linux/arch/x86/mm/pat.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Handle caching attributes in page tables (PAT)
   4 *
   5 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
   6 *          Suresh B Siddha <suresh.b.siddha@intel.com>
   7 *
   8 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
   9 */
  10
  11#include <linux/seq_file.h>
  12#include <linux/memblock.h>
  13#include <linux/debugfs.h>
  14#include <linux/ioport.h>
  15#include <linux/kernel.h>
  16#include <linux/pfn_t.h>
  17#include <linux/slab.h>
  18#include <linux/mm.h>
  19#include <linux/fs.h>
  20#include <linux/rbtree.h>
  21
  22#include <asm/cacheflush.h>
  23#include <asm/processor.h>
  24#include <asm/tlbflush.h>
  25#include <asm/x86_init.h>
  26#include <asm/pgtable.h>
  27#include <asm/fcntl.h>
  28#include <asm/e820/api.h>
  29#include <asm/mtrr.h>
  30#include <asm/page.h>
  31#include <asm/msr.h>
  32#include <asm/pat.h>
  33#include <asm/io.h>
  34
  35#include "pat_internal.h"
  36#include "mm_internal.h"
  37
  38#undef pr_fmt
  39#define pr_fmt(fmt) "" fmt
  40
  41static bool __read_mostly boot_cpu_done;
  42static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT);
  43static bool __read_mostly pat_initialized;
  44static bool __read_mostly init_cm_done;
  45
  46void pat_disable(const char *reason)
  47{
  48        if (pat_disabled)
  49                return;
  50
  51        if (boot_cpu_done) {
  52                WARN_ONCE(1, "x86/PAT: PAT cannot be disabled after initialization\n");
  53                return;
  54        }
  55
  56        pat_disabled = true;
  57        pr_info("x86/PAT: %s\n", reason);
  58}
  59
  60static int __init nopat(char *str)
  61{
  62        pat_disable("PAT support disabled.");
  63        return 0;
  64}
  65early_param("nopat", nopat);
  66
  67bool pat_enabled(void)
  68{
  69        return pat_initialized;
  70}
  71EXPORT_SYMBOL_GPL(pat_enabled);
  72
  73int pat_debug_enable;
  74
  75static int __init pat_debug_setup(char *str)
  76{
  77        pat_debug_enable = 1;
  78        return 0;
  79}
  80__setup("debugpat", pat_debug_setup);
  81
  82#ifdef CONFIG_X86_PAT
  83/*
  84 * X86 PAT uses page flags arch_1 and uncached together to keep track of
  85 * memory type of pages that have backing page struct.
  86 *
  87 * X86 PAT supports 4 different memory types:
  88 *  - _PAGE_CACHE_MODE_WB
  89 *  - _PAGE_CACHE_MODE_WC
  90 *  - _PAGE_CACHE_MODE_UC_MINUS
  91 *  - _PAGE_CACHE_MODE_WT
  92 *
  93 * _PAGE_CACHE_MODE_WB is the default type.
  94 */
  95
  96#define _PGMT_WB                0
  97#define _PGMT_WC                (1UL << PG_arch_1)
  98#define _PGMT_UC_MINUS          (1UL << PG_uncached)
  99#define _PGMT_WT                (1UL << PG_uncached | 1UL << PG_arch_1)
 100#define _PGMT_MASK              (1UL << PG_uncached | 1UL << PG_arch_1)
 101#define _PGMT_CLEAR_MASK        (~_PGMT_MASK)
 102
 103static inline enum page_cache_mode get_page_memtype(struct page *pg)
 104{
 105        unsigned long pg_flags = pg->flags & _PGMT_MASK;
 106
 107        if (pg_flags == _PGMT_WB)
 108                return _PAGE_CACHE_MODE_WB;
 109        else if (pg_flags == _PGMT_WC)
 110                return _PAGE_CACHE_MODE_WC;
 111        else if (pg_flags == _PGMT_UC_MINUS)
 112                return _PAGE_CACHE_MODE_UC_MINUS;
 113        else
 114                return _PAGE_CACHE_MODE_WT;
 115}
 116
 117static inline void set_page_memtype(struct page *pg,
 118                                    enum page_cache_mode memtype)
 119{
 120        unsigned long memtype_flags;
 121        unsigned long old_flags;
 122        unsigned long new_flags;
 123
 124        switch (memtype) {
 125        case _PAGE_CACHE_MODE_WC:
 126                memtype_flags = _PGMT_WC;
 127                break;
 128        case _PAGE_CACHE_MODE_UC_MINUS:
 129                memtype_flags = _PGMT_UC_MINUS;
 130                break;
 131        case _PAGE_CACHE_MODE_WT:
 132                memtype_flags = _PGMT_WT;
 133                break;
 134        case _PAGE_CACHE_MODE_WB:
 135        default:
 136                memtype_flags = _PGMT_WB;
 137                break;
 138        }
 139
 140        do {
 141                old_flags = pg->flags;
 142                new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
 143        } while (cmpxchg(&pg->flags, old_flags, new_flags) != old_flags);
 144}
 145#else
 146static inline enum page_cache_mode get_page_memtype(struct page *pg)
 147{
 148        return -1;
 149}
 150static inline void set_page_memtype(struct page *pg,
 151                                    enum page_cache_mode memtype)
 152{
 153}
 154#endif
 155
 156enum {
 157        PAT_UC = 0,             /* uncached */
 158        PAT_WC = 1,             /* Write combining */
 159        PAT_WT = 4,             /* Write Through */
 160        PAT_WP = 5,             /* Write Protected */
 161        PAT_WB = 6,             /* Write Back (default) */
 162        PAT_UC_MINUS = 7,       /* UC, but can be overridden by MTRR */
 163};
 164
 165#define CM(c) (_PAGE_CACHE_MODE_ ## c)
 166
 167static enum page_cache_mode pat_get_cache_mode(unsigned pat_val, char *msg)
 168{
 169        enum page_cache_mode cache;
 170        char *cache_mode;
 171
 172        switch (pat_val) {
 173        case PAT_UC:       cache = CM(UC);       cache_mode = "UC  "; break;
 174        case PAT_WC:       cache = CM(WC);       cache_mode = "WC  "; break;
 175        case PAT_WT:       cache = CM(WT);       cache_mode = "WT  "; break;
 176        case PAT_WP:       cache = CM(WP);       cache_mode = "WP  "; break;
 177        case PAT_WB:       cache = CM(WB);       cache_mode = "WB  "; break;
 178        case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
 179        default:           cache = CM(WB);       cache_mode = "WB  "; break;
 180        }
 181
 182        memcpy(msg, cache_mode, 4);
 183
 184        return cache;
 185}
 186
 187#undef CM
 188
 189/*
 190 * Update the cache mode to pgprot translation tables according to PAT
 191 * configuration.
 192 * Using lower indices is preferred, so we start with highest index.
 193 */
 194static void __init_cache_modes(u64 pat)
 195{
 196        enum page_cache_mode cache;
 197        char pat_msg[33];
 198        int i;
 199
 200        pat_msg[32] = 0;
 201        for (i = 7; i >= 0; i--) {
 202                cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
 203                                           pat_msg + 4 * i);
 204                update_cache_mode_entry(i, cache);
 205        }
 206        pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
 207
 208        init_cm_done = true;
 209}
 210
 211#define PAT(x, y)       ((u64)PAT_ ## y << ((x)*8))
 212
 213static void pat_bsp_init(u64 pat)
 214{
 215        u64 tmp_pat;
 216
 217        if (!boot_cpu_has(X86_FEATURE_PAT)) {
 218                pat_disable("PAT not supported by CPU.");
 219                return;
 220        }
 221
 222        rdmsrl(MSR_IA32_CR_PAT, tmp_pat);
 223        if (!tmp_pat) {
 224                pat_disable("PAT MSR is 0, disabled.");
 225                return;
 226        }
 227
 228        wrmsrl(MSR_IA32_CR_PAT, pat);
 229        pat_initialized = true;
 230
 231        __init_cache_modes(pat);
 232}
 233
 234static void pat_ap_init(u64 pat)
 235{
 236        if (!boot_cpu_has(X86_FEATURE_PAT)) {
 237                /*
 238                 * If this happens we are on a secondary CPU, but switched to
 239                 * PAT on the boot CPU. We have no way to undo PAT.
 240                 */
 241                panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
 242        }
 243
 244        wrmsrl(MSR_IA32_CR_PAT, pat);
 245}
 246
 247void init_cache_modes(void)
 248{
 249        u64 pat = 0;
 250
 251        if (init_cm_done)
 252                return;
 253
 254        if (boot_cpu_has(X86_FEATURE_PAT)) {
 255                /*
 256                 * CPU supports PAT. Set PAT table to be consistent with
 257                 * PAT MSR. This case supports "nopat" boot option, and
 258                 * virtual machine environments which support PAT without
 259                 * MTRRs. In specific, Xen has unique setup to PAT MSR.
 260                 *
 261                 * If PAT MSR returns 0, it is considered invalid and emulates
 262                 * as No PAT.
 263                 */
 264                rdmsrl(MSR_IA32_CR_PAT, pat);
 265        }
 266
 267        if (!pat) {
 268                /*
 269                 * No PAT. Emulate the PAT table that corresponds to the two
 270                 * cache bits, PWT (Write Through) and PCD (Cache Disable).
 271                 * This setup is also the same as the BIOS default setup.
 272                 *
 273                 * PTE encoding:
 274                 *
 275                 *       PCD
 276                 *       |PWT  PAT
 277                 *       ||    slot
 278                 *       00    0    WB : _PAGE_CACHE_MODE_WB
 279                 *       01    1    WT : _PAGE_CACHE_MODE_WT
 280                 *       10    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
 281                 *       11    3    UC : _PAGE_CACHE_MODE_UC
 282                 *
 283                 * NOTE: When WC or WP is used, it is redirected to UC- per
 284                 * the default setup in __cachemode2pte_tbl[].
 285                 */
 286                pat = PAT(0, WB) | PAT(1, WT) | PAT(2, UC_MINUS) | PAT(3, UC) |
 287                      PAT(4, WB) | PAT(5, WT) | PAT(6, UC_MINUS) | PAT(7, UC);
 288        }
 289
 290        __init_cache_modes(pat);
 291}
 292
 293/**
 294 * pat_init - Initialize PAT MSR and PAT table
 295 *
 296 * This function initializes PAT MSR and PAT table with an OS-defined value
 297 * to enable additional cache attributes, WC, WT and WP.
 298 *
 299 * This function must be called on all CPUs using the specific sequence of
 300 * operations defined in Intel SDM. mtrr_rendezvous_handler() provides this
 301 * procedure for PAT.
 302 */
 303void pat_init(void)
 304{
 305        u64 pat;
 306        struct cpuinfo_x86 *c = &boot_cpu_data;
 307
 308        if (pat_disabled)
 309                return;
 310
 311        if ((c->x86_vendor == X86_VENDOR_INTEL) &&
 312            (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
 313             ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
 314                /*
 315                 * PAT support with the lower four entries. Intel Pentium 2,
 316                 * 3, M, and 4 are affected by PAT errata, which makes the
 317                 * upper four entries unusable. To be on the safe side, we don't
 318                 * use those.
 319                 *
 320                 *  PTE encoding:
 321                 *      PAT
 322                 *      |PCD
 323                 *      ||PWT  PAT
 324                 *      |||    slot
 325                 *      000    0    WB : _PAGE_CACHE_MODE_WB
 326                 *      001    1    WC : _PAGE_CACHE_MODE_WC
 327                 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
 328                 *      011    3    UC : _PAGE_CACHE_MODE_UC
 329                 * PAT bit unused
 330                 *
 331                 * NOTE: When WT or WP is used, it is redirected to UC- per
 332                 * the default setup in __cachemode2pte_tbl[].
 333                 */
 334                pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
 335                      PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
 336        } else {
 337                /*
 338                 * Full PAT support.  We put WT in slot 7 to improve
 339                 * robustness in the presence of errata that might cause
 340                 * the high PAT bit to be ignored.  This way, a buggy slot 7
 341                 * access will hit slot 3, and slot 3 is UC, so at worst
 342                 * we lose performance without causing a correctness issue.
 343                 * Pentium 4 erratum N46 is an example for such an erratum,
 344                 * although we try not to use PAT at all on affected CPUs.
 345                 *
 346                 *  PTE encoding:
 347                 *      PAT
 348                 *      |PCD
 349                 *      ||PWT  PAT
 350                 *      |||    slot
 351                 *      000    0    WB : _PAGE_CACHE_MODE_WB
 352                 *      001    1    WC : _PAGE_CACHE_MODE_WC
 353                 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
 354                 *      011    3    UC : _PAGE_CACHE_MODE_UC
 355                 *      100    4    WB : Reserved
 356                 *      101    5    WP : _PAGE_CACHE_MODE_WP
 357                 *      110    6    UC-: Reserved
 358                 *      111    7    WT : _PAGE_CACHE_MODE_WT
 359                 *
 360                 * The reserved slots are unused, but mapped to their
 361                 * corresponding types in the presence of PAT errata.
 362                 */
 363                pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
 364                      PAT(4, WB) | PAT(5, WP) | PAT(6, UC_MINUS) | PAT(7, WT);
 365        }
 366
 367        if (!boot_cpu_done) {
 368                pat_bsp_init(pat);
 369                boot_cpu_done = true;
 370        } else {
 371                pat_ap_init(pat);
 372        }
 373}
 374
 375#undef PAT
 376
 377static DEFINE_SPINLOCK(memtype_lock);   /* protects memtype accesses */
 378
 379/*
 380 * Does intersection of PAT memory type and MTRR memory type and returns
 381 * the resulting memory type as PAT understands it.
 382 * (Type in pat and mtrr will not have same value)
 383 * The intersection is based on "Effective Memory Type" tables in IA-32
 384 * SDM vol 3a
 385 */
 386static unsigned long pat_x_mtrr_type(u64 start, u64 end,
 387                                     enum page_cache_mode req_type)
 388{
 389        /*
 390         * Look for MTRR hint to get the effective type in case where PAT
 391         * request is for WB.
 392         */
 393        if (req_type == _PAGE_CACHE_MODE_WB) {
 394                u8 mtrr_type, uniform;
 395
 396                mtrr_type = mtrr_type_lookup(start, end, &uniform);
 397                if (mtrr_type != MTRR_TYPE_WRBACK)
 398                        return _PAGE_CACHE_MODE_UC_MINUS;
 399
 400                return _PAGE_CACHE_MODE_WB;
 401        }
 402
 403        return req_type;
 404}
 405
 406struct pagerange_state {
 407        unsigned long           cur_pfn;
 408        int                     ram;
 409        int                     not_ram;
 410};
 411
 412static int
 413pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
 414{
 415        struct pagerange_state *state = arg;
 416
 417        state->not_ram  |= initial_pfn > state->cur_pfn;
 418        state->ram      |= total_nr_pages > 0;
 419        state->cur_pfn   = initial_pfn + total_nr_pages;
 420
 421        return state->ram && state->not_ram;
 422}
 423
 424static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
 425{
 426        int ret = 0;
 427        unsigned long start_pfn = start >> PAGE_SHIFT;
 428        unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
 429        struct pagerange_state state = {start_pfn, 0, 0};
 430
 431        /*
 432         * For legacy reasons, physical address range in the legacy ISA
 433         * region is tracked as non-RAM. This will allow users of
 434         * /dev/mem to map portions of legacy ISA region, even when
 435         * some of those portions are listed(or not even listed) with
 436         * different e820 types(RAM/reserved/..)
 437         */
 438        if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
 439                start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
 440
 441        if (start_pfn < end_pfn) {
 442                ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
 443                                &state, pagerange_is_ram_callback);
 444        }
 445
 446        return (ret > 0) ? -1 : (state.ram ? 1 : 0);
 447}
 448
 449/*
 450 * For RAM pages, we use page flags to mark the pages with appropriate type.
 451 * The page flags are limited to four types, WB (default), WC, WT and UC-.
 452 * WP request fails with -EINVAL, and UC gets redirected to UC-.  Setting
 453 * a new memory type is only allowed for a page mapped with the default WB
 454 * type.
 455 *
 456 * Here we do two passes:
 457 * - Find the memtype of all the pages in the range, look for any conflicts.
 458 * - In case of no conflicts, set the new memtype for pages in the range.
 459 */
 460static int reserve_ram_pages_type(u64 start, u64 end,
 461                                  enum page_cache_mode req_type,
 462                                  enum page_cache_mode *new_type)
 463{
 464        struct page *page;
 465        u64 pfn;
 466
 467        if (req_type == _PAGE_CACHE_MODE_WP) {
 468                if (new_type)
 469                        *new_type = _PAGE_CACHE_MODE_UC_MINUS;
 470                return -EINVAL;
 471        }
 472
 473        if (req_type == _PAGE_CACHE_MODE_UC) {
 474                /* We do not support strong UC */
 475                WARN_ON_ONCE(1);
 476                req_type = _PAGE_CACHE_MODE_UC_MINUS;
 477        }
 478
 479        for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
 480                enum page_cache_mode type;
 481
 482                page = pfn_to_page(pfn);
 483                type = get_page_memtype(page);
 484                if (type != _PAGE_CACHE_MODE_WB) {
 485                        pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
 486                                start, end - 1, type, req_type);
 487                        if (new_type)
 488                                *new_type = type;
 489
 490                        return -EBUSY;
 491                }
 492        }
 493
 494        if (new_type)
 495                *new_type = req_type;
 496
 497        for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
 498                page = pfn_to_page(pfn);
 499                set_page_memtype(page, req_type);
 500        }
 501        return 0;
 502}
 503
 504static int free_ram_pages_type(u64 start, u64 end)
 505{
 506        struct page *page;
 507        u64 pfn;
 508
 509        for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
 510                page = pfn_to_page(pfn);
 511                set_page_memtype(page, _PAGE_CACHE_MODE_WB);
 512        }
 513        return 0;
 514}
 515
 516static u64 sanitize_phys(u64 address)
 517{
 518        /*
 519         * When changing the memtype for pages containing poison allow
 520         * for a "decoy" virtual address (bit 63 clear) passed to
 521         * set_memory_X(). __pa() on a "decoy" address results in a
 522         * physical address with bit 63 set.
 523         *
 524         * Decoy addresses are not present for 32-bit builds, see
 525         * set_mce_nospec().
 526         */
 527        if (IS_ENABLED(CONFIG_X86_64))
 528                return address & __PHYSICAL_MASK;
 529        return address;
 530}
 531
 532/*
 533 * req_type typically has one of the:
 534 * - _PAGE_CACHE_MODE_WB
 535 * - _PAGE_CACHE_MODE_WC
 536 * - _PAGE_CACHE_MODE_UC_MINUS
 537 * - _PAGE_CACHE_MODE_UC
 538 * - _PAGE_CACHE_MODE_WT
 539 *
 540 * If new_type is NULL, function will return an error if it cannot reserve the
 541 * region with req_type. If new_type is non-NULL, function will return
 542 * available type in new_type in case of no error. In case of any error
 543 * it will return a negative return value.
 544 */
 545int reserve_memtype(u64 start, u64 end, enum page_cache_mode req_type,
 546                    enum page_cache_mode *new_type)
 547{
 548        struct memtype *new;
 549        enum page_cache_mode actual_type;
 550        int is_range_ram;
 551        int err = 0;
 552
 553        start = sanitize_phys(start);
 554        end = sanitize_phys(end);
 555        if (start >= end) {
 556                WARN(1, "%s failed: [mem %#010Lx-%#010Lx], req %s\n", __func__,
 557                                start, end - 1, cattr_name(req_type));
 558                return -EINVAL;
 559        }
 560
 561        if (!pat_enabled()) {
 562                /* This is identical to page table setting without PAT */
 563                if (new_type)
 564                        *new_type = req_type;
 565                return 0;
 566        }
 567
 568        /* Low ISA region is always mapped WB in page table. No need to track */
 569        if (x86_platform.is_untracked_pat_range(start, end)) {
 570                if (new_type)
 571                        *new_type = _PAGE_CACHE_MODE_WB;
 572                return 0;
 573        }
 574
 575        /*
 576         * Call mtrr_lookup to get the type hint. This is an
 577         * optimization for /dev/mem mmap'ers into WB memory (BIOS
 578         * tools and ACPI tools). Use WB request for WB memory and use
 579         * UC_MINUS otherwise.
 580         */
 581        actual_type = pat_x_mtrr_type(start, end, req_type);
 582
 583        if (new_type)
 584                *new_type = actual_type;
 585
 586        is_range_ram = pat_pagerange_is_ram(start, end);
 587        if (is_range_ram == 1) {
 588
 589                err = reserve_ram_pages_type(start, end, req_type, new_type);
 590
 591                return err;
 592        } else if (is_range_ram < 0) {
 593                return -EINVAL;
 594        }
 595
 596        new  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
 597        if (!new)
 598                return -ENOMEM;
 599
 600        new->start      = start;
 601        new->end        = end;
 602        new->type       = actual_type;
 603
 604        spin_lock(&memtype_lock);
 605
 606        err = rbt_memtype_check_insert(new, new_type);
 607        if (err) {
 608                pr_info("x86/PAT: reserve_memtype failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
 609                        start, end - 1,
 610                        cattr_name(new->type), cattr_name(req_type));
 611                kfree(new);
 612                spin_unlock(&memtype_lock);
 613
 614                return err;
 615        }
 616
 617        spin_unlock(&memtype_lock);
 618
 619        dprintk("reserve_memtype added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
 620                start, end - 1, cattr_name(new->type), cattr_name(req_type),
 621                new_type ? cattr_name(*new_type) : "-");
 622
 623        return err;
 624}
 625
 626int free_memtype(u64 start, u64 end)
 627{
 628        int err = -EINVAL;
 629        int is_range_ram;
 630        struct memtype *entry;
 631
 632        if (!pat_enabled())
 633                return 0;
 634
 635        start = sanitize_phys(start);
 636        end = sanitize_phys(end);
 637
 638        /* Low ISA region is always mapped WB. No need to track */
 639        if (x86_platform.is_untracked_pat_range(start, end))
 640                return 0;
 641
 642        is_range_ram = pat_pagerange_is_ram(start, end);
 643        if (is_range_ram == 1) {
 644
 645                err = free_ram_pages_type(start, end);
 646
 647                return err;
 648        } else if (is_range_ram < 0) {
 649                return -EINVAL;
 650        }
 651
 652        spin_lock(&memtype_lock);
 653        entry = rbt_memtype_erase(start, end);
 654        spin_unlock(&memtype_lock);
 655
 656        if (IS_ERR(entry)) {
 657                pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
 658                        current->comm, current->pid, start, end - 1);
 659                return -EINVAL;
 660        }
 661
 662        kfree(entry);
 663
 664        dprintk("free_memtype request [mem %#010Lx-%#010Lx]\n", start, end - 1);
 665
 666        return 0;
 667}
 668
 669
 670/**
 671 * lookup_memtype - Looksup the memory type for a physical address
 672 * @paddr: physical address of which memory type needs to be looked up
 673 *
 674 * Only to be called when PAT is enabled
 675 *
 676 * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
 677 * or _PAGE_CACHE_MODE_WT.
 678 */
 679static enum page_cache_mode lookup_memtype(u64 paddr)
 680{
 681        enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
 682        struct memtype *entry;
 683
 684        if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
 685                return rettype;
 686
 687        if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
 688                struct page *page;
 689
 690                page = pfn_to_page(paddr >> PAGE_SHIFT);
 691                return get_page_memtype(page);
 692        }
 693
 694        spin_lock(&memtype_lock);
 695
 696        entry = rbt_memtype_lookup(paddr);
 697        if (entry != NULL)
 698                rettype = entry->type;
 699        else
 700                rettype = _PAGE_CACHE_MODE_UC_MINUS;
 701
 702        spin_unlock(&memtype_lock);
 703        return rettype;
 704}
 705
 706/**
 707 * pat_pfn_immune_to_uc_mtrr - Check whether the PAT memory type
 708 * of @pfn cannot be overridden by UC MTRR memory type.
 709 *
 710 * Only to be called when PAT is enabled.
 711 *
 712 * Returns true, if the PAT memory type of @pfn is UC, UC-, or WC.
 713 * Returns false in other cases.
 714 */
 715bool pat_pfn_immune_to_uc_mtrr(unsigned long pfn)
 716{
 717        enum page_cache_mode cm = lookup_memtype(PFN_PHYS(pfn));
 718
 719        return cm == _PAGE_CACHE_MODE_UC ||
 720               cm == _PAGE_CACHE_MODE_UC_MINUS ||
 721               cm == _PAGE_CACHE_MODE_WC;
 722}
 723EXPORT_SYMBOL_GPL(pat_pfn_immune_to_uc_mtrr);
 724
 725/**
 726 * io_reserve_memtype - Request a memory type mapping for a region of memory
 727 * @start: start (physical address) of the region
 728 * @end: end (physical address) of the region
 729 * @type: A pointer to memtype, with requested type. On success, requested
 730 * or any other compatible type that was available for the region is returned
 731 *
 732 * On success, returns 0
 733 * On failure, returns non-zero
 734 */
 735int io_reserve_memtype(resource_size_t start, resource_size_t end,
 736                        enum page_cache_mode *type)
 737{
 738        resource_size_t size = end - start;
 739        enum page_cache_mode req_type = *type;
 740        enum page_cache_mode new_type;
 741        int ret;
 742
 743        WARN_ON_ONCE(iomem_map_sanity_check(start, size));
 744
 745        ret = reserve_memtype(start, end, req_type, &new_type);
 746        if (ret)
 747                goto out_err;
 748
 749        if (!is_new_memtype_allowed(start, size, req_type, new_type))
 750                goto out_free;
 751
 752        if (kernel_map_sync_memtype(start, size, new_type) < 0)
 753                goto out_free;
 754
 755        *type = new_type;
 756        return 0;
 757
 758out_free:
 759        free_memtype(start, end);
 760        ret = -EBUSY;
 761out_err:
 762        return ret;
 763}
 764
 765/**
 766 * io_free_memtype - Release a memory type mapping for a region of memory
 767 * @start: start (physical address) of the region
 768 * @end: end (physical address) of the region
 769 */
 770void io_free_memtype(resource_size_t start, resource_size_t end)
 771{
 772        free_memtype(start, end);
 773}
 774
 775int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size)
 776{
 777        enum page_cache_mode type = _PAGE_CACHE_MODE_WC;
 778
 779        return io_reserve_memtype(start, start + size, &type);
 780}
 781EXPORT_SYMBOL(arch_io_reserve_memtype_wc);
 782
 783void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size)
 784{
 785        io_free_memtype(start, start + size);
 786}
 787EXPORT_SYMBOL(arch_io_free_memtype_wc);
 788
 789pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 790                                unsigned long size, pgprot_t vma_prot)
 791{
 792        if (!phys_mem_access_encrypted(pfn << PAGE_SHIFT, size))
 793                vma_prot = pgprot_decrypted(vma_prot);
 794
 795        return vma_prot;
 796}
 797
 798#ifdef CONFIG_STRICT_DEVMEM
 799/* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
 800static inline int range_is_allowed(unsigned long pfn, unsigned long size)
 801{
 802        return 1;
 803}
 804#else
 805/* This check is needed to avoid cache aliasing when PAT is enabled */
 806static inline int range_is_allowed(unsigned long pfn, unsigned long size)
 807{
 808        u64 from = ((u64)pfn) << PAGE_SHIFT;
 809        u64 to = from + size;
 810        u64 cursor = from;
 811
 812        if (!pat_enabled())
 813                return 1;
 814
 815        while (cursor < to) {
 816                if (!devmem_is_allowed(pfn))
 817                        return 0;
 818                cursor += PAGE_SIZE;
 819                pfn++;
 820        }
 821        return 1;
 822}
 823#endif /* CONFIG_STRICT_DEVMEM */
 824
 825int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
 826                                unsigned long size, pgprot_t *vma_prot)
 827{
 828        enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
 829
 830        if (!range_is_allowed(pfn, size))
 831                return 0;
 832
 833        if (file->f_flags & O_DSYNC)
 834                pcm = _PAGE_CACHE_MODE_UC_MINUS;
 835
 836        *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
 837                             cachemode2protval(pcm));
 838        return 1;
 839}
 840
 841/*
 842 * Change the memory type for the physial address range in kernel identity
 843 * mapping space if that range is a part of identity map.
 844 */
 845int kernel_map_sync_memtype(u64 base, unsigned long size,
 846                            enum page_cache_mode pcm)
 847{
 848        unsigned long id_sz;
 849
 850        if (base > __pa(high_memory-1))
 851                return 0;
 852
 853        /*
 854         * some areas in the middle of the kernel identity range
 855         * are not mapped, like the PCI space.
 856         */
 857        if (!page_is_ram(base >> PAGE_SHIFT))
 858                return 0;
 859
 860        id_sz = (__pa(high_memory-1) <= base + size) ?
 861                                __pa(high_memory) - base :
 862                                size;
 863
 864        if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
 865                pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
 866                        current->comm, current->pid,
 867                        cattr_name(pcm),
 868                        base, (unsigned long long)(base + size-1));
 869                return -EINVAL;
 870        }
 871        return 0;
 872}
 873
 874/*
 875 * Internal interface to reserve a range of physical memory with prot.
 876 * Reserved non RAM regions only and after successful reserve_memtype,
 877 * this func also keeps identity mapping (if any) in sync with this new prot.
 878 */
 879static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
 880                                int strict_prot)
 881{
 882        int is_ram = 0;
 883        int ret;
 884        enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
 885        enum page_cache_mode pcm = want_pcm;
 886
 887        is_ram = pat_pagerange_is_ram(paddr, paddr + size);
 888
 889        /*
 890         * reserve_pfn_range() for RAM pages. We do not refcount to keep
 891         * track of number of mappings of RAM pages. We can assert that
 892         * the type requested matches the type of first page in the range.
 893         */
 894        if (is_ram) {
 895                if (!pat_enabled())
 896                        return 0;
 897
 898                pcm = lookup_memtype(paddr);
 899                if (want_pcm != pcm) {
 900                        pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
 901                                current->comm, current->pid,
 902                                cattr_name(want_pcm),
 903                                (unsigned long long)paddr,
 904                                (unsigned long long)(paddr + size - 1),
 905                                cattr_name(pcm));
 906                        *vma_prot = __pgprot((pgprot_val(*vma_prot) &
 907                                             (~_PAGE_CACHE_MASK)) |
 908                                             cachemode2protval(pcm));
 909                }
 910                return 0;
 911        }
 912
 913        ret = reserve_memtype(paddr, paddr + size, want_pcm, &pcm);
 914        if (ret)
 915                return ret;
 916
 917        if (pcm != want_pcm) {
 918                if (strict_prot ||
 919                    !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
 920                        free_memtype(paddr, paddr + size);
 921                        pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
 922                               current->comm, current->pid,
 923                               cattr_name(want_pcm),
 924                               (unsigned long long)paddr,
 925                               (unsigned long long)(paddr + size - 1),
 926                               cattr_name(pcm));
 927                        return -EINVAL;
 928                }
 929                /*
 930                 * We allow returning different type than the one requested in
 931                 * non strict case.
 932                 */
 933                *vma_prot = __pgprot((pgprot_val(*vma_prot) &
 934                                      (~_PAGE_CACHE_MASK)) |
 935                                     cachemode2protval(pcm));
 936        }
 937
 938        if (kernel_map_sync_memtype(paddr, size, pcm) < 0) {
 939                free_memtype(paddr, paddr + size);
 940                return -EINVAL;
 941        }
 942        return 0;
 943}
 944
 945/*
 946 * Internal interface to free a range of physical memory.
 947 * Frees non RAM regions only.
 948 */
 949static void free_pfn_range(u64 paddr, unsigned long size)
 950{
 951        int is_ram;
 952
 953        is_ram = pat_pagerange_is_ram(paddr, paddr + size);
 954        if (is_ram == 0)
 955                free_memtype(paddr, paddr + size);
 956}
 957
 958/*
 959 * track_pfn_copy is called when vma that is covering the pfnmap gets
 960 * copied through copy_page_range().
 961 *
 962 * If the vma has a linear pfn mapping for the entire range, we get the prot
 963 * from pte and reserve the entire vma range with single reserve_pfn_range call.
 964 */
 965int track_pfn_copy(struct vm_area_struct *vma)
 966{
 967        resource_size_t paddr;
 968        unsigned long prot;
 969        unsigned long vma_size = vma->vm_end - vma->vm_start;
 970        pgprot_t pgprot;
 971
 972        if (vma->vm_flags & VM_PAT) {
 973                /*
 974                 * reserve the whole chunk covered by vma. We need the
 975                 * starting address and protection from pte.
 976                 */
 977                if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
 978                        WARN_ON_ONCE(1);
 979                        return -EINVAL;
 980                }
 981                pgprot = __pgprot(prot);
 982                return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
 983        }
 984
 985        return 0;
 986}
 987
 988/*
 989 * prot is passed in as a parameter for the new mapping. If the vma has
 990 * a linear pfn mapping for the entire range, or no vma is provided,
 991 * reserve the entire pfn + size range with single reserve_pfn_range
 992 * call.
 993 */
 994int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
 995                    unsigned long pfn, unsigned long addr, unsigned long size)
 996{
 997        resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
 998        enum page_cache_mode pcm;
 999
1000        /* reserve the whole chunk starting from paddr */
1001        if (!vma || (addr == vma->vm_start
1002                                && size == (vma->vm_end - vma->vm_start))) {
1003                int ret;
1004
1005                ret = reserve_pfn_range(paddr, size, prot, 0);
1006                if (ret == 0 && vma)
1007                        vma->vm_flags |= VM_PAT;
1008                return ret;
1009        }
1010
1011        if (!pat_enabled())
1012                return 0;
1013
1014        /*
1015         * For anything smaller than the vma size we set prot based on the
1016         * lookup.
1017         */
1018        pcm = lookup_memtype(paddr);
1019
1020        /* Check memtype for the remaining pages */
1021        while (size > PAGE_SIZE) {
1022                size -= PAGE_SIZE;
1023                paddr += PAGE_SIZE;
1024                if (pcm != lookup_memtype(paddr))
1025                        return -EINVAL;
1026        }
1027
1028        *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1029                         cachemode2protval(pcm));
1030
1031        return 0;
1032}
1033
1034void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn)
1035{
1036        enum page_cache_mode pcm;
1037
1038        if (!pat_enabled())
1039                return;
1040
1041        /* Set prot based on lookup */
1042        pcm = lookup_memtype(pfn_t_to_phys(pfn));
1043        *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1044                         cachemode2protval(pcm));
1045}
1046
1047/*
1048 * untrack_pfn is called while unmapping a pfnmap for a region.
1049 * untrack can be called for a specific region indicated by pfn and size or
1050 * can be for the entire vma (in which case pfn, size are zero).
1051 */
1052void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1053                 unsigned long size)
1054{
1055        resource_size_t paddr;
1056        unsigned long prot;
1057
1058        if (vma && !(vma->vm_flags & VM_PAT))
1059                return;
1060
1061        /* free the chunk starting from pfn or the whole chunk */
1062        paddr = (resource_size_t)pfn << PAGE_SHIFT;
1063        if (!paddr && !size) {
1064                if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
1065                        WARN_ON_ONCE(1);
1066                        return;
1067                }
1068
1069                size = vma->vm_end - vma->vm_start;
1070        }
1071        free_pfn_range(paddr, size);
1072        if (vma)
1073                vma->vm_flags &= ~VM_PAT;
1074}
1075
1076/*
1077 * untrack_pfn_moved is called, while mremapping a pfnmap for a new region,
1078 * with the old vma after its pfnmap page table has been removed.  The new
1079 * vma has a new pfnmap to the same pfn & cache type with VM_PAT set.
1080 */
1081void untrack_pfn_moved(struct vm_area_struct *vma)
1082{
1083        vma->vm_flags &= ~VM_PAT;
1084}
1085
1086pgprot_t pgprot_writecombine(pgprot_t prot)
1087{
1088        return __pgprot(pgprot_val(prot) |
1089                                cachemode2protval(_PAGE_CACHE_MODE_WC));
1090}
1091EXPORT_SYMBOL_GPL(pgprot_writecombine);
1092
1093pgprot_t pgprot_writethrough(pgprot_t prot)
1094{
1095        return __pgprot(pgprot_val(prot) |
1096                                cachemode2protval(_PAGE_CACHE_MODE_WT));
1097}
1098EXPORT_SYMBOL_GPL(pgprot_writethrough);
1099
1100#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
1101
1102static struct memtype *memtype_get_idx(loff_t pos)
1103{
1104        struct memtype *print_entry;
1105        int ret;
1106
1107        print_entry  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
1108        if (!print_entry)
1109                return NULL;
1110
1111        spin_lock(&memtype_lock);
1112        ret = rbt_memtype_copy_nth_element(print_entry, pos);
1113        spin_unlock(&memtype_lock);
1114
1115        if (!ret) {
1116                return print_entry;
1117        } else {
1118                kfree(print_entry);
1119                return NULL;
1120        }
1121}
1122
1123static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
1124{
1125        if (*pos == 0) {
1126                ++*pos;
1127                seq_puts(seq, "PAT memtype list:\n");
1128        }
1129
1130        return memtype_get_idx(*pos);
1131}
1132
1133static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1134{
1135        ++*pos;
1136        return memtype_get_idx(*pos);
1137}
1138
1139static void memtype_seq_stop(struct seq_file *seq, void *v)
1140{
1141}
1142
1143static int memtype_seq_show(struct seq_file *seq, void *v)
1144{
1145        struct memtype *print_entry = (struct memtype *)v;
1146
1147        seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
1148                        print_entry->start, print_entry->end);
1149        kfree(print_entry);
1150
1151        return 0;
1152}
1153
1154static const struct seq_operations memtype_seq_ops = {
1155        .start = memtype_seq_start,
1156        .next  = memtype_seq_next,
1157        .stop  = memtype_seq_stop,
1158        .show  = memtype_seq_show,
1159};
1160
1161static int memtype_seq_open(struct inode *inode, struct file *file)
1162{
1163        return seq_open(file, &memtype_seq_ops);
1164}
1165
1166static const struct file_operations memtype_fops = {
1167        .open    = memtype_seq_open,
1168        .read    = seq_read,
1169        .llseek  = seq_lseek,
1170        .release = seq_release,
1171};
1172
1173static int __init pat_memtype_list_init(void)
1174{
1175        if (pat_enabled()) {
1176                debugfs_create_file("pat_memtype_list", S_IRUSR,
1177                                    arch_debugfs_dir, NULL, &memtype_fops);
1178        }
1179        return 0;
1180}
1181
1182late_initcall(pat_memtype_list_init);
1183
1184#endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
1185