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1217        return 0;
1218}
1219
1220static void populate_pte(struct cpa_data *cpa,
1221                         unsigned long start, unsigned long end,
1222                         unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1223{
1224        pte_t *pte;
1225
1226        pte = pte_offset_kernel(pmd, start);
1227
1228        pgprot = pgprot_clear_protnone_bits(pgprot);
1229
1230        while (num_pages-- && start < end) {
1231                set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1232
1233                start    += PAGE_SIZE;
1234                cpa->pfn++;
1235                pte++;
1236        }
1237}
1238
1239static long populate_pmd(struct cpa_data *cpa,
1240                         unsigned long start, unsigned long end,
1241                         unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1242{
1243        long cur_pages = 0;
1244        pmd_t *pmd;
1245        pgprot_t pmd_pgprot;
1246
1247        /*
1248         * Not on a 2M boundary?
1249         */
1250        if (start & (PMD_SIZE - 1)) {
1251                unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1252                unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1253
1254                pre_end   = min_t(unsigned long, pre_end, next_page);
1255                cur_pages = (pre_end - start) >> PAGE_SHIFT;
1256                cur_pages = min_t(unsigned int, num_pages, cur_pages);
1257
1258                /*
1259                 * Need a PTE page?
1260                 */
1261                pmd = pmd_offset(pud, start);
1262                if (pmd_none(*pmd))
1263                        if (alloc_pte_page(pmd))
1264                                return -1;
1265
1266                populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1267
1268                start = pre_end;
1269        }
1270
1271        /*
1272         * We mapped them all?
1273         */
1274        if (num_pages == cur_pages)
1275                return cur_pages;
1276
1277        pmd_pgprot = pgprot_4k_2_large(pgprot);
1278
1279        while (end - start >= PMD_SIZE) {
1280
1281                /*
1282                 * We cannot use a 1G page so allocate a PMD page if needed.
1283                 */
1284                if (pud_none(*pud))
1285                        if (alloc_pmd_page(pud))
1286                                return -1;
1287
1288                pmd = pmd_offset(pud, start);
1289
1290                set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1291                                        canon_pgprot(pmd_pgprot))));
1292
1293                start     += PMD_SIZE;
1294                cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1295                cur_pages += PMD_SIZE >> PAGE_SHIFT;
1296        }
1297
1298        /*
1299         * Map trailing 4K pages.
1300         */
1301        if (start < end) {
1302                pmd = pmd_offset(pud, start);
1303                if (pmd_none(*pmd))
1304                        if (alloc_pte_page(pmd))
1305                                return -1;
1306
1307                populate_pte(cpa, start, end, num_pages - cur_pages,
1308                             pmd, pgprot);
1309        }
1310        return num_pages;
1311}
1312
1313static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1314                        pgprot_t pgprot)
1315{
1316        pud_t *pud;
1317        unsigned long end;
1318        long cur_pages = 0;
1319        pgprot_t pud_pgprot;
1320
1321        end = start + (cpa->numpages << PAGE_SHIFT);
1322
1323        /*
1324         * Not on a Gb page boundary? => map everything up to it with
1325         * smaller pages.
1326         */
1327        if (start & (PUD_SIZE - 1)) {
1328                unsigned long pre_end;
1329                unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1330
1331                pre_end   = min_t(unsigned long, end, next_page);
1332                cur_pages = (pre_end - start) >> PAGE_SHIFT;
1333                cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1334
1335                pud = pud_offset(p4d, start);
1336
1337                /*
1338                 * Need a PMD page?
1339                 */
1340                if (pud_none(*pud))
1341                        if (alloc_pmd_page(pud))
1342                                return -1;
1343
1344                cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1345                                         pud, pgprot);
1346                if (cur_pages < 0)
1347                        return cur_pages;
1348
1349                start = pre_end;
1350        }
1351
1352        /* We mapped them all? */
1353        if (cpa->numpages == cur_pages)
1354                return cur_pages;
1355
1356        pud = pud_offset(p4d, start);
1357        pud_pgprot = pgprot_4k_2_large(pgprot);
1358
1359        /*
1360         * Map everything starting from the Gb boundary, possibly with 1G pages
1361         */
1362        while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1363                set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1364                                   canon_pgprot(pud_pgprot))));
1365
1366                start     += PUD_SIZE;
1367                cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1368                cur_pages += PUD_SIZE >> PAGE_SHIFT;
1369                pud++;
1370        }
1371
1372        /* Map trailing leftover */
1373        if (start < end) {
1374                long tmp;
1375
1376                pud = pud_offset(p4d, start);
1377                if (pud_none(*pud))
1378                        if (alloc_pmd_page(pud))
1379                                return -1;
1380
1381                tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1382                                   pud, pgprot);
1383                if (tmp < 0)
1384                        return cur_pages;
1385
1386                cur_pages += tmp;
1387        }
1388        return cur_pages;
1389}
1390
1391/*
1392 * Restrictions for kernel page table do not necessarily apply when mapping in
1393 * an alternate PGD.
1394 */
1395static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1396{
1397        pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1398        pud_t *pud = NULL;      /* shut up gcc */
1399        p4d_t *p4d;
1400        pgd_t *pgd_entry;
1401        long ret;
1402
1403        pgd_entry = cpa->pgd + pgd_index(addr);
1404
1405        if (pgd_none(*pgd_entry)) {
1406                p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1407                if (!p4d)
1408                        return -1;
1409
1410                set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1411        }
1412
1413        /*
1414         * Allocate a PUD page and hand it down for mapping.
1415         */
1416        p4d = p4d_offset(pgd_entry, addr);
1417        if (p4d_none(*p4d)) {
1418                pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1419                if (!pud)
1420                        return -1;
1421
1422                set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1423        }
1424
1425        pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1426        pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1427
1428        ret = populate_pud(cpa, addr, p4d, pgprot);
1429        if (ret < 0) {
1430                /*
1431                 * Leave the PUD page in place in case some other CPU or thread
1432                 * already found it, but remove any useless entries we just
1433                 * added to it.
1434                 */
1435                unmap_pud_range(p4d, addr,
1436                                addr + (cpa->numpages << PAGE_SHIFT));
1437                return ret;
1438        }
1439
1440        cpa->numpages = ret;
1441        return 0;
1442}
1443
1444static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1445                               int primary)
1446{
1447        if (cpa->pgd) {
1448                /*
1449                 * Right now, we only execute this code path when mapping
1450                 * the EFI virtual memory map regions, no other users
1451                 * provide a ->pgd value. This may change in the future.
1452                 */
1453                return populate_pgd(cpa, vaddr);
1454        }
1455
1456        /*
1457         * Ignore all non primary paths.
1458         */
1459        if (!primary) {
1460                cpa->numpages = 1;
1461                return 0;
1462        }
1463
1464        /*
1465         * Ignore the NULL PTE for kernel identity mapping, as it is expected
1466         * to have holes.
1467         * Also set numpages to '1' indicating that we processed cpa req for
1468         * one virtual address page and its pfn. TBD: numpages can be set based
1469         * on the initial value and the level returned by lookup_address().
1470         */
1471        if (within(vaddr, PAGE_OFFSET,
1472                   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1473                cpa->numpages = 1;
1474                cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1475                return 0;
1476
1477        } else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1478                /* Faults in the highmap are OK, so do not warn: */
1479                return -EFAULT;
1480        } else {
1481                WARN(1, KERN_WARNING "CPA: called for zero pte. "
1482                        "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1483                        *cpa->vaddr);
1484
1485                return -EFAULT;
1486        }
1487}
1488
1489static int __change_page_attr(struct cpa_data *cpa, int primary)
1490{
1491        unsigned long address;
1492        int do_split, err;
1493        unsigned int level;
1494        pte_t *kpte, old_pte;
1495
1496        address = __cpa_addr(cpa, cpa->curpage);
1497repeat:
1498        kpte = _lookup_address_cpa(cpa, address, &level);
1499        if (!kpte)
1500                return __cpa_process_fault(cpa, address, primary);
1501
1502        old_pte = *kpte;
1503        if (pte_none(old_pte))
1504                return __cpa_process_fault(cpa, address, primary);
1505
1506        if (level == PG_LEVEL_4K) {
1507                pte_t new_pte;
1508                pgprot_t new_prot = pte_pgprot(old_pte);
1509                unsigned long pfn = pte_pfn(old_pte);
1510
1511                pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1512                pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1513
1514                cpa_inc_4k_install();
1515                /* Hand in lpsize = 0 to enforce the protection mechanism */
1516                new_prot = static_protections(new_prot, address, pfn, 1, 0,
1517                                              CPA_PROTECT);
1518
1519                new_prot = pgprot_clear_protnone_bits(new_prot);
1520
1521                /*
1522                 * We need to keep the pfn from the existing PTE,
1523                 * after all we're only going to change it's attributes
1524                 * not the memory it points to
1525                 */
1526                new_pte = pfn_pte(pfn, new_prot);
1527                cpa->pfn = pfn;
1528                /*
1529                 * Do we really change anything ?
1530                 */
1531                if (pte_val(old_pte) != pte_val(new_pte)) {
1532                        set_pte_atomic(kpte, new_pte);
1533                        cpa->flags |= CPA_FLUSHTLB;
1534                }
1535                cpa->numpages = 1;
1536                return 0;
1537        }
1538
1539        /*
1540         * Check, whether we can keep the large page intact
1541         * and just change the pte:
1542         */
1543        do_split = should_split_large_page(kpte, address, cpa);
1544        /*
1545         * When the range fits into the existing large page,
1546         * return. cp->numpages and cpa->tlbflush have been updated in
1547         * try_large_page:
1548         */
1549        if (do_split <= 0)
1550                return do_split;
1551
1552        /*
1553         * We have to split the large page:
1554         */
1555        err = split_large_page(cpa, kpte, address);
1556        if (!err)
1557                goto repeat;
1558
1559        return err;
1560}
1561
1562static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1563
1564static int cpa_process_alias(struct cpa_data *cpa)
1565{
1566        struct cpa_data alias_cpa;
1567        unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1568        unsigned long vaddr;
1569        int ret;
1570
1571        if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1572                return 0;
1573
1574        /*
1575         * No need to redo, when the primary call touched the direct
1576         * mapping already:
1577         */
1578        vaddr = __cpa_addr(cpa, cpa->curpage);
1579        if (!(within(vaddr, PAGE_OFFSET,
1580                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1581
1582                alias_cpa = *cpa;
1583                alias_cpa.vaddr = &laddr;
1584                alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1585                alias_cpa.curpage = 0;
1586
1587                ret = __change_page_attr_set_clr(&alias_cpa, 0);
1588                if (ret)
1589                        return ret;
1590        }
1591
1592#ifdef CONFIG_X86_64
1593        /*
1594         * If the primary call didn't touch the high mapping already
1595         * and the physical address is inside the kernel map, we need
1596         * to touch the high mapped kernel as well:
1597         */
1598        if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1599            __cpa_pfn_in_highmap(cpa->pfn)) {
1600                unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1601                                               __START_KERNEL_map - phys_base;
1602                alias_cpa = *cpa;
1603                alias_cpa.vaddr = &temp_cpa_vaddr;
1604                alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1605                alias_cpa.curpage = 0;
1606
1607                /*
1608                 * The high mapping range is imprecise, so ignore the
1609                 * return value.
1610                 */
1611                __change_page_attr_set_clr(&alias_cpa, 0);
1612        }
1613#endif
1614
1615        return 0;
1616}
1617
1618static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1619{
1620        unsigned long numpages = cpa->numpages;
1621        unsigned long rempages = numpages;
1622        int ret = 0;
1623
1624        while (rempages) {
1625                /*
1626                 * Store the remaining nr of pages for the large page
1627                 * preservation check.
1628                 */
1629                cpa->numpages = rempages;
1630                /* for array changes, we can't use large page */
1631                if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1632                        cpa->numpages = 1;
1633
1634                if (!debug_pagealloc_enabled())
1635                        spin_lock(&cpa_lock);
1636                ret = __change_page_attr(cpa, checkalias);
1637                if (!debug_pagealloc_enabled())
1638                        spin_unlock(&cpa_lock);
1639                if (ret)
1640                        goto out;
1641
1642                if (checkalias) {
1643                        ret = cpa_process_alias(cpa);
1644                        if (ret)
1645                                goto out;
1646                }
1647
1648                /*
1649                 * Adjust the number of pages with the result of the
1650                 * CPA operation. Either a large page has been
1651                 * preserved or a single page update happened.
1652                 */
1653                BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1654                rempages -= cpa->numpages;
1655                cpa->curpage += cpa->numpages;
1656        }
1657
1658out:
1659        /* Restore the original numpages */
1660        cpa->numpages = numpages;
1661        return ret;
1662}
1663
1664static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1665                                    pgprot_t mask_set, pgprot_t mask_clr,
1666                                    int force_split, int in_flag,
1667                                    struct page **pages)
1668{
1669        struct cpa_data cpa;
1670        int ret, cache, checkalias;
1671
1672        memset(&cpa, 0, sizeof(cpa));
1673
1674        /*
1675         * Check, if we are requested to set a not supported
1676         * feature.  Clearing non-supported features is OK.
1677         */
1678        mask_set = canon_pgprot(mask_set);
1679
1680        if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1681                return 0;
1682
1683        /* Ensure we are PAGE_SIZE aligned */
1684        if (in_flag & CPA_ARRAY) {
1685                int i;
1686                for (i = 0; i < numpages; i++) {
1687                        if (addr[i] & ~PAGE_MASK) {
1688                                addr[i] &= PAGE_MASK;
1689                                WARN_ON_ONCE(1);
1690                        }
1691                }
1692        } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1693                /*
1694                 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1695                 * No need to check in that case
1696                 */
1697                if (*addr & ~PAGE_MASK) {
1698                        *addr &= PAGE_MASK;
1699                        /*
1700                         * People should not be passing in unaligned addresses:
1701                         */
1702                        WARN_ON_ONCE(1);
1703                }
1704        }
1705
1706        /* Must avoid aliasing mappings in the highmem code */
1707        kmap_flush_unused();
1708
1709        vm_unmap_aliases();
1710
1711        cpa.vaddr = addr;
1712        cpa.pages = pages;
1713        cpa.numpages = numpages;
1714        cpa.mask_set = mask_set;
1715        cpa.mask_clr = mask_clr;
1716        cpa.flags = 0;
1717        cpa.curpage = 0;
1718        cpa.force_split = force_split;
1719
1720        if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1721                cpa.flags |= in_flag;
1722
1723        /* No alias checking for _NX bit modifications */
1724        checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1725        /* Has caller explicitly disabled alias checking? */
1726        if (in_flag & CPA_NO_CHECK_ALIAS)
1727                checkalias = 0;
1728
1729        ret = __change_page_attr_set_clr(&cpa, checkalias);
1730
1731        /*
1732         * Check whether we really changed something:
1733         */
1734        if (!(cpa.flags & CPA_FLUSHTLB))
1735                goto out;
1736
1737        /*
1738         * No need to flush, when we did not set any of the caching
1739         * attributes:
1740         */
1741        cache = !!pgprot2cachemode(mask_set);
1742
1743        /*
1744         * On error; flush everything to be sure.
1745         */
1746        if (ret) {
1747                cpa_flush_all(cache);
1748                goto out;
1749        }
1750
1751        cpa_flush(&cpa, cache);
1752out:
1753        return ret;
1754}
1755
1756static inline int change_page_attr_set(unsigned long *addr, int numpages,
1757                                       pgprot_t mask, int array)
1758{
1759        return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1760                (array ? CPA_ARRAY : 0), NULL);
1761}
1762
1763static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1764                                         pgprot_t mask, int array)
1765{
1766        return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1767                (array ? CPA_ARRAY : 0), NULL);
1768}
1769
1770static inline int cpa_set_pages_array(struct page **pages, int numpages,
1771                                       pgprot_t mask)
1772{
1773        return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1774                CPA_PAGES_ARRAY, pages);
1775}
1776
1777static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1778                                         pgprot_t mask)
1779{
1780        return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1781                CPA_PAGES_ARRAY, pages);
1782}
1783
1784int _set_memory_uc(unsigned long addr, int numpages)
1785{
1786        /*
1787         * for now UC MINUS. see comments in ioremap_nocache()
1788         * If you really need strong UC use ioremap_uc(), but note
1789         * that you cannot override IO areas with set_memory_*() as
1790         * these helpers cannot work with IO memory.
1791         */
1792        return change_page_attr_set(&addr, numpages,
1793                                    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1794                                    0);
1795}
1796
1797int set_memory_uc(unsigned long addr, int numpages)
1798{
1799        int ret;
1800
1801        /*
1802         * for now UC MINUS. see comments in ioremap_nocache()
1803         */
1804        ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1805                              _PAGE_CACHE_MODE_UC_MINUS, NULL);
1806        if (ret)
1807                goto out_err;
1808
1809        ret = _set_memory_uc(addr, numpages);
1810        if (ret)
1811                goto out_free;
1812
1813        return 0;
1814
1815out_free:
1816        free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1817out_err:
1818        return ret;
1819}
1820EXPORT_SYMBOL(set_memory_uc);
1821
1822int _set_memory_wc(unsigned long addr, int numpages)
1823{
1824        int ret;
1825
1826        ret = change_page_attr_set(&addr, numpages,
1827                                   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1828                                   0);
1829        if (!ret) {
1830                ret = change_page_attr_set_clr(&addr, numpages,
1831                                               cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1832                                               __pgprot(_PAGE_CACHE_MASK),
1833                                               0, 0, NULL);
1834        }
1835        return ret;
1836}
1837
1838int set_memory_wc(unsigned long addr, int numpages)
1839{
1840        int ret;
1841
1842        ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1843                _PAGE_CACHE_MODE_WC, NULL);
1844        if (ret)
1845                return ret;
1846
1847        ret = _set_memory_wc(addr, numpages);
1848        if (ret)
1849                free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1850
1851        return ret;
1852}
1853EXPORT_SYMBOL(set_memory_wc);
1854
1855int _set_memory_wt(unsigned long addr, int numpages)
1856{
1857        return change_page_attr_set(&addr, numpages,
1858                                    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1859}
1860
1861int _set_memory_wb(unsigned long addr, int numpages)
1862{
1863        /* WB cache mode is hard wired to all cache attribute bits being 0 */
1864        return change_page_attr_clear(&addr, numpages,
1865                                      __pgprot(_PAGE_CACHE_MASK), 0);
1866}
1867
1868int set_memory_wb(unsigned long addr, int numpages)
1869{
1870        int ret;
1871
1872        ret = _set_memory_wb(addr, numpages);
1873        if (ret)
1874                return ret;
1875
1876        free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1877        return 0;
1878}
1879EXPORT_SYMBOL(set_memory_wb);
1880
1881int set_memory_x(unsigned long addr, int numpages)
1882{
1883        if (!(__supported_pte_mask & _PAGE_NX))
1884                return 0;
1885
1886        return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1887}
1888
1889int set_memory_nx(unsigned long addr, int numpages)
1890{
1891        if (!(__supported_pte_mask & _PAGE_NX))
1892                return 0;
1893
1894        return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1895}
1896
1897int set_memory_ro(unsigned long addr, int numpages)
1898{
1899        return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1900}
1901
1902int set_memory_rw(unsigned long addr, int numpages)
1903{
1904        return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1905}
1906
1907int set_memory_np(unsigned long addr, int numpages)
1908{
1909        return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1910}
1911
1912int set_memory_np_noalias(unsigned long addr, int numpages)
1913{
1914        int cpa_flags = CPA_NO_CHECK_ALIAS;
1915
1916        return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1917                                        __pgprot(_PAGE_PRESENT), 0,
1918                                        cpa_flags, NULL);
1919}
1920
1921int set_memory_4k(unsigned long addr, int numpages)
1922{
1923        return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1924                                        __pgprot(0), 1, 0, NULL);
1925}
1926
1927int set_memory_nonglobal(unsigned long addr, int numpages)
1928{
1929        return change_page_attr_clear(&addr, numpages,
1930                                      __pgprot(_PAGE_GLOBAL), 0);
1931}
1932
1933int set_memory_global(unsigned long addr, int numpages)
1934{
1935        return change_page_attr_set(&addr, numpages,
1936                                    __pgprot(_PAGE_GLOBAL), 0);
1937}
1938
1939static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
1940{
1941        struct cpa_data cpa;
1942        int ret;
1943
1944        /* Nothing to do if memory encryption is not active */
1945        if (!mem_encrypt_active())
1946                return 0;
1947
1948        /* Should not be working on unaligned addresses */
1949        if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
1950                addr &= PAGE_MASK;
1951
1952        memset(&cpa, 0, sizeof(cpa));
1953        cpa.vaddr = &addr;
1954        cpa.numpages = numpages;
1955        cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
1956        cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
1957        cpa.pgd = init_mm.pgd;
1958
1959        /* Must avoid aliasing mappings in the highmem code */
1960        kmap_flush_unused();
1961        vm_unmap_aliases();
1962
1963        /*
1964         * Before changing the encryption attribute, we need to flush caches.
1965         */
1966        cpa_flush(&cpa, 1);
1967
1968        ret = __change_page_attr_set_clr(&cpa, 1);
1969
1970        /*
1971         * After changing the encryption attribute, we need to flush TLBs again
1972         * in case any speculative TLB caching occurred (but no need to flush
1973         * caches again).  We could just use cpa_flush_all(), but in case TLB
1974         * flushing gets optimized in the cpa_flush() path use the same logic
1975         * as above.
1976         */
1977        cpa_flush(&cpa, 0);
1978
1979        return ret;
1980}
1981
1982int set_memory_encrypted(unsigned long addr, int numpages)
1983{
1984        return __set_memory_enc_dec(addr, numpages, true);
1985}
1986EXPORT_SYMBOL_GPL(set_memory_encrypted);
1987
1988int set_memory_decrypted(unsigned long addr, int numpages)
1989{
1990        return __set_memory_enc_dec(addr, numpages, false);
1991}
1992EXPORT_SYMBOL_GPL(set_memory_decrypted);
1993
1994int set_pages_uc(struct page *page, int numpages)
1995{
1996        unsigned long addr = (unsigned long)page_address(page);
1997
1998        return set_memory_uc(addr, numpages);
1999}
2000EXPORT_SYMBOL(set_pages_uc);
2001
2002static int _set_pages_array(struct page **pages, int numpages,
2003                enum page_cache_mode new_type)
2004{
2005        unsigned long start;
2006        unsigned long end;
2007        enum page_cache_mode set_type;
2008        int i;
2009        int free_idx;
2010        int ret;
2011
2012        for (i = 0; i < numpages; i++) {
2013                if (PageHighMem(pages[i]))
2014                        continue;
2015                start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2016                end = start + PAGE_SIZE;
2017                if (reserve_memtype(start, end, new_type, NULL))
2018                        goto err_out;
2019        }
2020
2021        /* If WC, set to UC- first and then WC */
2022        set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2023                                _PAGE_CACHE_MODE_UC_MINUS : new_type;
2024
2025        ret = cpa_set_pages_array(pages, numpages,
2026                                  cachemode2pgprot(set_type));
2027        if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2028                ret = change_page_attr_set_clr(NULL, numpages,
2029                                               cachemode2pgprot(
2030                                                _PAGE_CACHE_MODE_WC),
2031                                               __pgprot(_PAGE_CACHE_MASK),
2032                                               0, CPA_PAGES_ARRAY, pages);
2033        if (ret)
2034                goto err_out;
2035        return 0; /* Success */
2036err_out:
2037        free_idx = i;
2038        for (i = 0; i < free_idx; i++) {
2039                if (PageHighMem(pages[i]))
2040                        continue;
2041                start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2042                end = start + PAGE_SIZE;
2043                free_memtype(start, end);
2044        }
2045        return -EINVAL;
2046}
2047
2048int set_pages_array_uc(struct page **pages, int numpages)
2049{
2050        return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2051}
2052EXPORT_SYMBOL(set_pages_array_uc);
2053
2054int set_pages_array_wc(struct page **pages, int numpages)
2055{
2056        return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2057}
2058EXPORT_SYMBOL(set_pages_array_wc);
2059
2060int set_pages_array_wt(struct page **pages, int numpages)
2061{
2062        return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WT);
2063}
2064EXPORT_SYMBOL_GPL(set_pages_array_wt);
2065
2066int set_pages_wb(struct page *page, int numpages)
2067{
2068        unsigned long addr = (unsigned long)page_address(page);
2069
2070        return set_memory_wb(addr, numpages);
2071}
2072EXPORT_SYMBOL(set_pages_wb);
2073
2074int set_pages_array_wb(struct page **pages, int numpages)
2075{
2076        int retval;
2077        unsigned long start;
2078        unsigned long end;
2079        int i;
2080
2081        /* WB cache mode is hard wired to all cache attribute bits being 0 */
2082        retval = cpa_clear_pages_array(pages, numpages,
2083                        __pgprot(_PAGE_CACHE_MASK));
2084        if (retval)
2085                return retval;
2086
2087        for (i = 0; i < numpages; i++) {
2088                if (PageHighMem(pages[i]))
2089                        continue;
2090                start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2091                end = start + PAGE_SIZE;
2092                free_memtype(start, end);
2093        }
2094
2095        return 0;
2096}
2097EXPORT_SYMBOL(set_pages_array_wb);
2098
2099int set_pages_ro(struct page *page, int numpages)
2100{
2101        unsigned long addr = (unsigned long)page_address(page);
2102
2103        return set_memory_ro(addr, numpages);
2104}
2105
2106int set_pages_rw(struct page *page, int numpages)
2107{
2108        unsigned long addr = (unsigned long)page_address(page);
2109
2110        return set_memory_rw(addr, numpages);
2111}
2112
2113static int __set_pages_p(struct page *page, int numpages)
2114{
2115        unsigned long tempaddr = (unsigned long) page_address(page);
2116        struct cpa_data cpa = { .vaddr = &tempaddr,
2117                                .pgd = NULL,
2118                                .numpages = numpages,
2119                                .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2120                                .mask_clr = __pgprot(0),
2121                                .flags = 0};
2122
2123        /*
2124         * No alias checking needed for setting present flag. otherwise,
2125         * we may need to break large pages for 64-bit kernel text
2126         * mappings (this adds to complexity if we want to do this from
2127         * atomic context especially). Let's keep it simple!
2128         */
2129        return __change_page_attr_set_clr(&cpa, 0);
2130}
2131
2132static int __set_pages_np(struct page *page, int numpages)
2133{
2134        unsigned long tempaddr = (unsigned long) page_address(page);
2135        struct cpa_data cpa = { .vaddr = &tempaddr,
2136                                .pgd = NULL,
2137                                .numpages = numpages,
2138                                .mask_set = __pgprot(0),
2139                                .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2140                                .flags = 0};
2141
2142        /*
2143         * No alias checking needed for setting not present flag. otherwise,
2144         * we may need to break large pages for 64-bit kernel text
2145         * mappings (this adds to complexity if we want to do this from
2146         * atomic context especially). Let's keep it simple!
2147         */
2148        return __change_page_attr_set_clr(&cpa, 0);
2149}
2150
2151int set_direct_map_invalid_noflush(struct page *page)
2152{
2153        return __set_pages_np(page, 1);
2154}
2155
2156int set_direct_map_default_noflush(struct page *page)
2157{
2158        return __set_pages_p(page, 1);
2159}
2160
2161void __kernel_map_pages(struct page *page, int numpages, int enable)
2162{
2163        if (PageHighMem(page))
2164                return;
2165        if (!enable) {
2166                debug_check_no_locks_freed(page_address(page),
2167                                           numpages * PAGE_SIZE);
2168        }
2169
2170        /*
2171         * The return value is ignored as the calls cannot fail.
2172         * Large pages for identity mappings are not used at boot time
2173         * and hence no memory allocations during large page split.
2174         */
2175        if (enable)
2176                __set_pages_p(page, numpages);
2177        else
2178                __set_pages_np(page, numpages);
2179
2180        /*
2181         * We should perform an IPI and flush all tlbs,
2182         * but that can deadlock->flush only current cpu.
2183         * Preemption needs to be disabled around __flush_tlb_all() due to
2184         * CR3 reload in __native_flush_tlb().
2185         */
2186        preempt_disable();
2187        __flush_tlb_all();
2188        preempt_enable();
2189
2190        arch_flush_lazy_mmu_mode();
2191}
2192
2193#ifdef CONFIG_HIBERNATION
2194bool kernel_page_present(struct page *page)
2195{
2196        unsigned int level;
2197        pte_t *pte;
2198
2199        if (PageHighMem(page))
2200                return false;
2201
2202        pte = lookup_address((unsigned long)page_address(page), &level);
2203        return (pte_val(*pte) & _PAGE_PRESENT);
2204}
2205#endif /* CONFIG_HIBERNATION */
2206
2207int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2208                                   unsigned numpages, unsigned long page_flags)
2209{
2210        int retval = -EINVAL;
2211
2212        struct cpa_data cpa = {
2213                .vaddr = &address,
2214                .pfn = pfn,
2215                .pgd = pgd,
2216                .numpages = numpages,
2217                .mask_set = __pgprot(0),
2218                .mask_clr = __pgprot(0),
2219                .flags = 0,
2220        };
2221
2222        WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2223
2224        if (!(__supported_pte_mask & _PAGE_NX))
2225                goto out;
2226
2227        if (!(page_flags & _PAGE_NX))
2228                cpa.mask_clr = __pgprot(_PAGE_NX);
2229
2230        if (!(page_flags & _PAGE_RW))
2231                cpa.mask_clr = __pgprot(_PAGE_RW);
2232
2233        if (!(page_flags & _PAGE_ENC))
2234                cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2235
2236        cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2237
2238        retval = __change_page_attr_set_clr(&cpa, 0);
2239        __flush_tlb_all();
2240
2241out:
2242        return retval;
2243}
2244
2245/*
2246 * __flush_tlb_all() flushes mappings only on current CPU and hence this
2247 * function shouldn't be used in an SMP environment. Presently, it's used only
2248 * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2249 */
2250int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2251                                     unsigned long numpages)
2252{
2253        int retval;
2254
2255        /*
2256         * The typical sequence for unmapping is to find a pte through
2257         * lookup_address_in_pgd() (ideally, it should never return NULL because
2258         * the address is already mapped) and change it's protections. As pfn is
2259         * the *target* of a mapping, it's not useful while unmapping.
2260         */
2261        struct cpa_data cpa = {
2262                .vaddr          = &address,
2263                .pfn            = 0,
2264                .pgd            = pgd,
2265                .numpages       = numpages,
2266                .mask_set       = __pgprot(0),
2267                .mask_clr       = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2268                .flags          = 0,
2269        };
2270
2271        WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2272
2273        retval = __change_page_attr_set_clr(&cpa, 0);
2274        __flush_tlb_all();
2275
2276        return retval;
2277}
2278
2279/*
2280 * The testcases use internal knowledge of the implementation that shouldn't
2281 * be exposed to the rest of the kernel. Include these directly here.
2282 */
2283#ifdef CONFIG_CPA_DEBUG
2284#include "pageattr-test.c"
2285#endif
2286