linux/arch/x86/mm/tlb.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/init.h>
   3
   4#include <linux/mm.h>
   5#include <linux/spinlock.h>
   6#include <linux/smp.h>
   7#include <linux/interrupt.h>
   8#include <linux/export.h>
   9#include <linux/cpu.h>
  10#include <linux/debugfs.h>
  11
  12#include <asm/tlbflush.h>
  13#include <asm/mmu_context.h>
  14#include <asm/nospec-branch.h>
  15#include <asm/cache.h>
  16#include <asm/apic.h>
  17#include <asm/uv/uv.h>
  18
  19#include "mm_internal.h"
  20
  21/*
  22 *      TLB flushing, formerly SMP-only
  23 *              c/o Linus Torvalds.
  24 *
  25 *      These mean you can really definitely utterly forget about
  26 *      writing to user space from interrupts. (Its not allowed anyway).
  27 *
  28 *      Optimizations Manfred Spraul <manfred@colorfullife.com>
  29 *
  30 *      More scalable flush, from Andi Kleen
  31 *
  32 *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
  33 */
  34
  35/*
  36 * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
  37 * stored in cpu_tlb_state.last_user_mm_ibpb.
  38 */
  39#define LAST_USER_MM_IBPB       0x1UL
  40
  41/*
  42 * We get here when we do something requiring a TLB invalidation
  43 * but could not go invalidate all of the contexts.  We do the
  44 * necessary invalidation by clearing out the 'ctx_id' which
  45 * forces a TLB flush when the context is loaded.
  46 */
  47static void clear_asid_other(void)
  48{
  49        u16 asid;
  50
  51        /*
  52         * This is only expected to be set if we have disabled
  53         * kernel _PAGE_GLOBAL pages.
  54         */
  55        if (!static_cpu_has(X86_FEATURE_PTI)) {
  56                WARN_ON_ONCE(1);
  57                return;
  58        }
  59
  60        for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
  61                /* Do not need to flush the current asid */
  62                if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
  63                        continue;
  64                /*
  65                 * Make sure the next time we go to switch to
  66                 * this asid, we do a flush:
  67                 */
  68                this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
  69        }
  70        this_cpu_write(cpu_tlbstate.invalidate_other, false);
  71}
  72
  73atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
  74
  75
  76static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
  77                            u16 *new_asid, bool *need_flush)
  78{
  79        u16 asid;
  80
  81        if (!static_cpu_has(X86_FEATURE_PCID)) {
  82                *new_asid = 0;
  83                *need_flush = true;
  84                return;
  85        }
  86
  87        if (this_cpu_read(cpu_tlbstate.invalidate_other))
  88                clear_asid_other();
  89
  90        for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
  91                if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
  92                    next->context.ctx_id)
  93                        continue;
  94
  95                *new_asid = asid;
  96                *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
  97                               next_tlb_gen);
  98                return;
  99        }
 100
 101        /*
 102         * We don't currently own an ASID slot on this CPU.
 103         * Allocate a slot.
 104         */
 105        *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
 106        if (*new_asid >= TLB_NR_DYN_ASIDS) {
 107                *new_asid = 0;
 108                this_cpu_write(cpu_tlbstate.next_asid, 1);
 109        }
 110        *need_flush = true;
 111}
 112
 113static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
 114{
 115        unsigned long new_mm_cr3;
 116
 117        if (need_flush) {
 118                invalidate_user_asid(new_asid);
 119                new_mm_cr3 = build_cr3(pgdir, new_asid);
 120        } else {
 121                new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
 122        }
 123
 124        /*
 125         * Caution: many callers of this function expect
 126         * that load_cr3() is serializing and orders TLB
 127         * fills with respect to the mm_cpumask writes.
 128         */
 129        write_cr3(new_mm_cr3);
 130}
 131
 132void leave_mm(int cpu)
 133{
 134        struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 135
 136        /*
 137         * It's plausible that we're in lazy TLB mode while our mm is init_mm.
 138         * If so, our callers still expect us to flush the TLB, but there
 139         * aren't any user TLB entries in init_mm to worry about.
 140         *
 141         * This needs to happen before any other sanity checks due to
 142         * intel_idle's shenanigans.
 143         */
 144        if (loaded_mm == &init_mm)
 145                return;
 146
 147        /* Warn if we're not lazy. */
 148        WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
 149
 150        switch_mm(NULL, &init_mm, NULL);
 151}
 152EXPORT_SYMBOL_GPL(leave_mm);
 153
 154void switch_mm(struct mm_struct *prev, struct mm_struct *next,
 155               struct task_struct *tsk)
 156{
 157        unsigned long flags;
 158
 159        local_irq_save(flags);
 160        switch_mm_irqs_off(prev, next, tsk);
 161        local_irq_restore(flags);
 162}
 163
 164static void sync_current_stack_to_mm(struct mm_struct *mm)
 165{
 166        unsigned long sp = current_stack_pointer;
 167        pgd_t *pgd = pgd_offset(mm, sp);
 168
 169        if (pgtable_l5_enabled()) {
 170                if (unlikely(pgd_none(*pgd))) {
 171                        pgd_t *pgd_ref = pgd_offset_k(sp);
 172
 173                        set_pgd(pgd, *pgd_ref);
 174                }
 175        } else {
 176                /*
 177                 * "pgd" is faked.  The top level entries are "p4d"s, so sync
 178                 * the p4d.  This compiles to approximately the same code as
 179                 * the 5-level case.
 180                 */
 181                p4d_t *p4d = p4d_offset(pgd, sp);
 182
 183                if (unlikely(p4d_none(*p4d))) {
 184                        pgd_t *pgd_ref = pgd_offset_k(sp);
 185                        p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
 186
 187                        set_p4d(p4d, *p4d_ref);
 188                }
 189        }
 190}
 191
 192static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
 193{
 194        unsigned long next_tif = task_thread_info(next)->flags;
 195        unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
 196
 197        return (unsigned long)next->mm | ibpb;
 198}
 199
 200static void cond_ibpb(struct task_struct *next)
 201{
 202        if (!next || !next->mm)
 203                return;
 204
 205        /*
 206         * Both, the conditional and the always IBPB mode use the mm
 207         * pointer to avoid the IBPB when switching between tasks of the
 208         * same process. Using the mm pointer instead of mm->context.ctx_id
 209         * opens a hypothetical hole vs. mm_struct reuse, which is more or
 210         * less impossible to control by an attacker. Aside of that it
 211         * would only affect the first schedule so the theoretically
 212         * exposed data is not really interesting.
 213         */
 214        if (static_branch_likely(&switch_mm_cond_ibpb)) {
 215                unsigned long prev_mm, next_mm;
 216
 217                /*
 218                 * This is a bit more complex than the always mode because
 219                 * it has to handle two cases:
 220                 *
 221                 * 1) Switch from a user space task (potential attacker)
 222                 *    which has TIF_SPEC_IB set to a user space task
 223                 *    (potential victim) which has TIF_SPEC_IB not set.
 224                 *
 225                 * 2) Switch from a user space task (potential attacker)
 226                 *    which has TIF_SPEC_IB not set to a user space task
 227                 *    (potential victim) which has TIF_SPEC_IB set.
 228                 *
 229                 * This could be done by unconditionally issuing IBPB when
 230                 * a task which has TIF_SPEC_IB set is either scheduled in
 231                 * or out. Though that results in two flushes when:
 232                 *
 233                 * - the same user space task is scheduled out and later
 234                 *   scheduled in again and only a kernel thread ran in
 235                 *   between.
 236                 *
 237                 * - a user space task belonging to the same process is
 238                 *   scheduled in after a kernel thread ran in between
 239                 *
 240                 * - a user space task belonging to the same process is
 241                 *   scheduled in immediately.
 242                 *
 243                 * Optimize this with reasonably small overhead for the
 244                 * above cases. Mangle the TIF_SPEC_IB bit into the mm
 245                 * pointer of the incoming task which is stored in
 246                 * cpu_tlbstate.last_user_mm_ibpb for comparison.
 247                 */
 248                next_mm = mm_mangle_tif_spec_ib(next);
 249                prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
 250
 251                /*
 252                 * Issue IBPB only if the mm's are different and one or
 253                 * both have the IBPB bit set.
 254                 */
 255                if (next_mm != prev_mm &&
 256                    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
 257                        indirect_branch_prediction_barrier();
 258
 259                this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
 260        }
 261
 262        if (static_branch_unlikely(&switch_mm_always_ibpb)) {
 263                /*
 264                 * Only flush when switching to a user space task with a
 265                 * different context than the user space task which ran
 266                 * last on this CPU.
 267                 */
 268                if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
 269                        indirect_branch_prediction_barrier();
 270                        this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
 271                }
 272        }
 273}
 274
 275void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
 276                        struct task_struct *tsk)
 277{
 278        struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
 279        u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
 280        bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
 281        unsigned cpu = smp_processor_id();
 282        u64 next_tlb_gen;
 283        bool need_flush;
 284        u16 new_asid;
 285
 286        /*
 287         * NB: The scheduler will call us with prev == next when switching
 288         * from lazy TLB mode to normal mode if active_mm isn't changing.
 289         * When this happens, we don't assume that CR3 (and hence
 290         * cpu_tlbstate.loaded_mm) matches next.
 291         *
 292         * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
 293         */
 294
 295        /* We don't want flush_tlb_func_* to run concurrently with us. */
 296        if (IS_ENABLED(CONFIG_PROVE_LOCKING))
 297                WARN_ON_ONCE(!irqs_disabled());
 298
 299        /*
 300         * Verify that CR3 is what we think it is.  This will catch
 301         * hypothetical buggy code that directly switches to swapper_pg_dir
 302         * without going through leave_mm() / switch_mm_irqs_off() or that
 303         * does something like write_cr3(read_cr3_pa()).
 304         *
 305         * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
 306         * isn't free.
 307         */
 308#ifdef CONFIG_DEBUG_VM
 309        if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
 310                /*
 311                 * If we were to BUG here, we'd be very likely to kill
 312                 * the system so hard that we don't see the call trace.
 313                 * Try to recover instead by ignoring the error and doing
 314                 * a global flush to minimize the chance of corruption.
 315                 *
 316                 * (This is far from being a fully correct recovery.
 317                 *  Architecturally, the CPU could prefetch something
 318                 *  back into an incorrect ASID slot and leave it there
 319                 *  to cause trouble down the road.  It's better than
 320                 *  nothing, though.)
 321                 */
 322                __flush_tlb_all();
 323        }
 324#endif
 325        this_cpu_write(cpu_tlbstate.is_lazy, false);
 326
 327        /*
 328         * The membarrier system call requires a full memory barrier and
 329         * core serialization before returning to user-space, after
 330         * storing to rq->curr. Writing to CR3 provides that full
 331         * memory barrier and core serializing instruction.
 332         */
 333        if (real_prev == next) {
 334                VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
 335                           next->context.ctx_id);
 336
 337                /*
 338                 * Even in lazy TLB mode, the CPU should stay set in the
 339                 * mm_cpumask. The TLB shootdown code can figure out from
 340                 * from cpu_tlbstate.is_lazy whether or not to send an IPI.
 341                 */
 342                if (WARN_ON_ONCE(real_prev != &init_mm &&
 343                                 !cpumask_test_cpu(cpu, mm_cpumask(next))))
 344                        cpumask_set_cpu(cpu, mm_cpumask(next));
 345
 346                /*
 347                 * If the CPU is not in lazy TLB mode, we are just switching
 348                 * from one thread in a process to another thread in the same
 349                 * process. No TLB flush required.
 350                 */
 351                if (!was_lazy)
 352                        return;
 353
 354                /*
 355                 * Read the tlb_gen to check whether a flush is needed.
 356                 * If the TLB is up to date, just use it.
 357                 * The barrier synchronizes with the tlb_gen increment in
 358                 * the TLB shootdown code.
 359                 */
 360                smp_mb();
 361                next_tlb_gen = atomic64_read(&next->context.tlb_gen);
 362                if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
 363                                next_tlb_gen)
 364                        return;
 365
 366                /*
 367                 * TLB contents went out of date while we were in lazy
 368                 * mode. Fall through to the TLB switching code below.
 369                 */
 370                new_asid = prev_asid;
 371                need_flush = true;
 372        } else {
 373                /*
 374                 * Avoid user/user BTB poisoning by flushing the branch
 375                 * predictor when switching between processes. This stops
 376                 * one process from doing Spectre-v2 attacks on another.
 377                 */
 378                cond_ibpb(tsk);
 379
 380                if (IS_ENABLED(CONFIG_VMAP_STACK)) {
 381                        /*
 382                         * If our current stack is in vmalloc space and isn't
 383                         * mapped in the new pgd, we'll double-fault.  Forcibly
 384                         * map it.
 385                         */
 386                        sync_current_stack_to_mm(next);
 387                }
 388
 389                /*
 390                 * Stop remote flushes for the previous mm.
 391                 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
 392                 * but the bitmap manipulation can cause cache line contention.
 393                 */
 394                if (real_prev != &init_mm) {
 395                        VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
 396                                                mm_cpumask(real_prev)));
 397                        cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
 398                }
 399
 400                /*
 401                 * Start remote flushes and then read tlb_gen.
 402                 */
 403                if (next != &init_mm)
 404                        cpumask_set_cpu(cpu, mm_cpumask(next));
 405                next_tlb_gen = atomic64_read(&next->context.tlb_gen);
 406
 407                choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
 408
 409                /* Let nmi_uaccess_okay() know that we're changing CR3. */
 410                this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
 411                barrier();
 412        }
 413
 414        if (need_flush) {
 415                this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
 416                this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
 417                load_new_mm_cr3(next->pgd, new_asid, true);
 418
 419                /*
 420                 * NB: This gets called via leave_mm() in the idle path
 421                 * where RCU functions differently.  Tracing normally
 422                 * uses RCU, so we need to use the _rcuidle variant.
 423                 *
 424                 * (There is no good reason for this.  The idle code should
 425                 *  be rearranged to call this before rcu_idle_enter().)
 426                 */
 427                trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
 428        } else {
 429                /* The new ASID is already up to date. */
 430                load_new_mm_cr3(next->pgd, new_asid, false);
 431
 432                /* See above wrt _rcuidle. */
 433                trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
 434        }
 435
 436        /* Make sure we write CR3 before loaded_mm. */
 437        barrier();
 438
 439        this_cpu_write(cpu_tlbstate.loaded_mm, next);
 440        this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
 441
 442        if (next != real_prev) {
 443                load_mm_cr4_irqsoff(next);
 444                switch_ldt(real_prev, next);
 445        }
 446}
 447
 448/*
 449 * Please ignore the name of this function.  It should be called
 450 * switch_to_kernel_thread().
 451 *
 452 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
 453 * kernel thread or other context without an mm.  Acceptable implementations
 454 * include doing nothing whatsoever, switching to init_mm, or various clever
 455 * lazy tricks to try to minimize TLB flushes.
 456 *
 457 * The scheduler reserves the right to call enter_lazy_tlb() several times
 458 * in a row.  It will notify us that we're going back to a real mm by
 459 * calling switch_mm_irqs_off().
 460 */
 461void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
 462{
 463        if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
 464                return;
 465
 466        this_cpu_write(cpu_tlbstate.is_lazy, true);
 467}
 468
 469/*
 470 * Call this when reinitializing a CPU.  It fixes the following potential
 471 * problems:
 472 *
 473 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
 474 *   because the CPU was taken down and came back up with CR3's PCID
 475 *   bits clear.  CPU hotplug can do this.
 476 *
 477 * - The TLB contains junk in slots corresponding to inactive ASIDs.
 478 *
 479 * - The CPU went so far out to lunch that it may have missed a TLB
 480 *   flush.
 481 */
 482void initialize_tlbstate_and_flush(void)
 483{
 484        int i;
 485        struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 486        u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
 487        unsigned long cr3 = __read_cr3();
 488
 489        /* Assert that CR3 already references the right mm. */
 490        WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
 491
 492        /*
 493         * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
 494         * doesn't work like other CR4 bits because it can only be set from
 495         * long mode.)
 496         */
 497        WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
 498                !(cr4_read_shadow() & X86_CR4_PCIDE));
 499
 500        /* Force ASID 0 and force a TLB flush. */
 501        write_cr3(build_cr3(mm->pgd, 0));
 502
 503        /* Reinitialize tlbstate. */
 504        this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
 505        this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
 506        this_cpu_write(cpu_tlbstate.next_asid, 1);
 507        this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
 508        this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
 509
 510        for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
 511                this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
 512}
 513
 514/*
 515 * flush_tlb_func_common()'s memory ordering requirement is that any
 516 * TLB fills that happen after we flush the TLB are ordered after we
 517 * read active_mm's tlb_gen.  We don't need any explicit barriers
 518 * because all x86 flush operations are serializing and the
 519 * atomic64_read operation won't be reordered by the compiler.
 520 */
 521static void flush_tlb_func_common(const struct flush_tlb_info *f,
 522                                  bool local, enum tlb_flush_reason reason)
 523{
 524        /*
 525         * We have three different tlb_gen values in here.  They are:
 526         *
 527         * - mm_tlb_gen:     the latest generation.
 528         * - local_tlb_gen:  the generation that this CPU has already caught
 529         *                   up to.
 530         * - f->new_tlb_gen: the generation that the requester of the flush
 531         *                   wants us to catch up to.
 532         */
 533        struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 534        u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
 535        u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
 536        u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
 537
 538        /* This code cannot presently handle being reentered. */
 539        VM_WARN_ON(!irqs_disabled());
 540
 541        if (unlikely(loaded_mm == &init_mm))
 542                return;
 543
 544        VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
 545                   loaded_mm->context.ctx_id);
 546
 547        if (this_cpu_read(cpu_tlbstate.is_lazy)) {
 548                /*
 549                 * We're in lazy mode.  We need to at least flush our
 550                 * paging-structure cache to avoid speculatively reading
 551                 * garbage into our TLB.  Since switching to init_mm is barely
 552                 * slower than a minimal flush, just switch to init_mm.
 553                 *
 554                 * This should be rare, with native_flush_tlb_others skipping
 555                 * IPIs to lazy TLB mode CPUs.
 556                 */
 557                switch_mm_irqs_off(NULL, &init_mm, NULL);
 558                return;
 559        }
 560
 561        if (unlikely(local_tlb_gen == mm_tlb_gen)) {
 562                /*
 563                 * There's nothing to do: we're already up to date.  This can
 564                 * happen if two concurrent flushes happen -- the first flush to
 565                 * be handled can catch us all the way up, leaving no work for
 566                 * the second flush.
 567                 */
 568                trace_tlb_flush(reason, 0);
 569                return;
 570        }
 571
 572        WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
 573        WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
 574
 575        /*
 576         * If we get to this point, we know that our TLB is out of date.
 577         * This does not strictly imply that we need to flush (it's
 578         * possible that f->new_tlb_gen <= local_tlb_gen), but we're
 579         * going to need to flush in the very near future, so we might
 580         * as well get it over with.
 581         *
 582         * The only question is whether to do a full or partial flush.
 583         *
 584         * We do a partial flush if requested and two extra conditions
 585         * are met:
 586         *
 587         * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
 588         *    we've always done all needed flushes to catch up to
 589         *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
 590         *    f->new_tlb_gen == 3, then we know that the flush needed to bring
 591         *    us up to date for tlb_gen 3 is the partial flush we're
 592         *    processing.
 593         *
 594         *    As an example of why this check is needed, suppose that there
 595         *    are two concurrent flushes.  The first is a full flush that
 596         *    changes context.tlb_gen from 1 to 2.  The second is a partial
 597         *    flush that changes context.tlb_gen from 2 to 3.  If they get
 598         *    processed on this CPU in reverse order, we'll see
 599         *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
 600         *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
 601         *    3, we'd be break the invariant: we'd update local_tlb_gen above
 602         *    1 without the full flush that's needed for tlb_gen 2.
 603         *
 604         * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
 605         *    Partial TLB flushes are not all that much cheaper than full TLB
 606         *    flushes, so it seems unlikely that it would be a performance win
 607         *    to do a partial flush if that won't bring our TLB fully up to
 608         *    date.  By doing a full flush instead, we can increase
 609         *    local_tlb_gen all the way to mm_tlb_gen and we can probably
 610         *    avoid another flush in the very near future.
 611         */
 612        if (f->end != TLB_FLUSH_ALL &&
 613            f->new_tlb_gen == local_tlb_gen + 1 &&
 614            f->new_tlb_gen == mm_tlb_gen) {
 615                /* Partial flush */
 616                unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift;
 617                unsigned long addr = f->start;
 618
 619                while (addr < f->end) {
 620                        __flush_tlb_one_user(addr);
 621                        addr += 1UL << f->stride_shift;
 622                }
 623                if (local)
 624                        count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
 625                trace_tlb_flush(reason, nr_invalidate);
 626        } else {
 627                /* Full flush. */
 628                local_flush_tlb();
 629                if (local)
 630                        count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
 631                trace_tlb_flush(reason, TLB_FLUSH_ALL);
 632        }
 633
 634        /* Both paths above update our state to mm_tlb_gen. */
 635        this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
 636}
 637
 638static void flush_tlb_func_local(const void *info, enum tlb_flush_reason reason)
 639{
 640        const struct flush_tlb_info *f = info;
 641
 642        flush_tlb_func_common(f, true, reason);
 643}
 644
 645static void flush_tlb_func_remote(void *info)
 646{
 647        const struct flush_tlb_info *f = info;
 648
 649        inc_irq_stat(irq_tlb_count);
 650
 651        if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
 652                return;
 653
 654        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
 655        flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
 656}
 657
 658static bool tlb_is_not_lazy(int cpu, void *data)
 659{
 660        return !per_cpu(cpu_tlbstate.is_lazy, cpu);
 661}
 662
 663void native_flush_tlb_others(const struct cpumask *cpumask,
 664                             const struct flush_tlb_info *info)
 665{
 666        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
 667        if (info->end == TLB_FLUSH_ALL)
 668                trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
 669        else
 670                trace_tlb_flush(TLB_REMOTE_SEND_IPI,
 671                                (info->end - info->start) >> PAGE_SHIFT);
 672
 673        if (is_uv_system()) {
 674                /*
 675                 * This whole special case is confused.  UV has a "Broadcast
 676                 * Assist Unit", which seems to be a fancy way to send IPIs.
 677                 * Back when x86 used an explicit TLB flush IPI, UV was
 678                 * optimized to use its own mechanism.  These days, x86 uses
 679                 * smp_call_function_many(), but UV still uses a manual IPI,
 680                 * and that IPI's action is out of date -- it does a manual
 681                 * flush instead of calling flush_tlb_func_remote().  This
 682                 * means that the percpu tlb_gen variables won't be updated
 683                 * and we'll do pointless flushes on future context switches.
 684                 *
 685                 * Rather than hooking native_flush_tlb_others() here, I think
 686                 * that UV should be updated so that smp_call_function_many(),
 687                 * etc, are optimal on UV.
 688                 */
 689                cpumask = uv_flush_tlb_others(cpumask, info);
 690                if (cpumask)
 691                        smp_call_function_many(cpumask, flush_tlb_func_remote,
 692                                               (void *)info, 1);
 693                return;
 694        }
 695
 696        /*
 697         * If no page tables were freed, we can skip sending IPIs to
 698         * CPUs in lazy TLB mode. They will flush the CPU themselves
 699         * at the next context switch.
 700         *
 701         * However, if page tables are getting freed, we need to send the
 702         * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
 703         * up on the new contents of what used to be page tables, while
 704         * doing a speculative memory access.
 705         */
 706        if (info->freed_tables)
 707                smp_call_function_many(cpumask, flush_tlb_func_remote,
 708                               (void *)info, 1);
 709        else
 710                on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
 711                                (void *)info, 1, GFP_ATOMIC, cpumask);
 712}
 713
 714/*
 715 * See Documentation/x86/tlb.rst for details.  We choose 33
 716 * because it is large enough to cover the vast majority (at
 717 * least 95%) of allocations, and is small enough that we are
 718 * confident it will not cause too much overhead.  Each single
 719 * flush is about 100 ns, so this caps the maximum overhead at
 720 * _about_ 3,000 ns.
 721 *
 722 * This is in units of pages.
 723 */
 724unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
 725
 726static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
 727
 728#ifdef CONFIG_DEBUG_VM
 729static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
 730#endif
 731
 732static inline struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
 733                        unsigned long start, unsigned long end,
 734                        unsigned int stride_shift, bool freed_tables,
 735                        u64 new_tlb_gen)
 736{
 737        struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
 738
 739#ifdef CONFIG_DEBUG_VM
 740        /*
 741         * Ensure that the following code is non-reentrant and flush_tlb_info
 742         * is not overwritten. This means no TLB flushing is initiated by
 743         * interrupt handlers and machine-check exception handlers.
 744         */
 745        BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
 746#endif
 747
 748        info->start             = start;
 749        info->end               = end;
 750        info->mm                = mm;
 751        info->stride_shift      = stride_shift;
 752        info->freed_tables      = freed_tables;
 753        info->new_tlb_gen       = new_tlb_gen;
 754
 755        return info;
 756}
 757
 758static inline void put_flush_tlb_info(void)
 759{
 760#ifdef CONFIG_DEBUG_VM
 761        /* Complete reentrency prevention checks */
 762        barrier();
 763        this_cpu_dec(flush_tlb_info_idx);
 764#endif
 765}
 766
 767void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
 768                                unsigned long end, unsigned int stride_shift,
 769                                bool freed_tables)
 770{
 771        struct flush_tlb_info *info;
 772        u64 new_tlb_gen;
 773        int cpu;
 774
 775        cpu = get_cpu();
 776
 777        /* Should we flush just the requested range? */
 778        if ((end == TLB_FLUSH_ALL) ||
 779            ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
 780                start = 0;
 781                end = TLB_FLUSH_ALL;
 782        }
 783
 784        /* This is also a barrier that synchronizes with switch_mm(). */
 785        new_tlb_gen = inc_mm_tlb_gen(mm);
 786
 787        info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
 788                                  new_tlb_gen);
 789
 790        if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
 791                lockdep_assert_irqs_enabled();
 792                local_irq_disable();
 793                flush_tlb_func_local(info, TLB_LOCAL_MM_SHOOTDOWN);
 794                local_irq_enable();
 795        }
 796
 797        if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
 798                flush_tlb_others(mm_cpumask(mm), info);
 799
 800        put_flush_tlb_info();
 801        put_cpu();
 802}
 803
 804
 805static void do_flush_tlb_all(void *info)
 806{
 807        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
 808        __flush_tlb_all();
 809}
 810
 811void flush_tlb_all(void)
 812{
 813        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
 814        on_each_cpu(do_flush_tlb_all, NULL, 1);
 815}
 816
 817static void do_kernel_range_flush(void *info)
 818{
 819        struct flush_tlb_info *f = info;
 820        unsigned long addr;
 821
 822        /* flush range by one by one 'invlpg' */
 823        for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
 824                __flush_tlb_one_kernel(addr);
 825}
 826
 827void flush_tlb_kernel_range(unsigned long start, unsigned long end)
 828{
 829        /* Balance as user space task's flush, a bit conservative */
 830        if (end == TLB_FLUSH_ALL ||
 831            (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
 832                on_each_cpu(do_flush_tlb_all, NULL, 1);
 833        } else {
 834                struct flush_tlb_info *info;
 835
 836                preempt_disable();
 837                info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
 838
 839                on_each_cpu(do_kernel_range_flush, info, 1);
 840
 841                put_flush_tlb_info();
 842                preempt_enable();
 843        }
 844}
 845
 846/*
 847 * arch_tlbbatch_flush() performs a full TLB flush regardless of the active mm.
 848 * This means that the 'struct flush_tlb_info' that describes which mappings to
 849 * flush is actually fixed. We therefore set a single fixed struct and use it in
 850 * arch_tlbbatch_flush().
 851 */
 852static const struct flush_tlb_info full_flush_tlb_info = {
 853        .mm = NULL,
 854        .start = 0,
 855        .end = TLB_FLUSH_ALL,
 856};
 857
 858void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
 859{
 860        int cpu = get_cpu();
 861
 862        if (cpumask_test_cpu(cpu, &batch->cpumask)) {
 863                lockdep_assert_irqs_enabled();
 864                local_irq_disable();
 865                flush_tlb_func_local(&full_flush_tlb_info, TLB_LOCAL_SHOOTDOWN);
 866                local_irq_enable();
 867        }
 868
 869        if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
 870                flush_tlb_others(&batch->cpumask, &full_flush_tlb_info);
 871
 872        cpumask_clear(&batch->cpumask);
 873
 874        put_cpu();
 875}
 876
 877static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
 878                             size_t count, loff_t *ppos)
 879{
 880        char buf[32];
 881        unsigned int len;
 882
 883        len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
 884        return simple_read_from_buffer(user_buf, count, ppos, buf, len);
 885}
 886
 887static ssize_t tlbflush_write_file(struct file *file,
 888                 const char __user *user_buf, size_t count, loff_t *ppos)
 889{
 890        char buf[32];
 891        ssize_t len;
 892        int ceiling;
 893
 894        len = min(count, sizeof(buf) - 1);
 895        if (copy_from_user(buf, user_buf, len))
 896                return -EFAULT;
 897
 898        buf[len] = '\0';
 899        if (kstrtoint(buf, 0, &ceiling))
 900                return -EINVAL;
 901
 902        if (ceiling < 0)
 903                return -EINVAL;
 904
 905        tlb_single_page_flush_ceiling = ceiling;
 906        return count;
 907}
 908
 909static const struct file_operations fops_tlbflush = {
 910        .read = tlbflush_read_file,
 911        .write = tlbflush_write_file,
 912        .llseek = default_llseek,
 913};
 914
 915static int __init create_tlb_single_page_flush_ceiling(void)
 916{
 917        debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
 918                            arch_debugfs_dir, NULL, &fops_tlbflush);
 919        return 0;
 920}
 921late_initcall(create_tlb_single_page_flush_ceiling);
 922