linux/drivers/gpu/drm/tegra/dc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 Avionic Design GmbH
   4 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
   5 */
   6
   7#include <linux/clk.h>
   8#include <linux/debugfs.h>
   9#include <linux/delay.h>
  10#include <linux/iommu.h>
  11#include <linux/module.h>
  12#include <linux/of_device.h>
  13#include <linux/pm_runtime.h>
  14#include <linux/reset.h>
  15
  16#include <soc/tegra/pmc.h>
  17
  18#include <drm/drm_atomic.h>
  19#include <drm/drm_atomic_helper.h>
  20#include <drm/drm_debugfs.h>
  21#include <drm/drm_fourcc.h>
  22#include <drm/drm_plane_helper.h>
  23#include <drm/drm_vblank.h>
  24
  25#include "dc.h"
  26#include "drm.h"
  27#include "gem.h"
  28#include "hub.h"
  29#include "plane.h"
  30
  31static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
  32                                            struct drm_crtc_state *state);
  33
  34static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
  35{
  36        stats->frames = 0;
  37        stats->vblank = 0;
  38        stats->underflow = 0;
  39        stats->overflow = 0;
  40}
  41
  42/* Reads the active copy of a register. */
  43static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
  44{
  45        u32 value;
  46
  47        tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
  48        value = tegra_dc_readl(dc, offset);
  49        tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
  50
  51        return value;
  52}
  53
  54static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
  55                                              unsigned int offset)
  56{
  57        if (offset >= 0x500 && offset <= 0x638) {
  58                offset = 0x000 + (offset - 0x500);
  59                return plane->offset + offset;
  60        }
  61
  62        if (offset >= 0x700 && offset <= 0x719) {
  63                offset = 0x180 + (offset - 0x700);
  64                return plane->offset + offset;
  65        }
  66
  67        if (offset >= 0x800 && offset <= 0x839) {
  68                offset = 0x1c0 + (offset - 0x800);
  69                return plane->offset + offset;
  70        }
  71
  72        dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
  73
  74        return plane->offset + offset;
  75}
  76
  77static inline u32 tegra_plane_readl(struct tegra_plane *plane,
  78                                    unsigned int offset)
  79{
  80        return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
  81}
  82
  83static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
  84                                      unsigned int offset)
  85{
  86        tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
  87}
  88
  89bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
  90{
  91        struct device_node *np = dc->dev->of_node;
  92        struct of_phandle_iterator it;
  93        int err;
  94
  95        of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
  96                if (it.node == dev->of_node)
  97                        return true;
  98
  99        return false;
 100}
 101
 102/*
 103 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
 104 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
 105 * Latching happens mmediately if the display controller is in STOP mode or
 106 * on the next frame boundary otherwise.
 107 *
 108 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
 109 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
 110 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
 111 * into the ACTIVE copy, either immediately if the display controller is in
 112 * STOP mode, or at the next frame boundary otherwise.
 113 */
 114void tegra_dc_commit(struct tegra_dc *dc)
 115{
 116        tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
 117        tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
 118}
 119
 120static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
 121                                  unsigned int bpp)
 122{
 123        fixed20_12 outf = dfixed_init(out);
 124        fixed20_12 inf = dfixed_init(in);
 125        u32 dda_inc;
 126        int max;
 127
 128        if (v)
 129                max = 15;
 130        else {
 131                switch (bpp) {
 132                case 2:
 133                        max = 8;
 134                        break;
 135
 136                default:
 137                        WARN_ON_ONCE(1);
 138                        /* fallthrough */
 139                case 4:
 140                        max = 4;
 141                        break;
 142                }
 143        }
 144
 145        outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
 146        inf.full -= dfixed_const(1);
 147
 148        dda_inc = dfixed_div(inf, outf);
 149        dda_inc = min_t(u32, dda_inc, dfixed_const(max));
 150
 151        return dda_inc;
 152}
 153
 154static inline u32 compute_initial_dda(unsigned int in)
 155{
 156        fixed20_12 inf = dfixed_init(in);
 157        return dfixed_frac(inf);
 158}
 159
 160static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
 161{
 162        u32 background[3] = {
 163                BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 164                BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 165                BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 166        };
 167        u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
 168                         BLEND_COLOR_KEY_NONE;
 169        u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
 170        struct tegra_plane_state *state;
 171        u32 blending[2];
 172        unsigned int i;
 173
 174        /* disable blending for non-overlapping case */
 175        tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
 176        tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
 177
 178        state = to_tegra_plane_state(plane->base.state);
 179
 180        if (state->opaque) {
 181                /*
 182                 * Since custom fix-weight blending isn't utilized and weight
 183                 * of top window is set to max, we can enforce dependent
 184                 * blending which in this case results in transparent bottom
 185                 * window if top window is opaque and if top window enables
 186                 * alpha blending, then bottom window is getting alpha value
 187                 * of 1 minus the sum of alpha components of the overlapping
 188                 * plane.
 189                 */
 190                background[0] |= BLEND_CONTROL_DEPENDENT;
 191                background[1] |= BLEND_CONTROL_DEPENDENT;
 192
 193                /*
 194                 * The region where three windows overlap is the intersection
 195                 * of the two regions where two windows overlap. It contributes
 196                 * to the area if all of the windows on top of it have an alpha
 197                 * component.
 198                 */
 199                switch (state->base.normalized_zpos) {
 200                case 0:
 201                        if (state->blending[0].alpha &&
 202                            state->blending[1].alpha)
 203                                background[2] |= BLEND_CONTROL_DEPENDENT;
 204                        break;
 205
 206                case 1:
 207                        background[2] |= BLEND_CONTROL_DEPENDENT;
 208                        break;
 209                }
 210        } else {
 211                /*
 212                 * Enable alpha blending if pixel format has an alpha
 213                 * component.
 214                 */
 215                foreground |= BLEND_CONTROL_ALPHA;
 216
 217                /*
 218                 * If any of the windows on top of this window is opaque, it
 219                 * will completely conceal this window within that area. If
 220                 * top window has an alpha component, it is blended over the
 221                 * bottom window.
 222                 */
 223                for (i = 0; i < 2; i++) {
 224                        if (state->blending[i].alpha &&
 225                            state->blending[i].top)
 226                                background[i] |= BLEND_CONTROL_DEPENDENT;
 227                }
 228
 229                switch (state->base.normalized_zpos) {
 230                case 0:
 231                        if (state->blending[0].alpha &&
 232                            state->blending[1].alpha)
 233                                background[2] |= BLEND_CONTROL_DEPENDENT;
 234                        break;
 235
 236                case 1:
 237                        /*
 238                         * When both middle and topmost windows have an alpha,
 239                         * these windows a mixed together and then the result
 240                         * is blended over the bottom window.
 241                         */
 242                        if (state->blending[0].alpha &&
 243                            state->blending[0].top)
 244                                background[2] |= BLEND_CONTROL_ALPHA;
 245
 246                        if (state->blending[1].alpha &&
 247                            state->blending[1].top)
 248                                background[2] |= BLEND_CONTROL_ALPHA;
 249                        break;
 250                }
 251        }
 252
 253        switch (state->base.normalized_zpos) {
 254        case 0:
 255                tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
 256                tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
 257                tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
 258                break;
 259
 260        case 1:
 261                /*
 262                 * If window B / C is topmost, then X / Y registers are
 263                 * matching the order of blending[...] state indices,
 264                 * otherwise a swap is required.
 265                 */
 266                if (!state->blending[0].top && state->blending[1].top) {
 267                        blending[0] = foreground;
 268                        blending[1] = background[1];
 269                } else {
 270                        blending[0] = background[0];
 271                        blending[1] = foreground;
 272                }
 273
 274                tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
 275                tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
 276                tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
 277                break;
 278
 279        case 2:
 280                tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
 281                tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
 282                tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
 283                break;
 284        }
 285}
 286
 287static void tegra_plane_setup_blending(struct tegra_plane *plane,
 288                                       const struct tegra_dc_window *window)
 289{
 290        u32 value;
 291
 292        value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
 293                BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
 294                BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
 295        tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
 296
 297        value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
 298                BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
 299                BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
 300        tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
 301
 302        value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
 303        tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
 304}
 305
 306static bool
 307tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
 308                                     const struct tegra_dc_window *window)
 309{
 310        struct tegra_dc *dc = plane->dc;
 311
 312        if (window->src.w == window->dst.w)
 313                return false;
 314
 315        if (plane->index == 0 && dc->soc->has_win_a_without_filters)
 316                return false;
 317
 318        return true;
 319}
 320
 321static bool
 322tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
 323                                   const struct tegra_dc_window *window)
 324{
 325        struct tegra_dc *dc = plane->dc;
 326
 327        if (window->src.h == window->dst.h)
 328                return false;
 329
 330        if (plane->index == 0 && dc->soc->has_win_a_without_filters)
 331                return false;
 332
 333        if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
 334                return false;
 335
 336        return true;
 337}
 338
 339static void tegra_dc_setup_window(struct tegra_plane *plane,
 340                                  const struct tegra_dc_window *window)
 341{
 342        unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
 343        struct tegra_dc *dc = plane->dc;
 344        bool yuv, planar;
 345        u32 value;
 346
 347        /*
 348         * For YUV planar modes, the number of bytes per pixel takes into
 349         * account only the luma component and therefore is 1.
 350         */
 351        yuv = tegra_plane_format_is_yuv(window->format, &planar);
 352        if (!yuv)
 353                bpp = window->bits_per_pixel / 8;
 354        else
 355                bpp = planar ? 1 : 2;
 356
 357        tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
 358        tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
 359
 360        value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
 361        tegra_plane_writel(plane, value, DC_WIN_POSITION);
 362
 363        value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
 364        tegra_plane_writel(plane, value, DC_WIN_SIZE);
 365
 366        h_offset = window->src.x * bpp;
 367        v_offset = window->src.y;
 368        h_size = window->src.w * bpp;
 369        v_size = window->src.h;
 370
 371        value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
 372        tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
 373
 374        /*
 375         * For DDA computations the number of bytes per pixel for YUV planar
 376         * modes needs to take into account all Y, U and V components.
 377         */
 378        if (yuv && planar)
 379                bpp = 2;
 380
 381        h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
 382        v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
 383
 384        value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
 385        tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
 386
 387        h_dda = compute_initial_dda(window->src.x);
 388        v_dda = compute_initial_dda(window->src.y);
 389
 390        tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
 391        tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
 392
 393        tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
 394        tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
 395
 396        tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
 397
 398        if (yuv && planar) {
 399                tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
 400                tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
 401                value = window->stride[1] << 16 | window->stride[0];
 402                tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
 403        } else {
 404                tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
 405        }
 406
 407        if (window->bottom_up)
 408                v_offset += window->src.h - 1;
 409
 410        tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
 411        tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
 412
 413        if (dc->soc->supports_block_linear) {
 414                unsigned long height = window->tiling.value;
 415
 416                switch (window->tiling.mode) {
 417                case TEGRA_BO_TILING_MODE_PITCH:
 418                        value = DC_WINBUF_SURFACE_KIND_PITCH;
 419                        break;
 420
 421                case TEGRA_BO_TILING_MODE_TILED:
 422                        value = DC_WINBUF_SURFACE_KIND_TILED;
 423                        break;
 424
 425                case TEGRA_BO_TILING_MODE_BLOCK:
 426                        value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
 427                                DC_WINBUF_SURFACE_KIND_BLOCK;
 428                        break;
 429                }
 430
 431                tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
 432        } else {
 433                switch (window->tiling.mode) {
 434                case TEGRA_BO_TILING_MODE_PITCH:
 435                        value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
 436                                DC_WIN_BUFFER_ADDR_MODE_LINEAR;
 437                        break;
 438
 439                case TEGRA_BO_TILING_MODE_TILED:
 440                        value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
 441                                DC_WIN_BUFFER_ADDR_MODE_TILE;
 442                        break;
 443
 444                case TEGRA_BO_TILING_MODE_BLOCK:
 445                        /*
 446                         * No need to handle this here because ->atomic_check
 447                         * will already have filtered it out.
 448                         */
 449                        break;
 450                }
 451
 452                tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
 453        }
 454
 455        value = WIN_ENABLE;
 456
 457        if (yuv) {
 458                /* setup default colorspace conversion coefficients */
 459                tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
 460                tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
 461                tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
 462                tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
 463                tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
 464                tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
 465                tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
 466                tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
 467
 468                value |= CSC_ENABLE;
 469        } else if (window->bits_per_pixel < 24) {
 470                value |= COLOR_EXPAND;
 471        }
 472
 473        if (window->bottom_up)
 474                value |= V_DIRECTION;
 475
 476        if (tegra_plane_use_horizontal_filtering(plane, window)) {
 477                /*
 478                 * Enable horizontal 6-tap filter and set filtering
 479                 * coefficients to the default values defined in TRM.
 480                 */
 481                tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
 482                tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
 483                tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
 484                tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
 485                tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
 486                tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
 487                tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
 488                tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
 489                tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
 490                tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
 491                tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
 492                tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
 493                tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
 494                tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
 495                tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
 496                tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
 497
 498                value |= H_FILTER;
 499        }
 500
 501        if (tegra_plane_use_vertical_filtering(plane, window)) {
 502                unsigned int i, k;
 503
 504                /*
 505                 * Enable vertical 2-tap filter and set filtering
 506                 * coefficients to the default values defined in TRM.
 507                 */
 508                for (i = 0, k = 128; i < 16; i++, k -= 8)
 509                        tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
 510
 511                value |= V_FILTER;
 512        }
 513
 514        tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
 515
 516        if (dc->soc->has_legacy_blending)
 517                tegra_plane_setup_blending_legacy(plane);
 518        else
 519                tegra_plane_setup_blending(plane, window);
 520}
 521
 522static const u32 tegra20_primary_formats[] = {
 523        DRM_FORMAT_ARGB4444,
 524        DRM_FORMAT_ARGB1555,
 525        DRM_FORMAT_RGB565,
 526        DRM_FORMAT_RGBA5551,
 527        DRM_FORMAT_ABGR8888,
 528        DRM_FORMAT_ARGB8888,
 529        /* non-native formats */
 530        DRM_FORMAT_XRGB1555,
 531        DRM_FORMAT_RGBX5551,
 532        DRM_FORMAT_XBGR8888,
 533        DRM_FORMAT_XRGB8888,
 534};
 535
 536static const u64 tegra20_modifiers[] = {
 537        DRM_FORMAT_MOD_LINEAR,
 538        DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
 539        DRM_FORMAT_MOD_INVALID
 540};
 541
 542static const u32 tegra114_primary_formats[] = {
 543        DRM_FORMAT_ARGB4444,
 544        DRM_FORMAT_ARGB1555,
 545        DRM_FORMAT_RGB565,
 546        DRM_FORMAT_RGBA5551,
 547        DRM_FORMAT_ABGR8888,
 548        DRM_FORMAT_ARGB8888,
 549        /* new on Tegra114 */
 550        DRM_FORMAT_ABGR4444,
 551        DRM_FORMAT_ABGR1555,
 552        DRM_FORMAT_BGRA5551,
 553        DRM_FORMAT_XRGB1555,
 554        DRM_FORMAT_RGBX5551,
 555        DRM_FORMAT_XBGR1555,
 556        DRM_FORMAT_BGRX5551,
 557        DRM_FORMAT_BGR565,
 558        DRM_FORMAT_BGRA8888,
 559        DRM_FORMAT_RGBA8888,
 560        DRM_FORMAT_XRGB8888,
 561        DRM_FORMAT_XBGR8888,
 562};
 563
 564static const u32 tegra124_primary_formats[] = {
 565        DRM_FORMAT_ARGB4444,
 566        DRM_FORMAT_ARGB1555,
 567        DRM_FORMAT_RGB565,
 568        DRM_FORMAT_RGBA5551,
 569        DRM_FORMAT_ABGR8888,
 570        DRM_FORMAT_ARGB8888,
 571        /* new on Tegra114 */
 572        DRM_FORMAT_ABGR4444,
 573        DRM_FORMAT_ABGR1555,
 574        DRM_FORMAT_BGRA5551,
 575        DRM_FORMAT_XRGB1555,
 576        DRM_FORMAT_RGBX5551,
 577        DRM_FORMAT_XBGR1555,
 578        DRM_FORMAT_BGRX5551,
 579        DRM_FORMAT_BGR565,
 580        DRM_FORMAT_BGRA8888,
 581        DRM_FORMAT_RGBA8888,
 582        DRM_FORMAT_XRGB8888,
 583        DRM_FORMAT_XBGR8888,
 584        /* new on Tegra124 */
 585        DRM_FORMAT_RGBX8888,
 586        DRM_FORMAT_BGRX8888,
 587};
 588
 589static const u64 tegra124_modifiers[] = {
 590        DRM_FORMAT_MOD_LINEAR,
 591        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
 592        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
 593        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
 594        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
 595        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
 596        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
 597        DRM_FORMAT_MOD_INVALID
 598};
 599
 600static int tegra_plane_atomic_check(struct drm_plane *plane,
 601                                    struct drm_plane_state *state)
 602{
 603        struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
 604        unsigned int rotation = DRM_MODE_ROTATE_0 | DRM_MODE_REFLECT_Y;
 605        struct tegra_bo_tiling *tiling = &plane_state->tiling;
 606        struct tegra_plane *tegra = to_tegra_plane(plane);
 607        struct tegra_dc *dc = to_tegra_dc(state->crtc);
 608        int err;
 609
 610        /* no need for further checks if the plane is being disabled */
 611        if (!state->crtc)
 612                return 0;
 613
 614        err = tegra_plane_format(state->fb->format->format,
 615                                 &plane_state->format,
 616                                 &plane_state->swap);
 617        if (err < 0)
 618                return err;
 619
 620        /*
 621         * Tegra20 and Tegra30 are special cases here because they support
 622         * only variants of specific formats with an alpha component, but not
 623         * the corresponding opaque formats. However, the opaque formats can
 624         * be emulated by disabling alpha blending for the plane.
 625         */
 626        if (dc->soc->has_legacy_blending) {
 627                err = tegra_plane_setup_legacy_state(tegra, plane_state);
 628                if (err < 0)
 629                        return err;
 630        }
 631
 632        err = tegra_fb_get_tiling(state->fb, tiling);
 633        if (err < 0)
 634                return err;
 635
 636        if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
 637            !dc->soc->supports_block_linear) {
 638                DRM_ERROR("hardware doesn't support block linear mode\n");
 639                return -EINVAL;
 640        }
 641
 642        rotation = drm_rotation_simplify(state->rotation, rotation);
 643
 644        if (rotation & DRM_MODE_REFLECT_Y)
 645                plane_state->bottom_up = true;
 646        else
 647                plane_state->bottom_up = false;
 648
 649        /*
 650         * Tegra doesn't support different strides for U and V planes so we
 651         * error out if the user tries to display a framebuffer with such a
 652         * configuration.
 653         */
 654        if (state->fb->format->num_planes > 2) {
 655                if (state->fb->pitches[2] != state->fb->pitches[1]) {
 656                        DRM_ERROR("unsupported UV-plane configuration\n");
 657                        return -EINVAL;
 658                }
 659        }
 660
 661        err = tegra_plane_state_add(tegra, state);
 662        if (err < 0)
 663                return err;
 664
 665        return 0;
 666}
 667
 668static void tegra_plane_atomic_disable(struct drm_plane *plane,
 669                                       struct drm_plane_state *old_state)
 670{
 671        struct tegra_plane *p = to_tegra_plane(plane);
 672        u32 value;
 673
 674        /* rien ne va plus */
 675        if (!old_state || !old_state->crtc)
 676                return;
 677
 678        value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
 679        value &= ~WIN_ENABLE;
 680        tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
 681}
 682
 683static void tegra_plane_atomic_update(struct drm_plane *plane,
 684                                      struct drm_plane_state *old_state)
 685{
 686        struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
 687        struct drm_framebuffer *fb = plane->state->fb;
 688        struct tegra_plane *p = to_tegra_plane(plane);
 689        struct tegra_dc_window window;
 690        unsigned int i;
 691
 692        /* rien ne va plus */
 693        if (!plane->state->crtc || !plane->state->fb)
 694                return;
 695
 696        if (!plane->state->visible)
 697                return tegra_plane_atomic_disable(plane, old_state);
 698
 699        memset(&window, 0, sizeof(window));
 700        window.src.x = plane->state->src.x1 >> 16;
 701        window.src.y = plane->state->src.y1 >> 16;
 702        window.src.w = drm_rect_width(&plane->state->src) >> 16;
 703        window.src.h = drm_rect_height(&plane->state->src) >> 16;
 704        window.dst.x = plane->state->dst.x1;
 705        window.dst.y = plane->state->dst.y1;
 706        window.dst.w = drm_rect_width(&plane->state->dst);
 707        window.dst.h = drm_rect_height(&plane->state->dst);
 708        window.bits_per_pixel = fb->format->cpp[0] * 8;
 709        window.bottom_up = tegra_fb_is_bottom_up(fb) || state->bottom_up;
 710
 711        /* copy from state */
 712        window.zpos = plane->state->normalized_zpos;
 713        window.tiling = state->tiling;
 714        window.format = state->format;
 715        window.swap = state->swap;
 716
 717        for (i = 0; i < fb->format->num_planes; i++) {
 718                struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
 719
 720                window.base[i] = bo->paddr + fb->offsets[i];
 721
 722                /*
 723                 * Tegra uses a shared stride for UV planes. Framebuffers are
 724                 * already checked for this in the tegra_plane_atomic_check()
 725                 * function, so it's safe to ignore the V-plane pitch here.
 726                 */
 727                if (i < 2)
 728                        window.stride[i] = fb->pitches[i];
 729        }
 730
 731        tegra_dc_setup_window(p, &window);
 732}
 733
 734static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
 735        .atomic_check = tegra_plane_atomic_check,
 736        .atomic_disable = tegra_plane_atomic_disable,
 737        .atomic_update = tegra_plane_atomic_update,
 738};
 739
 740static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
 741{
 742        /*
 743         * Ideally this would use drm_crtc_mask(), but that would require the
 744         * CRTC to already be in the mode_config's list of CRTCs. However, it
 745         * will only be added to that list in the drm_crtc_init_with_planes()
 746         * (in tegra_dc_init()), which in turn requires registration of these
 747         * planes. So we have ourselves a nice little chicken and egg problem
 748         * here.
 749         *
 750         * We work around this by manually creating the mask from the number
 751         * of CRTCs that have been registered, and should therefore always be
 752         * the same as drm_crtc_index() after registration.
 753         */
 754        return 1 << drm->mode_config.num_crtc;
 755}
 756
 757static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
 758                                                    struct tegra_dc *dc)
 759{
 760        unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
 761        enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
 762        struct tegra_plane *plane;
 763        unsigned int num_formats;
 764        const u64 *modifiers;
 765        const u32 *formats;
 766        int err;
 767
 768        plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 769        if (!plane)
 770                return ERR_PTR(-ENOMEM);
 771
 772        /* Always use window A as primary window */
 773        plane->offset = 0xa00;
 774        plane->index = 0;
 775        plane->dc = dc;
 776
 777        num_formats = dc->soc->num_primary_formats;
 778        formats = dc->soc->primary_formats;
 779        modifiers = dc->soc->modifiers;
 780
 781        err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 782                                       &tegra_plane_funcs, formats,
 783                                       num_formats, modifiers, type, NULL);
 784        if (err < 0) {
 785                kfree(plane);
 786                return ERR_PTR(err);
 787        }
 788
 789        drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
 790        drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
 791
 792        err = drm_plane_create_rotation_property(&plane->base,
 793                                                 DRM_MODE_ROTATE_0,
 794                                                 DRM_MODE_ROTATE_0 |
 795                                                 DRM_MODE_REFLECT_Y);
 796        if (err < 0)
 797                dev_err(dc->dev, "failed to create rotation property: %d\n",
 798                        err);
 799
 800        return &plane->base;
 801}
 802
 803static const u32 tegra_cursor_plane_formats[] = {
 804        DRM_FORMAT_RGBA8888,
 805};
 806
 807static int tegra_cursor_atomic_check(struct drm_plane *plane,
 808                                     struct drm_plane_state *state)
 809{
 810        struct tegra_plane *tegra = to_tegra_plane(plane);
 811        int err;
 812
 813        /* no need for further checks if the plane is being disabled */
 814        if (!state->crtc)
 815                return 0;
 816
 817        /* scaling not supported for cursor */
 818        if ((state->src_w >> 16 != state->crtc_w) ||
 819            (state->src_h >> 16 != state->crtc_h))
 820                return -EINVAL;
 821
 822        /* only square cursors supported */
 823        if (state->src_w != state->src_h)
 824                return -EINVAL;
 825
 826        if (state->crtc_w != 32 && state->crtc_w != 64 &&
 827            state->crtc_w != 128 && state->crtc_w != 256)
 828                return -EINVAL;
 829
 830        err = tegra_plane_state_add(tegra, state);
 831        if (err < 0)
 832                return err;
 833
 834        return 0;
 835}
 836
 837static void tegra_cursor_atomic_update(struct drm_plane *plane,
 838                                       struct drm_plane_state *old_state)
 839{
 840        struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
 841        struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
 842        struct drm_plane_state *state = plane->state;
 843        u32 value = CURSOR_CLIP_DISPLAY;
 844
 845        /* rien ne va plus */
 846        if (!plane->state->crtc || !plane->state->fb)
 847                return;
 848
 849        switch (state->crtc_w) {
 850        case 32:
 851                value |= CURSOR_SIZE_32x32;
 852                break;
 853
 854        case 64:
 855                value |= CURSOR_SIZE_64x64;
 856                break;
 857
 858        case 128:
 859                value |= CURSOR_SIZE_128x128;
 860                break;
 861
 862        case 256:
 863                value |= CURSOR_SIZE_256x256;
 864                break;
 865
 866        default:
 867                WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
 868                     state->crtc_h);
 869                return;
 870        }
 871
 872        value |= (bo->paddr >> 10) & 0x3fffff;
 873        tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
 874
 875#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 876        value = (bo->paddr >> 32) & 0x3;
 877        tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
 878#endif
 879
 880        /* enable cursor and set blend mode */
 881        value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 882        value |= CURSOR_ENABLE;
 883        tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 884
 885        value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
 886        value &= ~CURSOR_DST_BLEND_MASK;
 887        value &= ~CURSOR_SRC_BLEND_MASK;
 888        value |= CURSOR_MODE_NORMAL;
 889        value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
 890        value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
 891        value |= CURSOR_ALPHA;
 892        tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
 893
 894        /* position the cursor */
 895        value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
 896        tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
 897}
 898
 899static void tegra_cursor_atomic_disable(struct drm_plane *plane,
 900                                        struct drm_plane_state *old_state)
 901{
 902        struct tegra_dc *dc;
 903        u32 value;
 904
 905        /* rien ne va plus */
 906        if (!old_state || !old_state->crtc)
 907                return;
 908
 909        dc = to_tegra_dc(old_state->crtc);
 910
 911        value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 912        value &= ~CURSOR_ENABLE;
 913        tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 914}
 915
 916static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
 917        .atomic_check = tegra_cursor_atomic_check,
 918        .atomic_update = tegra_cursor_atomic_update,
 919        .atomic_disable = tegra_cursor_atomic_disable,
 920};
 921
 922static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
 923                                                      struct tegra_dc *dc)
 924{
 925        unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
 926        struct tegra_plane *plane;
 927        unsigned int num_formats;
 928        const u32 *formats;
 929        int err;
 930
 931        plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 932        if (!plane)
 933                return ERR_PTR(-ENOMEM);
 934
 935        /*
 936         * This index is kind of fake. The cursor isn't a regular plane, but
 937         * its update and activation request bits in DC_CMD_STATE_CONTROL do
 938         * use the same programming. Setting this fake index here allows the
 939         * code in tegra_add_plane_state() to do the right thing without the
 940         * need to special-casing the cursor plane.
 941         */
 942        plane->index = 6;
 943        plane->dc = dc;
 944
 945        num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
 946        formats = tegra_cursor_plane_formats;
 947
 948        err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 949                                       &tegra_plane_funcs, formats,
 950                                       num_formats, NULL,
 951                                       DRM_PLANE_TYPE_CURSOR, NULL);
 952        if (err < 0) {
 953                kfree(plane);
 954                return ERR_PTR(err);
 955        }
 956
 957        drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
 958
 959        return &plane->base;
 960}
 961
 962static const u32 tegra20_overlay_formats[] = {
 963        DRM_FORMAT_ARGB4444,
 964        DRM_FORMAT_ARGB1555,
 965        DRM_FORMAT_RGB565,
 966        DRM_FORMAT_RGBA5551,
 967        DRM_FORMAT_ABGR8888,
 968        DRM_FORMAT_ARGB8888,
 969        /* non-native formats */
 970        DRM_FORMAT_XRGB1555,
 971        DRM_FORMAT_RGBX5551,
 972        DRM_FORMAT_XBGR8888,
 973        DRM_FORMAT_XRGB8888,
 974        /* planar formats */
 975        DRM_FORMAT_UYVY,
 976        DRM_FORMAT_YUYV,
 977        DRM_FORMAT_YUV420,
 978        DRM_FORMAT_YUV422,
 979};
 980
 981static const u32 tegra114_overlay_formats[] = {
 982        DRM_FORMAT_ARGB4444,
 983        DRM_FORMAT_ARGB1555,
 984        DRM_FORMAT_RGB565,
 985        DRM_FORMAT_RGBA5551,
 986        DRM_FORMAT_ABGR8888,
 987        DRM_FORMAT_ARGB8888,
 988        /* new on Tegra114 */
 989        DRM_FORMAT_ABGR4444,
 990        DRM_FORMAT_ABGR1555,
 991        DRM_FORMAT_BGRA5551,
 992        DRM_FORMAT_XRGB1555,
 993        DRM_FORMAT_RGBX5551,
 994        DRM_FORMAT_XBGR1555,
 995        DRM_FORMAT_BGRX5551,
 996        DRM_FORMAT_BGR565,
 997        DRM_FORMAT_BGRA8888,
 998        DRM_FORMAT_RGBA8888,
 999        DRM_FORMAT_XRGB8888,
1000        DRM_FORMAT_XBGR8888,
1001        /* planar formats */
1002        DRM_FORMAT_UYVY,
1003        DRM_FORMAT_YUYV,
1004        DRM_FORMAT_YUV420,
1005        DRM_FORMAT_YUV422,
1006};
1007
1008static const u32 tegra124_overlay_formats[] = {
1009        DRM_FORMAT_ARGB4444,
1010        DRM_FORMAT_ARGB1555,
1011        DRM_FORMAT_RGB565,
1012        DRM_FORMAT_RGBA5551,
1013        DRM_FORMAT_ABGR8888,
1014        DRM_FORMAT_ARGB8888,
1015        /* new on Tegra114 */
1016        DRM_FORMAT_ABGR4444,
1017        DRM_FORMAT_ABGR1555,
1018        DRM_FORMAT_BGRA5551,
1019        DRM_FORMAT_XRGB1555,
1020        DRM_FORMAT_RGBX5551,
1021        DRM_FORMAT_XBGR1555,
1022        DRM_FORMAT_BGRX5551,
1023        DRM_FORMAT_BGR565,
1024        DRM_FORMAT_BGRA8888,
1025        DRM_FORMAT_RGBA8888,
1026        DRM_FORMAT_XRGB8888,
1027        DRM_FORMAT_XBGR8888,
1028        /* new on Tegra124 */
1029        DRM_FORMAT_RGBX8888,
1030        DRM_FORMAT_BGRX8888,
1031        /* planar formats */
1032        DRM_FORMAT_UYVY,
1033        DRM_FORMAT_YUYV,
1034        DRM_FORMAT_YUV420,
1035        DRM_FORMAT_YUV422,
1036};
1037
1038static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1039                                                       struct tegra_dc *dc,
1040                                                       unsigned int index,
1041                                                       bool cursor)
1042{
1043        unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1044        struct tegra_plane *plane;
1045        unsigned int num_formats;
1046        enum drm_plane_type type;
1047        const u32 *formats;
1048        int err;
1049
1050        plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1051        if (!plane)
1052                return ERR_PTR(-ENOMEM);
1053
1054        plane->offset = 0xa00 + 0x200 * index;
1055        plane->index = index;
1056        plane->dc = dc;
1057
1058        num_formats = dc->soc->num_overlay_formats;
1059        formats = dc->soc->overlay_formats;
1060
1061        if (!cursor)
1062                type = DRM_PLANE_TYPE_OVERLAY;
1063        else
1064                type = DRM_PLANE_TYPE_CURSOR;
1065
1066        err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1067                                       &tegra_plane_funcs, formats,
1068                                       num_formats, NULL, type, NULL);
1069        if (err < 0) {
1070                kfree(plane);
1071                return ERR_PTR(err);
1072        }
1073
1074        drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1075        drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1076
1077        err = drm_plane_create_rotation_property(&plane->base,
1078                                                 DRM_MODE_ROTATE_0,
1079                                                 DRM_MODE_ROTATE_0 |
1080                                                 DRM_MODE_REFLECT_Y);
1081        if (err < 0)
1082                dev_err(dc->dev, "failed to create rotation property: %d\n",
1083                        err);
1084
1085        return &plane->base;
1086}
1087
1088static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1089                                                    struct tegra_dc *dc)
1090{
1091        struct drm_plane *plane, *primary = NULL;
1092        unsigned int i, j;
1093
1094        for (i = 0; i < dc->soc->num_wgrps; i++) {
1095                const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1096
1097                if (wgrp->dc == dc->pipe) {
1098                        for (j = 0; j < wgrp->num_windows; j++) {
1099                                unsigned int index = wgrp->windows[j];
1100
1101                                plane = tegra_shared_plane_create(drm, dc,
1102                                                                  wgrp->index,
1103                                                                  index);
1104                                if (IS_ERR(plane))
1105                                        return plane;
1106
1107                                /*
1108                                 * Choose the first shared plane owned by this
1109                                 * head as the primary plane.
1110                                 */
1111                                if (!primary) {
1112                                        plane->type = DRM_PLANE_TYPE_PRIMARY;
1113                                        primary = plane;
1114                                }
1115                        }
1116                }
1117        }
1118
1119        return primary;
1120}
1121
1122static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1123                                             struct tegra_dc *dc)
1124{
1125        struct drm_plane *planes[2], *primary;
1126        unsigned int planes_num;
1127        unsigned int i;
1128        int err;
1129
1130        primary = tegra_primary_plane_create(drm, dc);
1131        if (IS_ERR(primary))
1132                return primary;
1133
1134        if (dc->soc->supports_cursor)
1135                planes_num = 2;
1136        else
1137                planes_num = 1;
1138
1139        for (i = 0; i < planes_num; i++) {
1140                planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1141                                                          false);
1142                if (IS_ERR(planes[i])) {
1143                        err = PTR_ERR(planes[i]);
1144
1145                        while (i--)
1146                                tegra_plane_funcs.destroy(planes[i]);
1147
1148                        tegra_plane_funcs.destroy(primary);
1149                        return ERR_PTR(err);
1150                }
1151        }
1152
1153        return primary;
1154}
1155
1156static void tegra_dc_destroy(struct drm_crtc *crtc)
1157{
1158        drm_crtc_cleanup(crtc);
1159}
1160
1161static void tegra_crtc_reset(struct drm_crtc *crtc)
1162{
1163        struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1164
1165        if (crtc->state)
1166                tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1167
1168        __drm_atomic_helper_crtc_reset(crtc, &state->base);
1169        drm_crtc_vblank_reset(crtc);
1170}
1171
1172static struct drm_crtc_state *
1173tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1174{
1175        struct tegra_dc_state *state = to_dc_state(crtc->state);
1176        struct tegra_dc_state *copy;
1177
1178        copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1179        if (!copy)
1180                return NULL;
1181
1182        __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1183        copy->clk = state->clk;
1184        copy->pclk = state->pclk;
1185        copy->div = state->div;
1186        copy->planes = state->planes;
1187
1188        return &copy->base;
1189}
1190
1191static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1192                                            struct drm_crtc_state *state)
1193{
1194        __drm_atomic_helper_crtc_destroy_state(state);
1195        kfree(state);
1196}
1197
1198#define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1199
1200static const struct debugfs_reg32 tegra_dc_regs[] = {
1201        DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1202        DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1203        DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1204        DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1205        DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1206        DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1207        DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1208        DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1209        DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1210        DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1211        DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1212        DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1213        DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1214        DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1215        DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1216        DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1217        DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1218        DEBUGFS_REG32(DC_CMD_INT_STATUS),
1219        DEBUGFS_REG32(DC_CMD_INT_MASK),
1220        DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1221        DEBUGFS_REG32(DC_CMD_INT_TYPE),
1222        DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1223        DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1224        DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1225        DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1226        DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1227        DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1228        DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1229        DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1230        DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1231        DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1232        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1233        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1234        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1235        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1236        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1237        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1238        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1239        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1240        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1241        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1242        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1243        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1244        DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1245        DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1246        DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1247        DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1248        DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1249        DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1250        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1251        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1252        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1253        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1254        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1255        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1256        DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1257        DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1258        DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1259        DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1260        DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1261        DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1262        DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1263        DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1264        DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1265        DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1266        DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1267        DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1268        DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1269        DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1270        DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1271        DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1272        DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1273        DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1274        DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1275        DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1276        DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1277        DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1278        DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1279        DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1280        DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1281        DEBUGFS_REG32(DC_DISP_ACTIVE),
1282        DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1283        DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1284        DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1285        DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1286        DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1287        DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1288        DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1289        DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1290        DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1291        DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1292        DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1293        DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1294        DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1295        DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1296        DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1297        DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1298        DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1299        DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1300        DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1301        DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1302        DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1303        DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1304        DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1305        DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1306        DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1307        DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1308        DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1309        DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1310        DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1311        DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1312        DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1313        DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1314        DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1315        DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1316        DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1317        DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1318        DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1319        DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1320        DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1321        DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1322        DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1323        DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1324        DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1325        DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1326        DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1327        DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1328        DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1329        DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1330        DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1331        DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1332        DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1333        DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1334        DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1335        DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1336        DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1337        DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1338        DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1339        DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1340        DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1341        DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1342        DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1343        DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1344        DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1345        DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1346        DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1347        DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1348        DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1349        DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1350        DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1351        DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1352        DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1353        DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1354        DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1355        DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1356        DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1357        DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1358        DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1359        DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1360        DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1361        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1362        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1363        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1364        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1365        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1366        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1367        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1368        DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1369        DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1370        DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1371        DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1372        DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1373        DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1374        DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1375        DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1376        DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1377        DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1378        DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1379        DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1380        DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1381        DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1382        DEBUGFS_REG32(DC_WIN_POSITION),
1383        DEBUGFS_REG32(DC_WIN_SIZE),
1384        DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1385        DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1386        DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1387        DEBUGFS_REG32(DC_WIN_DDA_INC),
1388        DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1389        DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1390        DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1391        DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1392        DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1393        DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1394        DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1395        DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1396        DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1397        DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1398        DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1399        DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1400        DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1401        DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1402        DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1403        DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1404        DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1405        DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1406        DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1407        DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1408        DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1409        DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1410        DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1411        DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1412        DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1413};
1414
1415static int tegra_dc_show_regs(struct seq_file *s, void *data)
1416{
1417        struct drm_info_node *node = s->private;
1418        struct tegra_dc *dc = node->info_ent->data;
1419        unsigned int i;
1420        int err = 0;
1421
1422        drm_modeset_lock(&dc->base.mutex, NULL);
1423
1424        if (!dc->base.state->active) {
1425                err = -EBUSY;
1426                goto unlock;
1427        }
1428
1429        for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1430                unsigned int offset = tegra_dc_regs[i].offset;
1431
1432                seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1433                           offset, tegra_dc_readl(dc, offset));
1434        }
1435
1436unlock:
1437        drm_modeset_unlock(&dc->base.mutex);
1438        return err;
1439}
1440
1441static int tegra_dc_show_crc(struct seq_file *s, void *data)
1442{
1443        struct drm_info_node *node = s->private;
1444        struct tegra_dc *dc = node->info_ent->data;
1445        int err = 0;
1446        u32 value;
1447
1448        drm_modeset_lock(&dc->base.mutex, NULL);
1449
1450        if (!dc->base.state->active) {
1451                err = -EBUSY;
1452                goto unlock;
1453        }
1454
1455        value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1456        tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1457        tegra_dc_commit(dc);
1458
1459        drm_crtc_wait_one_vblank(&dc->base);
1460        drm_crtc_wait_one_vblank(&dc->base);
1461
1462        value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1463        seq_printf(s, "%08x\n", value);
1464
1465        tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1466
1467unlock:
1468        drm_modeset_unlock(&dc->base.mutex);
1469        return err;
1470}
1471
1472static int tegra_dc_show_stats(struct seq_file *s, void *data)
1473{
1474        struct drm_info_node *node = s->private;
1475        struct tegra_dc *dc = node->info_ent->data;
1476
1477        seq_printf(s, "frames: %lu\n", dc->stats.frames);
1478        seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1479        seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1480        seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1481
1482        return 0;
1483}
1484
1485static struct drm_info_list debugfs_files[] = {
1486        { "regs", tegra_dc_show_regs, 0, NULL },
1487        { "crc", tegra_dc_show_crc, 0, NULL },
1488        { "stats", tegra_dc_show_stats, 0, NULL },
1489};
1490
1491static int tegra_dc_late_register(struct drm_crtc *crtc)
1492{
1493        unsigned int i, count = ARRAY_SIZE(debugfs_files);
1494        struct drm_minor *minor = crtc->dev->primary;
1495        struct dentry *root;
1496        struct tegra_dc *dc = to_tegra_dc(crtc);
1497        int err;
1498
1499#ifdef CONFIG_DEBUG_FS
1500        root = crtc->debugfs_entry;
1501#else
1502        root = NULL;
1503#endif
1504
1505        dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1506                                    GFP_KERNEL);
1507        if (!dc->debugfs_files)
1508                return -ENOMEM;
1509
1510        for (i = 0; i < count; i++)
1511                dc->debugfs_files[i].data = dc;
1512
1513        err = drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1514        if (err < 0)
1515                goto free;
1516
1517        return 0;
1518
1519free:
1520        kfree(dc->debugfs_files);
1521        dc->debugfs_files = NULL;
1522
1523        return err;
1524}
1525
1526static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1527{
1528        unsigned int count = ARRAY_SIZE(debugfs_files);
1529        struct drm_minor *minor = crtc->dev->primary;
1530        struct tegra_dc *dc = to_tegra_dc(crtc);
1531
1532        drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1533        kfree(dc->debugfs_files);
1534        dc->debugfs_files = NULL;
1535}
1536
1537static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1538{
1539        struct tegra_dc *dc = to_tegra_dc(crtc);
1540
1541        /* XXX vblank syncpoints don't work with nvdisplay yet */
1542        if (dc->syncpt && !dc->soc->has_nvdisplay)
1543                return host1x_syncpt_read(dc->syncpt);
1544
1545        /* fallback to software emulated VBLANK counter */
1546        return (u32)drm_crtc_vblank_count(&dc->base);
1547}
1548
1549static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1550{
1551        struct tegra_dc *dc = to_tegra_dc(crtc);
1552        u32 value;
1553
1554        value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1555        value |= VBLANK_INT;
1556        tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1557
1558        return 0;
1559}
1560
1561static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1562{
1563        struct tegra_dc *dc = to_tegra_dc(crtc);
1564        u32 value;
1565
1566        value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1567        value &= ~VBLANK_INT;
1568        tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1569}
1570
1571static const struct drm_crtc_funcs tegra_crtc_funcs = {
1572        .page_flip = drm_atomic_helper_page_flip,
1573        .set_config = drm_atomic_helper_set_config,
1574        .destroy = tegra_dc_destroy,
1575        .reset = tegra_crtc_reset,
1576        .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1577        .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1578        .late_register = tegra_dc_late_register,
1579        .early_unregister = tegra_dc_early_unregister,
1580        .get_vblank_counter = tegra_dc_get_vblank_counter,
1581        .enable_vblank = tegra_dc_enable_vblank,
1582        .disable_vblank = tegra_dc_disable_vblank,
1583};
1584
1585static int tegra_dc_set_timings(struct tegra_dc *dc,
1586                                struct drm_display_mode *mode)
1587{
1588        unsigned int h_ref_to_sync = 1;
1589        unsigned int v_ref_to_sync = 1;
1590        unsigned long value;
1591
1592        if (!dc->soc->has_nvdisplay) {
1593                tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1594
1595                value = (v_ref_to_sync << 16) | h_ref_to_sync;
1596                tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1597        }
1598
1599        value = ((mode->vsync_end - mode->vsync_start) << 16) |
1600                ((mode->hsync_end - mode->hsync_start) <<  0);
1601        tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1602
1603        value = ((mode->vtotal - mode->vsync_end) << 16) |
1604                ((mode->htotal - mode->hsync_end) <<  0);
1605        tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1606
1607        value = ((mode->vsync_start - mode->vdisplay) << 16) |
1608                ((mode->hsync_start - mode->hdisplay) <<  0);
1609        tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1610
1611        value = (mode->vdisplay << 16) | mode->hdisplay;
1612        tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1613
1614        return 0;
1615}
1616
1617/**
1618 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1619 *     state
1620 * @dc: display controller
1621 * @crtc_state: CRTC atomic state
1622 * @clk: parent clock for display controller
1623 * @pclk: pixel clock
1624 * @div: shift clock divider
1625 *
1626 * Returns:
1627 * 0 on success or a negative error-code on failure.
1628 */
1629int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1630                               struct drm_crtc_state *crtc_state,
1631                               struct clk *clk, unsigned long pclk,
1632                               unsigned int div)
1633{
1634        struct tegra_dc_state *state = to_dc_state(crtc_state);
1635
1636        if (!clk_has_parent(dc->clk, clk))
1637                return -EINVAL;
1638
1639        state->clk = clk;
1640        state->pclk = pclk;
1641        state->div = div;
1642
1643        return 0;
1644}
1645
1646static void tegra_dc_commit_state(struct tegra_dc *dc,
1647                                  struct tegra_dc_state *state)
1648{
1649        u32 value;
1650        int err;
1651
1652        err = clk_set_parent(dc->clk, state->clk);
1653        if (err < 0)
1654                dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1655
1656        /*
1657         * Outputs may not want to change the parent clock rate. This is only
1658         * relevant to Tegra20 where only a single display PLL is available.
1659         * Since that PLL would typically be used for HDMI, an internal LVDS
1660         * panel would need to be driven by some other clock such as PLL_P
1661         * which is shared with other peripherals. Changing the clock rate
1662         * should therefore be avoided.
1663         */
1664        if (state->pclk > 0) {
1665                err = clk_set_rate(state->clk, state->pclk);
1666                if (err < 0)
1667                        dev_err(dc->dev,
1668                                "failed to set clock rate to %lu Hz\n",
1669                                state->pclk);
1670        }
1671
1672        DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1673                      state->div);
1674        DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1675
1676        if (!dc->soc->has_nvdisplay) {
1677                value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1678                tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1679        }
1680
1681        err = clk_set_rate(dc->clk, state->pclk);
1682        if (err < 0)
1683                dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1684                        dc->clk, state->pclk, err);
1685}
1686
1687static void tegra_dc_stop(struct tegra_dc *dc)
1688{
1689        u32 value;
1690
1691        /* stop the display controller */
1692        value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1693        value &= ~DISP_CTRL_MODE_MASK;
1694        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1695
1696        tegra_dc_commit(dc);
1697}
1698
1699static bool tegra_dc_idle(struct tegra_dc *dc)
1700{
1701        u32 value;
1702
1703        value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1704
1705        return (value & DISP_CTRL_MODE_MASK) == 0;
1706}
1707
1708static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1709{
1710        timeout = jiffies + msecs_to_jiffies(timeout);
1711
1712        while (time_before(jiffies, timeout)) {
1713                if (tegra_dc_idle(dc))
1714                        return 0;
1715
1716                usleep_range(1000, 2000);
1717        }
1718
1719        dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1720        return -ETIMEDOUT;
1721}
1722
1723static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1724                                      struct drm_crtc_state *old_state)
1725{
1726        struct tegra_dc *dc = to_tegra_dc(crtc);
1727        u32 value;
1728
1729        if (!tegra_dc_idle(dc)) {
1730                tegra_dc_stop(dc);
1731
1732                /*
1733                 * Ignore the return value, there isn't anything useful to do
1734                 * in case this fails.
1735                 */
1736                tegra_dc_wait_idle(dc, 100);
1737        }
1738
1739        /*
1740         * This should really be part of the RGB encoder driver, but clearing
1741         * these bits has the side-effect of stopping the display controller.
1742         * When that happens no VBLANK interrupts will be raised. At the same
1743         * time the encoder is disabled before the display controller, so the
1744         * above code is always going to timeout waiting for the controller
1745         * to go idle.
1746         *
1747         * Given the close coupling between the RGB encoder and the display
1748         * controller doing it here is still kind of okay. None of the other
1749         * encoder drivers require these bits to be cleared.
1750         *
1751         * XXX: Perhaps given that the display controller is switched off at
1752         * this point anyway maybe clearing these bits isn't even useful for
1753         * the RGB encoder?
1754         */
1755        if (dc->rgb) {
1756                value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1757                value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1758                           PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1759                tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1760        }
1761
1762        tegra_dc_stats_reset(&dc->stats);
1763        drm_crtc_vblank_off(crtc);
1764
1765        spin_lock_irq(&crtc->dev->event_lock);
1766
1767        if (crtc->state->event) {
1768                drm_crtc_send_vblank_event(crtc, crtc->state->event);
1769                crtc->state->event = NULL;
1770        }
1771
1772        spin_unlock_irq(&crtc->dev->event_lock);
1773
1774        pm_runtime_put_sync(dc->dev);
1775}
1776
1777static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1778                                     struct drm_crtc_state *old_state)
1779{
1780        struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1781        struct tegra_dc_state *state = to_dc_state(crtc->state);
1782        struct tegra_dc *dc = to_tegra_dc(crtc);
1783        u32 value;
1784
1785        pm_runtime_get_sync(dc->dev);
1786
1787        /* initialize display controller */
1788        if (dc->syncpt) {
1789                u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1790
1791                if (dc->soc->has_nvdisplay)
1792                        enable = 1 << 31;
1793                else
1794                        enable = 1 << 8;
1795
1796                value = SYNCPT_CNTRL_NO_STALL;
1797                tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1798
1799                value = enable | syncpt;
1800                tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1801        }
1802
1803        if (dc->soc->has_nvdisplay) {
1804                value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1805                        DSC_OBUF_UF_INT;
1806                tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1807
1808                value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1809                        DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1810                        HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1811                        REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1812                        VBLANK_INT | FRAME_END_INT;
1813                tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1814
1815                value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1816                        FRAME_END_INT;
1817                tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1818
1819                value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1820                tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1821
1822                tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1823        } else {
1824                value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1825                        WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1826                tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1827
1828                value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1829                        WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1830                tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1831
1832                /* initialize timer */
1833                value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1834                        WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1835                tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1836
1837                value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1838                        WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1839                tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1840
1841                value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1842                        WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1843                tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1844
1845                value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1846                        WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1847                tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1848        }
1849
1850        if (dc->soc->supports_background_color)
1851                tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1852        else
1853                tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1854
1855        /* apply PLL and pixel clock changes */
1856        tegra_dc_commit_state(dc, state);
1857
1858        /* program display mode */
1859        tegra_dc_set_timings(dc, mode);
1860
1861        /* interlacing isn't supported yet, so disable it */
1862        if (dc->soc->supports_interlacing) {
1863                value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1864                value &= ~INTERLACE_ENABLE;
1865                tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1866        }
1867
1868        value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1869        value &= ~DISP_CTRL_MODE_MASK;
1870        value |= DISP_CTRL_MODE_C_DISPLAY;
1871        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1872
1873        if (!dc->soc->has_nvdisplay) {
1874                value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1875                value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1876                         PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1877                tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1878        }
1879
1880        /* enable underflow reporting and display red for missing pixels */
1881        if (dc->soc->has_nvdisplay) {
1882                value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1883                tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1884        }
1885
1886        tegra_dc_commit(dc);
1887
1888        drm_crtc_vblank_on(crtc);
1889}
1890
1891static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1892                                    struct drm_crtc_state *old_crtc_state)
1893{
1894        unsigned long flags;
1895
1896        if (crtc->state->event) {
1897                spin_lock_irqsave(&crtc->dev->event_lock, flags);
1898
1899                if (drm_crtc_vblank_get(crtc) != 0)
1900                        drm_crtc_send_vblank_event(crtc, crtc->state->event);
1901                else
1902                        drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1903
1904                spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1905
1906                crtc->state->event = NULL;
1907        }
1908}
1909
1910static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1911                                    struct drm_crtc_state *old_crtc_state)
1912{
1913        struct tegra_dc_state *state = to_dc_state(crtc->state);
1914        struct tegra_dc *dc = to_tegra_dc(crtc);
1915        u32 value;
1916
1917        value = state->planes << 8 | GENERAL_UPDATE;
1918        tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1919        value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1920
1921        value = state->planes | GENERAL_ACT_REQ;
1922        tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1923        value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1924}
1925
1926static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1927        .atomic_begin = tegra_crtc_atomic_begin,
1928        .atomic_flush = tegra_crtc_atomic_flush,
1929        .atomic_enable = tegra_crtc_atomic_enable,
1930        .atomic_disable = tegra_crtc_atomic_disable,
1931};
1932
1933static irqreturn_t tegra_dc_irq(int irq, void *data)
1934{
1935        struct tegra_dc *dc = data;
1936        unsigned long status;
1937
1938        status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1939        tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1940
1941        if (status & FRAME_END_INT) {
1942                /*
1943                dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1944                */
1945                dc->stats.frames++;
1946        }
1947
1948        if (status & VBLANK_INT) {
1949                /*
1950                dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1951                */
1952                drm_crtc_handle_vblank(&dc->base);
1953                dc->stats.vblank++;
1954        }
1955
1956        if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1957                /*
1958                dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1959                */
1960                dc->stats.underflow++;
1961        }
1962
1963        if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1964                /*
1965                dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1966                */
1967                dc->stats.overflow++;
1968        }
1969
1970        if (status & HEAD_UF_INT) {
1971                dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
1972                dc->stats.underflow++;
1973        }
1974
1975        return IRQ_HANDLED;
1976}
1977
1978static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
1979{
1980        unsigned int i;
1981
1982        if (!dc->soc->wgrps)
1983                return true;
1984
1985        for (i = 0; i < dc->soc->num_wgrps; i++) {
1986                const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1987
1988                if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
1989                        return true;
1990        }
1991
1992        return false;
1993}
1994
1995static int tegra_dc_init(struct host1x_client *client)
1996{
1997        struct drm_device *drm = dev_get_drvdata(client->parent);
1998        unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1999        struct tegra_dc *dc = host1x_client_to_dc(client);
2000        struct tegra_drm *tegra = drm->dev_private;
2001        struct drm_plane *primary = NULL;
2002        struct drm_plane *cursor = NULL;
2003        int err;
2004
2005        /*
2006         * XXX do not register DCs with no window groups because we cannot
2007         * assign a primary plane to them, which in turn will cause KMS to
2008         * crash.
2009         */
2010        if (!tegra_dc_has_window_groups(dc))
2011                return 0;
2012
2013        dc->syncpt = host1x_syncpt_request(client, flags);
2014        if (!dc->syncpt)
2015                dev_warn(dc->dev, "failed to allocate syncpoint\n");
2016
2017        dc->group = host1x_client_iommu_attach(client, true);
2018        if (IS_ERR(dc->group)) {
2019                err = PTR_ERR(dc->group);
2020                dev_err(client->dev, "failed to attach to domain: %d\n", err);
2021                return err;
2022        }
2023
2024        if (dc->soc->wgrps)
2025                primary = tegra_dc_add_shared_planes(drm, dc);
2026        else
2027                primary = tegra_dc_add_planes(drm, dc);
2028
2029        if (IS_ERR(primary)) {
2030                err = PTR_ERR(primary);
2031                goto cleanup;
2032        }
2033
2034        if (dc->soc->supports_cursor) {
2035                cursor = tegra_dc_cursor_plane_create(drm, dc);
2036                if (IS_ERR(cursor)) {
2037                        err = PTR_ERR(cursor);
2038                        goto cleanup;
2039                }
2040        } else {
2041                /* dedicate one overlay to mouse cursor */
2042                cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2043                if (IS_ERR(cursor)) {
2044                        err = PTR_ERR(cursor);
2045                        goto cleanup;
2046                }
2047        }
2048
2049        err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2050                                        &tegra_crtc_funcs, NULL);
2051        if (err < 0)
2052                goto cleanup;
2053
2054        drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2055
2056        /*
2057         * Keep track of the minimum pitch alignment across all display
2058         * controllers.
2059         */
2060        if (dc->soc->pitch_align > tegra->pitch_align)
2061                tegra->pitch_align = dc->soc->pitch_align;
2062
2063        err = tegra_dc_rgb_init(drm, dc);
2064        if (err < 0 && err != -ENODEV) {
2065                dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2066                goto cleanup;
2067        }
2068
2069        err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2070                               dev_name(dc->dev), dc);
2071        if (err < 0) {
2072                dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2073                        err);
2074                goto cleanup;
2075        }
2076
2077        return 0;
2078
2079cleanup:
2080        if (!IS_ERR_OR_NULL(cursor))
2081                drm_plane_cleanup(cursor);
2082
2083        if (!IS_ERR(primary))
2084                drm_plane_cleanup(primary);
2085
2086        host1x_client_iommu_detach(client, dc->group);
2087        host1x_syncpt_free(dc->syncpt);
2088
2089        return err;
2090}
2091
2092static int tegra_dc_exit(struct host1x_client *client)
2093{
2094        struct tegra_dc *dc = host1x_client_to_dc(client);
2095        int err;
2096
2097        if (!tegra_dc_has_window_groups(dc))
2098                return 0;
2099
2100        devm_free_irq(dc->dev, dc->irq, dc);
2101
2102        err = tegra_dc_rgb_exit(dc);
2103        if (err) {
2104                dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2105                return err;
2106        }
2107
2108        host1x_client_iommu_detach(client, dc->group);
2109        host1x_syncpt_free(dc->syncpt);
2110
2111        return 0;
2112}
2113
2114static const struct host1x_client_ops dc_client_ops = {
2115        .init = tegra_dc_init,
2116        .exit = tegra_dc_exit,
2117};
2118
2119static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2120        .supports_background_color = false,
2121        .supports_interlacing = false,
2122        .supports_cursor = false,
2123        .supports_block_linear = false,
2124        .has_legacy_blending = true,
2125        .pitch_align = 8,
2126        .has_powergate = false,
2127        .coupled_pm = true,
2128        .has_nvdisplay = false,
2129        .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2130        .primary_formats = tegra20_primary_formats,
2131        .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2132        .overlay_formats = tegra20_overlay_formats,
2133        .modifiers = tegra20_modifiers,
2134        .has_win_a_without_filters = true,
2135        .has_win_c_without_vert_filter = true,
2136};
2137
2138static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2139        .supports_background_color = false,
2140        .supports_interlacing = false,
2141        .supports_cursor = false,
2142        .supports_block_linear = false,
2143        .has_legacy_blending = true,
2144        .pitch_align = 8,
2145        .has_powergate = false,
2146        .coupled_pm = false,
2147        .has_nvdisplay = false,
2148        .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2149        .primary_formats = tegra20_primary_formats,
2150        .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2151        .overlay_formats = tegra20_overlay_formats,
2152        .modifiers = tegra20_modifiers,
2153        .has_win_a_without_filters = false,
2154        .has_win_c_without_vert_filter = false,
2155};
2156
2157static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2158        .supports_background_color = false,
2159        .supports_interlacing = false,
2160        .supports_cursor = false,
2161        .supports_block_linear = false,
2162        .has_legacy_blending = true,
2163        .pitch_align = 64,
2164        .has_powergate = true,
2165        .coupled_pm = false,
2166        .has_nvdisplay = false,
2167        .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2168        .primary_formats = tegra114_primary_formats,
2169        .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2170        .overlay_formats = tegra114_overlay_formats,
2171        .modifiers = tegra20_modifiers,
2172        .has_win_a_without_filters = false,
2173        .has_win_c_without_vert_filter = false,
2174};
2175
2176static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2177        .supports_background_color = true,
2178        .supports_interlacing = true,
2179        .supports_cursor = true,
2180        .supports_block_linear = true,
2181        .has_legacy_blending = false,
2182        .pitch_align = 64,
2183        .has_powergate = true,
2184        .coupled_pm = false,
2185        .has_nvdisplay = false,
2186        .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2187        .primary_formats = tegra124_primary_formats,
2188        .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2189        .overlay_formats = tegra124_overlay_formats,
2190        .modifiers = tegra124_modifiers,
2191        .has_win_a_without_filters = false,
2192        .has_win_c_without_vert_filter = false,
2193};
2194
2195static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2196        .supports_background_color = true,
2197        .supports_interlacing = true,
2198        .supports_cursor = true,
2199        .supports_block_linear = true,
2200        .has_legacy_blending = false,
2201        .pitch_align = 64,
2202        .has_powergate = true,
2203        .coupled_pm = false,
2204        .has_nvdisplay = false,
2205        .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2206        .primary_formats = tegra114_primary_formats,
2207        .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2208        .overlay_formats = tegra114_overlay_formats,
2209        .modifiers = tegra124_modifiers,
2210        .has_win_a_without_filters = false,
2211        .has_win_c_without_vert_filter = false,
2212};
2213
2214static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2215        {
2216                .index = 0,
2217                .dc = 0,
2218                .windows = (const unsigned int[]) { 0 },
2219                .num_windows = 1,
2220        }, {
2221                .index = 1,
2222                .dc = 1,
2223                .windows = (const unsigned int[]) { 1 },
2224                .num_windows = 1,
2225        }, {
2226                .index = 2,
2227                .dc = 1,
2228                .windows = (const unsigned int[]) { 2 },
2229                .num_windows = 1,
2230        }, {
2231                .index = 3,
2232                .dc = 2,
2233                .windows = (const unsigned int[]) { 3 },
2234                .num_windows = 1,
2235        }, {
2236                .index = 4,
2237                .dc = 2,
2238                .windows = (const unsigned int[]) { 4 },
2239                .num_windows = 1,
2240        }, {
2241                .index = 5,
2242                .dc = 2,
2243                .windows = (const unsigned int[]) { 5 },
2244                .num_windows = 1,
2245        },
2246};
2247
2248static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2249        .supports_background_color = true,
2250        .supports_interlacing = true,
2251        .supports_cursor = true,
2252        .supports_block_linear = true,
2253        .has_legacy_blending = false,
2254        .pitch_align = 64,
2255        .has_powergate = false,
2256        .coupled_pm = false,
2257        .has_nvdisplay = true,
2258        .wgrps = tegra186_dc_wgrps,
2259        .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2260};
2261
2262static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2263        {
2264                .index = 0,
2265                .dc = 0,
2266                .windows = (const unsigned int[]) { 0 },
2267                .num_windows = 1,
2268        }, {
2269                .index = 1,
2270                .dc = 1,
2271                .windows = (const unsigned int[]) { 1 },
2272                .num_windows = 1,
2273        }, {
2274                .index = 2,
2275                .dc = 1,
2276                .windows = (const unsigned int[]) { 2 },
2277                .num_windows = 1,
2278        }, {
2279                .index = 3,
2280                .dc = 2,
2281                .windows = (const unsigned int[]) { 3 },
2282                .num_windows = 1,
2283        }, {
2284                .index = 4,
2285                .dc = 2,
2286                .windows = (const unsigned int[]) { 4 },
2287                .num_windows = 1,
2288        }, {
2289                .index = 5,
2290                .dc = 2,
2291                .windows = (const unsigned int[]) { 5 },
2292                .num_windows = 1,
2293        },
2294};
2295
2296static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
2297        .supports_background_color = true,
2298        .supports_interlacing = true,
2299        .supports_cursor = true,
2300        .supports_block_linear = true,
2301        .has_legacy_blending = false,
2302        .pitch_align = 64,
2303        .has_powergate = false,
2304        .coupled_pm = false,
2305        .has_nvdisplay = true,
2306        .wgrps = tegra194_dc_wgrps,
2307        .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
2308};
2309
2310static const struct of_device_id tegra_dc_of_match[] = {
2311        {
2312                .compatible = "nvidia,tegra194-dc",
2313                .data = &tegra194_dc_soc_info,
2314        }, {
2315                .compatible = "nvidia,tegra186-dc",
2316                .data = &tegra186_dc_soc_info,
2317        }, {
2318                .compatible = "nvidia,tegra210-dc",
2319                .data = &tegra210_dc_soc_info,
2320        }, {
2321                .compatible = "nvidia,tegra124-dc",
2322                .data = &tegra124_dc_soc_info,
2323        }, {
2324                .compatible = "nvidia,tegra114-dc",
2325                .data = &tegra114_dc_soc_info,
2326        }, {
2327                .compatible = "nvidia,tegra30-dc",
2328                .data = &tegra30_dc_soc_info,
2329        }, {
2330                .compatible = "nvidia,tegra20-dc",
2331                .data = &tegra20_dc_soc_info,
2332        }, {
2333                /* sentinel */
2334        }
2335};
2336MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2337
2338static int tegra_dc_parse_dt(struct tegra_dc *dc)
2339{
2340        struct device_node *np;
2341        u32 value = 0;
2342        int err;
2343
2344        err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2345        if (err < 0) {
2346                dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2347
2348                /*
2349                 * If the nvidia,head property isn't present, try to find the
2350                 * correct head number by looking up the position of this
2351                 * display controller's node within the device tree. Assuming
2352                 * that the nodes are ordered properly in the DTS file and
2353                 * that the translation into a flattened device tree blob
2354                 * preserves that ordering this will actually yield the right
2355                 * head number.
2356                 *
2357                 * If those assumptions don't hold, this will still work for
2358                 * cases where only a single display controller is used.
2359                 */
2360                for_each_matching_node(np, tegra_dc_of_match) {
2361                        if (np == dc->dev->of_node) {
2362                                of_node_put(np);
2363                                break;
2364                        }
2365
2366                        value++;
2367                }
2368        }
2369
2370        dc->pipe = value;
2371
2372        return 0;
2373}
2374
2375static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
2376{
2377        struct tegra_dc *dc = dev_get_drvdata(dev);
2378        unsigned int pipe = (unsigned long)(void *)data;
2379
2380        return dc->pipe == pipe;
2381}
2382
2383static int tegra_dc_couple(struct tegra_dc *dc)
2384{
2385        /*
2386         * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2387         * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2388         * POWER_CONTROL registers during CRTC enabling.
2389         */
2390        if (dc->soc->coupled_pm && dc->pipe == 1) {
2391                u32 flags = DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE_CONSUMER;
2392                struct device_link *link;
2393                struct device *partner;
2394
2395                partner = driver_find_device(dc->dev->driver, NULL, NULL,
2396                                             tegra_dc_match_by_pipe);
2397                if (!partner)
2398                        return -EPROBE_DEFER;
2399
2400                link = device_link_add(dc->dev, partner, flags);
2401                if (!link) {
2402                        dev_err(dc->dev, "failed to link controllers\n");
2403                        return -EINVAL;
2404                }
2405
2406                dev_dbg(dc->dev, "coupled to %s\n", dev_name(partner));
2407        }
2408
2409        return 0;
2410}
2411
2412static int tegra_dc_probe(struct platform_device *pdev)
2413{
2414        struct resource *regs;
2415        struct tegra_dc *dc;
2416        int err;
2417
2418        dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2419        if (!dc)
2420                return -ENOMEM;
2421
2422        dc->soc = of_device_get_match_data(&pdev->dev);
2423
2424        INIT_LIST_HEAD(&dc->list);
2425        dc->dev = &pdev->dev;
2426
2427        err = tegra_dc_parse_dt(dc);
2428        if (err < 0)
2429                return err;
2430
2431        err = tegra_dc_couple(dc);
2432        if (err < 0)
2433                return err;
2434
2435        dc->clk = devm_clk_get(&pdev->dev, NULL);
2436        if (IS_ERR(dc->clk)) {
2437                dev_err(&pdev->dev, "failed to get clock\n");
2438                return PTR_ERR(dc->clk);
2439        }
2440
2441        dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2442        if (IS_ERR(dc->rst)) {
2443                dev_err(&pdev->dev, "failed to get reset\n");
2444                return PTR_ERR(dc->rst);
2445        }
2446
2447        /* assert reset and disable clock */
2448        err = clk_prepare_enable(dc->clk);
2449        if (err < 0)
2450                return err;
2451
2452        usleep_range(2000, 4000);
2453
2454        err = reset_control_assert(dc->rst);
2455        if (err < 0)
2456                return err;
2457
2458        usleep_range(2000, 4000);
2459
2460        clk_disable_unprepare(dc->clk);
2461
2462        if (dc->soc->has_powergate) {
2463                if (dc->pipe == 0)
2464                        dc->powergate = TEGRA_POWERGATE_DIS;
2465                else
2466                        dc->powergate = TEGRA_POWERGATE_DISB;
2467
2468                tegra_powergate_power_off(dc->powergate);
2469        }
2470
2471        regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2472        dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2473        if (IS_ERR(dc->regs))
2474                return PTR_ERR(dc->regs);
2475
2476        dc->irq = platform_get_irq(pdev, 0);
2477        if (dc->irq < 0) {
2478                dev_err(&pdev->dev, "failed to get IRQ\n");
2479                return -ENXIO;
2480        }
2481
2482        err = tegra_dc_rgb_probe(dc);
2483        if (err < 0 && err != -ENODEV) {
2484                dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2485                return err;
2486        }
2487
2488        platform_set_drvdata(pdev, dc);
2489        pm_runtime_enable(&pdev->dev);
2490
2491        INIT_LIST_HEAD(&dc->client.list);
2492        dc->client.ops = &dc_client_ops;
2493        dc->client.dev = &pdev->dev;
2494
2495        err = host1x_client_register(&dc->client);
2496        if (err < 0) {
2497                dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2498                        err);
2499                return err;
2500        }
2501
2502        return 0;
2503}
2504
2505static int tegra_dc_remove(struct platform_device *pdev)
2506{
2507        struct tegra_dc *dc = platform_get_drvdata(pdev);
2508        int err;
2509
2510        err = host1x_client_unregister(&dc->client);
2511        if (err < 0) {
2512                dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2513                        err);
2514                return err;
2515        }
2516
2517        err = tegra_dc_rgb_remove(dc);
2518        if (err < 0) {
2519                dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2520                return err;
2521        }
2522
2523        pm_runtime_disable(&pdev->dev);
2524
2525        return 0;
2526}
2527
2528#ifdef CONFIG_PM
2529static int tegra_dc_suspend(struct device *dev)
2530{
2531        struct tegra_dc *dc = dev_get_drvdata(dev);
2532        int err;
2533
2534        err = reset_control_assert(dc->rst);
2535        if (err < 0) {
2536                dev_err(dev, "failed to assert reset: %d\n", err);
2537                return err;
2538        }
2539
2540        if (dc->soc->has_powergate)
2541                tegra_powergate_power_off(dc->powergate);
2542
2543        clk_disable_unprepare(dc->clk);
2544
2545        return 0;
2546}
2547
2548static int tegra_dc_resume(struct device *dev)
2549{
2550        struct tegra_dc *dc = dev_get_drvdata(dev);
2551        int err;
2552
2553        if (dc->soc->has_powergate) {
2554                err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2555                                                        dc->rst);
2556                if (err < 0) {
2557                        dev_err(dev, "failed to power partition: %d\n", err);
2558                        return err;
2559                }
2560        } else {
2561                err = clk_prepare_enable(dc->clk);
2562                if (err < 0) {
2563                        dev_err(dev, "failed to enable clock: %d\n", err);
2564                        return err;
2565                }
2566
2567                err = reset_control_deassert(dc->rst);
2568                if (err < 0) {
2569                        dev_err(dev, "failed to deassert reset: %d\n", err);
2570                        return err;
2571                }
2572        }
2573
2574        return 0;
2575}
2576#endif
2577
2578static const struct dev_pm_ops tegra_dc_pm_ops = {
2579        SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
2580};
2581
2582struct platform_driver tegra_dc_driver = {
2583        .driver = {
2584                .name = "tegra-dc",
2585                .of_match_table = tegra_dc_of_match,
2586                .pm = &tegra_dc_pm_ops,
2587        },
2588        .probe = tegra_dc_probe,
2589        .remove = tegra_dc_remove,
2590};
2591