linux/crypto/lrw.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* LRW: as defined by Cyril Guyot in
   3 *      http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
   4 *
   5 * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
   6 *
   7 * Based on ecb.c
   8 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
   9 */
  10/* This implementation is checked against the test vectors in the above
  11 * document and by a test vector provided by Ken Buchanan at
  12 * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
  13 *
  14 * The test vectors are included in the testing module tcrypt.[ch] */
  15
  16#include <crypto/internal/skcipher.h>
  17#include <crypto/scatterwalk.h>
  18#include <linux/err.h>
  19#include <linux/init.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/scatterlist.h>
  23#include <linux/slab.h>
  24
  25#include <crypto/b128ops.h>
  26#include <crypto/gf128mul.h>
  27
  28#define LRW_BLOCK_SIZE 16
  29
  30struct priv {
  31        struct crypto_skcipher *child;
  32
  33        /*
  34         * optimizes multiplying a random (non incrementing, as at the
  35         * start of a new sector) value with key2, we could also have
  36         * used 4k optimization tables or no optimization at all. In the
  37         * latter case we would have to store key2 here
  38         */
  39        struct gf128mul_64k *table;
  40
  41        /*
  42         * stores:
  43         *  key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
  44         *  key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
  45         *  key2*{ 0,0,...1,1,1,1,1 }, etc
  46         * needed for optimized multiplication of incrementing values
  47         * with key2
  48         */
  49        be128 mulinc[128];
  50};
  51
  52struct rctx {
  53        be128 t;
  54        struct skcipher_request subreq;
  55};
  56
  57static inline void setbit128_bbe(void *b, int bit)
  58{
  59        __set_bit(bit ^ (0x80 -
  60#ifdef __BIG_ENDIAN
  61                         BITS_PER_LONG
  62#else
  63                         BITS_PER_BYTE
  64#endif
  65                        ), b);
  66}
  67
  68static int setkey(struct crypto_skcipher *parent, const u8 *key,
  69                  unsigned int keylen)
  70{
  71        struct priv *ctx = crypto_skcipher_ctx(parent);
  72        struct crypto_skcipher *child = ctx->child;
  73        int err, bsize = LRW_BLOCK_SIZE;
  74        const u8 *tweak = key + keylen - bsize;
  75        be128 tmp = { 0 };
  76        int i;
  77
  78        crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
  79        crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
  80                                         CRYPTO_TFM_REQ_MASK);
  81        err = crypto_skcipher_setkey(child, key, keylen - bsize);
  82        crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
  83                                          CRYPTO_TFM_RES_MASK);
  84        if (err)
  85                return err;
  86
  87        if (ctx->table)
  88                gf128mul_free_64k(ctx->table);
  89
  90        /* initialize multiplication table for Key2 */
  91        ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
  92        if (!ctx->table)
  93                return -ENOMEM;
  94
  95        /* initialize optimization table */
  96        for (i = 0; i < 128; i++) {
  97                setbit128_bbe(&tmp, i);
  98                ctx->mulinc[i] = tmp;
  99                gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
 100        }
 101
 102        return 0;
 103}
 104
 105/*
 106 * Returns the number of trailing '1' bits in the words of the counter, which is
 107 * represented by 4 32-bit words, arranged from least to most significant.
 108 * At the same time, increments the counter by one.
 109 *
 110 * For example:
 111 *
 112 * u32 counter[4] = { 0xFFFFFFFF, 0x1, 0x0, 0x0 };
 113 * int i = next_index(&counter);
 114 * // i == 33, counter == { 0x0, 0x2, 0x0, 0x0 }
 115 */
 116static int next_index(u32 *counter)
 117{
 118        int i, res = 0;
 119
 120        for (i = 0; i < 4; i++) {
 121                if (counter[i] + 1 != 0)
 122                        return res + ffz(counter[i]++);
 123
 124                counter[i] = 0;
 125                res += 32;
 126        }
 127
 128        /*
 129         * If we get here, then x == 128 and we are incrementing the counter
 130         * from all ones to all zeros. This means we must return index 127, i.e.
 131         * the one corresponding to key2*{ 1,...,1 }.
 132         */
 133        return 127;
 134}
 135
 136/*
 137 * We compute the tweak masks twice (both before and after the ECB encryption or
 138 * decryption) to avoid having to allocate a temporary buffer and/or make
 139 * mutliple calls to the 'ecb(..)' instance, which usually would be slower than
 140 * just doing the next_index() calls again.
 141 */
 142static int xor_tweak(struct skcipher_request *req, bool second_pass)
 143{
 144        const int bs = LRW_BLOCK_SIZE;
 145        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 146        struct priv *ctx = crypto_skcipher_ctx(tfm);
 147        struct rctx *rctx = skcipher_request_ctx(req);
 148        be128 t = rctx->t;
 149        struct skcipher_walk w;
 150        __be32 *iv;
 151        u32 counter[4];
 152        int err;
 153
 154        if (second_pass) {
 155                req = &rctx->subreq;
 156                /* set to our TFM to enforce correct alignment: */
 157                skcipher_request_set_tfm(req, tfm);
 158        }
 159
 160        err = skcipher_walk_virt(&w, req, false);
 161        if (err)
 162                return err;
 163
 164        iv = (__be32 *)w.iv;
 165        counter[0] = be32_to_cpu(iv[3]);
 166        counter[1] = be32_to_cpu(iv[2]);
 167        counter[2] = be32_to_cpu(iv[1]);
 168        counter[3] = be32_to_cpu(iv[0]);
 169
 170        while (w.nbytes) {
 171                unsigned int avail = w.nbytes;
 172                be128 *wsrc;
 173                be128 *wdst;
 174
 175                wsrc = w.src.virt.addr;
 176                wdst = w.dst.virt.addr;
 177
 178                do {
 179                        be128_xor(wdst++, &t, wsrc++);
 180
 181                        /* T <- I*Key2, using the optimization
 182                         * discussed in the specification */
 183                        be128_xor(&t, &t, &ctx->mulinc[next_index(counter)]);
 184                } while ((avail -= bs) >= bs);
 185
 186                if (second_pass && w.nbytes == w.total) {
 187                        iv[0] = cpu_to_be32(counter[3]);
 188                        iv[1] = cpu_to_be32(counter[2]);
 189                        iv[2] = cpu_to_be32(counter[1]);
 190                        iv[3] = cpu_to_be32(counter[0]);
 191                }
 192
 193                err = skcipher_walk_done(&w, avail);
 194        }
 195
 196        return err;
 197}
 198
 199static int xor_tweak_pre(struct skcipher_request *req)
 200{
 201        return xor_tweak(req, false);
 202}
 203
 204static int xor_tweak_post(struct skcipher_request *req)
 205{
 206        return xor_tweak(req, true);
 207}
 208
 209static void crypt_done(struct crypto_async_request *areq, int err)
 210{
 211        struct skcipher_request *req = areq->data;
 212
 213        if (!err) {
 214                struct rctx *rctx = skcipher_request_ctx(req);
 215
 216                rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
 217                err = xor_tweak_post(req);
 218        }
 219
 220        skcipher_request_complete(req, err);
 221}
 222
 223static void init_crypt(struct skcipher_request *req)
 224{
 225        struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
 226        struct rctx *rctx = skcipher_request_ctx(req);
 227        struct skcipher_request *subreq = &rctx->subreq;
 228
 229        skcipher_request_set_tfm(subreq, ctx->child);
 230        skcipher_request_set_callback(subreq, req->base.flags, crypt_done, req);
 231        /* pass req->iv as IV (will be used by xor_tweak, ECB will ignore it) */
 232        skcipher_request_set_crypt(subreq, req->dst, req->dst,
 233                                   req->cryptlen, req->iv);
 234
 235        /* calculate first value of T */
 236        memcpy(&rctx->t, req->iv, sizeof(rctx->t));
 237
 238        /* T <- I*Key2 */
 239        gf128mul_64k_bbe(&rctx->t, ctx->table);
 240}
 241
 242static int encrypt(struct skcipher_request *req)
 243{
 244        struct rctx *rctx = skcipher_request_ctx(req);
 245        struct skcipher_request *subreq = &rctx->subreq;
 246
 247        init_crypt(req);
 248        return xor_tweak_pre(req) ?:
 249                crypto_skcipher_encrypt(subreq) ?:
 250                xor_tweak_post(req);
 251}
 252
 253static int decrypt(struct skcipher_request *req)
 254{
 255        struct rctx *rctx = skcipher_request_ctx(req);
 256        struct skcipher_request *subreq = &rctx->subreq;
 257
 258        init_crypt(req);
 259        return xor_tweak_pre(req) ?:
 260                crypto_skcipher_decrypt(subreq) ?:
 261                xor_tweak_post(req);
 262}
 263
 264static int init_tfm(struct crypto_skcipher *tfm)
 265{
 266        struct skcipher_instance *inst = skcipher_alg_instance(tfm);
 267        struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
 268        struct priv *ctx = crypto_skcipher_ctx(tfm);
 269        struct crypto_skcipher *cipher;
 270
 271        cipher = crypto_spawn_skcipher(spawn);
 272        if (IS_ERR(cipher))
 273                return PTR_ERR(cipher);
 274
 275        ctx->child = cipher;
 276
 277        crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
 278                                         sizeof(struct rctx));
 279
 280        return 0;
 281}
 282
 283static void exit_tfm(struct crypto_skcipher *tfm)
 284{
 285        struct priv *ctx = crypto_skcipher_ctx(tfm);
 286
 287        if (ctx->table)
 288                gf128mul_free_64k(ctx->table);
 289        crypto_free_skcipher(ctx->child);
 290}
 291
 292static void free(struct skcipher_instance *inst)
 293{
 294        crypto_drop_skcipher(skcipher_instance_ctx(inst));
 295        kfree(inst);
 296}
 297
 298static int create(struct crypto_template *tmpl, struct rtattr **tb)
 299{
 300        struct crypto_skcipher_spawn *spawn;
 301        struct skcipher_instance *inst;
 302        struct crypto_attr_type *algt;
 303        struct skcipher_alg *alg;
 304        const char *cipher_name;
 305        char ecb_name[CRYPTO_MAX_ALG_NAME];
 306        int err;
 307
 308        algt = crypto_get_attr_type(tb);
 309        if (IS_ERR(algt))
 310                return PTR_ERR(algt);
 311
 312        if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
 313                return -EINVAL;
 314
 315        cipher_name = crypto_attr_alg_name(tb[1]);
 316        if (IS_ERR(cipher_name))
 317                return PTR_ERR(cipher_name);
 318
 319        inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
 320        if (!inst)
 321                return -ENOMEM;
 322
 323        spawn = skcipher_instance_ctx(inst);
 324
 325        crypto_set_skcipher_spawn(spawn, skcipher_crypto_instance(inst));
 326        err = crypto_grab_skcipher(spawn, cipher_name, 0,
 327                                   crypto_requires_sync(algt->type,
 328                                                        algt->mask));
 329        if (err == -ENOENT) {
 330                err = -ENAMETOOLONG;
 331                if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
 332                             cipher_name) >= CRYPTO_MAX_ALG_NAME)
 333                        goto err_free_inst;
 334
 335                err = crypto_grab_skcipher(spawn, ecb_name, 0,
 336                                           crypto_requires_sync(algt->type,
 337                                                                algt->mask));
 338        }
 339
 340        if (err)
 341                goto err_free_inst;
 342
 343        alg = crypto_skcipher_spawn_alg(spawn);
 344
 345        err = -EINVAL;
 346        if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
 347                goto err_drop_spawn;
 348
 349        if (crypto_skcipher_alg_ivsize(alg))
 350                goto err_drop_spawn;
 351
 352        err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
 353                                  &alg->base);
 354        if (err)
 355                goto err_drop_spawn;
 356
 357        err = -EINVAL;
 358        cipher_name = alg->base.cra_name;
 359
 360        /* Alas we screwed up the naming so we have to mangle the
 361         * cipher name.
 362         */
 363        if (!strncmp(cipher_name, "ecb(", 4)) {
 364                unsigned len;
 365
 366                len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
 367                if (len < 2 || len >= sizeof(ecb_name))
 368                        goto err_drop_spawn;
 369
 370                if (ecb_name[len - 1] != ')')
 371                        goto err_drop_spawn;
 372
 373                ecb_name[len - 1] = 0;
 374
 375                if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
 376                             "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) {
 377                        err = -ENAMETOOLONG;
 378                        goto err_drop_spawn;
 379                }
 380        } else
 381                goto err_drop_spawn;
 382
 383        inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC;
 384        inst->alg.base.cra_priority = alg->base.cra_priority;
 385        inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
 386        inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
 387                                       (__alignof__(be128) - 1);
 388
 389        inst->alg.ivsize = LRW_BLOCK_SIZE;
 390        inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) +
 391                                LRW_BLOCK_SIZE;
 392        inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) +
 393                                LRW_BLOCK_SIZE;
 394
 395        inst->alg.base.cra_ctxsize = sizeof(struct priv);
 396
 397        inst->alg.init = init_tfm;
 398        inst->alg.exit = exit_tfm;
 399
 400        inst->alg.setkey = setkey;
 401        inst->alg.encrypt = encrypt;
 402        inst->alg.decrypt = decrypt;
 403
 404        inst->free = free;
 405
 406        err = skcipher_register_instance(tmpl, inst);
 407        if (err)
 408                goto err_drop_spawn;
 409
 410out:
 411        return err;
 412
 413err_drop_spawn:
 414        crypto_drop_skcipher(spawn);
 415err_free_inst:
 416        kfree(inst);
 417        goto out;
 418}
 419
 420static struct crypto_template crypto_tmpl = {
 421        .name = "lrw",
 422        .create = create,
 423        .module = THIS_MODULE,
 424};
 425
 426static int __init crypto_module_init(void)
 427{
 428        return crypto_register_template(&crypto_tmpl);
 429}
 430
 431static void __exit crypto_module_exit(void)
 432{
 433        crypto_unregister_template(&crypto_tmpl);
 434}
 435
 436subsys_initcall(crypto_module_init);
 437module_exit(crypto_module_exit);
 438
 439MODULE_LICENSE("GPL");
 440MODULE_DESCRIPTION("LRW block cipher mode");
 441MODULE_ALIAS_CRYPTO("lrw");
 442