linux/drivers/clocksource/exynos_mct.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* linux/arch/arm/mach-exynos4/mct.c
   3 *
   4 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
   5 *              http://www.samsung.com
   6 *
   7 * EXYNOS4 MCT(Multi-Core Timer) support
   8*/
   9
  10#include <linux/interrupt.h>
  11#include <linux/irq.h>
  12#include <linux/err.h>
  13#include <linux/clk.h>
  14#include <linux/clockchips.h>
  15#include <linux/cpu.h>
  16#include <linux/delay.h>
  17#include <linux/percpu.h>
  18#include <linux/of.h>
  19#include <linux/of_irq.h>
  20#include <linux/of_address.h>
  21#include <linux/clocksource.h>
  22#include <linux/sched_clock.h>
  23
  24#define EXYNOS4_MCTREG(x)               (x)
  25#define EXYNOS4_MCT_G_CNT_L             EXYNOS4_MCTREG(0x100)
  26#define EXYNOS4_MCT_G_CNT_U             EXYNOS4_MCTREG(0x104)
  27#define EXYNOS4_MCT_G_CNT_WSTAT         EXYNOS4_MCTREG(0x110)
  28#define EXYNOS4_MCT_G_COMP0_L           EXYNOS4_MCTREG(0x200)
  29#define EXYNOS4_MCT_G_COMP0_U           EXYNOS4_MCTREG(0x204)
  30#define EXYNOS4_MCT_G_COMP0_ADD_INCR    EXYNOS4_MCTREG(0x208)
  31#define EXYNOS4_MCT_G_TCON              EXYNOS4_MCTREG(0x240)
  32#define EXYNOS4_MCT_G_INT_CSTAT         EXYNOS4_MCTREG(0x244)
  33#define EXYNOS4_MCT_G_INT_ENB           EXYNOS4_MCTREG(0x248)
  34#define EXYNOS4_MCT_G_WSTAT             EXYNOS4_MCTREG(0x24C)
  35#define _EXYNOS4_MCT_L_BASE             EXYNOS4_MCTREG(0x300)
  36#define EXYNOS4_MCT_L_BASE(x)           (_EXYNOS4_MCT_L_BASE + (0x100 * x))
  37#define EXYNOS4_MCT_L_MASK              (0xffffff00)
  38
  39#define MCT_L_TCNTB_OFFSET              (0x00)
  40#define MCT_L_ICNTB_OFFSET              (0x08)
  41#define MCT_L_TCON_OFFSET               (0x20)
  42#define MCT_L_INT_CSTAT_OFFSET          (0x30)
  43#define MCT_L_INT_ENB_OFFSET            (0x34)
  44#define MCT_L_WSTAT_OFFSET              (0x40)
  45#define MCT_G_TCON_START                (1 << 8)
  46#define MCT_G_TCON_COMP0_AUTO_INC       (1 << 1)
  47#define MCT_G_TCON_COMP0_ENABLE         (1 << 0)
  48#define MCT_L_TCON_INTERVAL_MODE        (1 << 2)
  49#define MCT_L_TCON_INT_START            (1 << 1)
  50#define MCT_L_TCON_TIMER_START          (1 << 0)
  51
  52#define TICK_BASE_CNT   1
  53
  54enum {
  55        MCT_INT_SPI,
  56        MCT_INT_PPI
  57};
  58
  59enum {
  60        MCT_G0_IRQ,
  61        MCT_G1_IRQ,
  62        MCT_G2_IRQ,
  63        MCT_G3_IRQ,
  64        MCT_L0_IRQ,
  65        MCT_L1_IRQ,
  66        MCT_L2_IRQ,
  67        MCT_L3_IRQ,
  68        MCT_L4_IRQ,
  69        MCT_L5_IRQ,
  70        MCT_L6_IRQ,
  71        MCT_L7_IRQ,
  72        MCT_NR_IRQS,
  73};
  74
  75static void __iomem *reg_base;
  76static unsigned long clk_rate;
  77static unsigned int mct_int_type;
  78static int mct_irqs[MCT_NR_IRQS];
  79
  80struct mct_clock_event_device {
  81        struct clock_event_device evt;
  82        unsigned long base;
  83        char name[10];
  84};
  85
  86static void exynos4_mct_write(unsigned int value, unsigned long offset)
  87{
  88        unsigned long stat_addr;
  89        u32 mask;
  90        u32 i;
  91
  92        writel_relaxed(value, reg_base + offset);
  93
  94        if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
  95                stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
  96                switch (offset & ~EXYNOS4_MCT_L_MASK) {
  97                case MCT_L_TCON_OFFSET:
  98                        mask = 1 << 3;          /* L_TCON write status */
  99                        break;
 100                case MCT_L_ICNTB_OFFSET:
 101                        mask = 1 << 1;          /* L_ICNTB write status */
 102                        break;
 103                case MCT_L_TCNTB_OFFSET:
 104                        mask = 1 << 0;          /* L_TCNTB write status */
 105                        break;
 106                default:
 107                        return;
 108                }
 109        } else {
 110                switch (offset) {
 111                case EXYNOS4_MCT_G_TCON:
 112                        stat_addr = EXYNOS4_MCT_G_WSTAT;
 113                        mask = 1 << 16;         /* G_TCON write status */
 114                        break;
 115                case EXYNOS4_MCT_G_COMP0_L:
 116                        stat_addr = EXYNOS4_MCT_G_WSTAT;
 117                        mask = 1 << 0;          /* G_COMP0_L write status */
 118                        break;
 119                case EXYNOS4_MCT_G_COMP0_U:
 120                        stat_addr = EXYNOS4_MCT_G_WSTAT;
 121                        mask = 1 << 1;          /* G_COMP0_U write status */
 122                        break;
 123                case EXYNOS4_MCT_G_COMP0_ADD_INCR:
 124                        stat_addr = EXYNOS4_MCT_G_WSTAT;
 125                        mask = 1 << 2;          /* G_COMP0_ADD_INCR w status */
 126                        break;
 127                case EXYNOS4_MCT_G_CNT_L:
 128                        stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
 129                        mask = 1 << 0;          /* G_CNT_L write status */
 130                        break;
 131                case EXYNOS4_MCT_G_CNT_U:
 132                        stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
 133                        mask = 1 << 1;          /* G_CNT_U write status */
 134                        break;
 135                default:
 136                        return;
 137                }
 138        }
 139
 140        /* Wait maximum 1 ms until written values are applied */
 141        for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
 142                if (readl_relaxed(reg_base + stat_addr) & mask) {
 143                        writel_relaxed(mask, reg_base + stat_addr);
 144                        return;
 145                }
 146
 147        panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
 148}
 149
 150/* Clocksource handling */
 151static void exynos4_mct_frc_start(void)
 152{
 153        u32 reg;
 154
 155        reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
 156        reg |= MCT_G_TCON_START;
 157        exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
 158}
 159
 160/**
 161 * exynos4_read_count_64 - Read all 64-bits of the global counter
 162 *
 163 * This will read all 64-bits of the global counter taking care to make sure
 164 * that the upper and lower half match.  Note that reading the MCT can be quite
 165 * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
 166 * only) version when possible.
 167 *
 168 * Returns the number of cycles in the global counter.
 169 */
 170static u64 exynos4_read_count_64(void)
 171{
 172        unsigned int lo, hi;
 173        u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
 174
 175        do {
 176                hi = hi2;
 177                lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
 178                hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
 179        } while (hi != hi2);
 180
 181        return ((u64)hi << 32) | lo;
 182}
 183
 184/**
 185 * exynos4_read_count_32 - Read the lower 32-bits of the global counter
 186 *
 187 * This will read just the lower 32-bits of the global counter.  This is marked
 188 * as notrace so it can be used by the scheduler clock.
 189 *
 190 * Returns the number of cycles in the global counter (lower 32 bits).
 191 */
 192static u32 notrace exynos4_read_count_32(void)
 193{
 194        return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
 195}
 196
 197static u64 exynos4_frc_read(struct clocksource *cs)
 198{
 199        return exynos4_read_count_32();
 200}
 201
 202static void exynos4_frc_resume(struct clocksource *cs)
 203{
 204        exynos4_mct_frc_start();
 205}
 206
 207static struct clocksource mct_frc = {
 208        .name           = "mct-frc",
 209        .rating         = 450,  /* use value higher than ARM arch timer */
 210        .read           = exynos4_frc_read,
 211        .mask           = CLOCKSOURCE_MASK(32),
 212        .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
 213        .resume         = exynos4_frc_resume,
 214};
 215
 216static u64 notrace exynos4_read_sched_clock(void)
 217{
 218        return exynos4_read_count_32();
 219}
 220
 221#if defined(CONFIG_ARM)
 222static struct delay_timer exynos4_delay_timer;
 223
 224static cycles_t exynos4_read_current_timer(void)
 225{
 226        BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
 227                         "cycles_t needs to move to 32-bit for ARM64 usage");
 228        return exynos4_read_count_32();
 229}
 230#endif
 231
 232static int __init exynos4_clocksource_init(void)
 233{
 234        exynos4_mct_frc_start();
 235
 236#if defined(CONFIG_ARM)
 237        exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
 238        exynos4_delay_timer.freq = clk_rate;
 239        register_current_timer_delay(&exynos4_delay_timer);
 240#endif
 241
 242        if (clocksource_register_hz(&mct_frc, clk_rate))
 243                panic("%s: can't register clocksource\n", mct_frc.name);
 244
 245        sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
 246
 247        return 0;
 248}
 249
 250static void exynos4_mct_comp0_stop(void)
 251{
 252        unsigned int tcon;
 253
 254        tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
 255        tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
 256
 257        exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
 258        exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
 259}
 260
 261static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
 262{
 263        unsigned int tcon;
 264        u64 comp_cycle;
 265
 266        tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
 267
 268        if (periodic) {
 269                tcon |= MCT_G_TCON_COMP0_AUTO_INC;
 270                exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
 271        }
 272
 273        comp_cycle = exynos4_read_count_64() + cycles;
 274        exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
 275        exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
 276
 277        exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
 278
 279        tcon |= MCT_G_TCON_COMP0_ENABLE;
 280        exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
 281}
 282
 283static int exynos4_comp_set_next_event(unsigned long cycles,
 284                                       struct clock_event_device *evt)
 285{
 286        exynos4_mct_comp0_start(false, cycles);
 287
 288        return 0;
 289}
 290
 291static int mct_set_state_shutdown(struct clock_event_device *evt)
 292{
 293        exynos4_mct_comp0_stop();
 294        return 0;
 295}
 296
 297static int mct_set_state_periodic(struct clock_event_device *evt)
 298{
 299        unsigned long cycles_per_jiffy;
 300
 301        cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
 302                            >> evt->shift);
 303        exynos4_mct_comp0_stop();
 304        exynos4_mct_comp0_start(true, cycles_per_jiffy);
 305        return 0;
 306}
 307
 308static struct clock_event_device mct_comp_device = {
 309        .name                   = "mct-comp",
 310        .features               = CLOCK_EVT_FEAT_PERIODIC |
 311                                  CLOCK_EVT_FEAT_ONESHOT,
 312        .rating                 = 250,
 313        .set_next_event         = exynos4_comp_set_next_event,
 314        .set_state_periodic     = mct_set_state_periodic,
 315        .set_state_shutdown     = mct_set_state_shutdown,
 316        .set_state_oneshot      = mct_set_state_shutdown,
 317        .set_state_oneshot_stopped = mct_set_state_shutdown,
 318        .tick_resume            = mct_set_state_shutdown,
 319};
 320
 321static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
 322{
 323        struct clock_event_device *evt = dev_id;
 324
 325        exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
 326
 327        evt->event_handler(evt);
 328
 329        return IRQ_HANDLED;
 330}
 331
 332static struct irqaction mct_comp_event_irq = {
 333        .name           = "mct_comp_irq",
 334        .flags          = IRQF_TIMER | IRQF_IRQPOLL,
 335        .handler        = exynos4_mct_comp_isr,
 336        .dev_id         = &mct_comp_device,
 337};
 338
 339static int exynos4_clockevent_init(void)
 340{
 341        mct_comp_device.cpumask = cpumask_of(0);
 342        clockevents_config_and_register(&mct_comp_device, clk_rate,
 343                                        0xf, 0xffffffff);
 344        setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
 345
 346        return 0;
 347}
 348
 349static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
 350
 351/* Clock event handling */
 352static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
 353{
 354        unsigned long tmp;
 355        unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
 356        unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
 357
 358        tmp = readl_relaxed(reg_base + offset);
 359        if (tmp & mask) {
 360                tmp &= ~mask;
 361                exynos4_mct_write(tmp, offset);
 362        }
 363}
 364
 365static void exynos4_mct_tick_start(unsigned long cycles,
 366                                   struct mct_clock_event_device *mevt)
 367{
 368        unsigned long tmp;
 369
 370        exynos4_mct_tick_stop(mevt);
 371
 372        tmp = (1 << 31) | cycles;       /* MCT_L_UPDATE_ICNTB */
 373
 374        /* update interrupt count buffer */
 375        exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
 376
 377        /* enable MCT tick interrupt */
 378        exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
 379
 380        tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
 381        tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
 382               MCT_L_TCON_INTERVAL_MODE;
 383        exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
 384}
 385
 386static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
 387{
 388        /* Clear the MCT tick interrupt */
 389        if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
 390                exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
 391}
 392
 393static int exynos4_tick_set_next_event(unsigned long cycles,
 394                                       struct clock_event_device *evt)
 395{
 396        struct mct_clock_event_device *mevt;
 397
 398        mevt = container_of(evt, struct mct_clock_event_device, evt);
 399        exynos4_mct_tick_start(cycles, mevt);
 400        return 0;
 401}
 402
 403static int set_state_shutdown(struct clock_event_device *evt)
 404{
 405        struct mct_clock_event_device *mevt;
 406
 407        mevt = container_of(evt, struct mct_clock_event_device, evt);
 408        exynos4_mct_tick_stop(mevt);
 409        exynos4_mct_tick_clear(mevt);
 410        return 0;
 411}
 412
 413static int set_state_periodic(struct clock_event_device *evt)
 414{
 415        struct mct_clock_event_device *mevt;
 416        unsigned long cycles_per_jiffy;
 417
 418        mevt = container_of(evt, struct mct_clock_event_device, evt);
 419        cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
 420                            >> evt->shift);
 421        exynos4_mct_tick_stop(mevt);
 422        exynos4_mct_tick_start(cycles_per_jiffy, mevt);
 423        return 0;
 424}
 425
 426static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
 427{
 428        struct mct_clock_event_device *mevt = dev_id;
 429        struct clock_event_device *evt = &mevt->evt;
 430
 431        /*
 432         * This is for supporting oneshot mode.
 433         * Mct would generate interrupt periodically
 434         * without explicit stopping.
 435         */
 436        if (!clockevent_state_periodic(&mevt->evt))
 437                exynos4_mct_tick_stop(mevt);
 438
 439        exynos4_mct_tick_clear(mevt);
 440
 441        evt->event_handler(evt);
 442
 443        return IRQ_HANDLED;
 444}
 445
 446static int exynos4_mct_starting_cpu(unsigned int cpu)
 447{
 448        struct mct_clock_event_device *mevt =
 449                per_cpu_ptr(&percpu_mct_tick, cpu);
 450        struct clock_event_device *evt = &mevt->evt;
 451
 452        mevt->base = EXYNOS4_MCT_L_BASE(cpu);
 453        snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
 454
 455        evt->name = mevt->name;
 456        evt->cpumask = cpumask_of(cpu);
 457        evt->set_next_event = exynos4_tick_set_next_event;
 458        evt->set_state_periodic = set_state_periodic;
 459        evt->set_state_shutdown = set_state_shutdown;
 460        evt->set_state_oneshot = set_state_shutdown;
 461        evt->set_state_oneshot_stopped = set_state_shutdown;
 462        evt->tick_resume = set_state_shutdown;
 463        evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
 464        evt->rating = 500;      /* use value higher than ARM arch timer */
 465
 466        exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
 467
 468        if (mct_int_type == MCT_INT_SPI) {
 469
 470                if (evt->irq == -1)
 471                        return -EIO;
 472
 473                irq_force_affinity(evt->irq, cpumask_of(cpu));
 474                enable_irq(evt->irq);
 475        } else {
 476                enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
 477        }
 478        clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
 479                                        0xf, 0x7fffffff);
 480
 481        return 0;
 482}
 483
 484static int exynos4_mct_dying_cpu(unsigned int cpu)
 485{
 486        struct mct_clock_event_device *mevt =
 487                per_cpu_ptr(&percpu_mct_tick, cpu);
 488        struct clock_event_device *evt = &mevt->evt;
 489
 490        evt->set_state_shutdown(evt);
 491        if (mct_int_type == MCT_INT_SPI) {
 492                if (evt->irq != -1)
 493                        disable_irq_nosync(evt->irq);
 494                exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
 495        } else {
 496                disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
 497        }
 498        return 0;
 499}
 500
 501static int __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
 502{
 503        int err, cpu;
 504        struct clk *mct_clk, *tick_clk;
 505
 506        tick_clk = of_clk_get_by_name(np, "fin_pll");
 507        if (IS_ERR(tick_clk))
 508                panic("%s: unable to determine tick clock rate\n", __func__);
 509        clk_rate = clk_get_rate(tick_clk);
 510
 511        mct_clk = of_clk_get_by_name(np, "mct");
 512        if (IS_ERR(mct_clk))
 513                panic("%s: unable to retrieve mct clock instance\n", __func__);
 514        clk_prepare_enable(mct_clk);
 515
 516        reg_base = base;
 517        if (!reg_base)
 518                panic("%s: unable to ioremap mct address space\n", __func__);
 519
 520        if (mct_int_type == MCT_INT_PPI) {
 521
 522                err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
 523                                         exynos4_mct_tick_isr, "MCT",
 524                                         &percpu_mct_tick);
 525                WARN(err, "MCT: can't request IRQ %d (%d)\n",
 526                     mct_irqs[MCT_L0_IRQ], err);
 527        } else {
 528                for_each_possible_cpu(cpu) {
 529                        int mct_irq = mct_irqs[MCT_L0_IRQ + cpu];
 530                        struct mct_clock_event_device *pcpu_mevt =
 531                                per_cpu_ptr(&percpu_mct_tick, cpu);
 532
 533                        pcpu_mevt->evt.irq = -1;
 534
 535                        irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
 536                        if (request_irq(mct_irq,
 537                                        exynos4_mct_tick_isr,
 538                                        IRQF_TIMER | IRQF_NOBALANCING,
 539                                        pcpu_mevt->name, pcpu_mevt)) {
 540                                pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
 541                                                                        cpu);
 542
 543                                continue;
 544                        }
 545                        pcpu_mevt->evt.irq = mct_irq;
 546                }
 547        }
 548
 549        /* Install hotplug callbacks which configure the timer on this CPU */
 550        err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING,
 551                                "clockevents/exynos4/mct_timer:starting",
 552                                exynos4_mct_starting_cpu,
 553                                exynos4_mct_dying_cpu);
 554        if (err)
 555                goto out_irq;
 556
 557        return 0;
 558
 559out_irq:
 560        if (mct_int_type == MCT_INT_PPI) {
 561                free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
 562        } else {
 563                for_each_possible_cpu(cpu) {
 564                        struct mct_clock_event_device *pcpu_mevt =
 565                                per_cpu_ptr(&percpu_mct_tick, cpu);
 566
 567                        if (pcpu_mevt->evt.irq != -1) {
 568                                free_irq(pcpu_mevt->evt.irq, pcpu_mevt);
 569                                pcpu_mevt->evt.irq = -1;
 570                        }
 571                }
 572        }
 573        return err;
 574}
 575
 576static int __init mct_init_dt(struct device_node *np, unsigned int int_type)
 577{
 578        u32 nr_irqs, i;
 579        int ret;
 580
 581        mct_int_type = int_type;
 582
 583        /* This driver uses only one global timer interrupt */
 584        mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
 585
 586        /*
 587         * Find out the number of local irqs specified. The local
 588         * timer irqs are specified after the four global timer
 589         * irqs are specified.
 590         */
 591        nr_irqs = of_irq_count(np);
 592        for (i = MCT_L0_IRQ; i < nr_irqs; i++)
 593                mct_irqs[i] = irq_of_parse_and_map(np, i);
 594
 595        ret = exynos4_timer_resources(np, of_iomap(np, 0));
 596        if (ret)
 597                return ret;
 598
 599        ret = exynos4_clocksource_init();
 600        if (ret)
 601                return ret;
 602
 603        return exynos4_clockevent_init();
 604}
 605
 606
 607static int __init mct_init_spi(struct device_node *np)
 608{
 609        return mct_init_dt(np, MCT_INT_SPI);
 610}
 611
 612static int __init mct_init_ppi(struct device_node *np)
 613{
 614        return mct_init_dt(np, MCT_INT_PPI);
 615}
 616TIMER_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
 617TIMER_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);
 618