linux/drivers/base/power/main.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/power/main.c - Where the driver meets power management.
   4 *
   5 * Copyright (c) 2003 Patrick Mochel
   6 * Copyright (c) 2003 Open Source Development Lab
   7 *
   8 * The driver model core calls device_pm_add() when a device is registered.
   9 * This will initialize the embedded device_pm_info object in the device
  10 * and add it to the list of power-controlled devices. sysfs entries for
  11 * controlling device power management will also be added.
  12 *
  13 * A separate list is used for keeping track of power info, because the power
  14 * domain dependencies may differ from the ancestral dependencies that the
  15 * subsystem list maintains.
  16 */
  17
  18#define pr_fmt(fmt) "PM: " fmt
  19
  20#include <linux/device.h>
  21#include <linux/export.h>
  22#include <linux/mutex.h>
  23#include <linux/pm.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/pm-trace.h>
  26#include <linux/pm_wakeirq.h>
  27#include <linux/interrupt.h>
  28#include <linux/sched.h>
  29#include <linux/sched/debug.h>
  30#include <linux/async.h>
  31#include <linux/suspend.h>
  32#include <trace/events/power.h>
  33#include <linux/cpufreq.h>
  34#include <linux/cpuidle.h>
  35#include <linux/devfreq.h>
  36#include <linux/timer.h>
  37
  38#include "../base.h"
  39#include "power.h"
  40
  41typedef int (*pm_callback_t)(struct device *);
  42
  43/*
  44 * The entries in the dpm_list list are in a depth first order, simply
  45 * because children are guaranteed to be discovered after parents, and
  46 * are inserted at the back of the list on discovery.
  47 *
  48 * Since device_pm_add() may be called with a device lock held,
  49 * we must never try to acquire a device lock while holding
  50 * dpm_list_mutex.
  51 */
  52
  53LIST_HEAD(dpm_list);
  54static LIST_HEAD(dpm_prepared_list);
  55static LIST_HEAD(dpm_suspended_list);
  56static LIST_HEAD(dpm_late_early_list);
  57static LIST_HEAD(dpm_noirq_list);
  58
  59struct suspend_stats suspend_stats;
  60static DEFINE_MUTEX(dpm_list_mtx);
  61static pm_message_t pm_transition;
  62
  63static int async_error;
  64
  65static const char *pm_verb(int event)
  66{
  67        switch (event) {
  68        case PM_EVENT_SUSPEND:
  69                return "suspend";
  70        case PM_EVENT_RESUME:
  71                return "resume";
  72        case PM_EVENT_FREEZE:
  73                return "freeze";
  74        case PM_EVENT_QUIESCE:
  75                return "quiesce";
  76        case PM_EVENT_HIBERNATE:
  77                return "hibernate";
  78        case PM_EVENT_THAW:
  79                return "thaw";
  80        case PM_EVENT_RESTORE:
  81                return "restore";
  82        case PM_EVENT_RECOVER:
  83                return "recover";
  84        default:
  85                return "(unknown PM event)";
  86        }
  87}
  88
  89/**
  90 * device_pm_sleep_init - Initialize system suspend-related device fields.
  91 * @dev: Device object being initialized.
  92 */
  93void device_pm_sleep_init(struct device *dev)
  94{
  95        dev->power.is_prepared = false;
  96        dev->power.is_suspended = false;
  97        dev->power.is_noirq_suspended = false;
  98        dev->power.is_late_suspended = false;
  99        init_completion(&dev->power.completion);
 100        complete_all(&dev->power.completion);
 101        dev->power.wakeup = NULL;
 102        INIT_LIST_HEAD(&dev->power.entry);
 103}
 104
 105/**
 106 * device_pm_lock - Lock the list of active devices used by the PM core.
 107 */
 108void device_pm_lock(void)
 109{
 110        mutex_lock(&dpm_list_mtx);
 111}
 112
 113/**
 114 * device_pm_unlock - Unlock the list of active devices used by the PM core.
 115 */
 116void device_pm_unlock(void)
 117{
 118        mutex_unlock(&dpm_list_mtx);
 119}
 120
 121/**
 122 * device_pm_add - Add a device to the PM core's list of active devices.
 123 * @dev: Device to add to the list.
 124 */
 125void device_pm_add(struct device *dev)
 126{
 127        /* Skip PM setup/initialization. */
 128        if (device_pm_not_required(dev))
 129                return;
 130
 131        pr_debug("Adding info for %s:%s\n",
 132                 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 133        device_pm_check_callbacks(dev);
 134        mutex_lock(&dpm_list_mtx);
 135        if (dev->parent && dev->parent->power.is_prepared)
 136                dev_warn(dev, "parent %s should not be sleeping\n",
 137                        dev_name(dev->parent));
 138        list_add_tail(&dev->power.entry, &dpm_list);
 139        dev->power.in_dpm_list = true;
 140        mutex_unlock(&dpm_list_mtx);
 141}
 142
 143/**
 144 * device_pm_remove - Remove a device from the PM core's list of active devices.
 145 * @dev: Device to be removed from the list.
 146 */
 147void device_pm_remove(struct device *dev)
 148{
 149        if (device_pm_not_required(dev))
 150                return;
 151
 152        pr_debug("Removing info for %s:%s\n",
 153                 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 154        complete_all(&dev->power.completion);
 155        mutex_lock(&dpm_list_mtx);
 156        list_del_init(&dev->power.entry);
 157        dev->power.in_dpm_list = false;
 158        mutex_unlock(&dpm_list_mtx);
 159        device_wakeup_disable(dev);
 160        pm_runtime_remove(dev);
 161        device_pm_check_callbacks(dev);
 162}
 163
 164/**
 165 * device_pm_move_before - Move device in the PM core's list of active devices.
 166 * @deva: Device to move in dpm_list.
 167 * @devb: Device @deva should come before.
 168 */
 169void device_pm_move_before(struct device *deva, struct device *devb)
 170{
 171        pr_debug("Moving %s:%s before %s:%s\n",
 172                 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
 173                 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
 174        /* Delete deva from dpm_list and reinsert before devb. */
 175        list_move_tail(&deva->power.entry, &devb->power.entry);
 176}
 177
 178/**
 179 * device_pm_move_after - Move device in the PM core's list of active devices.
 180 * @deva: Device to move in dpm_list.
 181 * @devb: Device @deva should come after.
 182 */
 183void device_pm_move_after(struct device *deva, struct device *devb)
 184{
 185        pr_debug("Moving %s:%s after %s:%s\n",
 186                 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
 187                 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
 188        /* Delete deva from dpm_list and reinsert after devb. */
 189        list_move(&deva->power.entry, &devb->power.entry);
 190}
 191
 192/**
 193 * device_pm_move_last - Move device to end of the PM core's list of devices.
 194 * @dev: Device to move in dpm_list.
 195 */
 196void device_pm_move_last(struct device *dev)
 197{
 198        pr_debug("Moving %s:%s to end of list\n",
 199                 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 200        list_move_tail(&dev->power.entry, &dpm_list);
 201}
 202
 203static ktime_t initcall_debug_start(struct device *dev, void *cb)
 204{
 205        if (!pm_print_times_enabled)
 206                return 0;
 207
 208        dev_info(dev, "calling %pS @ %i, parent: %s\n", cb,
 209                 task_pid_nr(current),
 210                 dev->parent ? dev_name(dev->parent) : "none");
 211        return ktime_get();
 212}
 213
 214static void initcall_debug_report(struct device *dev, ktime_t calltime,
 215                                  void *cb, int error)
 216{
 217        ktime_t rettime;
 218        s64 nsecs;
 219
 220        if (!pm_print_times_enabled)
 221                return;
 222
 223        rettime = ktime_get();
 224        nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
 225
 226        dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error,
 227                 (unsigned long long)nsecs >> 10);
 228}
 229
 230/**
 231 * dpm_wait - Wait for a PM operation to complete.
 232 * @dev: Device to wait for.
 233 * @async: If unset, wait only if the device's power.async_suspend flag is set.
 234 */
 235static void dpm_wait(struct device *dev, bool async)
 236{
 237        if (!dev)
 238                return;
 239
 240        if (async || (pm_async_enabled && dev->power.async_suspend))
 241                wait_for_completion(&dev->power.completion);
 242}
 243
 244static int dpm_wait_fn(struct device *dev, void *async_ptr)
 245{
 246        dpm_wait(dev, *((bool *)async_ptr));
 247        return 0;
 248}
 249
 250static void dpm_wait_for_children(struct device *dev, bool async)
 251{
 252       device_for_each_child(dev, &async, dpm_wait_fn);
 253}
 254
 255static void dpm_wait_for_suppliers(struct device *dev, bool async)
 256{
 257        struct device_link *link;
 258        int idx;
 259
 260        idx = device_links_read_lock();
 261
 262        /*
 263         * If the supplier goes away right after we've checked the link to it,
 264         * we'll wait for its completion to change the state, but that's fine,
 265         * because the only things that will block as a result are the SRCU
 266         * callbacks freeing the link objects for the links in the list we're
 267         * walking.
 268         */
 269        list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
 270                if (READ_ONCE(link->status) != DL_STATE_DORMANT)
 271                        dpm_wait(link->supplier, async);
 272
 273        device_links_read_unlock(idx);
 274}
 275
 276static void dpm_wait_for_superior(struct device *dev, bool async)
 277{
 278        dpm_wait(dev->parent, async);
 279        dpm_wait_for_suppliers(dev, async);
 280}
 281
 282static void dpm_wait_for_consumers(struct device *dev, bool async)
 283{
 284        struct device_link *link;
 285        int idx;
 286
 287        idx = device_links_read_lock();
 288
 289        /*
 290         * The status of a device link can only be changed from "dormant" by a
 291         * probe, but that cannot happen during system suspend/resume.  In
 292         * theory it can change to "dormant" at that time, but then it is
 293         * reasonable to wait for the target device anyway (eg. if it goes
 294         * away, it's better to wait for it to go away completely and then
 295         * continue instead of trying to continue in parallel with its
 296         * unregistration).
 297         */
 298        list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
 299                if (READ_ONCE(link->status) != DL_STATE_DORMANT)
 300                        dpm_wait(link->consumer, async);
 301
 302        device_links_read_unlock(idx);
 303}
 304
 305static void dpm_wait_for_subordinate(struct device *dev, bool async)
 306{
 307        dpm_wait_for_children(dev, async);
 308        dpm_wait_for_consumers(dev, async);
 309}
 310
 311/**
 312 * pm_op - Return the PM operation appropriate for given PM event.
 313 * @ops: PM operations to choose from.
 314 * @state: PM transition of the system being carried out.
 315 */
 316static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
 317{
 318        switch (state.event) {
 319#ifdef CONFIG_SUSPEND
 320        case PM_EVENT_SUSPEND:
 321                return ops->suspend;
 322        case PM_EVENT_RESUME:
 323                return ops->resume;
 324#endif /* CONFIG_SUSPEND */
 325#ifdef CONFIG_HIBERNATE_CALLBACKS
 326        case PM_EVENT_FREEZE:
 327        case PM_EVENT_QUIESCE:
 328                return ops->freeze;
 329        case PM_EVENT_HIBERNATE:
 330                return ops->poweroff;
 331        case PM_EVENT_THAW:
 332        case PM_EVENT_RECOVER:
 333                return ops->thaw;
 334                break;
 335        case PM_EVENT_RESTORE:
 336                return ops->restore;
 337#endif /* CONFIG_HIBERNATE_CALLBACKS */
 338        }
 339
 340        return NULL;
 341}
 342
 343/**
 344 * pm_late_early_op - Return the PM operation appropriate for given PM event.
 345 * @ops: PM operations to choose from.
 346 * @state: PM transition of the system being carried out.
 347 *
 348 * Runtime PM is disabled for @dev while this function is being executed.
 349 */
 350static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
 351                                      pm_message_t state)
 352{
 353        switch (state.event) {
 354#ifdef CONFIG_SUSPEND
 355        case PM_EVENT_SUSPEND:
 356                return ops->suspend_late;
 357        case PM_EVENT_RESUME:
 358                return ops->resume_early;
 359#endif /* CONFIG_SUSPEND */
 360#ifdef CONFIG_HIBERNATE_CALLBACKS
 361        case PM_EVENT_FREEZE:
 362        case PM_EVENT_QUIESCE:
 363                return ops->freeze_late;
 364        case PM_EVENT_HIBERNATE:
 365                return ops->poweroff_late;
 366        case PM_EVENT_THAW:
 367        case PM_EVENT_RECOVER:
 368                return ops->thaw_early;
 369        case PM_EVENT_RESTORE:
 370                return ops->restore_early;
 371#endif /* CONFIG_HIBERNATE_CALLBACKS */
 372        }
 373
 374        return NULL;
 375}
 376
 377/**
 378 * pm_noirq_op - Return the PM operation appropriate for given PM event.
 379 * @ops: PM operations to choose from.
 380 * @state: PM transition of the system being carried out.
 381 *
 382 * The driver of @dev will not receive interrupts while this function is being
 383 * executed.
 384 */
 385static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
 386{
 387        switch (state.event) {
 388#ifdef CONFIG_SUSPEND
 389        case PM_EVENT_SUSPEND:
 390                return ops->suspend_noirq;
 391        case PM_EVENT_RESUME:
 392                return ops->resume_noirq;
 393#endif /* CONFIG_SUSPEND */
 394#ifdef CONFIG_HIBERNATE_CALLBACKS
 395        case PM_EVENT_FREEZE:
 396        case PM_EVENT_QUIESCE:
 397                return ops->freeze_noirq;
 398        case PM_EVENT_HIBERNATE:
 399                return ops->poweroff_noirq;
 400        case PM_EVENT_THAW:
 401        case PM_EVENT_RECOVER:
 402                return ops->thaw_noirq;
 403        case PM_EVENT_RESTORE:
 404                return ops->restore_noirq;
 405#endif /* CONFIG_HIBERNATE_CALLBACKS */
 406        }
 407
 408        return NULL;
 409}
 410
 411static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
 412{
 413        dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
 414                ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
 415                ", may wakeup" : "");
 416}
 417
 418static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
 419                        int error)
 420{
 421        pr_err("Device %s failed to %s%s: error %d\n",
 422               dev_name(dev), pm_verb(state.event), info, error);
 423}
 424
 425static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
 426                          const char *info)
 427{
 428        ktime_t calltime;
 429        u64 usecs64;
 430        int usecs;
 431
 432        calltime = ktime_get();
 433        usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
 434        do_div(usecs64, NSEC_PER_USEC);
 435        usecs = usecs64;
 436        if (usecs == 0)
 437                usecs = 1;
 438
 439        pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
 440                  info ?: "", info ? " " : "", pm_verb(state.event),
 441                  error ? "aborted" : "complete",
 442                  usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
 443}
 444
 445static int dpm_run_callback(pm_callback_t cb, struct device *dev,
 446                            pm_message_t state, const char *info)
 447{
 448        ktime_t calltime;
 449        int error;
 450
 451        if (!cb)
 452                return 0;
 453
 454        calltime = initcall_debug_start(dev, cb);
 455
 456        pm_dev_dbg(dev, state, info);
 457        trace_device_pm_callback_start(dev, info, state.event);
 458        error = cb(dev);
 459        trace_device_pm_callback_end(dev, error);
 460        suspend_report_result(cb, error);
 461
 462        initcall_debug_report(dev, calltime, cb, error);
 463
 464        return error;
 465}
 466
 467#ifdef CONFIG_DPM_WATCHDOG
 468struct dpm_watchdog {
 469        struct device           *dev;
 470        struct task_struct      *tsk;
 471        struct timer_list       timer;
 472};
 473
 474#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
 475        struct dpm_watchdog wd
 476
 477/**
 478 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
 479 * @t: The timer that PM watchdog depends on.
 480 *
 481 * Called when a driver has timed out suspending or resuming.
 482 * There's not much we can do here to recover so panic() to
 483 * capture a crash-dump in pstore.
 484 */
 485static void dpm_watchdog_handler(struct timer_list *t)
 486{
 487        struct dpm_watchdog *wd = from_timer(wd, t, timer);
 488
 489        dev_emerg(wd->dev, "**** DPM device timeout ****\n");
 490        show_stack(wd->tsk, NULL);
 491        panic("%s %s: unrecoverable failure\n",
 492                dev_driver_string(wd->dev), dev_name(wd->dev));
 493}
 494
 495/**
 496 * dpm_watchdog_set - Enable pm watchdog for given device.
 497 * @wd: Watchdog. Must be allocated on the stack.
 498 * @dev: Device to handle.
 499 */
 500static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
 501{
 502        struct timer_list *timer = &wd->timer;
 503
 504        wd->dev = dev;
 505        wd->tsk = current;
 506
 507        timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
 508        /* use same timeout value for both suspend and resume */
 509        timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
 510        add_timer(timer);
 511}
 512
 513/**
 514 * dpm_watchdog_clear - Disable suspend/resume watchdog.
 515 * @wd: Watchdog to disable.
 516 */
 517static void dpm_watchdog_clear(struct dpm_watchdog *wd)
 518{
 519        struct timer_list *timer = &wd->timer;
 520
 521        del_timer_sync(timer);
 522        destroy_timer_on_stack(timer);
 523}
 524#else
 525#define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
 526#define dpm_watchdog_set(x, y)
 527#define dpm_watchdog_clear(x)
 528#endif
 529
 530/*------------------------- Resume routines -------------------------*/
 531
 532/**
 533 * suspend_event - Return a "suspend" message for given "resume" one.
 534 * @resume_msg: PM message representing a system-wide resume transition.
 535 */
 536static pm_message_t suspend_event(pm_message_t resume_msg)
 537{
 538        switch (resume_msg.event) {
 539        case PM_EVENT_RESUME:
 540                return PMSG_SUSPEND;
 541        case PM_EVENT_THAW:
 542        case PM_EVENT_RESTORE:
 543                return PMSG_FREEZE;
 544        case PM_EVENT_RECOVER:
 545                return PMSG_HIBERNATE;
 546        }
 547        return PMSG_ON;
 548}
 549
 550/**
 551 * dev_pm_may_skip_resume - System-wide device resume optimization check.
 552 * @dev: Target device.
 553 *
 554 * Checks whether or not the device may be left in suspend after a system-wide
 555 * transition to the working state.
 556 */
 557bool dev_pm_may_skip_resume(struct device *dev)
 558{
 559        return !dev->power.must_resume && pm_transition.event != PM_EVENT_RESTORE;
 560}
 561
 562static pm_callback_t dpm_subsys_resume_noirq_cb(struct device *dev,
 563                                                pm_message_t state,
 564                                                const char **info_p)
 565{
 566        pm_callback_t callback;
 567        const char *info;
 568
 569        if (dev->pm_domain) {
 570                info = "noirq power domain ";
 571                callback = pm_noirq_op(&dev->pm_domain->ops, state);
 572        } else if (dev->type && dev->type->pm) {
 573                info = "noirq type ";
 574                callback = pm_noirq_op(dev->type->pm, state);
 575        } else if (dev->class && dev->class->pm) {
 576                info = "noirq class ";
 577                callback = pm_noirq_op(dev->class->pm, state);
 578        } else if (dev->bus && dev->bus->pm) {
 579                info = "noirq bus ";
 580                callback = pm_noirq_op(dev->bus->pm, state);
 581        } else {
 582                return NULL;
 583        }
 584
 585        if (info_p)
 586                *info_p = info;
 587
 588        return callback;
 589}
 590
 591static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
 592                                                 pm_message_t state,
 593                                                 const char **info_p);
 594
 595static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
 596                                                pm_message_t state,
 597                                                const char **info_p);
 598
 599/**
 600 * device_resume_noirq - Execute a "noirq resume" callback for given device.
 601 * @dev: Device to handle.
 602 * @state: PM transition of the system being carried out.
 603 * @async: If true, the device is being resumed asynchronously.
 604 *
 605 * The driver of @dev will not receive interrupts while this function is being
 606 * executed.
 607 */
 608static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
 609{
 610        pm_callback_t callback;
 611        const char *info;
 612        bool skip_resume;
 613        int error = 0;
 614
 615        TRACE_DEVICE(dev);
 616        TRACE_RESUME(0);
 617
 618        if (dev->power.syscore || dev->power.direct_complete)
 619                goto Out;
 620
 621        if (!dev->power.is_noirq_suspended)
 622                goto Out;
 623
 624        dpm_wait_for_superior(dev, async);
 625
 626        skip_resume = dev_pm_may_skip_resume(dev);
 627
 628        callback = dpm_subsys_resume_noirq_cb(dev, state, &info);
 629        if (callback)
 630                goto Run;
 631
 632        if (skip_resume)
 633                goto Skip;
 634
 635        if (dev_pm_smart_suspend_and_suspended(dev)) {
 636                pm_message_t suspend_msg = suspend_event(state);
 637
 638                /*
 639                 * If "freeze" callbacks have been skipped during a transition
 640                 * related to hibernation, the subsequent "thaw" callbacks must
 641                 * be skipped too or bad things may happen.  Otherwise, resume
 642                 * callbacks are going to be run for the device, so its runtime
 643                 * PM status must be changed to reflect the new state after the
 644                 * transition under way.
 645                 */
 646                if (!dpm_subsys_suspend_late_cb(dev, suspend_msg, NULL) &&
 647                    !dpm_subsys_suspend_noirq_cb(dev, suspend_msg, NULL)) {
 648                        if (state.event == PM_EVENT_THAW) {
 649                                skip_resume = true;
 650                                goto Skip;
 651                        } else {
 652                                pm_runtime_set_active(dev);
 653                        }
 654                }
 655        }
 656
 657        if (dev->driver && dev->driver->pm) {
 658                info = "noirq driver ";
 659                callback = pm_noirq_op(dev->driver->pm, state);
 660        }
 661
 662Run:
 663        error = dpm_run_callback(callback, dev, state, info);
 664
 665Skip:
 666        dev->power.is_noirq_suspended = false;
 667
 668        if (skip_resume) {
 669                /* Make the next phases of resume skip the device. */
 670                dev->power.is_late_suspended = false;
 671                dev->power.is_suspended = false;
 672                /*
 673                 * The device is going to be left in suspend, but it might not
 674                 * have been in runtime suspend before the system suspended, so
 675                 * its runtime PM status needs to be updated to avoid confusing
 676                 * the runtime PM framework when runtime PM is enabled for the
 677                 * device again.
 678                 */
 679                pm_runtime_set_suspended(dev);
 680        }
 681
 682Out:
 683        complete_all(&dev->power.completion);
 684        TRACE_RESUME(error);
 685        return error;
 686}
 687
 688static bool is_async(struct device *dev)
 689{
 690        return dev->power.async_suspend && pm_async_enabled
 691                && !pm_trace_is_enabled();
 692}
 693
 694static bool dpm_async_fn(struct device *dev, async_func_t func)
 695{
 696        reinit_completion(&dev->power.completion);
 697
 698        if (is_async(dev)) {
 699                get_device(dev);
 700                async_schedule(func, dev);
 701                return true;
 702        }
 703
 704        return false;
 705}
 706
 707static void async_resume_noirq(void *data, async_cookie_t cookie)
 708{
 709        struct device *dev = (struct device *)data;
 710        int error;
 711
 712        error = device_resume_noirq(dev, pm_transition, true);
 713        if (error)
 714                pm_dev_err(dev, pm_transition, " async", error);
 715
 716        put_device(dev);
 717}
 718
 719static void dpm_noirq_resume_devices(pm_message_t state)
 720{
 721        struct device *dev;
 722        ktime_t starttime = ktime_get();
 723
 724        trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
 725        mutex_lock(&dpm_list_mtx);
 726        pm_transition = state;
 727
 728        /*
 729         * Advanced the async threads upfront,
 730         * in case the starting of async threads is
 731         * delayed by non-async resuming devices.
 732         */
 733        list_for_each_entry(dev, &dpm_noirq_list, power.entry)
 734                dpm_async_fn(dev, async_resume_noirq);
 735
 736        while (!list_empty(&dpm_noirq_list)) {
 737                dev = to_device(dpm_noirq_list.next);
 738                get_device(dev);
 739                list_move_tail(&dev->power.entry, &dpm_late_early_list);
 740                mutex_unlock(&dpm_list_mtx);
 741
 742                if (!is_async(dev)) {
 743                        int error;
 744
 745                        error = device_resume_noirq(dev, state, false);
 746                        if (error) {
 747                                suspend_stats.failed_resume_noirq++;
 748                                dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
 749                                dpm_save_failed_dev(dev_name(dev));
 750                                pm_dev_err(dev, state, " noirq", error);
 751                        }
 752                }
 753
 754                mutex_lock(&dpm_list_mtx);
 755                put_device(dev);
 756        }
 757        mutex_unlock(&dpm_list_mtx);
 758        async_synchronize_full();
 759        dpm_show_time(starttime, state, 0, "noirq");
 760        trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
 761}
 762
 763/**
 764 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
 765 * @state: PM transition of the system being carried out.
 766 *
 767 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
 768 * allow device drivers' interrupt handlers to be called.
 769 */
 770void dpm_resume_noirq(pm_message_t state)
 771{
 772        dpm_noirq_resume_devices(state);
 773
 774        resume_device_irqs();
 775        device_wakeup_disarm_wake_irqs();
 776
 777        cpuidle_resume();
 778}
 779
 780static pm_callback_t dpm_subsys_resume_early_cb(struct device *dev,
 781                                                pm_message_t state,
 782                                                const char **info_p)
 783{
 784        pm_callback_t callback;
 785        const char *info;
 786
 787        if (dev->pm_domain) {
 788                info = "early power domain ";
 789                callback = pm_late_early_op(&dev->pm_domain->ops, state);
 790        } else if (dev->type && dev->type->pm) {
 791                info = "early type ";
 792                callback = pm_late_early_op(dev->type->pm, state);
 793        } else if (dev->class && dev->class->pm) {
 794                info = "early class ";
 795                callback = pm_late_early_op(dev->class->pm, state);
 796        } else if (dev->bus && dev->bus->pm) {
 797                info = "early bus ";
 798                callback = pm_late_early_op(dev->bus->pm, state);
 799        } else {
 800                return NULL;
 801        }
 802
 803        if (info_p)
 804                *info_p = info;
 805
 806        return callback;
 807}
 808
 809/**
 810 * device_resume_early - Execute an "early resume" callback for given device.
 811 * @dev: Device to handle.
 812 * @state: PM transition of the system being carried out.
 813 * @async: If true, the device is being resumed asynchronously.
 814 *
 815 * Runtime PM is disabled for @dev while this function is being executed.
 816 */
 817static int device_resume_early(struct device *dev, pm_message_t state, bool async)
 818{
 819        pm_callback_t callback;
 820        const char *info;
 821        int error = 0;
 822
 823        TRACE_DEVICE(dev);
 824        TRACE_RESUME(0);
 825
 826        if (dev->power.syscore || dev->power.direct_complete)
 827                goto Out;
 828
 829        if (!dev->power.is_late_suspended)
 830                goto Out;
 831
 832        dpm_wait_for_superior(dev, async);
 833
 834        callback = dpm_subsys_resume_early_cb(dev, state, &info);
 835
 836        if (!callback && dev->driver && dev->driver->pm) {
 837                info = "early driver ";
 838                callback = pm_late_early_op(dev->driver->pm, state);
 839        }
 840
 841        error = dpm_run_callback(callback, dev, state, info);
 842        dev->power.is_late_suspended = false;
 843
 844 Out:
 845        TRACE_RESUME(error);
 846
 847        pm_runtime_enable(dev);
 848        complete_all(&dev->power.completion);
 849        return error;
 850}
 851
 852static void async_resume_early(void *data, async_cookie_t cookie)
 853{
 854        struct device *dev = (struct device *)data;
 855        int error;
 856
 857        error = device_resume_early(dev, pm_transition, true);
 858        if (error)
 859                pm_dev_err(dev, pm_transition, " async", error);
 860
 861        put_device(dev);
 862}
 863
 864/**
 865 * dpm_resume_early - Execute "early resume" callbacks for all devices.
 866 * @state: PM transition of the system being carried out.
 867 */
 868void dpm_resume_early(pm_message_t state)
 869{
 870        struct device *dev;
 871        ktime_t starttime = ktime_get();
 872
 873        trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
 874        mutex_lock(&dpm_list_mtx);
 875        pm_transition = state;
 876
 877        /*
 878         * Advanced the async threads upfront,
 879         * in case the starting of async threads is
 880         * delayed by non-async resuming devices.
 881         */
 882        list_for_each_entry(dev, &dpm_late_early_list, power.entry)
 883                dpm_async_fn(dev, async_resume_early);
 884
 885        while (!list_empty(&dpm_late_early_list)) {
 886                dev = to_device(dpm_late_early_list.next);
 887                get_device(dev);
 888                list_move_tail(&dev->power.entry, &dpm_suspended_list);
 889                mutex_unlock(&dpm_list_mtx);
 890
 891                if (!is_async(dev)) {
 892                        int error;
 893
 894                        error = device_resume_early(dev, state, false);
 895                        if (error) {
 896                                suspend_stats.failed_resume_early++;
 897                                dpm_save_failed_step(SUSPEND_RESUME_EARLY);
 898                                dpm_save_failed_dev(dev_name(dev));
 899                                pm_dev_err(dev, state, " early", error);
 900                        }
 901                }
 902                mutex_lock(&dpm_list_mtx);
 903                put_device(dev);
 904        }
 905        mutex_unlock(&dpm_list_mtx);
 906        async_synchronize_full();
 907        dpm_show_time(starttime, state, 0, "early");
 908        trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
 909}
 910
 911/**
 912 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
 913 * @state: PM transition of the system being carried out.
 914 */
 915void dpm_resume_start(pm_message_t state)
 916{
 917        dpm_resume_noirq(state);
 918        dpm_resume_early(state);
 919}
 920EXPORT_SYMBOL_GPL(dpm_resume_start);
 921
 922/**
 923 * device_resume - Execute "resume" callbacks for given device.
 924 * @dev: Device to handle.
 925 * @state: PM transition of the system being carried out.
 926 * @async: If true, the device is being resumed asynchronously.
 927 */
 928static int device_resume(struct device *dev, pm_message_t state, bool async)
 929{
 930        pm_callback_t callback = NULL;
 931        const char *info = NULL;
 932        int error = 0;
 933        DECLARE_DPM_WATCHDOG_ON_STACK(wd);
 934
 935        TRACE_DEVICE(dev);
 936        TRACE_RESUME(0);
 937
 938        if (dev->power.syscore)
 939                goto Complete;
 940
 941        if (dev->power.direct_complete) {
 942                /* Match the pm_runtime_disable() in __device_suspend(). */
 943                pm_runtime_enable(dev);
 944                goto Complete;
 945        }
 946
 947        dpm_wait_for_superior(dev, async);
 948        dpm_watchdog_set(&wd, dev);
 949        device_lock(dev);
 950
 951        /*
 952         * This is a fib.  But we'll allow new children to be added below
 953         * a resumed device, even if the device hasn't been completed yet.
 954         */
 955        dev->power.is_prepared = false;
 956
 957        if (!dev->power.is_suspended)
 958                goto Unlock;
 959
 960        if (dev->pm_domain) {
 961                info = "power domain ";
 962                callback = pm_op(&dev->pm_domain->ops, state);
 963                goto Driver;
 964        }
 965
 966        if (dev->type && dev->type->pm) {
 967                info = "type ";
 968                callback = pm_op(dev->type->pm, state);
 969                goto Driver;
 970        }
 971
 972        if (dev->class && dev->class->pm) {
 973                info = "class ";
 974                callback = pm_op(dev->class->pm, state);
 975                goto Driver;
 976        }
 977
 978        if (dev->bus) {
 979                if (dev->bus->pm) {
 980                        info = "bus ";
 981                        callback = pm_op(dev->bus->pm, state);
 982                } else if (dev->bus->resume) {
 983                        info = "legacy bus ";
 984                        callback = dev->bus->resume;
 985                        goto End;
 986                }
 987        }
 988
 989 Driver:
 990        if (!callback && dev->driver && dev->driver->pm) {
 991                info = "driver ";
 992                callback = pm_op(dev->driver->pm, state);
 993        }
 994
 995 End:
 996        error = dpm_run_callback(callback, dev, state, info);
 997        dev->power.is_suspended = false;
 998
 999 Unlock:
1000        device_unlock(dev);
1001        dpm_watchdog_clear(&wd);
1002
1003 Complete:
1004        complete_all(&dev->power.completion);
1005
1006        TRACE_RESUME(error);
1007
1008        return error;
1009}
1010
1011static void async_resume(void *data, async_cookie_t cookie)
1012{
1013        struct device *dev = (struct device *)data;
1014        int error;
1015
1016        error = device_resume(dev, pm_transition, true);
1017        if (error)
1018                pm_dev_err(dev, pm_transition, " async", error);
1019        put_device(dev);
1020}
1021
1022/**
1023 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
1024 * @state: PM transition of the system being carried out.
1025 *
1026 * Execute the appropriate "resume" callback for all devices whose status
1027 * indicates that they are suspended.
1028 */
1029void dpm_resume(pm_message_t state)
1030{
1031        struct device *dev;
1032        ktime_t starttime = ktime_get();
1033
1034        trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1035        might_sleep();
1036
1037        mutex_lock(&dpm_list_mtx);
1038        pm_transition = state;
1039        async_error = 0;
1040
1041        list_for_each_entry(dev, &dpm_suspended_list, power.entry)
1042                dpm_async_fn(dev, async_resume);
1043
1044        while (!list_empty(&dpm_suspended_list)) {
1045                dev = to_device(dpm_suspended_list.next);
1046                get_device(dev);
1047                if (!is_async(dev)) {
1048                        int error;
1049
1050                        mutex_unlock(&dpm_list_mtx);
1051
1052                        error = device_resume(dev, state, false);
1053                        if (error) {
1054                                suspend_stats.failed_resume++;
1055                                dpm_save_failed_step(SUSPEND_RESUME);
1056                                dpm_save_failed_dev(dev_name(dev));
1057                                pm_dev_err(dev, state, "", error);
1058                        }
1059
1060                        mutex_lock(&dpm_list_mtx);
1061                }
1062                if (!list_empty(&dev->power.entry))
1063                        list_move_tail(&dev->power.entry, &dpm_prepared_list);
1064                put_device(dev);
1065        }
1066        mutex_unlock(&dpm_list_mtx);
1067        async_synchronize_full();
1068        dpm_show_time(starttime, state, 0, NULL);
1069
1070        cpufreq_resume();
1071        devfreq_resume();
1072        trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1073}
1074
1075/**
1076 * device_complete - Complete a PM transition for given device.
1077 * @dev: Device to handle.
1078 * @state: PM transition of the system being carried out.
1079 */
1080static void device_complete(struct device *dev, pm_message_t state)
1081{
1082        void (*callback)(struct device *) = NULL;
1083        const char *info = NULL;
1084
1085        if (dev->power.syscore)
1086                return;
1087
1088        device_lock(dev);
1089
1090        if (dev->pm_domain) {
1091                info = "completing power domain ";
1092                callback = dev->pm_domain->ops.complete;
1093        } else if (dev->type && dev->type->pm) {
1094                info = "completing type ";
1095                callback = dev->type->pm->complete;
1096        } else if (dev->class && dev->class->pm) {
1097                info = "completing class ";
1098                callback = dev->class->pm->complete;
1099        } else if (dev->bus && dev->bus->pm) {
1100                info = "completing bus ";
1101                callback = dev->bus->pm->complete;
1102        }
1103
1104        if (!callback && dev->driver && dev->driver->pm) {
1105                info = "completing driver ";
1106                callback = dev->driver->pm->complete;
1107        }
1108
1109        if (callback) {
1110                pm_dev_dbg(dev, state, info);
1111                callback(dev);
1112        }
1113
1114        device_unlock(dev);
1115
1116        pm_runtime_put(dev);
1117}
1118
1119/**
1120 * dpm_complete - Complete a PM transition for all non-sysdev devices.
1121 * @state: PM transition of the system being carried out.
1122 *
1123 * Execute the ->complete() callbacks for all devices whose PM status is not
1124 * DPM_ON (this allows new devices to be registered).
1125 */
1126void dpm_complete(pm_message_t state)
1127{
1128        struct list_head list;
1129
1130        trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1131        might_sleep();
1132
1133        INIT_LIST_HEAD(&list);
1134        mutex_lock(&dpm_list_mtx);
1135        while (!list_empty(&dpm_prepared_list)) {
1136                struct device *dev = to_device(dpm_prepared_list.prev);
1137
1138                get_device(dev);
1139                dev->power.is_prepared = false;
1140                list_move(&dev->power.entry, &list);
1141                mutex_unlock(&dpm_list_mtx);
1142
1143                trace_device_pm_callback_start(dev, "", state.event);
1144                device_complete(dev, state);
1145                trace_device_pm_callback_end(dev, 0);
1146
1147                mutex_lock(&dpm_list_mtx);
1148                put_device(dev);
1149        }
1150        list_splice(&list, &dpm_list);
1151        mutex_unlock(&dpm_list_mtx);
1152
1153        /* Allow device probing and trigger re-probing of deferred devices */
1154        device_unblock_probing();
1155        trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1156}
1157
1158/**
1159 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1160 * @state: PM transition of the system being carried out.
1161 *
1162 * Execute "resume" callbacks for all devices and complete the PM transition of
1163 * the system.
1164 */
1165void dpm_resume_end(pm_message_t state)
1166{
1167        dpm_resume(state);
1168        dpm_complete(state);
1169}
1170EXPORT_SYMBOL_GPL(dpm_resume_end);
1171
1172
1173/*------------------------- Suspend routines -------------------------*/
1174
1175/**
1176 * resume_event - Return a "resume" message for given "suspend" sleep state.
1177 * @sleep_state: PM message representing a sleep state.
1178 *
1179 * Return a PM message representing the resume event corresponding to given
1180 * sleep state.
1181 */
1182static pm_message_t resume_event(pm_message_t sleep_state)
1183{
1184        switch (sleep_state.event) {
1185        case PM_EVENT_SUSPEND:
1186                return PMSG_RESUME;
1187        case PM_EVENT_FREEZE:
1188        case PM_EVENT_QUIESCE:
1189                return PMSG_RECOVER;
1190        case PM_EVENT_HIBERNATE:
1191                return PMSG_RESTORE;
1192        }
1193        return PMSG_ON;
1194}
1195
1196static void dpm_superior_set_must_resume(struct device *dev)
1197{
1198        struct device_link *link;
1199        int idx;
1200
1201        if (dev->parent)
1202                dev->parent->power.must_resume = true;
1203
1204        idx = device_links_read_lock();
1205
1206        list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
1207                link->supplier->power.must_resume = true;
1208
1209        device_links_read_unlock(idx);
1210}
1211
1212static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
1213                                                 pm_message_t state,
1214                                                 const char **info_p)
1215{
1216        pm_callback_t callback;
1217        const char *info;
1218
1219        if (dev->pm_domain) {
1220                info = "noirq power domain ";
1221                callback = pm_noirq_op(&dev->pm_domain->ops, state);
1222        } else if (dev->type && dev->type->pm) {
1223                info = "noirq type ";
1224                callback = pm_noirq_op(dev->type->pm, state);
1225        } else if (dev->class && dev->class->pm) {
1226                info = "noirq class ";
1227                callback = pm_noirq_op(dev->class->pm, state);
1228        } else if (dev->bus && dev->bus->pm) {
1229                info = "noirq bus ";
1230                callback = pm_noirq_op(dev->bus->pm, state);
1231        } else {
1232                return NULL;
1233        }
1234
1235        if (info_p)
1236                *info_p = info;
1237
1238        return callback;
1239}
1240
1241static bool device_must_resume(struct device *dev, pm_message_t state,
1242                               bool no_subsys_suspend_noirq)
1243{
1244        pm_message_t resume_msg = resume_event(state);
1245
1246        /*
1247         * If all of the device driver's "noirq", "late" and "early" callbacks
1248         * are invoked directly by the core, the decision to allow the device to
1249         * stay in suspend can be based on its current runtime PM status and its
1250         * wakeup settings.
1251         */
1252        if (no_subsys_suspend_noirq &&
1253            !dpm_subsys_suspend_late_cb(dev, state, NULL) &&
1254            !dpm_subsys_resume_early_cb(dev, resume_msg, NULL) &&
1255            !dpm_subsys_resume_noirq_cb(dev, resume_msg, NULL))
1256                return !pm_runtime_status_suspended(dev) &&
1257                        (resume_msg.event != PM_EVENT_RESUME ||
1258                         (device_can_wakeup(dev) && !device_may_wakeup(dev)));
1259
1260        /*
1261         * The only safe strategy here is to require that if the device may not
1262         * be left in suspend, resume callbacks must be invoked for it.
1263         */
1264        return !dev->power.may_skip_resume;
1265}
1266
1267/**
1268 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1269 * @dev: Device to handle.
1270 * @state: PM transition of the system being carried out.
1271 * @async: If true, the device is being suspended asynchronously.
1272 *
1273 * The driver of @dev will not receive interrupts while this function is being
1274 * executed.
1275 */
1276static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1277{
1278        pm_callback_t callback;
1279        const char *info;
1280        bool no_subsys_cb = false;
1281        int error = 0;
1282
1283        TRACE_DEVICE(dev);
1284        TRACE_SUSPEND(0);
1285
1286        dpm_wait_for_subordinate(dev, async);
1287
1288        if (async_error)
1289                goto Complete;
1290
1291        if (dev->power.syscore || dev->power.direct_complete)
1292                goto Complete;
1293
1294        callback = dpm_subsys_suspend_noirq_cb(dev, state, &info);
1295        if (callback)
1296                goto Run;
1297
1298        no_subsys_cb = !dpm_subsys_suspend_late_cb(dev, state, NULL);
1299
1300        if (dev_pm_smart_suspend_and_suspended(dev) && no_subsys_cb)
1301                goto Skip;
1302
1303        if (dev->driver && dev->driver->pm) {
1304                info = "noirq driver ";
1305                callback = pm_noirq_op(dev->driver->pm, state);
1306        }
1307
1308Run:
1309        error = dpm_run_callback(callback, dev, state, info);
1310        if (error) {
1311                async_error = error;
1312                goto Complete;
1313        }
1314
1315Skip:
1316        dev->power.is_noirq_suspended = true;
1317
1318        if (dev_pm_test_driver_flags(dev, DPM_FLAG_LEAVE_SUSPENDED)) {
1319                dev->power.must_resume = dev->power.must_resume ||
1320                                atomic_read(&dev->power.usage_count) > 1 ||
1321                                device_must_resume(dev, state, no_subsys_cb);
1322        } else {
1323                dev->power.must_resume = true;
1324        }
1325
1326        if (dev->power.must_resume)
1327                dpm_superior_set_must_resume(dev);
1328
1329Complete:
1330        complete_all(&dev->power.completion);
1331        TRACE_SUSPEND(error);
1332        return error;
1333}
1334
1335static void async_suspend_noirq(void *data, async_cookie_t cookie)
1336{
1337        struct device *dev = (struct device *)data;
1338        int error;
1339
1340        error = __device_suspend_noirq(dev, pm_transition, true);
1341        if (error) {
1342                dpm_save_failed_dev(dev_name(dev));
1343                pm_dev_err(dev, pm_transition, " async", error);
1344        }
1345
1346        put_device(dev);
1347}
1348
1349static int device_suspend_noirq(struct device *dev)
1350{
1351        if (dpm_async_fn(dev, async_suspend_noirq))
1352                return 0;
1353
1354        return __device_suspend_noirq(dev, pm_transition, false);
1355}
1356
1357static int dpm_noirq_suspend_devices(pm_message_t state)
1358{
1359        ktime_t starttime = ktime_get();
1360        int error = 0;
1361
1362        trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1363        mutex_lock(&dpm_list_mtx);
1364        pm_transition = state;
1365        async_error = 0;
1366
1367        while (!list_empty(&dpm_late_early_list)) {
1368                struct device *dev = to_device(dpm_late_early_list.prev);
1369
1370                get_device(dev);
1371                mutex_unlock(&dpm_list_mtx);
1372
1373                error = device_suspend_noirq(dev);
1374
1375                mutex_lock(&dpm_list_mtx);
1376                if (error) {
1377                        pm_dev_err(dev, state, " noirq", error);
1378                        dpm_save_failed_dev(dev_name(dev));
1379                        put_device(dev);
1380                        break;
1381                }
1382                if (!list_empty(&dev->power.entry))
1383                        list_move(&dev->power.entry, &dpm_noirq_list);
1384                put_device(dev);
1385
1386                if (async_error)
1387                        break;
1388        }
1389        mutex_unlock(&dpm_list_mtx);
1390        async_synchronize_full();
1391        if (!error)
1392                error = async_error;
1393
1394        if (error) {
1395                suspend_stats.failed_suspend_noirq++;
1396                dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1397        }
1398        dpm_show_time(starttime, state, error, "noirq");
1399        trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1400        return error;
1401}
1402
1403/**
1404 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1405 * @state: PM transition of the system being carried out.
1406 *
1407 * Prevent device drivers' interrupt handlers from being called and invoke
1408 * "noirq" suspend callbacks for all non-sysdev devices.
1409 */
1410int dpm_suspend_noirq(pm_message_t state)
1411{
1412        int ret;
1413
1414        cpuidle_pause();
1415
1416        device_wakeup_arm_wake_irqs();
1417        suspend_device_irqs();
1418
1419        ret = dpm_noirq_suspend_devices(state);
1420        if (ret)
1421                dpm_resume_noirq(resume_event(state));
1422
1423        return ret;
1424}
1425
1426static void dpm_propagate_wakeup_to_parent(struct device *dev)
1427{
1428        struct device *parent = dev->parent;
1429
1430        if (!parent)
1431                return;
1432
1433        spin_lock_irq(&parent->power.lock);
1434
1435        if (dev->power.wakeup_path && !parent->power.ignore_children)
1436                parent->power.wakeup_path = true;
1437
1438        spin_unlock_irq(&parent->power.lock);
1439}
1440
1441static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
1442                                                pm_message_t state,
1443                                                const char **info_p)
1444{
1445        pm_callback_t callback;
1446        const char *info;
1447
1448        if (dev->pm_domain) {
1449                info = "late power domain ";
1450                callback = pm_late_early_op(&dev->pm_domain->ops, state);
1451        } else if (dev->type && dev->type->pm) {
1452                info = "late type ";
1453                callback = pm_late_early_op(dev->type->pm, state);
1454        } else if (dev->class && dev->class->pm) {
1455                info = "late class ";
1456                callback = pm_late_early_op(dev->class->pm, state);
1457        } else if (dev->bus && dev->bus->pm) {
1458                info = "late bus ";
1459                callback = pm_late_early_op(dev->bus->pm, state);
1460        } else {
1461                return NULL;
1462        }
1463
1464        if (info_p)
1465                *info_p = info;
1466
1467        return callback;
1468}
1469
1470/**
1471 * __device_suspend_late - Execute a "late suspend" callback for given device.
1472 * @dev: Device to handle.
1473 * @state: PM transition of the system being carried out.
1474 * @async: If true, the device is being suspended asynchronously.
1475 *
1476 * Runtime PM is disabled for @dev while this function is being executed.
1477 */
1478static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1479{
1480        pm_callback_t callback;
1481        const char *info;
1482        int error = 0;
1483
1484        TRACE_DEVICE(dev);
1485        TRACE_SUSPEND(0);
1486
1487        __pm_runtime_disable(dev, false);
1488
1489        dpm_wait_for_subordinate(dev, async);
1490
1491        if (async_error)
1492                goto Complete;
1493
1494        if (pm_wakeup_pending()) {
1495                async_error = -EBUSY;
1496                goto Complete;
1497        }
1498
1499        if (dev->power.syscore || dev->power.direct_complete)
1500                goto Complete;
1501
1502        callback = dpm_subsys_suspend_late_cb(dev, state, &info);
1503        if (callback)
1504                goto Run;
1505
1506        if (dev_pm_smart_suspend_and_suspended(dev) &&
1507            !dpm_subsys_suspend_noirq_cb(dev, state, NULL))
1508                goto Skip;
1509
1510        if (dev->driver && dev->driver->pm) {
1511                info = "late driver ";
1512                callback = pm_late_early_op(dev->driver->pm, state);
1513        }
1514
1515Run:
1516        error = dpm_run_callback(callback, dev, state, info);
1517        if (error) {
1518                async_error = error;
1519                goto Complete;
1520        }
1521        dpm_propagate_wakeup_to_parent(dev);
1522
1523Skip:
1524        dev->power.is_late_suspended = true;
1525
1526Complete:
1527        TRACE_SUSPEND(error);
1528        complete_all(&dev->power.completion);
1529        return error;
1530}
1531
1532static void async_suspend_late(void *data, async_cookie_t cookie)
1533{
1534        struct device *dev = (struct device *)data;
1535        int error;
1536
1537        error = __device_suspend_late(dev, pm_transition, true);
1538        if (error) {
1539                dpm_save_failed_dev(dev_name(dev));
1540                pm_dev_err(dev, pm_transition, " async", error);
1541        }
1542        put_device(dev);
1543}
1544
1545static int device_suspend_late(struct device *dev)
1546{
1547        if (dpm_async_fn(dev, async_suspend_late))
1548                return 0;
1549
1550        return __device_suspend_late(dev, pm_transition, false);
1551}
1552
1553/**
1554 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1555 * @state: PM transition of the system being carried out.
1556 */
1557int dpm_suspend_late(pm_message_t state)
1558{
1559        ktime_t starttime = ktime_get();
1560        int error = 0;
1561
1562        trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1563        mutex_lock(&dpm_list_mtx);
1564        pm_transition = state;
1565        async_error = 0;
1566
1567        while (!list_empty(&dpm_suspended_list)) {
1568                struct device *dev = to_device(dpm_suspended_list.prev);
1569
1570                get_device(dev);
1571                mutex_unlock(&dpm_list_mtx);
1572
1573                error = device_suspend_late(dev);
1574
1575                mutex_lock(&dpm_list_mtx);
1576                if (!list_empty(&dev->power.entry))
1577                        list_move(&dev->power.entry, &dpm_late_early_list);
1578
1579                if (error) {
1580                        pm_dev_err(dev, state, " late", error);
1581                        dpm_save_failed_dev(dev_name(dev));
1582                        put_device(dev);
1583                        break;
1584                }
1585                put_device(dev);
1586
1587                if (async_error)
1588                        break;
1589        }
1590        mutex_unlock(&dpm_list_mtx);
1591        async_synchronize_full();
1592        if (!error)
1593                error = async_error;
1594        if (error) {
1595                suspend_stats.failed_suspend_late++;
1596                dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1597                dpm_resume_early(resume_event(state));
1598        }
1599        dpm_show_time(starttime, state, error, "late");
1600        trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1601        return error;
1602}
1603
1604/**
1605 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1606 * @state: PM transition of the system being carried out.
1607 */
1608int dpm_suspend_end(pm_message_t state)
1609{
1610        ktime_t starttime = ktime_get();
1611        int error;
1612
1613        error = dpm_suspend_late(state);
1614        if (error)
1615                goto out;
1616
1617        error = dpm_suspend_noirq(state);
1618        if (error)
1619                dpm_resume_early(resume_event(state));
1620
1621out:
1622        dpm_show_time(starttime, state, error, "end");
1623        return error;
1624}
1625EXPORT_SYMBOL_GPL(dpm_suspend_end);
1626
1627/**
1628 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1629 * @dev: Device to suspend.
1630 * @state: PM transition of the system being carried out.
1631 * @cb: Suspend callback to execute.
1632 * @info: string description of caller.
1633 */
1634static int legacy_suspend(struct device *dev, pm_message_t state,
1635                          int (*cb)(struct device *dev, pm_message_t state),
1636                          const char *info)
1637{
1638        int error;
1639        ktime_t calltime;
1640
1641        calltime = initcall_debug_start(dev, cb);
1642
1643        trace_device_pm_callback_start(dev, info, state.event);
1644        error = cb(dev, state);
1645        trace_device_pm_callback_end(dev, error);
1646        suspend_report_result(cb, error);
1647
1648        initcall_debug_report(dev, calltime, cb, error);
1649
1650        return error;
1651}
1652
1653static void dpm_clear_superiors_direct_complete(struct device *dev)
1654{
1655        struct device_link *link;
1656        int idx;
1657
1658        if (dev->parent) {
1659                spin_lock_irq(&dev->parent->power.lock);
1660                dev->parent->power.direct_complete = false;
1661                spin_unlock_irq(&dev->parent->power.lock);
1662        }
1663
1664        idx = device_links_read_lock();
1665
1666        list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
1667                spin_lock_irq(&link->supplier->power.lock);
1668                link->supplier->power.direct_complete = false;
1669                spin_unlock_irq(&link->supplier->power.lock);
1670        }
1671
1672        device_links_read_unlock(idx);
1673}
1674
1675/**
1676 * __device_suspend - Execute "suspend" callbacks for given device.
1677 * @dev: Device to handle.
1678 * @state: PM transition of the system being carried out.
1679 * @async: If true, the device is being suspended asynchronously.
1680 */
1681static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1682{
1683        pm_callback_t callback = NULL;
1684        const char *info = NULL;
1685        int error = 0;
1686        DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1687
1688        TRACE_DEVICE(dev);
1689        TRACE_SUSPEND(0);
1690
1691        dpm_wait_for_subordinate(dev, async);
1692
1693        if (async_error) {
1694                dev->power.direct_complete = false;
1695                goto Complete;
1696        }
1697
1698        /*
1699         * If a device configured to wake up the system from sleep states
1700         * has been suspended at run time and there's a resume request pending
1701         * for it, this is equivalent to the device signaling wakeup, so the
1702         * system suspend operation should be aborted.
1703         */
1704        if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1705                pm_wakeup_event(dev, 0);
1706
1707        if (pm_wakeup_pending()) {
1708                dev->power.direct_complete = false;
1709                async_error = -EBUSY;
1710                goto Complete;
1711        }
1712
1713        if (dev->power.syscore)
1714                goto Complete;
1715
1716        /* Avoid direct_complete to let wakeup_path propagate. */
1717        if (device_may_wakeup(dev) || dev->power.wakeup_path)
1718                dev->power.direct_complete = false;
1719
1720        if (dev->power.direct_complete) {
1721                if (pm_runtime_status_suspended(dev)) {
1722                        pm_runtime_disable(dev);
1723                        if (pm_runtime_status_suspended(dev)) {
1724                                pm_dev_dbg(dev, state, "direct-complete ");
1725                                goto Complete;
1726                        }
1727
1728                        pm_runtime_enable(dev);
1729                }
1730                dev->power.direct_complete = false;
1731        }
1732
1733        dev->power.may_skip_resume = false;
1734        dev->power.must_resume = false;
1735
1736        dpm_watchdog_set(&wd, dev);
1737        device_lock(dev);
1738
1739        if (dev->pm_domain) {
1740                info = "power domain ";
1741                callback = pm_op(&dev->pm_domain->ops, state);
1742                goto Run;
1743        }
1744
1745        if (dev->type && dev->type->pm) {
1746                info = "type ";
1747                callback = pm_op(dev->type->pm, state);
1748                goto Run;
1749        }
1750
1751        if (dev->class && dev->class->pm) {
1752                info = "class ";
1753                callback = pm_op(dev->class->pm, state);
1754                goto Run;
1755        }
1756
1757        if (dev->bus) {
1758                if (dev->bus->pm) {
1759                        info = "bus ";
1760                        callback = pm_op(dev->bus->pm, state);
1761                } else if (dev->bus->suspend) {
1762                        pm_dev_dbg(dev, state, "legacy bus ");
1763                        error = legacy_suspend(dev, state, dev->bus->suspend,
1764                                                "legacy bus ");
1765                        goto End;
1766                }
1767        }
1768
1769 Run:
1770        if (!callback && dev->driver && dev->driver->pm) {
1771                info = "driver ";
1772                callback = pm_op(dev->driver->pm, state);
1773        }
1774
1775        error = dpm_run_callback(callback, dev, state, info);
1776
1777 End:
1778        if (!error) {
1779                dev->power.is_suspended = true;
1780                if (device_may_wakeup(dev))
1781                        dev->power.wakeup_path = true;
1782
1783                dpm_propagate_wakeup_to_parent(dev);
1784                dpm_clear_superiors_direct_complete(dev);
1785        }
1786
1787        device_unlock(dev);
1788        dpm_watchdog_clear(&wd);
1789
1790 Complete:
1791        if (error)
1792                async_error = error;
1793
1794        complete_all(&dev->power.completion);
1795        TRACE_SUSPEND(error);
1796        return error;
1797}
1798
1799static void async_suspend(void *data, async_cookie_t cookie)
1800{
1801        struct device *dev = (struct device *)data;
1802        int error;
1803
1804        error = __device_suspend(dev, pm_transition, true);
1805        if (error) {
1806                dpm_save_failed_dev(dev_name(dev));
1807                pm_dev_err(dev, pm_transition, " async", error);
1808        }
1809
1810        put_device(dev);
1811}
1812
1813static int device_suspend(struct device *dev)
1814{
1815        if (dpm_async_fn(dev, async_suspend))
1816                return 0;
1817
1818        return __device_suspend(dev, pm_transition, false);
1819}
1820
1821/**
1822 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1823 * @state: PM transition of the system being carried out.
1824 */
1825int dpm_suspend(pm_message_t state)
1826{
1827        ktime_t starttime = ktime_get();
1828        int error = 0;
1829
1830        trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1831        might_sleep();
1832
1833        devfreq_suspend();
1834        cpufreq_suspend();
1835
1836        mutex_lock(&dpm_list_mtx);
1837        pm_transition = state;
1838        async_error = 0;
1839        while (!list_empty(&dpm_prepared_list)) {
1840                struct device *dev = to_device(dpm_prepared_list.prev);
1841
1842                get_device(dev);
1843                mutex_unlock(&dpm_list_mtx);
1844
1845                error = device_suspend(dev);
1846
1847                mutex_lock(&dpm_list_mtx);
1848                if (error) {
1849                        pm_dev_err(dev, state, "", error);
1850                        dpm_save_failed_dev(dev_name(dev));
1851                        put_device(dev);
1852                        break;
1853                }
1854                if (!list_empty(&dev->power.entry))
1855                        list_move(&dev->power.entry, &dpm_suspended_list);
1856                put_device(dev);
1857                if (async_error)
1858                        break;
1859        }
1860        mutex_unlock(&dpm_list_mtx);
1861        async_synchronize_full();
1862        if (!error)
1863                error = async_error;
1864        if (error) {
1865                suspend_stats.failed_suspend++;
1866                dpm_save_failed_step(SUSPEND_SUSPEND);
1867        }
1868        dpm_show_time(starttime, state, error, NULL);
1869        trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1870        return error;
1871}
1872
1873/**
1874 * device_prepare - Prepare a device for system power transition.
1875 * @dev: Device to handle.
1876 * @state: PM transition of the system being carried out.
1877 *
1878 * Execute the ->prepare() callback(s) for given device.  No new children of the
1879 * device may be registered after this function has returned.
1880 */
1881static int device_prepare(struct device *dev, pm_message_t state)
1882{
1883        int (*callback)(struct device *) = NULL;
1884        int ret = 0;
1885
1886        if (dev->power.syscore)
1887                return 0;
1888
1889        WARN_ON(!pm_runtime_enabled(dev) &&
1890                dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND |
1891                                              DPM_FLAG_LEAVE_SUSPENDED));
1892
1893        /*
1894         * If a device's parent goes into runtime suspend at the wrong time,
1895         * it won't be possible to resume the device.  To prevent this we
1896         * block runtime suspend here, during the prepare phase, and allow
1897         * it again during the complete phase.
1898         */
1899        pm_runtime_get_noresume(dev);
1900
1901        device_lock(dev);
1902
1903        dev->power.wakeup_path = false;
1904
1905        if (dev->power.no_pm_callbacks)
1906                goto unlock;
1907
1908        if (dev->pm_domain)
1909                callback = dev->pm_domain->ops.prepare;
1910        else if (dev->type && dev->type->pm)
1911                callback = dev->type->pm->prepare;
1912        else if (dev->class && dev->class->pm)
1913                callback = dev->class->pm->prepare;
1914        else if (dev->bus && dev->bus->pm)
1915                callback = dev->bus->pm->prepare;
1916
1917        if (!callback && dev->driver && dev->driver->pm)
1918                callback = dev->driver->pm->prepare;
1919
1920        if (callback)
1921                ret = callback(dev);
1922
1923unlock:
1924        device_unlock(dev);
1925
1926        if (ret < 0) {
1927                suspend_report_result(callback, ret);
1928                pm_runtime_put(dev);
1929                return ret;
1930        }
1931        /*
1932         * A positive return value from ->prepare() means "this device appears
1933         * to be runtime-suspended and its state is fine, so if it really is
1934         * runtime-suspended, you can leave it in that state provided that you
1935         * will do the same thing with all of its descendants".  This only
1936         * applies to suspend transitions, however.
1937         */
1938        spin_lock_irq(&dev->power.lock);
1939        dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1940                ((pm_runtime_suspended(dev) && ret > 0) ||
1941                 dev->power.no_pm_callbacks) &&
1942                !dev_pm_test_driver_flags(dev, DPM_FLAG_NEVER_SKIP);
1943        spin_unlock_irq(&dev->power.lock);
1944        return 0;
1945}
1946
1947/**
1948 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1949 * @state: PM transition of the system being carried out.
1950 *
1951 * Execute the ->prepare() callback(s) for all devices.
1952 */
1953int dpm_prepare(pm_message_t state)
1954{
1955        int error = 0;
1956
1957        trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1958        might_sleep();
1959
1960        /*
1961         * Give a chance for the known devices to complete their probes, before
1962         * disable probing of devices. This sync point is important at least
1963         * at boot time + hibernation restore.
1964         */
1965        wait_for_device_probe();
1966        /*
1967         * It is unsafe if probing of devices will happen during suspend or
1968         * hibernation and system behavior will be unpredictable in this case.
1969         * So, let's prohibit device's probing here and defer their probes
1970         * instead. The normal behavior will be restored in dpm_complete().
1971         */
1972        device_block_probing();
1973
1974        mutex_lock(&dpm_list_mtx);
1975        while (!list_empty(&dpm_list)) {
1976                struct device *dev = to_device(dpm_list.next);
1977
1978                get_device(dev);
1979                mutex_unlock(&dpm_list_mtx);
1980
1981                trace_device_pm_callback_start(dev, "", state.event);
1982                error = device_prepare(dev, state);
1983                trace_device_pm_callback_end(dev, error);
1984
1985                mutex_lock(&dpm_list_mtx);
1986                if (error) {
1987                        if (error == -EAGAIN) {
1988                                put_device(dev);
1989                                error = 0;
1990                                continue;
1991                        }
1992                        pr_info("Device %s not prepared for power transition: code %d\n",
1993                                dev_name(dev), error);
1994                        put_device(dev);
1995                        break;
1996                }
1997                dev->power.is_prepared = true;
1998                if (!list_empty(&dev->power.entry))
1999                        list_move_tail(&dev->power.entry, &dpm_prepared_list);
2000                put_device(dev);
2001        }
2002        mutex_unlock(&dpm_list_mtx);
2003        trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
2004        return error;
2005}
2006
2007/**
2008 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
2009 * @state: PM transition of the system being carried out.
2010 *
2011 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
2012 * callbacks for them.
2013 */
2014int dpm_suspend_start(pm_message_t state)
2015{
2016        ktime_t starttime = ktime_get();
2017        int error;
2018
2019        error = dpm_prepare(state);
2020        if (error) {
2021                suspend_stats.failed_prepare++;
2022                dpm_save_failed_step(SUSPEND_PREPARE);
2023        } else
2024                error = dpm_suspend(state);
2025        dpm_show_time(starttime, state, error, "start");
2026        return error;
2027}
2028EXPORT_SYMBOL_GPL(dpm_suspend_start);
2029
2030void __suspend_report_result(const char *function, void *fn, int ret)
2031{
2032        if (ret)
2033                pr_err("%s(): %pS returns %d\n", function, fn, ret);
2034}
2035EXPORT_SYMBOL_GPL(__suspend_report_result);
2036
2037/**
2038 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
2039 * @subordinate: Device that needs to wait for @dev.
2040 * @dev: Device to wait for.
2041 */
2042int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
2043{
2044        dpm_wait(dev, subordinate->power.async_suspend);
2045        return async_error;
2046}
2047EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
2048
2049/**
2050 * dpm_for_each_dev - device iterator.
2051 * @data: data for the callback.
2052 * @fn: function to be called for each device.
2053 *
2054 * Iterate over devices in dpm_list, and call @fn for each device,
2055 * passing it @data.
2056 */
2057void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
2058{
2059        struct device *dev;
2060
2061        if (!fn)
2062                return;
2063
2064        device_pm_lock();
2065        list_for_each_entry(dev, &dpm_list, power.entry)
2066                fn(dev, data);
2067        device_pm_unlock();
2068}
2069EXPORT_SYMBOL_GPL(dpm_for_each_dev);
2070
2071static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
2072{
2073        if (!ops)
2074                return true;
2075
2076        return !ops->prepare &&
2077               !ops->suspend &&
2078               !ops->suspend_late &&
2079               !ops->suspend_noirq &&
2080               !ops->resume_noirq &&
2081               !ops->resume_early &&
2082               !ops->resume &&
2083               !ops->complete;
2084}
2085
2086void device_pm_check_callbacks(struct device *dev)
2087{
2088        spin_lock_irq(&dev->power.lock);
2089        dev->power.no_pm_callbacks =
2090                (!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2091                 !dev->bus->suspend && !dev->bus->resume)) &&
2092                (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2093                (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2094                (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2095                (!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2096                 !dev->driver->suspend && !dev->driver->resume));
2097        spin_unlock_irq(&dev->power.lock);
2098}
2099
2100bool dev_pm_smart_suspend_and_suspended(struct device *dev)
2101{
2102        return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2103                pm_runtime_status_suspended(dev);
2104}
2105