linux/drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd_gfx_v7.c
<<
>>
Prefs
   1/*
   2 * Copyright 2014 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 */
  22
  23#include <linux/fdtable.h>
  24#include <linux/uaccess.h>
  25#include <linux/mmu_context.h>
  26
  27#include "amdgpu.h"
  28#include "amdgpu_amdkfd.h"
  29#include "cikd.h"
  30#include "cik_sdma.h"
  31#include "gfx_v7_0.h"
  32#include "gca/gfx_7_2_d.h"
  33#include "gca/gfx_7_2_enum.h"
  34#include "gca/gfx_7_2_sh_mask.h"
  35#include "oss/oss_2_0_d.h"
  36#include "oss/oss_2_0_sh_mask.h"
  37#include "gmc/gmc_7_1_d.h"
  38#include "gmc/gmc_7_1_sh_mask.h"
  39#include "cik_structs.h"
  40
  41enum hqd_dequeue_request_type {
  42        NO_ACTION = 0,
  43        DRAIN_PIPE,
  44        RESET_WAVES
  45};
  46
  47enum {
  48        MAX_TRAPID = 8,         /* 3 bits in the bitfield. */
  49        MAX_WATCH_ADDRESSES = 4
  50};
  51
  52enum {
  53        ADDRESS_WATCH_REG_ADDR_HI = 0,
  54        ADDRESS_WATCH_REG_ADDR_LO,
  55        ADDRESS_WATCH_REG_CNTL,
  56        ADDRESS_WATCH_REG_MAX
  57};
  58
  59/*  not defined in the CI/KV reg file  */
  60enum {
  61        ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
  62        ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
  63        ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
  64        /* extend the mask to 26 bits to match the low address field */
  65        ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
  66        ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
  67};
  68
  69static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
  70        mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
  71        mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
  72        mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
  73        mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
  74};
  75
  76union TCP_WATCH_CNTL_BITS {
  77        struct {
  78                uint32_t mask:24;
  79                uint32_t vmid:4;
  80                uint32_t atc:1;
  81                uint32_t mode:2;
  82                uint32_t valid:1;
  83        } bitfields, bits;
  84        uint32_t u32All;
  85        signed int i32All;
  86        float f32All;
  87};
  88
  89/*
  90 * Register access functions
  91 */
  92
  93static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  94                uint32_t sh_mem_config, uint32_t sh_mem_ape1_base,
  95                uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
  96
  97static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  98                                        unsigned int vmid);
  99
 100static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
 101static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
 102                        uint32_t queue_id, uint32_t __user *wptr,
 103                        uint32_t wptr_shift, uint32_t wptr_mask,
 104                        struct mm_struct *mm);
 105static int kgd_hqd_dump(struct kgd_dev *kgd,
 106                        uint32_t pipe_id, uint32_t queue_id,
 107                        uint32_t (**dump)[2], uint32_t *n_regs);
 108static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
 109                             uint32_t __user *wptr, struct mm_struct *mm);
 110static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
 111                             uint32_t engine_id, uint32_t queue_id,
 112                             uint32_t (**dump)[2], uint32_t *n_regs);
 113static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
 114                                uint32_t pipe_id, uint32_t queue_id);
 115
 116static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
 117                                enum kfd_preempt_type reset_type,
 118                                unsigned int utimeout, uint32_t pipe_id,
 119                                uint32_t queue_id);
 120static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
 121static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
 122                                unsigned int utimeout);
 123static int kgd_address_watch_disable(struct kgd_dev *kgd);
 124static int kgd_address_watch_execute(struct kgd_dev *kgd,
 125                                        unsigned int watch_point_id,
 126                                        uint32_t cntl_val,
 127                                        uint32_t addr_hi,
 128                                        uint32_t addr_lo);
 129static int kgd_wave_control_execute(struct kgd_dev *kgd,
 130                                        uint32_t gfx_index_val,
 131                                        uint32_t sq_cmd);
 132static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
 133                                        unsigned int watch_point_id,
 134                                        unsigned int reg_offset);
 135
 136static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
 137static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
 138                                                        uint8_t vmid);
 139
 140static void set_scratch_backing_va(struct kgd_dev *kgd,
 141                                        uint64_t va, uint32_t vmid);
 142static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
 143                uint64_t page_table_base);
 144static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid);
 145static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid);
 146static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd);
 147
 148/* Because of REG_GET_FIELD() being used, we put this function in the
 149 * asic specific file.
 150 */
 151static int get_tile_config(struct kgd_dev *kgd,
 152                struct tile_config *config)
 153{
 154        struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
 155
 156        config->gb_addr_config = adev->gfx.config.gb_addr_config;
 157        config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
 158                                MC_ARB_RAMCFG, NOOFBANK);
 159        config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
 160                                MC_ARB_RAMCFG, NOOFRANKS);
 161
 162        config->tile_config_ptr = adev->gfx.config.tile_mode_array;
 163        config->num_tile_configs =
 164                        ARRAY_SIZE(adev->gfx.config.tile_mode_array);
 165        config->macro_tile_config_ptr =
 166                        adev->gfx.config.macrotile_mode_array;
 167        config->num_macro_tile_configs =
 168                        ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
 169
 170        return 0;
 171}
 172
 173static const struct kfd2kgd_calls kfd2kgd = {
 174        .program_sh_mem_settings = kgd_program_sh_mem_settings,
 175        .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
 176        .init_interrupts = kgd_init_interrupts,
 177        .hqd_load = kgd_hqd_load,
 178        .hqd_sdma_load = kgd_hqd_sdma_load,
 179        .hqd_dump = kgd_hqd_dump,
 180        .hqd_sdma_dump = kgd_hqd_sdma_dump,
 181        .hqd_is_occupied = kgd_hqd_is_occupied,
 182        .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
 183        .hqd_destroy = kgd_hqd_destroy,
 184        .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
 185        .address_watch_disable = kgd_address_watch_disable,
 186        .address_watch_execute = kgd_address_watch_execute,
 187        .wave_control_execute = kgd_wave_control_execute,
 188        .address_watch_get_offset = kgd_address_watch_get_offset,
 189        .get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
 190        .get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
 191        .set_scratch_backing_va = set_scratch_backing_va,
 192        .get_tile_config = get_tile_config,
 193        .set_vm_context_page_table_base = set_vm_context_page_table_base,
 194        .invalidate_tlbs = invalidate_tlbs,
 195        .invalidate_tlbs_vmid = invalidate_tlbs_vmid,
 196        .read_vmid_from_vmfault_reg = read_vmid_from_vmfault_reg,
 197};
 198
 199struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
 200{
 201        return (struct kfd2kgd_calls *)&kfd2kgd;
 202}
 203
 204static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
 205{
 206        return (struct amdgpu_device *)kgd;
 207}
 208
 209static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
 210                        uint32_t queue, uint32_t vmid)
 211{
 212        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 213        uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
 214
 215        mutex_lock(&adev->srbm_mutex);
 216        WREG32(mmSRBM_GFX_CNTL, value);
 217}
 218
 219static void unlock_srbm(struct kgd_dev *kgd)
 220{
 221        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 222
 223        WREG32(mmSRBM_GFX_CNTL, 0);
 224        mutex_unlock(&adev->srbm_mutex);
 225}
 226
 227static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
 228                                uint32_t queue_id)
 229{
 230        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 231
 232        uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
 233        uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
 234
 235        lock_srbm(kgd, mec, pipe, queue_id, 0);
 236}
 237
 238static void release_queue(struct kgd_dev *kgd)
 239{
 240        unlock_srbm(kgd);
 241}
 242
 243static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
 244                                        uint32_t sh_mem_config,
 245                                        uint32_t sh_mem_ape1_base,
 246                                        uint32_t sh_mem_ape1_limit,
 247                                        uint32_t sh_mem_bases)
 248{
 249        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 250
 251        lock_srbm(kgd, 0, 0, 0, vmid);
 252
 253        WREG32(mmSH_MEM_CONFIG, sh_mem_config);
 254        WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
 255        WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
 256        WREG32(mmSH_MEM_BASES, sh_mem_bases);
 257
 258        unlock_srbm(kgd);
 259}
 260
 261static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
 262                                        unsigned int vmid)
 263{
 264        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 265
 266        /*
 267         * We have to assume that there is no outstanding mapping.
 268         * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
 269         * a mapping is in progress or because a mapping finished and the
 270         * SW cleared it. So the protocol is to always wait & clear.
 271         */
 272        uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
 273                        ATC_VMID0_PASID_MAPPING__VALID_MASK;
 274
 275        WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
 276
 277        while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
 278                cpu_relax();
 279        WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
 280
 281        /* Mapping vmid to pasid also for IH block */
 282        WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
 283
 284        return 0;
 285}
 286
 287static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
 288{
 289        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 290        uint32_t mec;
 291        uint32_t pipe;
 292
 293        mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
 294        pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
 295
 296        lock_srbm(kgd, mec, pipe, 0, 0);
 297
 298        WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
 299                        CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
 300
 301        unlock_srbm(kgd);
 302
 303        return 0;
 304}
 305
 306static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
 307{
 308        uint32_t retval;
 309
 310        retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
 311                        m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
 312
 313        pr_debug("sdma base address: 0x%x\n", retval);
 314
 315        return retval;
 316}
 317
 318static inline struct cik_mqd *get_mqd(void *mqd)
 319{
 320        return (struct cik_mqd *)mqd;
 321}
 322
 323static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
 324{
 325        return (struct cik_sdma_rlc_registers *)mqd;
 326}
 327
 328static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
 329                        uint32_t queue_id, uint32_t __user *wptr,
 330                        uint32_t wptr_shift, uint32_t wptr_mask,
 331                        struct mm_struct *mm)
 332{
 333        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 334        struct cik_mqd *m;
 335        uint32_t *mqd_hqd;
 336        uint32_t reg, wptr_val, data;
 337        bool valid_wptr = false;
 338
 339        m = get_mqd(mqd);
 340
 341        acquire_queue(kgd, pipe_id, queue_id);
 342
 343        /* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
 344        mqd_hqd = &m->cp_mqd_base_addr_lo;
 345
 346        for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
 347                WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
 348
 349        /* Copy userspace write pointer value to register.
 350         * Activate doorbell logic to monitor subsequent changes.
 351         */
 352        data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
 353                             CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
 354        WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
 355
 356        /* read_user_ptr may take the mm->mmap_sem.
 357         * release srbm_mutex to avoid circular dependency between
 358         * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
 359         */
 360        release_queue(kgd);
 361        valid_wptr = read_user_wptr(mm, wptr, wptr_val);
 362        acquire_queue(kgd, pipe_id, queue_id);
 363        if (valid_wptr)
 364                WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
 365
 366        data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
 367        WREG32(mmCP_HQD_ACTIVE, data);
 368
 369        release_queue(kgd);
 370
 371        return 0;
 372}
 373
 374static int kgd_hqd_dump(struct kgd_dev *kgd,
 375                        uint32_t pipe_id, uint32_t queue_id,
 376                        uint32_t (**dump)[2], uint32_t *n_regs)
 377{
 378        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 379        uint32_t i = 0, reg;
 380#define HQD_N_REGS (35+4)
 381#define DUMP_REG(addr) do {                             \
 382                if (WARN_ON_ONCE(i >= HQD_N_REGS))      \
 383                        break;                          \
 384                (*dump)[i][0] = (addr) << 2;            \
 385                (*dump)[i++][1] = RREG32(addr);         \
 386        } while (0)
 387
 388        *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
 389        if (*dump == NULL)
 390                return -ENOMEM;
 391
 392        acquire_queue(kgd, pipe_id, queue_id);
 393
 394        DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
 395        DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
 396        DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
 397        DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
 398
 399        for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
 400                DUMP_REG(reg);
 401
 402        release_queue(kgd);
 403
 404        WARN_ON_ONCE(i != HQD_N_REGS);
 405        *n_regs = i;
 406
 407        return 0;
 408}
 409
 410static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
 411                             uint32_t __user *wptr, struct mm_struct *mm)
 412{
 413        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 414        struct cik_sdma_rlc_registers *m;
 415        unsigned long end_jiffies;
 416        uint32_t sdma_base_addr;
 417        uint32_t data;
 418
 419        m = get_sdma_mqd(mqd);
 420        sdma_base_addr = get_sdma_base_addr(m);
 421
 422        WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
 423                m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
 424
 425        end_jiffies = msecs_to_jiffies(2000) + jiffies;
 426        while (true) {
 427                data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
 428                if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
 429                        break;
 430                if (time_after(jiffies, end_jiffies))
 431                        return -ETIME;
 432                usleep_range(500, 1000);
 433        }
 434        if (m->sdma_engine_id) {
 435                data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
 436                data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
 437                                RESUME_CTX, 0);
 438                WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
 439        } else {
 440                data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
 441                data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
 442                                RESUME_CTX, 0);
 443                WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
 444        }
 445
 446        data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
 447                             ENABLE, 1);
 448        WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
 449        WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdma_rlc_rb_rptr);
 450
 451        if (read_user_wptr(mm, wptr, data))
 452                WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
 453        else
 454                WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
 455                       m->sdma_rlc_rb_rptr);
 456
 457        WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
 458                                m->sdma_rlc_virtual_addr);
 459        WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
 460        WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
 461                        m->sdma_rlc_rb_base_hi);
 462        WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
 463                        m->sdma_rlc_rb_rptr_addr_lo);
 464        WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
 465                        m->sdma_rlc_rb_rptr_addr_hi);
 466
 467        data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
 468                             RB_ENABLE, 1);
 469        WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
 470
 471        return 0;
 472}
 473
 474static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
 475                             uint32_t engine_id, uint32_t queue_id,
 476                             uint32_t (**dump)[2], uint32_t *n_regs)
 477{
 478        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 479        uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
 480                queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
 481        uint32_t i = 0, reg;
 482#undef HQD_N_REGS
 483#define HQD_N_REGS (19+4)
 484
 485        *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
 486        if (*dump == NULL)
 487                return -ENOMEM;
 488
 489        for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
 490                DUMP_REG(sdma_offset + reg);
 491        for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
 492             reg++)
 493                DUMP_REG(sdma_offset + reg);
 494
 495        WARN_ON_ONCE(i != HQD_N_REGS);
 496        *n_regs = i;
 497
 498        return 0;
 499}
 500
 501static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
 502                                uint32_t pipe_id, uint32_t queue_id)
 503{
 504        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 505        uint32_t act;
 506        bool retval = false;
 507        uint32_t low, high;
 508
 509        acquire_queue(kgd, pipe_id, queue_id);
 510        act = RREG32(mmCP_HQD_ACTIVE);
 511        if (act) {
 512                low = lower_32_bits(queue_address >> 8);
 513                high = upper_32_bits(queue_address >> 8);
 514
 515                if (low == RREG32(mmCP_HQD_PQ_BASE) &&
 516                                high == RREG32(mmCP_HQD_PQ_BASE_HI))
 517                        retval = true;
 518        }
 519        release_queue(kgd);
 520        return retval;
 521}
 522
 523static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
 524{
 525        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 526        struct cik_sdma_rlc_registers *m;
 527        uint32_t sdma_base_addr;
 528        uint32_t sdma_rlc_rb_cntl;
 529
 530        m = get_sdma_mqd(mqd);
 531        sdma_base_addr = get_sdma_base_addr(m);
 532
 533        sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
 534
 535        if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
 536                return true;
 537
 538        return false;
 539}
 540
 541static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
 542                                enum kfd_preempt_type reset_type,
 543                                unsigned int utimeout, uint32_t pipe_id,
 544                                uint32_t queue_id)
 545{
 546        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 547        uint32_t temp;
 548        enum hqd_dequeue_request_type type;
 549        unsigned long flags, end_jiffies;
 550        int retry;
 551
 552        if (adev->in_gpu_reset)
 553                return -EIO;
 554
 555        acquire_queue(kgd, pipe_id, queue_id);
 556        WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
 557
 558        switch (reset_type) {
 559        case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
 560                type = DRAIN_PIPE;
 561                break;
 562        case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
 563                type = RESET_WAVES;
 564                break;
 565        default:
 566                type = DRAIN_PIPE;
 567                break;
 568        }
 569
 570        /* Workaround: If IQ timer is active and the wait time is close to or
 571         * equal to 0, dequeueing is not safe. Wait until either the wait time
 572         * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
 573         * cleared before continuing. Also, ensure wait times are set to at
 574         * least 0x3.
 575         */
 576        local_irq_save(flags);
 577        preempt_disable();
 578        retry = 5000; /* wait for 500 usecs at maximum */
 579        while (true) {
 580                temp = RREG32(mmCP_HQD_IQ_TIMER);
 581                if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
 582                        pr_debug("HW is processing IQ\n");
 583                        goto loop;
 584                }
 585                if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
 586                        if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
 587                                        == 3) /* SEM-rearm is safe */
 588                                break;
 589                        /* Wait time 3 is safe for CP, but our MMIO read/write
 590                         * time is close to 1 microsecond, so check for 10 to
 591                         * leave more buffer room
 592                         */
 593                        if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
 594                                        >= 10)
 595                                break;
 596                        pr_debug("IQ timer is active\n");
 597                } else
 598                        break;
 599loop:
 600                if (!retry) {
 601                        pr_err("CP HQD IQ timer status time out\n");
 602                        break;
 603                }
 604                ndelay(100);
 605                --retry;
 606        }
 607        retry = 1000;
 608        while (true) {
 609                temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
 610                if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
 611                        break;
 612                pr_debug("Dequeue request is pending\n");
 613
 614                if (!retry) {
 615                        pr_err("CP HQD dequeue request time out\n");
 616                        break;
 617                }
 618                ndelay(100);
 619                --retry;
 620        }
 621        local_irq_restore(flags);
 622        preempt_enable();
 623
 624        WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
 625
 626        end_jiffies = (utimeout * HZ / 1000) + jiffies;
 627        while (true) {
 628                temp = RREG32(mmCP_HQD_ACTIVE);
 629                if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
 630                        break;
 631                if (time_after(jiffies, end_jiffies)) {
 632                        pr_err("cp queue preemption time out\n");
 633                        release_queue(kgd);
 634                        return -ETIME;
 635                }
 636                usleep_range(500, 1000);
 637        }
 638
 639        release_queue(kgd);
 640        return 0;
 641}
 642
 643static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
 644                                unsigned int utimeout)
 645{
 646        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 647        struct cik_sdma_rlc_registers *m;
 648        uint32_t sdma_base_addr;
 649        uint32_t temp;
 650        unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
 651
 652        m = get_sdma_mqd(mqd);
 653        sdma_base_addr = get_sdma_base_addr(m);
 654
 655        temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
 656        temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
 657        WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
 658
 659        while (true) {
 660                temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
 661                if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
 662                        break;
 663                if (time_after(jiffies, end_jiffies))
 664                        return -ETIME;
 665                usleep_range(500, 1000);
 666        }
 667
 668        WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
 669        WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
 670                RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
 671                SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
 672
 673        m->sdma_rlc_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
 674
 675        return 0;
 676}
 677
 678static int kgd_address_watch_disable(struct kgd_dev *kgd)
 679{
 680        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 681        union TCP_WATCH_CNTL_BITS cntl;
 682        unsigned int i;
 683
 684        cntl.u32All = 0;
 685
 686        cntl.bitfields.valid = 0;
 687        cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
 688        cntl.bitfields.atc = 1;
 689
 690        /* Turning off this address until we set all the registers */
 691        for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
 692                WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
 693                        ADDRESS_WATCH_REG_CNTL], cntl.u32All);
 694
 695        return 0;
 696}
 697
 698static int kgd_address_watch_execute(struct kgd_dev *kgd,
 699                                        unsigned int watch_point_id,
 700                                        uint32_t cntl_val,
 701                                        uint32_t addr_hi,
 702                                        uint32_t addr_lo)
 703{
 704        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 705        union TCP_WATCH_CNTL_BITS cntl;
 706
 707        cntl.u32All = cntl_val;
 708
 709        /* Turning off this watch point until we set all the registers */
 710        cntl.bitfields.valid = 0;
 711        WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
 712                ADDRESS_WATCH_REG_CNTL], cntl.u32All);
 713
 714        WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
 715                ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
 716
 717        WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
 718                ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
 719
 720        /* Enable the watch point */
 721        cntl.bitfields.valid = 1;
 722
 723        WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
 724                ADDRESS_WATCH_REG_CNTL], cntl.u32All);
 725
 726        return 0;
 727}
 728
 729static int kgd_wave_control_execute(struct kgd_dev *kgd,
 730                                        uint32_t gfx_index_val,
 731                                        uint32_t sq_cmd)
 732{
 733        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 734        uint32_t data;
 735
 736        mutex_lock(&adev->grbm_idx_mutex);
 737
 738        WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
 739        WREG32(mmSQ_CMD, sq_cmd);
 740
 741        /*  Restore the GRBM_GFX_INDEX register  */
 742
 743        data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
 744                GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
 745                GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
 746
 747        WREG32(mmGRBM_GFX_INDEX, data);
 748
 749        mutex_unlock(&adev->grbm_idx_mutex);
 750
 751        return 0;
 752}
 753
 754static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
 755                                        unsigned int watch_point_id,
 756                                        unsigned int reg_offset)
 757{
 758        return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
 759}
 760
 761static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
 762                                                        uint8_t vmid)
 763{
 764        uint32_t reg;
 765        struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
 766
 767        reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
 768        return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
 769}
 770
 771static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
 772                                                                uint8_t vmid)
 773{
 774        uint32_t reg;
 775        struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
 776
 777        reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
 778        return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK;
 779}
 780
 781static void set_scratch_backing_va(struct kgd_dev *kgd,
 782                                        uint64_t va, uint32_t vmid)
 783{
 784        struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
 785
 786        lock_srbm(kgd, 0, 0, 0, vmid);
 787        WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
 788        unlock_srbm(kgd);
 789}
 790
 791static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
 792                        uint64_t page_table_base)
 793{
 794        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 795
 796        if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
 797                pr_err("trying to set page table base for wrong VMID\n");
 798                return;
 799        }
 800        WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
 801                lower_32_bits(page_table_base));
 802}
 803
 804static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid)
 805{
 806        struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
 807        int vmid;
 808        unsigned int tmp;
 809
 810        if (adev->in_gpu_reset)
 811                return -EIO;
 812
 813        for (vmid = 0; vmid < 16; vmid++) {
 814                if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid))
 815                        continue;
 816
 817                tmp = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
 818                if ((tmp & ATC_VMID0_PASID_MAPPING__VALID_MASK) &&
 819                        (tmp & ATC_VMID0_PASID_MAPPING__PASID_MASK) == pasid) {
 820                        WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
 821                        RREG32(mmVM_INVALIDATE_RESPONSE);
 822                        break;
 823                }
 824        }
 825
 826        return 0;
 827}
 828
 829static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid)
 830{
 831        struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
 832
 833        if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
 834                pr_err("non kfd vmid\n");
 835                return 0;
 836        }
 837
 838        WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
 839        RREG32(mmVM_INVALIDATE_RESPONSE);
 840        return 0;
 841}
 842
 843 /**
 844  * read_vmid_from_vmfault_reg - read vmid from register
 845  *
 846  * adev: amdgpu_device pointer
 847  * @vmid: vmid pointer
 848  * read vmid from register (CIK).
 849  */
 850static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd)
 851{
 852        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 853
 854        uint32_t status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
 855
 856        return REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
 857}
 858