linux/drivers/clocksource/timer-fttmr010.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Faraday Technology FTTMR010 timer driver
   4 * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
   5 *
   6 * Based on a rewrite of arch/arm/mach-gemini/timer.c:
   7 * Copyright (C) 2001-2006 Storlink, Corp.
   8 * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
   9 */
  10#include <linux/interrupt.h>
  11#include <linux/io.h>
  12#include <linux/of.h>
  13#include <linux/of_address.h>
  14#include <linux/of_irq.h>
  15#include <linux/clockchips.h>
  16#include <linux/clocksource.h>
  17#include <linux/sched_clock.h>
  18#include <linux/clk.h>
  19#include <linux/slab.h>
  20#include <linux/bitops.h>
  21#include <linux/delay.h>
  22
  23/*
  24 * Register definitions common for all the timer variants.
  25 */
  26#define TIMER1_COUNT            (0x00)
  27#define TIMER1_LOAD             (0x04)
  28#define TIMER1_MATCH1           (0x08)
  29#define TIMER1_MATCH2           (0x0c)
  30#define TIMER2_COUNT            (0x10)
  31#define TIMER2_LOAD             (0x14)
  32#define TIMER2_MATCH1           (0x18)
  33#define TIMER2_MATCH2           (0x1c)
  34#define TIMER3_COUNT            (0x20)
  35#define TIMER3_LOAD             (0x24)
  36#define TIMER3_MATCH1           (0x28)
  37#define TIMER3_MATCH2           (0x2c)
  38#define TIMER_CR                (0x30)
  39
  40/*
  41 * Control register (TMC30) bit fields for fttmr010/gemini/moxart timers.
  42 */
  43#define TIMER_1_CR_ENABLE       BIT(0)
  44#define TIMER_1_CR_CLOCK        BIT(1)
  45#define TIMER_1_CR_INT          BIT(2)
  46#define TIMER_2_CR_ENABLE       BIT(3)
  47#define TIMER_2_CR_CLOCK        BIT(4)
  48#define TIMER_2_CR_INT          BIT(5)
  49#define TIMER_3_CR_ENABLE       BIT(6)
  50#define TIMER_3_CR_CLOCK        BIT(7)
  51#define TIMER_3_CR_INT          BIT(8)
  52#define TIMER_1_CR_UPDOWN       BIT(9)
  53#define TIMER_2_CR_UPDOWN       BIT(10)
  54#define TIMER_3_CR_UPDOWN       BIT(11)
  55
  56/*
  57 * Control register (TMC30) bit fields for aspeed ast2400/ast2500 timers.
  58 * The aspeed timers move bits around in the control register and lacks
  59 * bits for setting the timer to count upwards.
  60 */
  61#define TIMER_1_CR_ASPEED_ENABLE        BIT(0)
  62#define TIMER_1_CR_ASPEED_CLOCK         BIT(1)
  63#define TIMER_1_CR_ASPEED_INT           BIT(2)
  64#define TIMER_2_CR_ASPEED_ENABLE        BIT(4)
  65#define TIMER_2_CR_ASPEED_CLOCK         BIT(5)
  66#define TIMER_2_CR_ASPEED_INT           BIT(6)
  67#define TIMER_3_CR_ASPEED_ENABLE        BIT(8)
  68#define TIMER_3_CR_ASPEED_CLOCK         BIT(9)
  69#define TIMER_3_CR_ASPEED_INT           BIT(10)
  70
  71/*
  72 * Interrupt status/mask register definitions for fttmr010/gemini/moxart
  73 * timers.
  74 * The registers don't exist and they are not needed on aspeed timers
  75 * because:
  76 *   - aspeed timer overflow interrupt is controlled by bits in Control
  77 *     Register (TMC30).
  78 *   - aspeed timers always generate interrupt when either one of the
  79 *     Match registers equals to Status register.
  80 */
  81#define TIMER_INTR_STATE        (0x34)
  82#define TIMER_INTR_MASK         (0x38)
  83#define TIMER_1_INT_MATCH1      BIT(0)
  84#define TIMER_1_INT_MATCH2      BIT(1)
  85#define TIMER_1_INT_OVERFLOW    BIT(2)
  86#define TIMER_2_INT_MATCH1      BIT(3)
  87#define TIMER_2_INT_MATCH2      BIT(4)
  88#define TIMER_2_INT_OVERFLOW    BIT(5)
  89#define TIMER_3_INT_MATCH1      BIT(6)
  90#define TIMER_3_INT_MATCH2      BIT(7)
  91#define TIMER_3_INT_OVERFLOW    BIT(8)
  92#define TIMER_INT_ALL_MASK      0x1ff
  93
  94struct fttmr010 {
  95        void __iomem *base;
  96        unsigned int tick_rate;
  97        bool is_aspeed;
  98        u32 t1_enable_val;
  99        struct clock_event_device clkevt;
 100#ifdef CONFIG_ARM
 101        struct delay_timer delay_timer;
 102#endif
 103};
 104
 105/*
 106 * A local singleton used by sched_clock and delay timer reads, which are
 107 * fast and stateless
 108 */
 109static struct fttmr010 *local_fttmr;
 110
 111static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
 112{
 113        return container_of(evt, struct fttmr010, clkevt);
 114}
 115
 116static unsigned long fttmr010_read_current_timer_up(void)
 117{
 118        return readl(local_fttmr->base + TIMER2_COUNT);
 119}
 120
 121static unsigned long fttmr010_read_current_timer_down(void)
 122{
 123        return ~readl(local_fttmr->base + TIMER2_COUNT);
 124}
 125
 126static u64 notrace fttmr010_read_sched_clock_up(void)
 127{
 128        return fttmr010_read_current_timer_up();
 129}
 130
 131static u64 notrace fttmr010_read_sched_clock_down(void)
 132{
 133        return fttmr010_read_current_timer_down();
 134}
 135
 136static int fttmr010_timer_set_next_event(unsigned long cycles,
 137                                       struct clock_event_device *evt)
 138{
 139        struct fttmr010 *fttmr010 = to_fttmr010(evt);
 140        u32 cr;
 141
 142        /* Stop */
 143        cr = readl(fttmr010->base + TIMER_CR);
 144        cr &= ~fttmr010->t1_enable_val;
 145        writel(cr, fttmr010->base + TIMER_CR);
 146
 147        if (fttmr010->is_aspeed) {
 148                /*
 149                 * ASPEED Timer Controller will load TIMER1_LOAD register
 150                 * into TIMER1_COUNT register when the timer is re-enabled.
 151                 */
 152                writel(cycles, fttmr010->base + TIMER1_LOAD);
 153        } else {
 154                /* Setup the match register forward in time */
 155                cr = readl(fttmr010->base + TIMER1_COUNT);
 156                writel(cr + cycles, fttmr010->base + TIMER1_MATCH1);
 157        }
 158
 159        /* Start */
 160        cr = readl(fttmr010->base + TIMER_CR);
 161        cr |= fttmr010->t1_enable_val;
 162        writel(cr, fttmr010->base + TIMER_CR);
 163
 164        return 0;
 165}
 166
 167static int fttmr010_timer_shutdown(struct clock_event_device *evt)
 168{
 169        struct fttmr010 *fttmr010 = to_fttmr010(evt);
 170        u32 cr;
 171
 172        /* Stop */
 173        cr = readl(fttmr010->base + TIMER_CR);
 174        cr &= ~fttmr010->t1_enable_val;
 175        writel(cr, fttmr010->base + TIMER_CR);
 176
 177        return 0;
 178}
 179
 180static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
 181{
 182        struct fttmr010 *fttmr010 = to_fttmr010(evt);
 183        u32 cr;
 184
 185        /* Stop */
 186        cr = readl(fttmr010->base + TIMER_CR);
 187        cr &= ~fttmr010->t1_enable_val;
 188        writel(cr, fttmr010->base + TIMER_CR);
 189
 190        /* Setup counter start from 0 or ~0 */
 191        writel(0, fttmr010->base + TIMER1_COUNT);
 192        if (fttmr010->is_aspeed) {
 193                writel(~0, fttmr010->base + TIMER1_LOAD);
 194        } else {
 195                writel(0, fttmr010->base + TIMER1_LOAD);
 196
 197                /* Enable interrupt */
 198                cr = readl(fttmr010->base + TIMER_INTR_MASK);
 199                cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
 200                cr |= TIMER_1_INT_MATCH1;
 201                writel(cr, fttmr010->base + TIMER_INTR_MASK);
 202        }
 203
 204        return 0;
 205}
 206
 207static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
 208{
 209        struct fttmr010 *fttmr010 = to_fttmr010(evt);
 210        u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
 211        u32 cr;
 212
 213        /* Stop */
 214        cr = readl(fttmr010->base + TIMER_CR);
 215        cr &= ~fttmr010->t1_enable_val;
 216        writel(cr, fttmr010->base + TIMER_CR);
 217
 218        /* Setup timer to fire at 1/HZ intervals. */
 219        if (fttmr010->is_aspeed) {
 220                writel(period, fttmr010->base + TIMER1_LOAD);
 221        } else {
 222                cr = 0xffffffff - (period - 1);
 223                writel(cr, fttmr010->base + TIMER1_COUNT);
 224                writel(cr, fttmr010->base + TIMER1_LOAD);
 225
 226                /* Enable interrupt on overflow */
 227                cr = readl(fttmr010->base + TIMER_INTR_MASK);
 228                cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
 229                cr |= TIMER_1_INT_OVERFLOW;
 230                writel(cr, fttmr010->base + TIMER_INTR_MASK);
 231        }
 232
 233        /* Start the timer */
 234        cr = readl(fttmr010->base + TIMER_CR);
 235        cr |= fttmr010->t1_enable_val;
 236        writel(cr, fttmr010->base + TIMER_CR);
 237
 238        return 0;
 239}
 240
 241/*
 242 * IRQ handler for the timer
 243 */
 244static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
 245{
 246        struct clock_event_device *evt = dev_id;
 247
 248        evt->event_handler(evt);
 249        return IRQ_HANDLED;
 250}
 251
 252static int __init fttmr010_common_init(struct device_node *np, bool is_aspeed)
 253{
 254        struct fttmr010 *fttmr010;
 255        int irq;
 256        struct clk *clk;
 257        int ret;
 258        u32 val;
 259
 260        /*
 261         * These implementations require a clock reference.
 262         * FIXME: we currently only support clocking using PCLK
 263         * and using EXTCLK is not supported in the driver.
 264         */
 265        clk = of_clk_get_by_name(np, "PCLK");
 266        if (IS_ERR(clk)) {
 267                pr_err("could not get PCLK\n");
 268                return PTR_ERR(clk);
 269        }
 270        ret = clk_prepare_enable(clk);
 271        if (ret) {
 272                pr_err("failed to enable PCLK\n");
 273                return ret;
 274        }
 275
 276        fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
 277        if (!fttmr010) {
 278                ret = -ENOMEM;
 279                goto out_disable_clock;
 280        }
 281        fttmr010->tick_rate = clk_get_rate(clk);
 282
 283        fttmr010->base = of_iomap(np, 0);
 284        if (!fttmr010->base) {
 285                pr_err("Can't remap registers\n");
 286                ret = -ENXIO;
 287                goto out_free;
 288        }
 289        /* IRQ for timer 1 */
 290        irq = irq_of_parse_and_map(np, 0);
 291        if (irq <= 0) {
 292                pr_err("Can't parse IRQ\n");
 293                ret = -EINVAL;
 294                goto out_unmap;
 295        }
 296
 297        /*
 298         * The Aspeed timers move bits around in the control register.
 299         */
 300        if (is_aspeed) {
 301                fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
 302                        TIMER_1_CR_ASPEED_INT;
 303                fttmr010->is_aspeed = true;
 304        } else {
 305                fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
 306
 307                /*
 308                 * Reset the interrupt mask and status
 309                 */
 310                writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
 311                writel(0, fttmr010->base + TIMER_INTR_STATE);
 312        }
 313
 314        /*
 315         * Enable timer 1 count up, timer 2 count up, except on Aspeed,
 316         * where everything just counts down.
 317         */
 318        if (is_aspeed)
 319                val = TIMER_2_CR_ASPEED_ENABLE;
 320        else {
 321                val = TIMER_2_CR_ENABLE | TIMER_1_CR_UPDOWN |
 322                        TIMER_2_CR_UPDOWN;
 323        }
 324        writel(val, fttmr010->base + TIMER_CR);
 325
 326        /*
 327         * Setup free-running clocksource timer (interrupts
 328         * disabled.)
 329         */
 330        local_fttmr = fttmr010;
 331        writel(0, fttmr010->base + TIMER2_COUNT);
 332        writel(0, fttmr010->base + TIMER2_MATCH1);
 333        writel(0, fttmr010->base + TIMER2_MATCH2);
 334
 335        if (fttmr010->is_aspeed) {
 336                writel(~0, fttmr010->base + TIMER2_LOAD);
 337                clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
 338                                      "FTTMR010-TIMER2",
 339                                      fttmr010->tick_rate,
 340                                      300, 32, clocksource_mmio_readl_down);
 341                sched_clock_register(fttmr010_read_sched_clock_down, 32,
 342                                     fttmr010->tick_rate);
 343        } else {
 344                writel(0, fttmr010->base + TIMER2_LOAD);
 345                clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
 346                                      "FTTMR010-TIMER2",
 347                                      fttmr010->tick_rate,
 348                                      300, 32, clocksource_mmio_readl_up);
 349                sched_clock_register(fttmr010_read_sched_clock_up, 32,
 350                                     fttmr010->tick_rate);
 351        }
 352
 353        /*
 354         * Setup clockevent timer (interrupt-driven) on timer 1.
 355         */
 356        writel(0, fttmr010->base + TIMER1_COUNT);
 357        writel(0, fttmr010->base + TIMER1_LOAD);
 358        writel(0, fttmr010->base + TIMER1_MATCH1);
 359        writel(0, fttmr010->base + TIMER1_MATCH2);
 360        ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER,
 361                          "FTTMR010-TIMER1", &fttmr010->clkevt);
 362        if (ret) {
 363                pr_err("FTTMR010-TIMER1 no IRQ\n");
 364                goto out_unmap;
 365        }
 366
 367        fttmr010->clkevt.name = "FTTMR010-TIMER1";
 368        /* Reasonably fast and accurate clock event */
 369        fttmr010->clkevt.rating = 300;
 370        fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
 371                CLOCK_EVT_FEAT_ONESHOT;
 372        fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
 373        fttmr010->clkevt.set_state_shutdown = fttmr010_timer_shutdown;
 374        fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
 375        fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
 376        fttmr010->clkevt.tick_resume = fttmr010_timer_shutdown;
 377        fttmr010->clkevt.cpumask = cpumask_of(0);
 378        fttmr010->clkevt.irq = irq;
 379        clockevents_config_and_register(&fttmr010->clkevt,
 380                                        fttmr010->tick_rate,
 381                                        1, 0xffffffff);
 382
 383#ifdef CONFIG_ARM
 384        /* Also use this timer for delays */
 385        if (fttmr010->is_aspeed)
 386                fttmr010->delay_timer.read_current_timer =
 387                        fttmr010_read_current_timer_down;
 388        else
 389                fttmr010->delay_timer.read_current_timer =
 390                        fttmr010_read_current_timer_up;
 391        fttmr010->delay_timer.freq = fttmr010->tick_rate;
 392        register_current_timer_delay(&fttmr010->delay_timer);
 393#endif
 394
 395        return 0;
 396
 397out_unmap:
 398        iounmap(fttmr010->base);
 399out_free:
 400        kfree(fttmr010);
 401out_disable_clock:
 402        clk_disable_unprepare(clk);
 403
 404        return ret;
 405}
 406
 407static __init int aspeed_timer_init(struct device_node *np)
 408{
 409        return fttmr010_common_init(np, true);
 410}
 411
 412static __init int fttmr010_timer_init(struct device_node *np)
 413{
 414        return fttmr010_common_init(np, false);
 415}
 416
 417TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
 418TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
 419TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
 420TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
 421TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);
 422