1/* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2/********************************************************** 3 * Copyright 1998-2015 VMware, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person 6 * obtaining a copy of this software and associated documentation 7 * files (the "Software"), to deal in the Software without 8 * restriction, including without limitation the rights to use, copy, 9 * modify, merge, publish, distribute, sublicense, and/or sell copies 10 * of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be 14 * included in all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 17 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 18 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 19 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 20 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 21 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 23 * SOFTWARE. 24 * 25 **********************************************************/ 26 27/* 28 * svga_reg.h -- 29 * 30 * Virtual hardware definitions for the VMware SVGA II device. 31 */ 32 33#ifndef _SVGA_REG_H_ 34#define _SVGA_REG_H_ 35#include <linux/pci_ids.h> 36 37#define INCLUDE_ALLOW_MODULE 38#define INCLUDE_ALLOW_USERLEVEL 39 40#define INCLUDE_ALLOW_VMCORE 41#include "includeCheck.h" 42 43#include "svga_types.h" 44 45/* 46 * SVGA_REG_ENABLE bit definitions. 47 */ 48typedef enum { 49 SVGA_REG_ENABLE_DISABLE = 0, 50 SVGA_REG_ENABLE_ENABLE = (1 << 0), 51 SVGA_REG_ENABLE_HIDE = (1 << 1), 52} SvgaRegEnable; 53 54typedef uint32 SVGAMobId; 55 56/* 57 * Arbitrary and meaningless limits. Please ignore these when writing 58 * new drivers. 59 */ 60#define SVGA_MAX_WIDTH 2560 61#define SVGA_MAX_HEIGHT 1600 62 63 64#define SVGA_MAX_BITS_PER_PIXEL 32 65#define SVGA_MAX_DEPTH 24 66#define SVGA_MAX_DISPLAYS 10 67#define SVGA_MAX_SCREEN_SIZE 8192 68#define SVGA_SCREEN_ROOT_LIMIT (SVGA_MAX_SCREEN_SIZE * SVGA_MAX_DISPLAYS) 69 70 71/* 72 * Legal values for the SVGA_REG_CURSOR_ON register in old-fashioned 73 * cursor bypass mode. This is still supported, but no new guest 74 * drivers should use it. 75 */ 76#define SVGA_CURSOR_ON_HIDE 0x0 77#define SVGA_CURSOR_ON_SHOW 0x1 78 79/* 80 * Remove the cursor from the framebuffer 81 * because we need to see what's under it 82 */ 83#define SVGA_CURSOR_ON_REMOVE_FROM_FB 0x2 84 85/* Put the cursor back in the framebuffer so the user can see it */ 86#define SVGA_CURSOR_ON_RESTORE_TO_FB 0x3 87 88/* 89 * The maximum framebuffer size that can traced for guests unless the 90 * SVGA_CAP_GBOBJECTS is set in SVGA_REG_CAPABILITIES. In that case 91 * the full framebuffer can be traced independent of this limit. 92 */ 93#define SVGA_FB_MAX_TRACEABLE_SIZE 0x1000000 94 95#define SVGA_MAX_PSEUDOCOLOR_DEPTH 8 96#define SVGA_MAX_PSEUDOCOLORS (1 << SVGA_MAX_PSEUDOCOLOR_DEPTH) 97#define SVGA_NUM_PALETTE_REGS (3 * SVGA_MAX_PSEUDOCOLORS) 98 99#define SVGA_MAGIC 0x900000UL 100#define SVGA_MAKE_ID(ver) (SVGA_MAGIC << 8 | (ver)) 101 102/* Version 2 let the address of the frame buffer be unsigned on Win32 */ 103#define SVGA_VERSION_2 2 104#define SVGA_ID_2 SVGA_MAKE_ID(SVGA_VERSION_2) 105 106/* Version 1 has new registers starting with SVGA_REG_CAPABILITIES so 107 PALETTE_BASE has moved */ 108#define SVGA_VERSION_1 1 109#define SVGA_ID_1 SVGA_MAKE_ID(SVGA_VERSION_1) 110 111/* Version 0 is the initial version */ 112#define SVGA_VERSION_0 0 113#define SVGA_ID_0 SVGA_MAKE_ID(SVGA_VERSION_0) 114 115/* 116 * "Invalid" value for all SVGA IDs. 117 * (Version ID, screen object ID, surface ID...) 118 */ 119#define SVGA_ID_INVALID 0xFFFFFFFF 120 121/* Port offsets, relative to BAR0 */ 122#define SVGA_INDEX_PORT 0x0 123#define SVGA_VALUE_PORT 0x1 124#define SVGA_BIOS_PORT 0x2 125#define SVGA_IRQSTATUS_PORT 0x8 126 127/* 128 * Interrupt source flags for IRQSTATUS_PORT and IRQMASK. 129 * 130 * Interrupts are only supported when the 131 * SVGA_CAP_IRQMASK capability is present. 132 */ 133#define SVGA_IRQFLAG_ANY_FENCE 0x1 /* Any fence was passed */ 134#define SVGA_IRQFLAG_FIFO_PROGRESS 0x2 /* Made forward progress in the FIFO */ 135#define SVGA_IRQFLAG_FENCE_GOAL 0x4 /* SVGA_FIFO_FENCE_GOAL reached */ 136#define SVGA_IRQFLAG_COMMAND_BUFFER 0x8 /* Command buffer completed */ 137#define SVGA_IRQFLAG_ERROR 0x10 /* Error while processing commands */ 138 139/* 140 * Registers 141 */ 142 143enum { 144 SVGA_REG_ID = 0, 145 SVGA_REG_ENABLE = 1, 146 SVGA_REG_WIDTH = 2, 147 SVGA_REG_HEIGHT = 3, 148 SVGA_REG_MAX_WIDTH = 4, 149 SVGA_REG_MAX_HEIGHT = 5, 150 SVGA_REG_DEPTH = 6, 151 SVGA_REG_BITS_PER_PIXEL = 7, /* Current bpp in the guest */ 152 SVGA_REG_PSEUDOCOLOR = 8, 153 SVGA_REG_RED_MASK = 9, 154 SVGA_REG_GREEN_MASK = 10, 155 SVGA_REG_BLUE_MASK = 11, 156 SVGA_REG_BYTES_PER_LINE = 12, 157 SVGA_REG_FB_START = 13, /* (Deprecated) */ 158 SVGA_REG_FB_OFFSET = 14, 159 SVGA_REG_VRAM_SIZE = 15, 160 SVGA_REG_FB_SIZE = 16, 161 162 /* ID 0 implementation only had the above registers, then the palette */ 163 SVGA_REG_ID_0_TOP = 17, 164 165 SVGA_REG_CAPABILITIES = 17, 166 SVGA_REG_MEM_START = 18, /* (Deprecated) */ 167 SVGA_REG_MEM_SIZE = 19, 168 SVGA_REG_CONFIG_DONE = 20, /* Set when memory area configured */ 169 SVGA_REG_SYNC = 21, /* See "FIFO Synchronization Registers" */ 170 SVGA_REG_BUSY = 22, /* See "FIFO Synchronization Registers" */ 171 SVGA_REG_GUEST_ID = 23, /* (Deprecated) */ 172 SVGA_REG_CURSOR_ID = 24, /* (Deprecated) */ 173 SVGA_REG_CURSOR_X = 25, /* (Deprecated) */ 174 SVGA_REG_CURSOR_Y = 26, /* (Deprecated) */ 175 SVGA_REG_CURSOR_ON = 27, /* (Deprecated) */ 176 SVGA_REG_HOST_BITS_PER_PIXEL = 28, /* (Deprecated) */ 177 SVGA_REG_SCRATCH_SIZE = 29, /* Number of scratch registers */ 178 SVGA_REG_MEM_REGS = 30, /* Number of FIFO registers */ 179 SVGA_REG_NUM_DISPLAYS = 31, /* (Deprecated) */ 180 SVGA_REG_PITCHLOCK = 32, /* Fixed pitch for all modes */ 181 SVGA_REG_IRQMASK = 33, /* Interrupt mask */ 182 183 /* Legacy multi-monitor support */ 184 SVGA_REG_NUM_GUEST_DISPLAYS = 34,/* Number of guest displays in X/Y direction */ 185 SVGA_REG_DISPLAY_ID = 35, /* Display ID for the following display attributes */ 186 SVGA_REG_DISPLAY_IS_PRIMARY = 36,/* Whether this is a primary display */ 187 SVGA_REG_DISPLAY_POSITION_X = 37,/* The display position x */ 188 SVGA_REG_DISPLAY_POSITION_Y = 38,/* The display position y */ 189 SVGA_REG_DISPLAY_WIDTH = 39, /* The display's width */ 190 SVGA_REG_DISPLAY_HEIGHT = 40, /* The display's height */ 191 192 /* See "Guest memory regions" below. */ 193 SVGA_REG_GMR_ID = 41, 194 SVGA_REG_GMR_DESCRIPTOR = 42, 195 SVGA_REG_GMR_MAX_IDS = 43, 196 SVGA_REG_GMR_MAX_DESCRIPTOR_LENGTH = 44, 197 198 SVGA_REG_TRACES = 45, /* Enable trace-based updates even when FIFO is on */ 199 SVGA_REG_GMRS_MAX_PAGES = 46, /* Maximum number of 4KB pages for all GMRs */ 200 SVGA_REG_MEMORY_SIZE = 47, /* Total dedicated device memory excluding FIFO */ 201 SVGA_REG_COMMAND_LOW = 48, /* Lower 32 bits and submits commands */ 202 SVGA_REG_COMMAND_HIGH = 49, /* Upper 32 bits of command buffer PA */ 203 204 /* 205 * Max primary memory. 206 * See SVGA_CAP_NO_BB_RESTRICTION. 207 */ 208 SVGA_REG_MAX_PRIMARY_MEM = 50, 209 SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM = 50, 210 211 SVGA_REG_SUGGESTED_GBOBJECT_MEM_SIZE_KB = 51, /* Sugested limit on mob mem */ 212 SVGA_REG_DEV_CAP = 52, /* Write dev cap index, read value */ 213 SVGA_REG_CMD_PREPEND_LOW = 53, 214 SVGA_REG_CMD_PREPEND_HIGH = 54, 215 SVGA_REG_SCREENTARGET_MAX_WIDTH = 55, 216 SVGA_REG_SCREENTARGET_MAX_HEIGHT = 56, 217 SVGA_REG_MOB_MAX_SIZE = 57, 218 SVGA_REG_BLANK_SCREEN_TARGETS = 58, 219 SVGA_REG_CAP2 = 59, 220 SVGA_REG_DEVEL_CAP = 60, 221 SVGA_REG_TOP = 61, /* Must be 1 more than the last register */ 222 223 SVGA_PALETTE_BASE = 1024, /* Base of SVGA color map */ 224 /* Next 768 (== 256*3) registers exist for colormap */ 225 SVGA_SCRATCH_BASE = SVGA_PALETTE_BASE + SVGA_NUM_PALETTE_REGS 226 /* Base of scratch registers */ 227 /* Next reg[SVGA_REG_SCRATCH_SIZE] registers exist for scratch usage: 228 First 4 are reserved for VESA BIOS Extension; any remaining are for 229 the use of the current SVGA driver. */ 230}; 231 232/* 233 * Guest memory regions (GMRs): 234 * 235 * This is a new memory mapping feature available in SVGA devices 236 * which have the SVGA_CAP_GMR bit set. Previously, there were two 237 * fixed memory regions available with which to share data between the 238 * device and the driver: the FIFO ('MEM') and the framebuffer. GMRs 239 * are our name for an extensible way of providing arbitrary DMA 240 * buffers for use between the driver and the SVGA device. They are a 241 * new alternative to framebuffer memory, usable for both 2D and 3D 242 * graphics operations. 243 * 244 * Since GMR mapping must be done synchronously with guest CPU 245 * execution, we use a new pair of SVGA registers: 246 * 247 * SVGA_REG_GMR_ID -- 248 * 249 * Read/write. 250 * This register holds the 32-bit ID (a small positive integer) 251 * of a GMR to create, delete, or redefine. Writing this register 252 * has no side-effects. 253 * 254 * SVGA_REG_GMR_DESCRIPTOR -- 255 * 256 * Write-only. 257 * Writing this register will create, delete, or redefine the GMR 258 * specified by the above ID register. If this register is zero, 259 * the GMR is deleted. Any pointers into this GMR (including those 260 * currently being processed by FIFO commands) will be 261 * synchronously invalidated. 262 * 263 * If this register is nonzero, it must be the physical page 264 * number (PPN) of a data structure which describes the physical 265 * layout of the memory region this GMR should describe. The 266 * descriptor structure will be read synchronously by the SVGA 267 * device when this register is written. The descriptor need not 268 * remain allocated for the lifetime of the GMR. 269 * 270 * The guest driver should write SVGA_REG_GMR_ID first, then 271 * SVGA_REG_GMR_DESCRIPTOR. 272 * 273 * SVGA_REG_GMR_MAX_IDS -- 274 * 275 * Read-only. 276 * The SVGA device may choose to support a maximum number of 277 * user-defined GMR IDs. This register holds the number of supported 278 * IDs. (The maximum supported ID plus 1) 279 * 280 * SVGA_REG_GMR_MAX_DESCRIPTOR_LENGTH -- 281 * 282 * Read-only. 283 * The SVGA device may choose to put a limit on the total number 284 * of SVGAGuestMemDescriptor structures it will read when defining 285 * a single GMR. 286 * 287 * The descriptor structure is an array of SVGAGuestMemDescriptor 288 * structures. Each structure may do one of three things: 289 * 290 * - Terminate the GMR descriptor list. 291 * (ppn==0, numPages==0) 292 * 293 * - Add a PPN or range of PPNs to the GMR's virtual address space. 294 * (ppn != 0, numPages != 0) 295 * 296 * - Provide the PPN of the next SVGAGuestMemDescriptor, in order to 297 * support multi-page GMR descriptor tables without forcing the 298 * driver to allocate physically contiguous memory. 299 * (ppn != 0, numPages == 0) 300 * 301 * Note that each physical page of SVGAGuestMemDescriptor structures 302 * can describe at least 2MB of guest memory. If the driver needs to 303 * use more than one page of descriptor structures, it must use one of 304 * its SVGAGuestMemDescriptors to point to an additional page. The 305 * device will never automatically cross a page boundary. 306 * 307 * Once the driver has described a GMR, it is immediately available 308 * for use via any FIFO command that uses an SVGAGuestPtr structure. 309 * These pointers include a GMR identifier plus an offset into that 310 * GMR. 311 * 312 * The driver must check the SVGA_CAP_GMR bit before using the GMR 313 * registers. 314 */ 315 316/* 317 * Special GMR IDs, allowing SVGAGuestPtrs to point to framebuffer 318 * memory as well. In the future, these IDs could even be used to 319 * allow legacy memory regions to be redefined by the guest as GMRs. 320 * 321 * Using the guest framebuffer (GFB) at BAR1 for general purpose DMA 322 * is being phased out. Please try to use user-defined GMRs whenever 323 * possible. 324 */ 325#define SVGA_GMR_NULL ((uint32) -1) 326#define SVGA_GMR_FRAMEBUFFER ((uint32) -2) /* Guest Framebuffer (GFB) */ 327 328typedef 329#include "vmware_pack_begin.h" 330struct SVGAGuestMemDescriptor { 331 uint32 ppn; 332 uint32 numPages; 333} 334#include "vmware_pack_end.h" 335SVGAGuestMemDescriptor; 336 337typedef 338#include "vmware_pack_begin.h" 339struct SVGAGuestPtr { 340 uint32 gmrId; 341 uint32 offset; 342} 343#include "vmware_pack_end.h" 344SVGAGuestPtr; 345 346/* 347 * Register based command buffers -- 348 * 349 * Provide an SVGA device interface that allows the guest to submit 350 * command buffers to the SVGA device through an SVGA device register. 351 * The metadata for each command buffer is contained in the 352 * SVGACBHeader structure along with the return status codes. 353 * 354 * The SVGA device supports command buffers if 355 * SVGA_CAP_COMMAND_BUFFERS is set in the device caps register. The 356 * fifo must be enabled for command buffers to be submitted. 357 * 358 * Command buffers are submitted when the guest writing the 64 byte 359 * aligned physical address into the SVGA_REG_COMMAND_LOW and 360 * SVGA_REG_COMMAND_HIGH. SVGA_REG_COMMAND_HIGH contains the upper 32 361 * bits of the physical address. SVGA_REG_COMMAND_LOW contains the 362 * lower 32 bits of the physical address, since the command buffer 363 * headers are required to be 64 byte aligned the lower 6 bits are 364 * used for the SVGACBContext value. Writing to SVGA_REG_COMMAND_LOW 365 * submits the command buffer to the device and queues it for 366 * execution. The SVGA device supports at least 367 * SVGA_CB_MAX_QUEUED_PER_CONTEXT command buffers that can be queued 368 * per context and if that limit is reached the device will write the 369 * status SVGA_CB_STATUS_QUEUE_FULL to the status value of the command 370 * buffer header synchronously and not raise any IRQs. 371 * 372 * It is invalid to submit a command buffer without a valid physical 373 * address and results are undefined. 374 * 375 * The device guarantees that command buffers of size SVGA_CB_MAX_SIZE 376 * will be supported. If a larger command buffer is submitted results 377 * are unspecified and the device will either complete the command 378 * buffer or return an error. 379 * 380 * The device guarantees that any individual command in a command 381 * buffer can be up to SVGA_CB_MAX_COMMAND_SIZE in size which is 382 * enough to fit a 64x64 color-cursor definition. If the command is 383 * too large the device is allowed to process the command or return an 384 * error. 385 * 386 * The device context is a special SVGACBContext that allows for 387 * synchronous register like accesses with the flexibility of 388 * commands. There is a different command set defined by 389 * SVGADeviceContextCmdId. The commands in each command buffer is not 390 * allowed to straddle physical pages. 391 * 392 * The offset field which is available starting with the 393 * SVGA_CAP_CMD_BUFFERS_2 cap bit can be set by the guest to bias the 394 * start of command processing into the buffer. If an error is 395 * encountered the errorOffset will still be relative to the specific 396 * PA, not biased by the offset. When the command buffer is finished 397 * the guest should not read the offset field as there is no guarantee 398 * what it will set to. 399 * 400 * When the SVGA_CAP_HP_CMD_QUEUE cap bit is set a new command queue 401 * SVGA_CB_CONTEXT_1 is available. Commands submitted to this queue 402 * will be executed as quickly as possible by the SVGA device 403 * potentially before already queued commands on SVGA_CB_CONTEXT_0. 404 * The SVGA device guarantees that any command buffers submitted to 405 * SVGA_CB_CONTEXT_0 will be executed after any _already_ submitted 406 * command buffers to SVGA_CB_CONTEXT_1. 407 */ 408 409#define SVGA_CB_MAX_SIZE (512 * 1024) /* 512 KB */ 410#define SVGA_CB_MAX_QUEUED_PER_CONTEXT 32 411#define SVGA_CB_MAX_COMMAND_SIZE (32 * 1024) /* 32 KB */ 412 413#define SVGA_CB_CONTEXT_MASK 0x3f 414typedef enum { 415 SVGA_CB_CONTEXT_DEVICE = 0x3f, 416 SVGA_CB_CONTEXT_0 = 0x0, 417 SVGA_CB_CONTEXT_1 = 0x1, /* Supported with SVGA_CAP_HP_CMD_QUEUE */ 418 SVGA_CB_CONTEXT_MAX = 0x2, 419 SVGA_CB_CONTEXT_HP_MAX = 0x2, 420} SVGACBContext; 421 422 423typedef enum { 424 /* 425 * The guest is supposed to write SVGA_CB_STATUS_NONE to the status 426 * field before submitting the command buffer header, the host will 427 * change the value when it is done with the command buffer. 428 */ 429 SVGA_CB_STATUS_NONE = 0, 430 431 /* 432 * Written by the host when a command buffer completes successfully. 433 * The device raises an IRQ with SVGA_IRQFLAG_COMMAND_BUFFER unless 434 * the SVGA_CB_FLAG_NO_IRQ flag is set. 435 */ 436 SVGA_CB_STATUS_COMPLETED = 1, 437 438 /* 439 * Written by the host synchronously with the command buffer 440 * submission to indicate the command buffer was not submitted. No 441 * IRQ is raised. 442 */ 443 SVGA_CB_STATUS_QUEUE_FULL = 2, 444 445 /* 446 * Written by the host when an error was detected parsing a command 447 * in the command buffer, errorOffset is written to contain the 448 * offset to the first byte of the failing command. The device 449 * raises the IRQ with both SVGA_IRQFLAG_ERROR and 450 * SVGA_IRQFLAG_COMMAND_BUFFER. Some of the commands may have been 451 * processed. 452 */ 453 SVGA_CB_STATUS_COMMAND_ERROR = 3, 454 455 /* 456 * Written by the host if there is an error parsing the command 457 * buffer header. The device raises the IRQ with both 458 * SVGA_IRQFLAG_ERROR and SVGA_IRQFLAG_COMMAND_BUFFER. The device 459 * did not processes any of the command buffer. 460 */ 461 SVGA_CB_STATUS_CB_HEADER_ERROR = 4, 462 463 /* 464 * Written by the host if the guest requested the host to preempt 465 * the command buffer. The device will not raise any IRQs and the 466 * command buffer was not processed. 467 */ 468 SVGA_CB_STATUS_PREEMPTED = 5, 469 470 /* 471 * Written by the host synchronously with the command buffer 472 * submission to indicate the the command buffer was not submitted 473 * due to an error. No IRQ is raised. 474 */ 475 SVGA_CB_STATUS_SUBMISSION_ERROR = 6, 476 477 /* 478 * Written by the host when the host finished a 479 * SVGA_DC_CMD_ASYNC_STOP_QUEUE request for this command buffer 480 * queue. The offset of the first byte not processed is stored in 481 * the errorOffset field of the command buffer header. All guest 482 * visible side effects of commands till that point are guaranteed 483 * to be finished before this is written. The 484 * SVGA_IRQFLAG_COMMAND_BUFFER IRQ is raised as long as the 485 * SVGA_CB_FLAG_NO_IRQ is not set. 486 */ 487 SVGA_CB_STATUS_PARTIAL_COMPLETE = 7, 488} SVGACBStatus; 489 490typedef enum { 491 SVGA_CB_FLAG_NONE = 0, 492 SVGA_CB_FLAG_NO_IRQ = 1 << 0, 493 SVGA_CB_FLAG_DX_CONTEXT = 1 << 1, 494 SVGA_CB_FLAG_MOB = 1 << 2, 495} SVGACBFlags; 496 497typedef 498#include "vmware_pack_begin.h" 499struct { 500 volatile SVGACBStatus status; /* Modified by device. */ 501 volatile uint32 errorOffset; /* Modified by device. */ 502 uint64 id; 503 SVGACBFlags flags; 504 uint32 length; 505 union { 506 PA pa; 507 struct { 508 SVGAMobId mobid; 509 uint32 mobOffset; 510 } mob; 511 } ptr; 512 uint32 offset; /* Valid if CMD_BUFFERS_2 cap set, must be zero otherwise, 513 * modified by device. 514 */ 515 uint32 dxContext; /* Valid if DX_CONTEXT flag set, must be zero otherwise */ 516 uint32 mustBeZero[6]; 517} 518#include "vmware_pack_end.h" 519SVGACBHeader; 520 521typedef enum { 522 SVGA_DC_CMD_NOP = 0, 523 SVGA_DC_CMD_START_STOP_CONTEXT = 1, 524 SVGA_DC_CMD_PREEMPT = 2, 525 SVGA_DC_CMD_START_QUEUE = 3, /* Requires SVGA_CAP_HP_CMD_QUEUE */ 526 SVGA_DC_CMD_ASYNC_STOP_QUEUE = 4, /* Requires SVGA_CAP_HP_CMD_QUEUE */ 527 SVGA_DC_CMD_EMPTY_CONTEXT_QUEUE = 5, /* Requires SVGA_CAP_HP_CMD_QUEUE */ 528 SVGA_DC_CMD_MAX = 6, 529} SVGADeviceContextCmdId; 530 531/* 532 * Starts or stops both SVGA_CB_CONTEXT_0 and SVGA_CB_CONTEXT_1. 533 */ 534 535typedef struct SVGADCCmdStartStop { 536 uint32 enable; 537 SVGACBContext context; /* Must be zero */ 538} SVGADCCmdStartStop; 539 540/* 541 * SVGADCCmdPreempt -- 542 * 543 * This command allows the guest to request that all command buffers 544 * on SVGA_CB_CONTEXT_0 be preempted that can be. After execution 545 * of this command all command buffers that were preempted will 546 * already have SVGA_CB_STATUS_PREEMPTED written into the status 547 * field. The device might still be processing a command buffer, 548 * assuming execution of it started before the preemption request was 549 * received. Specifying the ignoreIDZero flag to TRUE will cause the 550 * device to not preempt command buffers with the id field in the 551 * command buffer header set to zero. 552 */ 553 554typedef struct SVGADCCmdPreempt { 555 SVGACBContext context; /* Must be zero */ 556 uint32 ignoreIDZero; 557} SVGADCCmdPreempt; 558 559/* 560 * Starts the requested command buffer processing queue. Valid only 561 * if the SVGA_CAP_HP_CMD_QUEUE cap is set. 562 * 563 * For a command queue to be considered runnable it must be enabled 564 * and any corresponding higher priority queues must also be enabled. 565 * For example in order for command buffers to be processed on 566 * SVGA_CB_CONTEXT_0 both SVGA_CB_CONTEXT_0 and SVGA_CB_CONTEXT_1 must 567 * be enabled. But for commands to be runnable on SVGA_CB_CONTEXT_1 568 * only that queue must be enabled. 569 */ 570 571typedef struct SVGADCCmdStartQueue { 572 SVGACBContext context; 573} SVGADCCmdStartQueue; 574 575/* 576 * Requests the SVGA device to stop processing the requested command 577 * buffer queue as soon as possible. The guest knows the stop has 578 * completed when one of the following happens. 579 * 580 * 1) A command buffer status of SVGA_CB_STATUS_PARTIAL_COMPLETE is returned 581 * 2) A command buffer error is encountered with would stop the queue 582 * regardless of the async stop request. 583 * 3) All command buffers that have been submitted complete successfully. 584 * 4) The stop completes synchronously if no command buffers are 585 * active on the queue when it is issued. 586 * 587 * If the command queue is not in a runnable state there is no 588 * guarentee this async stop will finish. For instance if the high 589 * priority queue is not enabled and a stop is requested on the low 590 * priority queue, the high priority queue must be reenabled to 591 * guarantee that the async stop will finish. 592 * 593 * This command along with SVGA_DC_CMD_EMPTY_CONTEXT_QUEUE can be used 594 * to implement mid command buffer preemption. 595 * 596 * Valid only if the SVGA_CAP_HP_CMD_QUEUE cap is set. 597 */ 598 599typedef struct SVGADCCmdAsyncStopQueue { 600 SVGACBContext context; 601} SVGADCCmdAsyncStopQueue; 602 603/* 604 * Requests the SVGA device to throw away any full command buffers on 605 * the requested command queue that have not been started. For a 606 * driver to know which command buffers were thrown away a driver 607 * should only issue this command when the queue is stopped, for 608 * whatever reason. 609 */ 610 611typedef struct SVGADCCmdEmptyQueue { 612 SVGACBContext context; 613} SVGADCCmdEmptyQueue; 614 615 616/* 617 * SVGAGMRImageFormat -- 618 * 619 * This is a packed representation of the source 2D image format 620 * for a GMR-to-screen blit. Currently it is defined as an encoding 621 * of the screen's color depth and bits-per-pixel, however, 16 bits 622 * are reserved for future use to identify other encodings (such as 623 * RGBA or higher-precision images). 624 * 625 * Currently supported formats: 626 * 627 * bpp depth Format Name 628 * --- ----- ----------- 629 * 32 24 32-bit BGRX 630 * 24 24 24-bit BGR 631 * 16 16 RGB 5-6-5 632 * 16 15 RGB 5-5-5 633 * 634 */ 635 636typedef struct SVGAGMRImageFormat { 637 union { 638 struct { 639 uint32 bitsPerPixel : 8; 640 uint32 colorDepth : 8; 641 uint32 reserved : 16; /* Must be zero */ 642 }; 643 644 uint32 value; 645 }; 646} SVGAGMRImageFormat; 647 648typedef 649#include "vmware_pack_begin.h" 650struct SVGAGuestImage { 651 SVGAGuestPtr ptr; 652 653 /* 654 * A note on interpretation of pitch: This value of pitch is the 655 * number of bytes between vertically adjacent image 656 * blocks. Normally this is the number of bytes between the first 657 * pixel of two adjacent scanlines. With compressed textures, 658 * however, this may represent the number of bytes between 659 * compression blocks rather than between rows of pixels. 660 * 661 * XXX: Compressed textures currently must be tightly packed in guest memory. 662 * 663 * If the image is 1-dimensional, pitch is ignored. 664 * 665 * If 'pitch' is zero, the SVGA3D device calculates a pitch value 666 * assuming each row of blocks is tightly packed. 667 */ 668 uint32 pitch; 669} 670#include "vmware_pack_end.h" 671SVGAGuestImage; 672 673/* 674 * SVGAColorBGRX -- 675 * 676 * A 24-bit color format (BGRX), which does not depend on the 677 * format of the legacy guest framebuffer (GFB) or the current 678 * GMRFB state. 679 */ 680 681typedef struct SVGAColorBGRX { 682 union { 683 struct { 684 uint32 b : 8; 685 uint32 g : 8; 686 uint32 r : 8; 687 uint32 x : 8; /* Unused */ 688 }; 689 690 uint32 value; 691 }; 692} SVGAColorBGRX; 693 694 695/* 696 * SVGASignedRect -- 697 * SVGASignedPoint -- 698 * 699 * Signed rectangle and point primitives. These are used by the new 700 * 2D primitives for drawing to Screen Objects, which can occupy a 701 * signed virtual coordinate space. 702 * 703 * SVGASignedRect specifies a half-open interval: the (left, top) 704 * pixel is part of the rectangle, but the (right, bottom) pixel is 705 * not. 706 */ 707 708typedef 709#include "vmware_pack_begin.h" 710struct { 711 int32 left; 712 int32 top; 713 int32 right; 714 int32 bottom; 715} 716#include "vmware_pack_end.h" 717SVGASignedRect; 718 719typedef 720#include "vmware_pack_begin.h" 721struct { 722 int32 x; 723 int32 y; 724} 725#include "vmware_pack_end.h" 726SVGASignedPoint; 727 728 729/* 730 * SVGA Device Capabilities 731 * 732 * Note the holes in the bitfield. Missing bits have been deprecated, 733 * and must not be reused. Those capabilities will never be reported 734 * by new versions of the SVGA device. 735 * 736 * XXX: Add longer descriptions for each capability, including a list 737 * of the new features that each capability provides. 738 * 739 * SVGA_CAP_IRQMASK -- 740 * Provides device interrupts. Adds device register SVGA_REG_IRQMASK 741 * to set interrupt mask and direct I/O port SVGA_IRQSTATUS_PORT to 742 * set/clear pending interrupts. 743 * 744 * SVGA_CAP_GMR -- 745 * Provides synchronous mapping of guest memory regions (GMR). 746 * Adds device registers SVGA_REG_GMR_ID, SVGA_REG_GMR_DESCRIPTOR, 747 * SVGA_REG_GMR_MAX_IDS, and SVGA_REG_GMR_MAX_DESCRIPTOR_LENGTH. 748 * 749 * SVGA_CAP_TRACES -- 750 * Allows framebuffer trace-based updates even when FIFO is enabled. 751 * Adds device register SVGA_REG_TRACES. 752 * 753 * SVGA_CAP_GMR2 -- 754 * Provides asynchronous commands to define and remap guest memory 755 * regions. Adds device registers SVGA_REG_GMRS_MAX_PAGES and 756 * SVGA_REG_MEMORY_SIZE. 757 * 758 * SVGA_CAP_SCREEN_OBJECT_2 -- 759 * Allow screen object support, and require backing stores from the 760 * guest for each screen object. 761 * 762 * SVGA_CAP_COMMAND_BUFFERS -- 763 * Enable register based command buffer submission. 764 * 765 * SVGA_CAP_DEAD1 -- 766 * This cap was incorrectly used by old drivers and should not be 767 * reused. 768 * 769 * SVGA_CAP_CMD_BUFFERS_2 -- 770 * Enable support for the prepend command buffer submision 771 * registers. SVGA_REG_CMD_PREPEND_LOW and 772 * SVGA_REG_CMD_PREPEND_HIGH. 773 * 774 * SVGA_CAP_GBOBJECTS -- 775 * Enable guest-backed objects and surfaces. 776 * 777 * SVGA_CAP_DX -- 778 * Enable support for DX commands, and command buffers in a mob. 779 * 780 * SVGA_CAP_HP_CMD_QUEUE -- 781 * Enable support for the high priority command queue, and the 782 * ScreenCopy command. 783 * 784 * SVGA_CAP_NO_BB_RESTRICTION -- 785 * Allow ScreenTargets to be defined without regard to the 32-bpp 786 * bounding-box memory restrictions. ie: 787 * 788 * The summed memory usage of all screens (assuming they were defined as 789 * 32-bpp) must always be less than the value of the 790 * SVGA_REG_MAX_PRIMARY_MEM register. 791 * 792 * If this cap is not present, the 32-bpp bounding box around all screens 793 * must additionally be under the value of the SVGA_REG_MAX_PRIMARY_MEM 794 * register. 795 * 796 * If the cap is present, the bounding box restriction is lifted (and only 797 * the screen-sum limit applies). 798 * 799 * (Note that this is a slight lie... there is still a sanity limit on any 800 * dimension of the topology to be less than SVGA_SCREEN_ROOT_LIMIT, even 801 * when SVGA_CAP_NO_BB_RESTRICTION is present, but that should be 802 * large enough to express any possible topology without holes between 803 * monitors.) 804 * 805 * SVGA_CAP_CAP2_REGISTER -- 806 * If this cap is present, the SVGA_REG_CAP2 register is supported. 807 */ 808 809#define SVGA_CAP_NONE 0x00000000 810#define SVGA_CAP_RECT_COPY 0x00000002 811#define SVGA_CAP_CURSOR 0x00000020 812#define SVGA_CAP_CURSOR_BYPASS 0x00000040 813#define SVGA_CAP_CURSOR_BYPASS_2 0x00000080 814#define SVGA_CAP_8BIT_EMULATION 0x00000100 815#define SVGA_CAP_ALPHA_CURSOR 0x00000200 816#define SVGA_CAP_3D 0x00004000 817#define SVGA_CAP_EXTENDED_FIFO 0x00008000 818#define SVGA_CAP_MULTIMON 0x00010000 819#define SVGA_CAP_PITCHLOCK 0x00020000 820#define SVGA_CAP_IRQMASK 0x00040000 821#define SVGA_CAP_DISPLAY_TOPOLOGY 0x00080000 822#define SVGA_CAP_GMR 0x00100000 823#define SVGA_CAP_TRACES 0x00200000 824#define SVGA_CAP_GMR2 0x00400000 825#define SVGA_CAP_SCREEN_OBJECT_2 0x00800000 826#define SVGA_CAP_COMMAND_BUFFERS 0x01000000 827#define SVGA_CAP_DEAD1 0x02000000 828#define SVGA_CAP_CMD_BUFFERS_2 0x04000000 829#define SVGA_CAP_GBOBJECTS 0x08000000 830#define SVGA_CAP_DX 0x10000000 831#define SVGA_CAP_HP_CMD_QUEUE 0x20000000 832#define SVGA_CAP_NO_BB_RESTRICTION 0x40000000 833#define SVGA_CAP_CAP2_REGISTER 0x80000000 834 835/* 836 * The SVGA_REG_CAP2 register is an additional set of SVGA capability bits. 837 * 838 * SVGA_CAP2_GROW_OTABLE -- 839 * Allow the GrowOTable/DXGrowCOTable commands. 840 * 841 * SVGA_CAP2_INTRA_SURFACE_COPY -- 842 * Allow the IntraSurfaceCopy command. 843 * 844 * SVGA_CAP2_DX2 -- 845 * Allow the DefineGBSurface_v3, WholeSurfaceCopy. 846 * 847 * SVGA_CAP2_RESERVED -- 848 * Reserve the last bit for extending the SVGA capabilities to some 849 * future mechanisms. 850 */ 851#define SVGA_CAP2_NONE 0x00000000 852#define SVGA_CAP2_GROW_OTABLE 0x00000001 853#define SVGA_CAP2_INTRA_SURFACE_COPY 0x00000002 854#define SVGA_CAP2_DX2 0x00000004 855#define SVGA_CAP2_RESERVED 0x80000000 856 857 858/* 859 * The Guest can optionally read some SVGA device capabilities through 860 * the backdoor with command BDOOR_CMD_GET_SVGA_CAPABILITIES before 861 * the SVGA device is initialized. The type of capability the guest 862 * is requesting from the SVGABackdoorCapType enum should be placed in 863 * the upper 16 bits of the backdoor command id (ECX). On success the 864 * the value of EBX will be set to BDOOR_MAGIC and EAX will be set to 865 * the requested capability. If the command is not supported then EBX 866 * will be left unchanged and EAX will be set to -1. Because it is 867 * possible that -1 is the value of the requested cap the correct way 868 * to check if the command was successful is to check if EBX was changed 869 * to BDOOR_MAGIC making sure to initialize the register to something 870 * else first. 871 */ 872 873typedef enum { 874 SVGABackdoorCapDeviceCaps = 0, 875 SVGABackdoorCapFifoCaps = 1, 876 SVGABackdoorCap3dHWVersion = 2, 877 SVGABackdoorCapDeviceCaps2 = 3, 878 SVGABackdoorCapMax = 4, 879} SVGABackdoorCapType; 880 881 882/* 883 * FIFO register indices. 884 * 885 * The FIFO is a chunk of device memory mapped into guest physmem. It 886 * is always treated as 32-bit words. 887 * 888 * The guest driver gets to decide how to partition it between 889 * - FIFO registers (there are always at least 4, specifying where the 890 * following data area is and how much data it contains; there may be 891 * more registers following these, depending on the FIFO protocol 892 * version in use) 893 * - FIFO data, written by the guest and slurped out by the VMX. 894 * These indices are 32-bit word offsets into the FIFO. 895 */ 896 897enum { 898 /* 899 * Block 1 (basic registers): The originally defined FIFO registers. 900 * These exist and are valid for all versions of the FIFO protocol. 901 */ 902 903 SVGA_FIFO_MIN = 0, 904 SVGA_FIFO_MAX, /* The distance from MIN to MAX must be at least 10K */ 905 SVGA_FIFO_NEXT_CMD, 906 SVGA_FIFO_STOP, 907 908 /* 909 * Block 2 (extended registers): Mandatory registers for the extended 910 * FIFO. These exist if the SVGA caps register includes 911 * SVGA_CAP_EXTENDED_FIFO; some of them are valid only if their 912 * associated capability bit is enabled. 913 * 914 * Note that when originally defined, SVGA_CAP_EXTENDED_FIFO implied 915 * support only for (FIFO registers) CAPABILITIES, FLAGS, and FENCE. 916 * This means that the guest has to test individually (in most cases 917 * using FIFO caps) for the presence of registers after this; the VMX 918 * can define "extended FIFO" to mean whatever it wants, and currently 919 * won't enable it unless there's room for that set and much more. 920 */ 921 922 SVGA_FIFO_CAPABILITIES = 4, 923 SVGA_FIFO_FLAGS, 924 /* Valid with SVGA_FIFO_CAP_FENCE: */ 925 SVGA_FIFO_FENCE, 926 927 /* 928 * Block 3a (optional extended registers): Additional registers for the 929 * extended FIFO, whose presence isn't actually implied by 930 * SVGA_CAP_EXTENDED_FIFO; these exist if SVGA_FIFO_MIN is high enough to 931 * leave room for them. 932 * 933 * These in block 3a, the VMX currently considers mandatory for the 934 * extended FIFO. 935 */ 936 937 /* Valid if exists (i.e. if extended FIFO enabled): */ 938 SVGA_FIFO_3D_HWVERSION, /* See SVGA3dHardwareVersion in svga3d_reg.h */ 939 /* Valid with SVGA_FIFO_CAP_PITCHLOCK: */ 940 SVGA_FIFO_PITCHLOCK, 941 942 /* Valid with SVGA_FIFO_CAP_CURSOR_BYPASS_3: */ 943 SVGA_FIFO_CURSOR_ON, /* Cursor bypass 3 show/hide register */ 944 SVGA_FIFO_CURSOR_X, /* Cursor bypass 3 x register */ 945 SVGA_FIFO_CURSOR_Y, /* Cursor bypass 3 y register */ 946 SVGA_FIFO_CURSOR_COUNT, /* Incremented when any of the other 3 change */ 947 SVGA_FIFO_CURSOR_LAST_UPDATED,/* Last time the host updated the cursor */ 948 949 /* Valid with SVGA_FIFO_CAP_RESERVE: */ 950 SVGA_FIFO_RESERVED, /* Bytes past NEXT_CMD with real contents */ 951 952 /* 953 * Valid with SVGA_FIFO_CAP_SCREEN_OBJECT or SVGA_FIFO_CAP_SCREEN_OBJECT_2: 954 * 955 * By default this is SVGA_ID_INVALID, to indicate that the cursor 956 * coordinates are specified relative to the virtual root. If this 957 * is set to a specific screen ID, cursor position is reinterpreted 958 * as a signed offset relative to that screen's origin. 959 */ 960 SVGA_FIFO_CURSOR_SCREEN_ID, 961 962 /* 963 * Valid with SVGA_FIFO_CAP_DEAD 964 * 965 * An arbitrary value written by the host, drivers should not use it. 966 */ 967 SVGA_FIFO_DEAD, 968 969 /* 970 * Valid with SVGA_FIFO_CAP_3D_HWVERSION_REVISED: 971 * 972 * Contains 3D HWVERSION (see SVGA3dHardwareVersion in svga3d_reg.h) 973 * on platforms that can enforce graphics resource limits. 974 */ 975 SVGA_FIFO_3D_HWVERSION_REVISED, 976 977 /* 978 * XXX: The gap here, up until SVGA_FIFO_3D_CAPS, can be used for new 979 * registers, but this must be done carefully and with judicious use of 980 * capability bits, since comparisons based on SVGA_FIFO_MIN aren't 981 * enough to tell you whether the register exists: we've shipped drivers 982 * and products that used SVGA_FIFO_3D_CAPS but didn't know about some of 983 * the earlier ones. The actual order of introduction was: 984 * - PITCHLOCK 985 * - 3D_CAPS 986 * - CURSOR_* (cursor bypass 3) 987 * - RESERVED 988 * So, code that wants to know whether it can use any of the 989 * aforementioned registers, or anything else added after PITCHLOCK and 990 * before 3D_CAPS, needs to reason about something other than 991 * SVGA_FIFO_MIN. 992 */ 993 994 /* 995 * 3D caps block space; valid with 3D hardware version >= 996 * SVGA3D_HWVERSION_WS6_B1. 997 */ 998 SVGA_FIFO_3D_CAPS = 32, 999 SVGA_FIFO_3D_CAPS_LAST = 32 + 255, 1000
1001 /* 1002 * End of VMX's current definition of "extended-FIFO registers". 1003 * Registers before here are always enabled/disabled as a block; either 1004 * the extended FIFO is enabled and includes all preceding registers, or 1005 * it's disabled entirely. 1006 * 1007 * Block 3b (truly optional extended registers): Additional registers for 1008 * the extended FIFO, which the VMX already knows how to enable and 1009 * disable with correct granularity. 1010 * 1011 * Registers after here exist if and only if the guest SVGA driver 1012 * sets SVGA_FIFO_MIN high enough to leave room for them. 1013 */ 1014 1015 /* Valid if register exists: */ 1016 SVGA_FIFO_GUEST_3D_HWVERSION, /* Guest driver's 3D version */ 1017 SVGA_FIFO_FENCE_GOAL, /* Matching target for SVGA_IRQFLAG_FENCE_GOAL */ 1018 SVGA_FIFO_BUSY, /* See "FIFO Synchronization Registers" */ 1019 1020 /* 1021 * Always keep this last. This defines the maximum number of 1022 * registers we know about. At power-on, this value is placed in 1023 * the SVGA_REG_MEM_REGS register, and we expect the guest driver 1024 * to allocate this much space in FIFO memory for registers. 1025 */ 1026 SVGA_FIFO_NUM_REGS 1027}; 1028 1029 1030/* 1031 * Definition of registers included in extended FIFO support. 1032 * 1033 * The guest SVGA driver gets to allocate the FIFO between registers 1034 * and data. It must always allocate at least 4 registers, but old 1035 * drivers stopped there. 1036 * 1037 * The VMX will enable extended FIFO support if and only if the guest 1038 * left enough room for all registers defined as part of the mandatory 1039 * set for the extended FIFO. 1040 * 1041 * Note that the guest drivers typically allocate the FIFO only at 1042 * initialization time, not at mode switches, so it's likely that the 1043 * number of FIFO registers won't change without a reboot. 1044 * 1045 * All registers less than this value are guaranteed to be present if 1046 * svgaUser->fifo.extended is set. Any later registers must be tested 1047 * individually for compatibility at each use (in the VMX). 1048 * 1049 * This value is used only by the VMX, so it can change without 1050 * affecting driver compatibility; keep it that way? 1051 */ 1052#define SVGA_FIFO_EXTENDED_MANDATORY_REGS (SVGA_FIFO_3D_CAPS_LAST + 1) 1053 1054 1055/* 1056 * FIFO Synchronization Registers 1057 * 1058 * This explains the relationship between the various FIFO 1059 * sync-related registers in IOSpace and in FIFO space. 1060 * 1061 * SVGA_REG_SYNC -- 1062 * 1063 * The SYNC register can be used in two different ways by the guest: 1064 * 1065 * 1. If the guest wishes to fully sync (drain) the FIFO, 1066 * it will write once to SYNC then poll on the BUSY 1067 * register. The FIFO is sync'ed once BUSY is zero. 1068 * 1069 * 2. If the guest wants to asynchronously wake up the host, 1070 * it will write once to SYNC without polling on BUSY. 1071 * Ideally it will do this after some new commands have 1072 * been placed in the FIFO, and after reading a zero 1073 * from SVGA_FIFO_BUSY. 1074 * 1075 * (1) is the original behaviour that SYNC was designed to 1076 * support. Originally, a write to SYNC would implicitly 1077 * trigger a read from BUSY. This causes us to synchronously 1078 * process the FIFO. 1079 * 1080 * This behaviour has since been changed so that writing SYNC 1081 * will *not* implicitly cause a read from BUSY. Instead, it 1082 * makes a channel call which asynchronously wakes up the MKS 1083 * thread. 1084 * 1085 * New guests can use this new behaviour to implement (2) 1086 * efficiently. This lets guests get the host's attention 1087 * without waiting for the MKS to poll, which gives us much 1088 * better CPU utilization on SMP hosts and on UP hosts while 1089 * we're blocked on the host GPU. 1090 * 1091 * Old guests shouldn't notice the behaviour change. SYNC was 1092 * never guaranteed to process the entire FIFO, since it was 1093 * bounded to a particular number of CPU cycles. Old guests will 1094 * still loop on the BUSY register until the FIFO is empty. 1095 * 1096 * Writing to SYNC currently has the following side-effects: 1097 * 1098 * - Sets SVGA_REG_BUSY to TRUE (in the monitor) 1099 * - Asynchronously wakes up the MKS thread for FIFO processing 1100 * - The value written to SYNC is recorded as a "reason", for 1101 * stats purposes. 1102 * 1103 * If SVGA_FIFO_BUSY is available, drivers are advised to only 1104 * write to SYNC if SVGA_FIFO_BUSY is FALSE. Drivers should set 1105 * SVGA_FIFO_BUSY to TRUE after writing to SYNC. The MKS will 1106 * eventually set SVGA_FIFO_BUSY on its own, but this approach 1107 * lets the driver avoid sending multiple asynchronous wakeup 1108 * messages to the MKS thread. 1109 * 1110 * SVGA_REG_BUSY -- 1111 * 1112 * This register is set to TRUE when SVGA_REG_SYNC is written, 1113 * and it reads as FALSE when the FIFO has been completely 1114 * drained. 1115 * 1116 * Every read from this register causes us to synchronously 1117 * process FIFO commands. There is no guarantee as to how many 1118 * commands each read will process. 1119 * 1120 * CPU time spent processing FIFO commands will be billed to 1121 * the guest. 1122 * 1123 * New drivers should avoid using this register unless they 1124 * need to guarantee that the FIFO is completely drained. It 1125 * is overkill for performing a sync-to-fence. Older drivers 1126 * will use this register for any type of synchronization. 1127 * 1128 * SVGA_FIFO_BUSY -- 1129 * 1130 * This register is a fast way for the guest driver to check 1131 * whether the FIFO is already being processed. It reads and 1132 * writes at normal RAM speeds, with no monitor intervention. 1133 * 1134 * If this register reads as TRUE, the host is guaranteeing that 1135 * any new commands written into the FIFO will be noticed before 1136 * the MKS goes back to sleep. 1137 * 1138 * If this register reads as FALSE, no such guarantee can be 1139 * made. 1140 * 1141 * The guest should use this register to quickly determine 1142 * whether or not it needs to wake up the host. If the guest 1143 * just wrote a command or group of commands that it would like 1144 * the host to begin processing, it should: 1145 * 1146 * 1. Read SVGA_FIFO_BUSY. If it reads as TRUE, no further 1147 * action is necessary. 1148 * 1149 * 2. Write TRUE to SVGA_FIFO_BUSY. This informs future guest 1150 * code that we've already sent a SYNC to the host and we 1151 * don't need to send a duplicate. 1152 * 1153 * 3. Write a reason to SVGA_REG_SYNC. This will send an 1154 * asynchronous wakeup to the MKS thread. 1155 */ 1156 1157 1158/* 1159 * FIFO Capabilities 1160 * 1161 * Fence -- Fence register and command are supported 1162 * Accel Front -- Front buffer only commands are supported 1163 * Pitch Lock -- Pitch lock register is supported 1164 * Video -- SVGA Video overlay units are supported 1165 * Escape -- Escape command is supported 1166 * 1167 * XXX: Add longer descriptions for each capability, including a list 1168 * of the new features that each capability provides. 1169 * 1170 * SVGA_FIFO_CAP_SCREEN_OBJECT -- 1171 * 1172 * Provides dynamic multi-screen rendering, for improved Unity and 1173 * multi-monitor modes. With Screen Object, the guest can 1174 * dynamically create and destroy 'screens', which can represent 1175 * Unity windows or virtual monitors. Screen Object also provides 1176 * strong guarantees that DMA operations happen only when 1177 * guest-initiated. Screen Object deprecates the BAR1 guest 1178 * framebuffer (GFB) and all commands that work only with the GFB. 1179 * 1180 * New registers: 1181 * FIFO_CURSOR_SCREEN_ID, VIDEO_DATA_GMRID, VIDEO_DST_SCREEN_ID 1182 * 1183 * New 2D commands: 1184 * DEFINE_SCREEN, DESTROY_SCREEN, DEFINE_GMRFB, BLIT_GMRFB_TO_SCREEN, 1185 * BLIT_SCREEN_TO_GMRFB, ANNOTATION_FILL, ANNOTATION_COPY 1186 * 1187 * New 3D commands: 1188 * BLIT_SURFACE_TO_SCREEN 1189 * 1190 * New guarantees: 1191 * 1192 * - The host will not read or write guest memory, including the GFB, 1193 * except when explicitly initiated by a DMA command. 1194 * 1195 * - All DMA, including legacy DMA like UPDATE and PRESENT_READBACK, 1196 * is guaranteed to complete before any subsequent FENCEs. 1197 * 1198 * - All legacy commands which affect a Screen (UPDATE, PRESENT, 1199 * PRESENT_READBACK) as well as new Screen blit commands will 1200 * all behave consistently as blits, and memory will be read 1201 * or written in FIFO order. 1202 * 1203 * For example, if you PRESENT from one SVGA3D surface to multiple 1204 * places on the screen, the data copied will always be from the 1205 * SVGA3D surface at the time the PRESENT was issued in the FIFO. 1206 * This was not necessarily true on devices without Screen Object. 1207 * 1208 * This means that on devices that support Screen Object, the 1209 * PRESENT_READBACK command should not be necessary unless you 1210 * actually want to read back the results of 3D rendering into 1211 * system memory. (And for that, the BLIT_SCREEN_TO_GMRFB 1212 * command provides a strict superset of functionality.) 1213 * 1214 * - When a screen is resized, either using Screen Object commands or 1215 * legacy multimon registers, its contents are preserved. 1216 * 1217 * SVGA_FIFO_CAP_GMR2 -- 1218 * 1219 * Provides new commands to define and remap guest memory regions (GMR). 1220 * 1221 * New 2D commands: 1222 * DEFINE_GMR2, REMAP_GMR2. 1223 * 1224 * SVGA_FIFO_CAP_3D_HWVERSION_REVISED -- 1225 * 1226 * Indicates new register SVGA_FIFO_3D_HWVERSION_REVISED exists. 1227 * This register may replace SVGA_FIFO_3D_HWVERSION on platforms 1228 * that enforce graphics resource limits. This allows the platform 1229 * to clear SVGA_FIFO_3D_HWVERSION and disable 3D in legacy guest 1230 * drivers that do not limit their resources. 1231 * 1232 * Note this is an alias to SVGA_FIFO_CAP_GMR2 because these indicators 1233 * are codependent (and thus we use a single capability bit). 1234 * 1235 * SVGA_FIFO_CAP_SCREEN_OBJECT_2 -- 1236 * 1237 * Modifies the DEFINE_SCREEN command to include a guest provided 1238 * backing store in GMR memory and the bytesPerLine for the backing 1239 * store. This capability requires the use of a backing store when 1240 * creating screen objects. However if SVGA_FIFO_CAP_SCREEN_OBJECT 1241 * is present then backing stores are optional. 1242 * 1243 * SVGA_FIFO_CAP_DEAD -- 1244 * 1245 * Drivers should not use this cap bit. This cap bit can not be 1246 * reused since some hosts already expose it. 1247 */ 1248 1249#define SVGA_FIFO_CAP_NONE 0 1250#define SVGA_FIFO_CAP_FENCE (1<<0) 1251#define SVGA_FIFO_CAP_ACCELFRONT (1<<1) 1252#define SVGA_FIFO_CAP_PITCHLOCK (1<<2) 1253#define SVGA_FIFO_CAP_VIDEO (1<<3) 1254#define SVGA_FIFO_CAP_CURSOR_BYPASS_3 (1<<4) 1255#define SVGA_FIFO_CAP_ESCAPE (1<<5) 1256#define SVGA_FIFO_CAP_RESERVE (1<<6) 1257#define SVGA_FIFO_CAP_SCREEN_OBJECT (1<<7) 1258#define SVGA_FIFO_CAP_GMR2 (1<<8) 1259#define SVGA_FIFO_CAP_3D_HWVERSION_REVISED SVGA_FIFO_CAP_GMR2 1260#define SVGA_FIFO_CAP_SCREEN_OBJECT_2 (1<<9) 1261#define SVGA_FIFO_CAP_DEAD (1<<10) 1262 1263 1264/* 1265 * FIFO Flags 1266 * 1267 * Accel Front -- Driver should use front buffer only commands 1268 */ 1269 1270#define SVGA_FIFO_FLAG_NONE 0 1271#define SVGA_FIFO_FLAG_ACCELFRONT (1<<0) 1272#define SVGA_FIFO_FLAG_RESERVED (1<<31) /* Internal use only */ 1273 1274/* 1275 * FIFO reservation sentinel value 1276 */ 1277 1278#define SVGA_FIFO_RESERVED_UNKNOWN 0xffffffff 1279 1280 1281/* 1282 * Video overlay support 1283 */ 1284 1285#define SVGA_NUM_OVERLAY_UNITS 32 1286 1287 1288/* 1289 * Video capabilities that the guest is currently using 1290 */ 1291 1292#define SVGA_VIDEO_FLAG_COLORKEY 0x0001 1293 1294 1295/* 1296 * Offsets for the video overlay registers 1297 */ 1298 1299enum { 1300 SVGA_VIDEO_ENABLED = 0, 1301 SVGA_VIDEO_FLAGS, 1302 SVGA_VIDEO_DATA_OFFSET, 1303 SVGA_VIDEO_FORMAT, 1304 SVGA_VIDEO_COLORKEY, 1305 SVGA_VIDEO_SIZE, /* Deprecated */ 1306 SVGA_VIDEO_WIDTH, 1307 SVGA_VIDEO_HEIGHT, 1308 SVGA_VIDEO_SRC_X, 1309 SVGA_VIDEO_SRC_Y, 1310 SVGA_VIDEO_SRC_WIDTH, 1311 SVGA_VIDEO_SRC_HEIGHT, 1312 SVGA_VIDEO_DST_X, /* Signed int32 */ 1313 SVGA_VIDEO_DST_Y, /* Signed int32 */ 1314 SVGA_VIDEO_DST_WIDTH, 1315 SVGA_VIDEO_DST_HEIGHT, 1316 SVGA_VIDEO_PITCH_1, 1317 SVGA_VIDEO_PITCH_2, 1318 SVGA_VIDEO_PITCH_3, 1319 SVGA_VIDEO_DATA_GMRID, /* Optional, defaults to SVGA_GMR_FRAMEBUFFER */ 1320 SVGA_VIDEO_DST_SCREEN_ID, /* Optional, defaults to virtual coords */ 1321 /* (SVGA_ID_INVALID) */ 1322 SVGA_VIDEO_NUM_REGS 1323}; 1324 1325 1326/* 1327 * SVGA Overlay Units 1328 * 1329 * width and height relate to the entire source video frame. 1330 * srcX, srcY, srcWidth and srcHeight represent subset of the source 1331 * video frame to be displayed. 1332 */ 1333 1334typedef 1335#include "vmware_pack_begin.h" 1336struct SVGAOverlayUnit { 1337 uint32 enabled; 1338 uint32 flags; 1339 uint32 dataOffset; 1340 uint32 format; 1341 uint32 colorKey; 1342 uint32 size; 1343 uint32 width; 1344 uint32 height; 1345 uint32 srcX; 1346 uint32 srcY; 1347 uint32 srcWidth; 1348 uint32 srcHeight; 1349 int32 dstX; 1350 int32 dstY; 1351 uint32 dstWidth; 1352 uint32 dstHeight; 1353 uint32 pitches[3]; 1354 uint32 dataGMRId; 1355 uint32 dstScreenId; 1356} 1357#include "vmware_pack_end.h" 1358SVGAOverlayUnit; 1359 1360 1361/* 1362 * Guest display topology 1363 * 1364 * XXX: This structure is not part of the SVGA device's interface, and 1365 * doesn't really belong here. 1366 */ 1367#define SVGA_INVALID_DISPLAY_ID ((uint32)-1) 1368 1369typedef struct SVGADisplayTopology { 1370 uint16 displayId; 1371 uint16 isPrimary; 1372 uint32 width; 1373 uint32 height; 1374 uint32 positionX; 1375 uint32 positionY; 1376} SVGADisplayTopology; 1377 1378 1379/* 1380 * SVGAScreenObject -- 1381 * 1382 * This is a new way to represent a guest's multi-monitor screen or 1383 * Unity window. Screen objects are only supported if the 1384 * SVGA_FIFO_CAP_SCREEN_OBJECT capability bit is set. 1385 * 1386 * If Screen Objects are supported, they can be used to fully 1387 * replace the functionality provided by the framebuffer registers 1388 * (SVGA_REG_WIDTH, HEIGHT, etc.) and by SVGA_CAP_DISPLAY_TOPOLOGY. 1389 * 1390 * The screen object is a struct with guaranteed binary 1391 * compatibility. New flags can be added, and the struct may grow, 1392 * but existing fields must retain their meaning. 1393 * 1394 * Added with SVGA_FIFO_CAP_SCREEN_OBJECT_2 are required fields of 1395 * a SVGAGuestPtr that is used to back the screen contents. This 1396 * memory must come from the GFB. The guest is not allowed to 1397 * access the memory and doing so will have undefined results. The 1398 * backing store is required to be page aligned and the size is 1399 * padded to the next page boundry. The number of pages is: 1400 * (bytesPerLine * size.width * 4 + PAGE_SIZE - 1) / PAGE_SIZE 1401 * 1402 * The pitch in the backingStore is required to be at least large 1403 * enough to hold a 32bbp scanline. It is recommended that the 1404 * driver pad bytesPerLine for a potential performance win. 1405 * 1406 * The cloneCount field is treated as a hint from the guest that 1407 * the user wants this display to be cloned, countCount times. A 1408 * value of zero means no cloning should happen. 1409 */ 1410 1411#define SVGA_SCREEN_MUST_BE_SET (1 << 0) 1412#define SVGA_SCREEN_HAS_ROOT SVGA_SCREEN_MUST_BE_SET /* Deprecated */ 1413#define SVGA_SCREEN_IS_PRIMARY (1 << 1) 1414#define SVGA_SCREEN_FULLSCREEN_HINT (1 << 2) 1415 1416/* 1417 * Added with SVGA_FIFO_CAP_SCREEN_OBJECT_2. When the screen is 1418 * deactivated the base layer is defined to lose all contents and 1419 * become black. When a screen is deactivated the backing store is 1420 * optional. When set backingPtr and bytesPerLine will be ignored. 1421 */ 1422#define SVGA_SCREEN_DEACTIVATE (1 << 3) 1423 1424/* 1425 * Added with SVGA_FIFO_CAP_SCREEN_OBJECT_2. When this flag is set 1426 * the screen contents will be outputted as all black to the user 1427 * though the base layer contents is preserved. The screen base layer 1428 * can still be read and written to like normal though the no visible 1429 * effect will be seen by the user. When the flag is changed the 1430 * screen will be blanked or redrawn to the current contents as needed 1431 * without any extra commands from the driver. This flag only has an 1432 * effect when the screen is not deactivated. 1433 */ 1434#define SVGA_SCREEN_BLANKING (1 << 4) 1435 1436typedef 1437#include "vmware_pack_begin.h" 1438struct { 1439 uint32 structSize; /* sizeof(SVGAScreenObject) */ 1440 uint32 id; 1441 uint32 flags; 1442 struct { 1443 uint32 width; 1444 uint32 height; 1445 } size; 1446 struct { 1447 int32 x; 1448 int32 y; 1449 } root; 1450 1451 /* 1452 * Added and required by SVGA_FIFO_CAP_SCREEN_OBJECT_2, optional 1453 * with SVGA_FIFO_CAP_SCREEN_OBJECT. 1454 */ 1455 SVGAGuestImage backingStore; 1456 1457 /* 1458 * The cloneCount field is treated as a hint from the guest that 1459 * the user wants this display to be cloned, cloneCount times. 1460 * 1461 * A value of zero means no cloning should happen. 1462 */ 1463 uint32 cloneCount; 1464} 1465#include "vmware_pack_end.h" 1466SVGAScreenObject; 1467 1468 1469/* 1470 * Commands in the command FIFO: 1471 * 1472 * Command IDs defined below are used for the traditional 2D FIFO 1473 * communication (not all commands are available for all versions of the 1474 * SVGA FIFO protocol). 1475 * 1476 * Note the holes in the command ID numbers: These commands have been 1477 * deprecated, and the old IDs must not be reused. 1478 * 1479 * Command IDs from 1000 to 2999 are reserved for use by the SVGA3D 1480 * protocol. 1481 * 1482 * Each command's parameters are described by the comments and 1483 * structs below. 1484 */ 1485 1486typedef enum { 1487 SVGA_CMD_INVALID_CMD = 0, 1488 SVGA_CMD_UPDATE = 1, 1489 SVGA_CMD_RECT_COPY = 3, 1490 SVGA_CMD_RECT_ROP_COPY = 14, 1491 SVGA_CMD_DEFINE_CURSOR = 19, 1492 SVGA_CMD_DEFINE_ALPHA_CURSOR = 22, 1493 SVGA_CMD_UPDATE_VERBOSE = 25, 1494 SVGA_CMD_FRONT_ROP_FILL = 29, 1495 SVGA_CMD_FENCE = 30, 1496 SVGA_CMD_ESCAPE = 33, 1497 SVGA_CMD_DEFINE_SCREEN = 34, 1498 SVGA_CMD_DESTROY_SCREEN = 35, 1499 SVGA_CMD_DEFINE_GMRFB = 36, 1500 SVGA_CMD_BLIT_GMRFB_TO_SCREEN = 37, 1501 SVGA_CMD_BLIT_SCREEN_TO_GMRFB = 38, 1502 SVGA_CMD_ANNOTATION_FILL = 39, 1503 SVGA_CMD_ANNOTATION_COPY = 40, 1504 SVGA_CMD_DEFINE_GMR2 = 41, 1505 SVGA_CMD_REMAP_GMR2 = 42, 1506 SVGA_CMD_DEAD = 43, 1507 SVGA_CMD_DEAD_2 = 44, 1508 SVGA_CMD_NOP = 45, 1509 SVGA_CMD_NOP_ERROR = 46, 1510 SVGA_CMD_MAX 1511} SVGAFifoCmdId; 1512 1513#define SVGA_CMD_MAX_DATASIZE (256 * 1024) 1514#define SVGA_CMD_MAX_ARGS 64 1515 1516 1517/* 1518 * SVGA_CMD_UPDATE -- 1519 * 1520 * This is a DMA transfer which copies from the Guest Framebuffer 1521 * (GFB) at BAR1 + SVGA_REG_FB_OFFSET to any screens which 1522 * intersect with the provided virtual rectangle. 1523 * 1524 * This command does not support using arbitrary guest memory as a 1525 * data source- it only works with the pre-defined GFB memory. 1526 * This command also does not support signed virtual coordinates. 1527 * If you have defined screens (using SVGA_CMD_DEFINE_SCREEN) with 1528 * negative root x/y coordinates, the negative portion of those 1529 * screens will not be reachable by this command. 1530 * 1531 * This command is not necessary when using framebuffer 1532 * traces. Traces are automatically enabled if the SVGA FIFO is 1533 * disabled, and you may explicitly enable/disable traces using 1534 * SVGA_REG_TRACES. With traces enabled, any write to the GFB will 1535 * automatically act as if a subsequent SVGA_CMD_UPDATE was issued. 1536 * 1537 * Traces and SVGA_CMD_UPDATE are the only supported ways to render 1538 * pseudocolor screen updates. The newer Screen Object commands 1539 * only support true color formats. 1540 * 1541 * Availability: 1542 * Always available. 1543 */ 1544 1545typedef 1546#include "vmware_pack_begin.h" 1547struct { 1548 uint32 x; 1549 uint32 y; 1550 uint32 width; 1551 uint32 height; 1552} 1553#include "vmware_pack_end.h" 1554SVGAFifoCmdUpdate; 1555 1556 1557/* 1558 * SVGA_CMD_RECT_COPY -- 1559 * 1560 * Perform a rectangular DMA transfer from one area of the GFB to 1561 * another, and copy the result to any screens which intersect it. 1562 * 1563 * Availability: 1564 * SVGA_CAP_RECT_COPY 1565 */ 1566 1567typedef 1568#include "vmware_pack_begin.h" 1569struct { 1570 uint32 srcX; 1571 uint32 srcY; 1572 uint32 destX; 1573 uint32 destY; 1574 uint32 width; 1575 uint32 height; 1576} 1577#include "vmware_pack_end.h" 1578SVGAFifoCmdRectCopy; 1579 1580 1581/* 1582 * SVGA_CMD_RECT_ROP_COPY -- 1583 * 1584 * Perform a rectangular DMA transfer from one area of the GFB to 1585 * another, and copy the result to any screens which intersect it. 1586 * The value of ROP may only be SVGA_ROP_COPY, and this command is 1587 * only supported for backwards compatibility reasons. 1588 * 1589 * Availability: 1590 * SVGA_CAP_RECT_COPY 1591 */ 1592 1593typedef 1594#include "vmware_pack_begin.h" 1595struct { 1596 uint32 srcX; 1597 uint32 srcY; 1598 uint32 destX; 1599 uint32 destY; 1600 uint32 width; 1601 uint32 height; 1602 uint32 rop; 1603} 1604#include "vmware_pack_end.h" 1605SVGAFifoCmdRectRopCopy; 1606 1607 1608/* 1609 * SVGA_CMD_DEFINE_CURSOR -- 1610 * 1611 * Provide a new cursor image, as an AND/XOR mask. 1612 * 1613 * The recommended way to position the cursor overlay is by using 1614 * the SVGA_FIFO_CURSOR_* registers, supported by the 1615 * SVGA_FIFO_CAP_CURSOR_BYPASS_3 capability. 1616 * 1617 * Availability: 1618 * SVGA_CAP_CURSOR 1619 */ 1620 1621typedef 1622#include "vmware_pack_begin.h" 1623struct { 1624 uint32 id; /* Reserved, must be zero. */ 1625 uint32 hotspotX; 1626 uint32 hotspotY; 1627 uint32 width; 1628 uint32 height; 1629 uint32 andMaskDepth; /* Value must be 1 or equal to BITS_PER_PIXEL */ 1630 uint32 xorMaskDepth; /* Value must be 1 or equal to BITS_PER_PIXEL */ 1631 /* 1632 * Followed by scanline data for AND mask, then XOR mask. 1633 * Each scanline is padded to a 32-bit boundary. 1634 */ 1635} 1636#include "vmware_pack_end.h" 1637SVGAFifoCmdDefineCursor; 1638 1639 1640/* 1641 * SVGA_CMD_DEFINE_ALPHA_CURSOR -- 1642 * 1643 * Provide a new cursor image, in 32-bit BGRA format. 1644 * 1645 * The recommended way to position the cursor overlay is by using 1646 * the SVGA_FIFO_CURSOR_* registers, supported by the 1647 * SVGA_FIFO_CAP_CURSOR_BYPASS_3 capability. 1648 * 1649 * Availability: 1650 * SVGA_CAP_ALPHA_CURSOR 1651 */ 1652 1653typedef 1654#include "vmware_pack_begin.h" 1655struct { 1656 uint32 id; /* Reserved, must be zero. */ 1657 uint32 hotspotX; 1658 uint32 hotspotY; 1659 uint32 width; 1660 uint32 height; 1661 /* Followed by scanline data */ 1662} 1663#include "vmware_pack_end.h" 1664SVGAFifoCmdDefineAlphaCursor; 1665 1666 1667/* 1668 * SVGA_CMD_UPDATE_VERBOSE -- 1669 * 1670 * Just like SVGA_CMD_UPDATE, but also provide a per-rectangle 1671 * 'reason' value, an opaque cookie which is used by internal 1672 * debugging tools. Third party drivers should not use this 1673 * command. 1674 * 1675 * Availability: 1676 * SVGA_CAP_EXTENDED_FIFO 1677 */ 1678 1679typedef 1680#include "vmware_pack_begin.h" 1681struct { 1682 uint32 x; 1683 uint32 y; 1684 uint32 width; 1685 uint32 height; 1686 uint32 reason; 1687} 1688#include "vmware_pack_end.h" 1689SVGAFifoCmdUpdateVerbose; 1690 1691 1692/* 1693 * SVGA_CMD_FRONT_ROP_FILL -- 1694 * 1695 * This is a hint which tells the SVGA device that the driver has 1696 * just filled a rectangular region of the GFB with a solid 1697 * color. Instead of reading these pixels from the GFB, the device 1698 * can assume that they all equal 'color'. This is primarily used 1699 * for remote desktop protocols. 1700 * 1701 * Availability: 1702 * SVGA_FIFO_CAP_ACCELFRONT 1703 */ 1704 1705#define SVGA_ROP_COPY 0x03 1706 1707typedef 1708#include "vmware_pack_begin.h" 1709struct { 1710 uint32 color; /* In the same format as the GFB */ 1711 uint32 x; 1712 uint32 y; 1713 uint32 width; 1714 uint32 height; 1715 uint32 rop; /* Must be SVGA_ROP_COPY */ 1716} 1717#include "vmware_pack_end.h" 1718SVGAFifoCmdFrontRopFill; 1719 1720 1721/* 1722 * SVGA_CMD_FENCE -- 1723 * 1724 * Insert a synchronization fence. When the SVGA device reaches 1725 * this command, it will copy the 'fence' value into the 1726 * SVGA_FIFO_FENCE register. It will also compare the fence against 1727 * SVGA_FIFO_FENCE_GOAL. If the fence matches the goal and the 1728 * SVGA_IRQFLAG_FENCE_GOAL interrupt is enabled, the device will 1729 * raise this interrupt. 1730 * 1731 * Availability: 1732 * SVGA_FIFO_FENCE for this command, 1733 * SVGA_CAP_IRQMASK for SVGA_FIFO_FENCE_GOAL. 1734 */ 1735 1736typedef 1737#include "vmware_pack_begin.h" 1738struct { 1739 uint32 fence; 1740} 1741#include "vmware_pack_end.h" 1742SVGAFifoCmdFence; 1743 1744 1745/* 1746 * SVGA_CMD_ESCAPE -- 1747 * 1748 * Send an extended or vendor-specific variable length command. 1749 * This is used for video overlay, third party plugins, and 1750 * internal debugging tools. See svga_escape.h 1751 * 1752 * Availability: 1753 * SVGA_FIFO_CAP_ESCAPE 1754 */ 1755 1756typedef 1757#include "vmware_pack_begin.h" 1758struct { 1759 uint32 nsid; 1760 uint32 size; 1761 /* followed by 'size' bytes of data */ 1762} 1763#include "vmware_pack_end.h" 1764SVGAFifoCmdEscape; 1765 1766 1767/* 1768 * SVGA_CMD_DEFINE_SCREEN -- 1769 * 1770 * Define or redefine an SVGAScreenObject. See the description of 1771 * SVGAScreenObject above. The video driver is responsible for 1772 * generating new screen IDs. They should be small positive 1773 * integers. The virtual device will have an implementation 1774 * specific upper limit on the number of screen IDs 1775 * supported. Drivers are responsible for recycling IDs. The first 1776 * valid ID is zero. 1777 * 1778 * - Interaction with other registers: 1779 * 1780 * For backwards compatibility, when the GFB mode registers (WIDTH, 1781 * HEIGHT, PITCHLOCK, BITS_PER_PIXEL) are modified, the SVGA device 1782 * deletes all screens other than screen #0, and redefines screen 1783 * #0 according to the specified mode. Drivers that use 1784 * SVGA_CMD_DEFINE_SCREEN should destroy or redefine screen #0. 1785 * 1786 * If you use screen objects, do not use the legacy multi-mon 1787 * registers (SVGA_REG_NUM_GUEST_DISPLAYS, SVGA_REG_DISPLAY_*). 1788 * 1789 * Availability: 1790 * SVGA_FIFO_CAP_SCREEN_OBJECT or SVGA_FIFO_CAP_SCREEN_OBJECT_2 1791 */ 1792 1793typedef 1794#include "vmware_pack_begin.h" 1795struct { 1796 SVGAScreenObject screen; /* Variable-length according to version */ 1797} 1798#include "vmware_pack_end.h" 1799SVGAFifoCmdDefineScreen; 1800 1801 1802/* 1803 * SVGA_CMD_DESTROY_SCREEN -- 1804 * 1805 * Destroy an SVGAScreenObject. Its ID is immediately available for 1806 * re-use. 1807 * 1808 * Availability: 1809 * SVGA_FIFO_CAP_SCREEN_OBJECT or SVGA_FIFO_CAP_SCREEN_OBJECT_2 1810 */ 1811 1812typedef 1813#include "vmware_pack_begin.h" 1814struct { 1815 uint32 screenId; 1816} 1817#include "vmware_pack_end.h" 1818SVGAFifoCmdDestroyScreen; 1819 1820 1821/* 1822 * SVGA_CMD_DEFINE_GMRFB -- 1823 * 1824 * This command sets a piece of SVGA device state called the 1825 * Guest Memory Region Framebuffer, or GMRFB. The GMRFB is a 1826 * piece of light-weight state which identifies the location and 1827 * format of an image in guest memory or in BAR1. The GMRFB has 1828 * an arbitrary size, and it doesn't need to match the geometry 1829 * of the GFB or any screen object. 1830 * 1831 * The GMRFB can be redefined as often as you like. You could 1832 * always use the same GMRFB, you could redefine it before 1833 * rendering from a different guest screen, or you could even 1834 * redefine it before every blit. 1835 * 1836 * There are multiple ways to use this command. The simplest way is 1837 * to use it to move the framebuffer either to elsewhere in the GFB 1838 * (BAR1) memory region, or to a user-defined GMR. This lets a 1839 * driver use a framebuffer allocated entirely out of normal system 1840 * memory, which we encourage. 1841 * 1842 * Another way to use this command is to set up a ring buffer of 1843 * updates in GFB memory. If a driver wants to ensure that no 1844 * frames are skipped by the SVGA device, it is important that the 1845 * driver not modify the source data for a blit until the device is 1846 * done processing the command. One efficient way to accomplish 1847 * this is to use a ring of small DMA buffers. Each buffer is used 1848 * for one blit, then we move on to the next buffer in the 1849 * ring. The FENCE mechanism is used to protect each buffer from 1850 * re-use until the device is finished with that buffer's 1851 * corresponding blit. 1852 * 1853 * This command does not affect the meaning of SVGA_CMD_UPDATE. 1854 * UPDATEs always occur from the legacy GFB memory area. This 1855 * command has no support for pseudocolor GMRFBs. Currently only 1856 * true-color 15, 16, and 24-bit depths are supported. Future 1857 * devices may expose capabilities for additional framebuffer 1858 * formats. 1859 * 1860 * The default GMRFB value is undefined. Drivers must always send 1861 * this command at least once before performing any blit from the 1862 * GMRFB. 1863 * 1864 * Availability: 1865 * SVGA_FIFO_CAP_SCREEN_OBJECT or SVGA_FIFO_CAP_SCREEN_OBJECT_2 1866 */ 1867 1868typedef 1869#include "vmware_pack_begin.h" 1870struct { 1871 SVGAGuestPtr ptr; 1872 uint32 bytesPerLine; 1873 SVGAGMRImageFormat format; 1874} 1875#include "vmware_pack_end.h" 1876SVGAFifoCmdDefineGMRFB; 1877 1878 1879/* 1880 * SVGA_CMD_BLIT_GMRFB_TO_SCREEN -- 1881 * 1882 * This is a guest-to-host blit. It performs a DMA operation to 1883 * copy a rectangular region of pixels from the current GMRFB to 1884 * a ScreenObject. 1885 * 1886 * The destination coordinate may be specified relative to a 1887 * screen's origin. The provided screen ID must be valid. 1888 * 1889 * The SVGA device is guaranteed to finish reading from the GMRFB 1890 * by the time any subsequent FENCE commands are reached. 1891 * 1892 * This command consumes an annotation. See the 1893 * SVGA_CMD_ANNOTATION_* commands for details. 1894 * 1895 * Availability: 1896 * SVGA_FIFO_CAP_SCREEN_OBJECT or SVGA_FIFO_CAP_SCREEN_OBJECT_2 1897 */ 1898 1899typedef 1900#include "vmware_pack_begin.h" 1901struct { 1902 SVGASignedPoint srcOrigin; 1903 SVGASignedRect destRect; 1904 uint32 destScreenId; 1905} 1906#include "vmware_pack_end.h" 1907SVGAFifoCmdBlitGMRFBToScreen; 1908 1909 1910/* 1911 * SVGA_CMD_BLIT_SCREEN_TO_GMRFB -- 1912 * 1913 * This is a host-to-guest blit. It performs a DMA operation to 1914 * copy a rectangular region of pixels from a single ScreenObject 1915 * back to the current GMRFB. 1916 * 1917 * The source coordinate is specified relative to a screen's 1918 * origin. The provided screen ID must be valid. If any parameters 1919 * are invalid, the resulting pixel values are undefined. 1920 * 1921 * The SVGA device is guaranteed to finish writing to the GMRFB by 1922 * the time any subsequent FENCE commands are reached. 1923 * 1924 * Availability: 1925 * SVGA_FIFO_CAP_SCREEN_OBJECT or SVGA_FIFO_CAP_SCREEN_OBJECT_2 1926 */ 1927 1928typedef 1929#include "vmware_pack_begin.h" 1930struct { 1931 SVGASignedPoint destOrigin; 1932 SVGASignedRect srcRect; 1933 uint32 srcScreenId; 1934} 1935#include "vmware_pack_end.h" 1936SVGAFifoCmdBlitScreenToGMRFB; 1937 1938 1939/* 1940 * SVGA_CMD_ANNOTATION_FILL -- 1941 * 1942 * The annotation commands have been deprecated, should not be used 1943 * by new drivers. They used to provide performance hints to the SVGA 1944 * device about the content of screen updates, but newer SVGA devices 1945 * ignore these. 1946 * 1947 * Availability: 1948 * SVGA_FIFO_CAP_SCREEN_OBJECT or SVGA_FIFO_CAP_SCREEN_OBJECT_2 1949 */ 1950 1951typedef 1952#include "vmware_pack_begin.h" 1953struct { 1954 SVGAColorBGRX color; 1955} 1956#include "vmware_pack_end.h" 1957SVGAFifoCmdAnnotationFill; 1958 1959 1960/* 1961 * SVGA_CMD_ANNOTATION_COPY -- 1962 * 1963 * The annotation commands have been deprecated, should not be used 1964 * by new drivers. They used to provide performance hints to the SVGA 1965 * device about the content of screen updates, but newer SVGA devices 1966 * ignore these. 1967 * 1968 * Availability: 1969 * SVGA_FIFO_CAP_SCREEN_OBJECT or SVGA_FIFO_CAP_SCREEN_OBJECT_2 1970 */ 1971 1972typedef 1973#include "vmware_pack_begin.h" 1974struct { 1975 SVGASignedPoint srcOrigin; 1976 uint32 srcScreenId; 1977} 1978#include "vmware_pack_end.h" 1979SVGAFifoCmdAnnotationCopy; 1980 1981 1982/* 1983 * SVGA_CMD_DEFINE_GMR2 -- 1984 * 1985 * Define guest memory region v2. See the description of GMRs above. 1986 * 1987 * Availability: 1988 * SVGA_CAP_GMR2 1989 */ 1990 1991typedef 1992#include "vmware_pack_begin.h" 1993struct { 1994 uint32 gmrId; 1995 uint32 numPages; 1996} 1997#include "vmware_pack_end.h" 1998SVGAFifoCmdDefineGMR2; 1999 2000
2001/* 2002 * SVGA_CMD_REMAP_GMR2 -- 2003 * 2004 * Remap guest memory region v2. See the description of GMRs above. 2005 * 2006 * This command allows guest to modify a portion of an existing GMR by 2007 * invalidating it or reassigning it to different guest physical pages. 2008 * The pages are identified by physical page number (PPN). The pages 2009 * are assumed to be pinned and valid for DMA operations. 2010 * 2011 * Description of command flags: 2012 * 2013 * SVGA_REMAP_GMR2_VIA_GMR: If enabled, references a PPN list in a GMR. 2014 * The PPN list must not overlap with the remap region (this can be 2015 * handled trivially by referencing a separate GMR). If flag is 2016 * disabled, PPN list is appended to SVGARemapGMR command. 2017 * 2018 * SVGA_REMAP_GMR2_PPN64: If set, PPN list is in PPN64 format, otherwise 2019 * it is in PPN32 format. 2020 * 2021 * SVGA_REMAP_GMR2_SINGLE_PPN: If set, PPN list contains a single entry. 2022 * A single PPN can be used to invalidate a portion of a GMR or 2023 * map it to to a single guest scratch page. 2024 * 2025 * Availability: 2026 * SVGA_CAP_GMR2 2027 */ 2028 2029typedef enum { 2030 SVGA_REMAP_GMR2_PPN32 = 0, 2031 SVGA_REMAP_GMR2_VIA_GMR = (1 << 0), 2032 SVGA_REMAP_GMR2_PPN64 = (1 << 1), 2033 SVGA_REMAP_GMR2_SINGLE_PPN = (1 << 2), 2034} SVGARemapGMR2Flags; 2035 2036typedef 2037#include "vmware_pack_begin.h" 2038struct { 2039 uint32 gmrId; 2040 SVGARemapGMR2Flags flags; 2041 uint32 offsetPages; /* offset in pages to begin remap */ 2042 uint32 numPages; /* number of pages to remap */ 2043 /* 2044 * Followed by additional data depending on SVGARemapGMR2Flags. 2045 * 2046 * If flag SVGA_REMAP_GMR2_VIA_GMR is set, single SVGAGuestPtr follows. 2047 * Otherwise an array of page descriptors in PPN32 or PPN64 format 2048 * (according to flag SVGA_REMAP_GMR2_PPN64) follows. If flag 2049 * SVGA_REMAP_GMR2_SINGLE_PPN is set, array contains a single entry. 2050 */ 2051} 2052#include "vmware_pack_end.h" 2053SVGAFifoCmdRemapGMR2; 2054 2055 2056/* 2057 * Size of SVGA device memory such as frame buffer and FIFO. 2058 */ 2059#define SVGA_VRAM_MIN_SIZE (4 * 640 * 480) /* bytes */ 2060#define SVGA_VRAM_MIN_SIZE_3D (16 * 1024 * 1024) 2061#define SVGA_VRAM_MAX_SIZE (128 * 1024 * 1024) 2062#define SVGA_MEMORY_SIZE_MAX (1024 * 1024 * 1024) 2063#define SVGA_FIFO_SIZE_MAX (2 * 1024 * 1024) 2064#define SVGA_GRAPHICS_MEMORY_KB_MIN (32 * 1024) 2065#define SVGA_GRAPHICS_MEMORY_KB_MAX (2 * 1024 * 1024) 2066#define SVGA_GRAPHICS_MEMORY_KB_DEFAULT (256 * 1024) 2067 2068#define SVGA_VRAM_SIZE_W2K (64 * 1024 * 1024) /* 64 MB */ 2069 2070#if defined(VMX86_SERVER) 2071#define SVGA_VRAM_SIZE (4 * 1024 * 1024) 2072#define SVGA_VRAM_SIZE_3D (64 * 1024 * 1024) 2073#define SVGA_FIFO_SIZE (256 * 1024) 2074#define SVGA_FIFO_SIZE_3D (516 * 1024) 2075#define SVGA_MEMORY_SIZE_DEFAULT (160 * 1024 * 1024) 2076#define SVGA_AUTODETECT_DEFAULT FALSE 2077#else 2078#define SVGA_VRAM_SIZE (16 * 1024 * 1024) 2079#define SVGA_VRAM_SIZE_3D SVGA_VRAM_MAX_SIZE 2080#define SVGA_FIFO_SIZE (2 * 1024 * 1024) 2081#define SVGA_FIFO_SIZE_3D SVGA_FIFO_SIZE 2082#define SVGA_MEMORY_SIZE_DEFAULT (768 * 1024 * 1024) 2083#define SVGA_AUTODETECT_DEFAULT TRUE 2084#endif 2085 2086#define SVGA_FIFO_SIZE_GBOBJECTS (256 * 1024) 2087#define SVGA_VRAM_SIZE_GBOBJECTS (4 * 1024 * 1024) 2088 2089#endif 2090