linux/drivers/iommu/dma-iommu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * A fairly generic DMA-API to IOMMU-API glue layer.
   4 *
   5 * Copyright (C) 2014-2015 ARM Ltd.
   6 *
   7 * based in part on arch/arm/mm/dma-mapping.c:
   8 * Copyright (C) 2000-2004 Russell King
   9 */
  10
  11#include <linux/acpi_iort.h>
  12#include <linux/device.h>
  13#include <linux/dma-contiguous.h>
  14#include <linux/dma-iommu.h>
  15#include <linux/dma-noncoherent.h>
  16#include <linux/gfp.h>
  17#include <linux/huge_mm.h>
  18#include <linux/iommu.h>
  19#include <linux/iova.h>
  20#include <linux/irq.h>
  21#include <linux/mm.h>
  22#include <linux/pci.h>
  23#include <linux/scatterlist.h>
  24#include <linux/vmalloc.h>
  25
  26struct iommu_dma_msi_page {
  27        struct list_head        list;
  28        dma_addr_t              iova;
  29        phys_addr_t             phys;
  30};
  31
  32enum iommu_dma_cookie_type {
  33        IOMMU_DMA_IOVA_COOKIE,
  34        IOMMU_DMA_MSI_COOKIE,
  35};
  36
  37struct iommu_dma_cookie {
  38        enum iommu_dma_cookie_type      type;
  39        union {
  40                /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
  41                struct iova_domain      iovad;
  42                /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
  43                dma_addr_t              msi_iova;
  44        };
  45        struct list_head                msi_page_list;
  46        spinlock_t                      msi_lock;
  47
  48        /* Domain for flush queue callback; NULL if flush queue not in use */
  49        struct iommu_domain             *fq_domain;
  50};
  51
  52static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
  53{
  54        if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
  55                return cookie->iovad.granule;
  56        return PAGE_SIZE;
  57}
  58
  59static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
  60{
  61        struct iommu_dma_cookie *cookie;
  62
  63        cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
  64        if (cookie) {
  65                spin_lock_init(&cookie->msi_lock);
  66                INIT_LIST_HEAD(&cookie->msi_page_list);
  67                cookie->type = type;
  68        }
  69        return cookie;
  70}
  71
  72/**
  73 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
  74 * @domain: IOMMU domain to prepare for DMA-API usage
  75 *
  76 * IOMMU drivers should normally call this from their domain_alloc
  77 * callback when domain->type == IOMMU_DOMAIN_DMA.
  78 */
  79int iommu_get_dma_cookie(struct iommu_domain *domain)
  80{
  81        if (domain->iova_cookie)
  82                return -EEXIST;
  83
  84        domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
  85        if (!domain->iova_cookie)
  86                return -ENOMEM;
  87
  88        return 0;
  89}
  90EXPORT_SYMBOL(iommu_get_dma_cookie);
  91
  92/**
  93 * iommu_get_msi_cookie - Acquire just MSI remapping resources
  94 * @domain: IOMMU domain to prepare
  95 * @base: Start address of IOVA region for MSI mappings
  96 *
  97 * Users who manage their own IOVA allocation and do not want DMA API support,
  98 * but would still like to take advantage of automatic MSI remapping, can use
  99 * this to initialise their own domain appropriately. Users should reserve a
 100 * contiguous IOVA region, starting at @base, large enough to accommodate the
 101 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
 102 * used by the devices attached to @domain.
 103 */
 104int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
 105{
 106        struct iommu_dma_cookie *cookie;
 107
 108        if (domain->type != IOMMU_DOMAIN_UNMANAGED)
 109                return -EINVAL;
 110
 111        if (domain->iova_cookie)
 112                return -EEXIST;
 113
 114        cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
 115        if (!cookie)
 116                return -ENOMEM;
 117
 118        cookie->msi_iova = base;
 119        domain->iova_cookie = cookie;
 120        return 0;
 121}
 122EXPORT_SYMBOL(iommu_get_msi_cookie);
 123
 124/**
 125 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
 126 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
 127 *          iommu_get_msi_cookie()
 128 *
 129 * IOMMU drivers should normally call this from their domain_free callback.
 130 */
 131void iommu_put_dma_cookie(struct iommu_domain *domain)
 132{
 133        struct iommu_dma_cookie *cookie = domain->iova_cookie;
 134        struct iommu_dma_msi_page *msi, *tmp;
 135
 136        if (!cookie)
 137                return;
 138
 139        if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
 140                put_iova_domain(&cookie->iovad);
 141
 142        list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
 143                list_del(&msi->list);
 144                kfree(msi);
 145        }
 146        kfree(cookie);
 147        domain->iova_cookie = NULL;
 148}
 149EXPORT_SYMBOL(iommu_put_dma_cookie);
 150
 151/**
 152 * iommu_dma_get_resv_regions - Reserved region driver helper
 153 * @dev: Device from iommu_get_resv_regions()
 154 * @list: Reserved region list from iommu_get_resv_regions()
 155 *
 156 * IOMMU drivers can use this to implement their .get_resv_regions callback
 157 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
 158 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
 159 * reservation.
 160 */
 161void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
 162{
 163
 164        if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
 165                iort_iommu_msi_get_resv_regions(dev, list);
 166
 167}
 168EXPORT_SYMBOL(iommu_dma_get_resv_regions);
 169
 170static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
 171                phys_addr_t start, phys_addr_t end)
 172{
 173        struct iova_domain *iovad = &cookie->iovad;
 174        struct iommu_dma_msi_page *msi_page;
 175        int i, num_pages;
 176
 177        start -= iova_offset(iovad, start);
 178        num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
 179
 180        msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
 181        if (!msi_page)
 182                return -ENOMEM;
 183
 184        for (i = 0; i < num_pages; i++) {
 185                msi_page[i].phys = start;
 186                msi_page[i].iova = start;
 187                INIT_LIST_HEAD(&msi_page[i].list);
 188                list_add(&msi_page[i].list, &cookie->msi_page_list);
 189                start += iovad->granule;
 190        }
 191
 192        return 0;
 193}
 194
 195static int iova_reserve_pci_windows(struct pci_dev *dev,
 196                struct iova_domain *iovad)
 197{
 198        struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
 199        struct resource_entry *window;
 200        unsigned long lo, hi;
 201        phys_addr_t start = 0, end;
 202
 203        resource_list_for_each_entry(window, &bridge->windows) {
 204                if (resource_type(window->res) != IORESOURCE_MEM)
 205                        continue;
 206
 207                lo = iova_pfn(iovad, window->res->start - window->offset);
 208                hi = iova_pfn(iovad, window->res->end - window->offset);
 209                reserve_iova(iovad, lo, hi);
 210        }
 211
 212        /* Get reserved DMA windows from host bridge */
 213        resource_list_for_each_entry(window, &bridge->dma_ranges) {
 214                end = window->res->start - window->offset;
 215resv_iova:
 216                if (end > start) {
 217                        lo = iova_pfn(iovad, start);
 218                        hi = iova_pfn(iovad, end);
 219                        reserve_iova(iovad, lo, hi);
 220                } else {
 221                        /* dma_ranges list should be sorted */
 222                        dev_err(&dev->dev, "Failed to reserve IOVA\n");
 223                        return -EINVAL;
 224                }
 225
 226                start = window->res->end - window->offset + 1;
 227                /* If window is last entry */
 228                if (window->node.next == &bridge->dma_ranges &&
 229                    end != ~(phys_addr_t)0) {
 230                        end = ~(phys_addr_t)0;
 231                        goto resv_iova;
 232                }
 233        }
 234
 235        return 0;
 236}
 237
 238static int iova_reserve_iommu_regions(struct device *dev,
 239                struct iommu_domain *domain)
 240{
 241        struct iommu_dma_cookie *cookie = domain->iova_cookie;
 242        struct iova_domain *iovad = &cookie->iovad;
 243        struct iommu_resv_region *region;
 244        LIST_HEAD(resv_regions);
 245        int ret = 0;
 246
 247        if (dev_is_pci(dev)) {
 248                ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
 249                if (ret)
 250                        return ret;
 251        }
 252
 253        iommu_get_resv_regions(dev, &resv_regions);
 254        list_for_each_entry(region, &resv_regions, list) {
 255                unsigned long lo, hi;
 256
 257                /* We ARE the software that manages these! */
 258                if (region->type == IOMMU_RESV_SW_MSI)
 259                        continue;
 260
 261                lo = iova_pfn(iovad, region->start);
 262                hi = iova_pfn(iovad, region->start + region->length - 1);
 263                reserve_iova(iovad, lo, hi);
 264
 265                if (region->type == IOMMU_RESV_MSI)
 266                        ret = cookie_init_hw_msi_region(cookie, region->start,
 267                                        region->start + region->length);
 268                if (ret)
 269                        break;
 270        }
 271        iommu_put_resv_regions(dev, &resv_regions);
 272
 273        return ret;
 274}
 275
 276static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
 277{
 278        struct iommu_dma_cookie *cookie;
 279        struct iommu_domain *domain;
 280
 281        cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
 282        domain = cookie->fq_domain;
 283        /*
 284         * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
 285         * implies that ops->flush_iotlb_all must be non-NULL.
 286         */
 287        domain->ops->flush_iotlb_all(domain);
 288}
 289
 290/**
 291 * iommu_dma_init_domain - Initialise a DMA mapping domain
 292 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
 293 * @base: IOVA at which the mappable address space starts
 294 * @size: Size of IOVA space
 295 * @dev: Device the domain is being initialised for
 296 *
 297 * @base and @size should be exact multiples of IOMMU page granularity to
 298 * avoid rounding surprises. If necessary, we reserve the page at address 0
 299 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
 300 * any change which could make prior IOVAs invalid will fail.
 301 */
 302static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
 303                u64 size, struct device *dev)
 304{
 305        struct iommu_dma_cookie *cookie = domain->iova_cookie;
 306        unsigned long order, base_pfn;
 307        struct iova_domain *iovad;
 308        int attr;
 309
 310        if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
 311                return -EINVAL;
 312
 313        iovad = &cookie->iovad;
 314
 315        /* Use the smallest supported page size for IOVA granularity */
 316        order = __ffs(domain->pgsize_bitmap);
 317        base_pfn = max_t(unsigned long, 1, base >> order);
 318
 319        /* Check the domain allows at least some access to the device... */
 320        if (domain->geometry.force_aperture) {
 321                if (base > domain->geometry.aperture_end ||
 322                    base + size <= domain->geometry.aperture_start) {
 323                        pr_warn("specified DMA range outside IOMMU capability\n");
 324                        return -EFAULT;
 325                }
 326                /* ...then finally give it a kicking to make sure it fits */
 327                base_pfn = max_t(unsigned long, base_pfn,
 328                                domain->geometry.aperture_start >> order);
 329        }
 330
 331        /* start_pfn is always nonzero for an already-initialised domain */
 332        if (iovad->start_pfn) {
 333                if (1UL << order != iovad->granule ||
 334                    base_pfn != iovad->start_pfn) {
 335                        pr_warn("Incompatible range for DMA domain\n");
 336                        return -EFAULT;
 337                }
 338
 339                return 0;
 340        }
 341
 342        init_iova_domain(iovad, 1UL << order, base_pfn);
 343
 344        if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
 345                        DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
 346                cookie->fq_domain = domain;
 347                init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL);
 348        }
 349
 350        if (!dev)
 351                return 0;
 352
 353        return iova_reserve_iommu_regions(dev, domain);
 354}
 355
 356/**
 357 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
 358 *                    page flags.
 359 * @dir: Direction of DMA transfer
 360 * @coherent: Is the DMA master cache-coherent?
 361 * @attrs: DMA attributes for the mapping
 362 *
 363 * Return: corresponding IOMMU API page protection flags
 364 */
 365static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
 366                     unsigned long attrs)
 367{
 368        int prot = coherent ? IOMMU_CACHE : 0;
 369
 370        if (attrs & DMA_ATTR_PRIVILEGED)
 371                prot |= IOMMU_PRIV;
 372
 373        switch (dir) {
 374        case DMA_BIDIRECTIONAL:
 375                return prot | IOMMU_READ | IOMMU_WRITE;
 376        case DMA_TO_DEVICE:
 377                return prot | IOMMU_READ;
 378        case DMA_FROM_DEVICE:
 379                return prot | IOMMU_WRITE;
 380        default:
 381                return 0;
 382        }
 383}
 384
 385static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
 386                size_t size, dma_addr_t dma_limit, struct device *dev)
 387{
 388        struct iommu_dma_cookie *cookie = domain->iova_cookie;
 389        struct iova_domain *iovad = &cookie->iovad;
 390        unsigned long shift, iova_len, iova = 0;
 391
 392        if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
 393                cookie->msi_iova += size;
 394                return cookie->msi_iova - size;
 395        }
 396
 397        shift = iova_shift(iovad);
 398        iova_len = size >> shift;
 399        /*
 400         * Freeing non-power-of-two-sized allocations back into the IOVA caches
 401         * will come back to bite us badly, so we have to waste a bit of space
 402         * rounding up anything cacheable to make sure that can't happen. The
 403         * order of the unadjusted size will still match upon freeing.
 404         */
 405        if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
 406                iova_len = roundup_pow_of_two(iova_len);
 407
 408        if (dev->bus_dma_mask)
 409                dma_limit &= dev->bus_dma_mask;
 410
 411        if (domain->geometry.force_aperture)
 412                dma_limit = min(dma_limit, domain->geometry.aperture_end);
 413
 414        /* Try to get PCI devices a SAC address */
 415        if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
 416                iova = alloc_iova_fast(iovad, iova_len,
 417                                       DMA_BIT_MASK(32) >> shift, false);
 418
 419        if (!iova)
 420                iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
 421                                       true);
 422
 423        return (dma_addr_t)iova << shift;
 424}
 425
 426static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
 427                dma_addr_t iova, size_t size)
 428{
 429        struct iova_domain *iovad = &cookie->iovad;
 430
 431        /* The MSI case is only ever cleaning up its most recent allocation */
 432        if (cookie->type == IOMMU_DMA_MSI_COOKIE)
 433                cookie->msi_iova -= size;
 434        else if (cookie->fq_domain)     /* non-strict mode */
 435                queue_iova(iovad, iova_pfn(iovad, iova),
 436                                size >> iova_shift(iovad), 0);
 437        else
 438                free_iova_fast(iovad, iova_pfn(iovad, iova),
 439                                size >> iova_shift(iovad));
 440}
 441
 442static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
 443                size_t size)
 444{
 445        struct iommu_domain *domain = iommu_get_dma_domain(dev);
 446        struct iommu_dma_cookie *cookie = domain->iova_cookie;
 447        struct iova_domain *iovad = &cookie->iovad;
 448        size_t iova_off = iova_offset(iovad, dma_addr);
 449        struct iommu_iotlb_gather iotlb_gather;
 450        size_t unmapped;
 451
 452        dma_addr -= iova_off;
 453        size = iova_align(iovad, size + iova_off);
 454        iommu_iotlb_gather_init(&iotlb_gather);
 455
 456        unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
 457        WARN_ON(unmapped != size);
 458
 459        if (!cookie->fq_domain)
 460                iommu_tlb_sync(domain, &iotlb_gather);
 461        iommu_dma_free_iova(cookie, dma_addr, size);
 462}
 463
 464static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
 465                size_t size, int prot)
 466{
 467        struct iommu_domain *domain = iommu_get_dma_domain(dev);
 468        struct iommu_dma_cookie *cookie = domain->iova_cookie;
 469        struct iova_domain *iovad = &cookie->iovad;
 470        size_t iova_off = iova_offset(iovad, phys);
 471        dma_addr_t iova;
 472
 473        size = iova_align(iovad, size + iova_off);
 474
 475        iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
 476        if (!iova)
 477                return DMA_MAPPING_ERROR;
 478
 479        if (iommu_map(domain, iova, phys - iova_off, size, prot)) {
 480                iommu_dma_free_iova(cookie, iova, size);
 481                return DMA_MAPPING_ERROR;
 482        }
 483        return iova + iova_off;
 484}
 485
 486static void __iommu_dma_free_pages(struct page **pages, int count)
 487{
 488        while (count--)
 489                __free_page(pages[count]);
 490        kvfree(pages);
 491}
 492
 493static struct page **__iommu_dma_alloc_pages(struct device *dev,
 494                unsigned int count, unsigned long order_mask, gfp_t gfp)
 495{
 496        struct page **pages;
 497        unsigned int i = 0, nid = dev_to_node(dev);
 498
 499        order_mask &= (2U << MAX_ORDER) - 1;
 500        if (!order_mask)
 501                return NULL;
 502
 503        pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
 504        if (!pages)
 505                return NULL;
 506
 507        /* IOMMU can map any pages, so himem can also be used here */
 508        gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
 509
 510        while (count) {
 511                struct page *page = NULL;
 512                unsigned int order_size;
 513
 514                /*
 515                 * Higher-order allocations are a convenience rather
 516                 * than a necessity, hence using __GFP_NORETRY until
 517                 * falling back to minimum-order allocations.
 518                 */
 519                for (order_mask &= (2U << __fls(count)) - 1;
 520                     order_mask; order_mask &= ~order_size) {
 521                        unsigned int order = __fls(order_mask);
 522                        gfp_t alloc_flags = gfp;
 523
 524                        order_size = 1U << order;
 525                        if (order_mask > order_size)
 526                                alloc_flags |= __GFP_NORETRY;
 527                        page = alloc_pages_node(nid, alloc_flags, order);
 528                        if (!page)
 529                                continue;
 530                        if (!order)
 531                                break;
 532                        if (!PageCompound(page)) {
 533                                split_page(page, order);
 534                                break;
 535                        } else if (!split_huge_page(page)) {
 536                                break;
 537                        }
 538                        __free_pages(page, order);
 539                }
 540                if (!page) {
 541                        __iommu_dma_free_pages(pages, i);
 542                        return NULL;
 543                }
 544                count -= order_size;
 545                while (order_size--)
 546                        pages[i++] = page++;
 547        }
 548        return pages;
 549}
 550
 551/**
 552 * iommu_dma_alloc_remap - Allocate and map a buffer contiguous in IOVA space
 553 * @dev: Device to allocate memory for. Must be a real device
 554 *       attached to an iommu_dma_domain
 555 * @size: Size of buffer in bytes
 556 * @dma_handle: Out argument for allocated DMA handle
 557 * @gfp: Allocation flags
 558 * @attrs: DMA attributes for this allocation
 559 *
 560 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
 561 * but an IOMMU which supports smaller pages might not map the whole thing.
 562 *
 563 * Return: Mapped virtual address, or NULL on failure.
 564 */
 565static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
 566                dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
 567{
 568        struct iommu_domain *domain = iommu_get_dma_domain(dev);
 569        struct iommu_dma_cookie *cookie = domain->iova_cookie;
 570        struct iova_domain *iovad = &cookie->iovad;
 571        bool coherent = dev_is_dma_coherent(dev);
 572        int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
 573        pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
 574        unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
 575        struct page **pages;
 576        struct sg_table sgt;
 577        dma_addr_t iova;
 578        void *vaddr;
 579
 580        *dma_handle = DMA_MAPPING_ERROR;
 581
 582        min_size = alloc_sizes & -alloc_sizes;
 583        if (min_size < PAGE_SIZE) {
 584                min_size = PAGE_SIZE;
 585                alloc_sizes |= PAGE_SIZE;
 586        } else {
 587                size = ALIGN(size, min_size);
 588        }
 589        if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
 590                alloc_sizes = min_size;
 591
 592        count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 593        pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
 594                                        gfp);
 595        if (!pages)
 596                return NULL;
 597
 598        size = iova_align(iovad, size);
 599        iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
 600        if (!iova)
 601                goto out_free_pages;
 602
 603        if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
 604                goto out_free_iova;
 605
 606        if (!(ioprot & IOMMU_CACHE)) {
 607                struct scatterlist *sg;
 608                int i;
 609
 610                for_each_sg(sgt.sgl, sg, sgt.orig_nents, i)
 611                        arch_dma_prep_coherent(sg_page(sg), sg->length);
 612        }
 613
 614        if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, ioprot)
 615                        < size)
 616                goto out_free_sg;
 617
 618        vaddr = dma_common_pages_remap(pages, size, prot,
 619                        __builtin_return_address(0));
 620        if (!vaddr)
 621                goto out_unmap;
 622
 623        *dma_handle = iova;
 624        sg_free_table(&sgt);
 625        return vaddr;
 626
 627out_unmap:
 628        __iommu_dma_unmap(dev, iova, size);
 629out_free_sg:
 630        sg_free_table(&sgt);
 631out_free_iova:
 632        iommu_dma_free_iova(cookie, iova, size);
 633out_free_pages:
 634        __iommu_dma_free_pages(pages, count);
 635        return NULL;
 636}
 637
 638/**
 639 * __iommu_dma_mmap - Map a buffer into provided user VMA
 640 * @pages: Array representing buffer from __iommu_dma_alloc()
 641 * @size: Size of buffer in bytes
 642 * @vma: VMA describing requested userspace mapping
 643 *
 644 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
 645 * for verifying the correct size and protection of @vma beforehand.
 646 */
 647static int __iommu_dma_mmap(struct page **pages, size_t size,
 648                struct vm_area_struct *vma)
 649{
 650        return vm_map_pages(vma, pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
 651}
 652
 653static void iommu_dma_sync_single_for_cpu(struct device *dev,
 654                dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
 655{
 656        phys_addr_t phys;
 657
 658        if (dev_is_dma_coherent(dev))
 659                return;
 660
 661        phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
 662        arch_sync_dma_for_cpu(dev, phys, size, dir);
 663}
 664
 665static void iommu_dma_sync_single_for_device(struct device *dev,
 666                dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
 667{
 668        phys_addr_t phys;
 669
 670        if (dev_is_dma_coherent(dev))
 671                return;
 672
 673        phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
 674        arch_sync_dma_for_device(dev, phys, size, dir);
 675}
 676
 677static void iommu_dma_sync_sg_for_cpu(struct device *dev,
 678                struct scatterlist *sgl, int nelems,
 679                enum dma_data_direction dir)
 680{
 681        struct scatterlist *sg;
 682        int i;
 683
 684        if (dev_is_dma_coherent(dev))
 685                return;
 686
 687        for_each_sg(sgl, sg, nelems, i)
 688                arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir);
 689}
 690
 691static void iommu_dma_sync_sg_for_device(struct device *dev,
 692                struct scatterlist *sgl, int nelems,
 693                enum dma_data_direction dir)
 694{
 695        struct scatterlist *sg;
 696        int i;
 697
 698        if (dev_is_dma_coherent(dev))
 699                return;
 700
 701        for_each_sg(sgl, sg, nelems, i)
 702                arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, dir);
 703}
 704
 705static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
 706                unsigned long offset, size_t size, enum dma_data_direction dir,
 707                unsigned long attrs)
 708{
 709        phys_addr_t phys = page_to_phys(page) + offset;
 710        bool coherent = dev_is_dma_coherent(dev);
 711        int prot = dma_info_to_prot(dir, coherent, attrs);
 712        dma_addr_t dma_handle;
 713
 714        dma_handle =__iommu_dma_map(dev, phys, size, prot);
 715        if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
 716            dma_handle != DMA_MAPPING_ERROR)
 717                arch_sync_dma_for_device(dev, phys, size, dir);
 718        return dma_handle;
 719}
 720
 721static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
 722                size_t size, enum dma_data_direction dir, unsigned long attrs)
 723{
 724        if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
 725                iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
 726        __iommu_dma_unmap(dev, dma_handle, size);
 727}
 728
 729/*
 730 * Prepare a successfully-mapped scatterlist to give back to the caller.
 731 *
 732 * At this point the segments are already laid out by iommu_dma_map_sg() to
 733 * avoid individually crossing any boundaries, so we merely need to check a
 734 * segment's start address to avoid concatenating across one.
 735 */
 736static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
 737                dma_addr_t dma_addr)
 738{
 739        struct scatterlist *s, *cur = sg;
 740        unsigned long seg_mask = dma_get_seg_boundary(dev);
 741        unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
 742        int i, count = 0;
 743
 744        for_each_sg(sg, s, nents, i) {
 745                /* Restore this segment's original unaligned fields first */
 746                unsigned int s_iova_off = sg_dma_address(s);
 747                unsigned int s_length = sg_dma_len(s);
 748                unsigned int s_iova_len = s->length;
 749
 750                s->offset += s_iova_off;
 751                s->length = s_length;
 752                sg_dma_address(s) = DMA_MAPPING_ERROR;
 753                sg_dma_len(s) = 0;
 754
 755                /*
 756                 * Now fill in the real DMA data. If...
 757                 * - there is a valid output segment to append to
 758                 * - and this segment starts on an IOVA page boundary
 759                 * - but doesn't fall at a segment boundary
 760                 * - and wouldn't make the resulting output segment too long
 761                 */
 762                if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
 763                    (max_len - cur_len >= s_length)) {
 764                        /* ...then concatenate it with the previous one */
 765                        cur_len += s_length;
 766                } else {
 767                        /* Otherwise start the next output segment */
 768                        if (i > 0)
 769                                cur = sg_next(cur);
 770                        cur_len = s_length;
 771                        count++;
 772
 773                        sg_dma_address(cur) = dma_addr + s_iova_off;
 774                }
 775
 776                sg_dma_len(cur) = cur_len;
 777                dma_addr += s_iova_len;
 778
 779                if (s_length + s_iova_off < s_iova_len)
 780                        cur_len = 0;
 781        }
 782        return count;
 783}
 784
 785/*
 786 * If mapping failed, then just restore the original list,
 787 * but making sure the DMA fields are invalidated.
 788 */
 789static void __invalidate_sg(struct scatterlist *sg, int nents)
 790{
 791        struct scatterlist *s;
 792        int i;
 793
 794        for_each_sg(sg, s, nents, i) {
 795                if (sg_dma_address(s) != DMA_MAPPING_ERROR)
 796                        s->offset += sg_dma_address(s);
 797                if (sg_dma_len(s))
 798                        s->length = sg_dma_len(s);
 799                sg_dma_address(s) = DMA_MAPPING_ERROR;
 800                sg_dma_len(s) = 0;
 801        }
 802}
 803
 804/*
 805 * The DMA API client is passing in a scatterlist which could describe
 806 * any old buffer layout, but the IOMMU API requires everything to be
 807 * aligned to IOMMU pages. Hence the need for this complicated bit of
 808 * impedance-matching, to be able to hand off a suitably-aligned list,
 809 * but still preserve the original offsets and sizes for the caller.
 810 */
 811static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
 812                int nents, enum dma_data_direction dir, unsigned long attrs)
 813{
 814        struct iommu_domain *domain = iommu_get_dma_domain(dev);
 815        struct iommu_dma_cookie *cookie = domain->iova_cookie;
 816        struct iova_domain *iovad = &cookie->iovad;
 817        struct scatterlist *s, *prev = NULL;
 818        int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
 819        dma_addr_t iova;
 820        size_t iova_len = 0;
 821        unsigned long mask = dma_get_seg_boundary(dev);
 822        int i;
 823
 824        if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
 825                iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
 826
 827        /*
 828         * Work out how much IOVA space we need, and align the segments to
 829         * IOVA granules for the IOMMU driver to handle. With some clever
 830         * trickery we can modify the list in-place, but reversibly, by
 831         * stashing the unaligned parts in the as-yet-unused DMA fields.
 832         */
 833        for_each_sg(sg, s, nents, i) {
 834                size_t s_iova_off = iova_offset(iovad, s->offset);
 835                size_t s_length = s->length;
 836                size_t pad_len = (mask - iova_len + 1) & mask;
 837
 838                sg_dma_address(s) = s_iova_off;
 839                sg_dma_len(s) = s_length;
 840                s->offset -= s_iova_off;
 841                s_length = iova_align(iovad, s_length + s_iova_off);
 842                s->length = s_length;
 843
 844                /*
 845                 * Due to the alignment of our single IOVA allocation, we can
 846                 * depend on these assumptions about the segment boundary mask:
 847                 * - If mask size >= IOVA size, then the IOVA range cannot
 848                 *   possibly fall across a boundary, so we don't care.
 849                 * - If mask size < IOVA size, then the IOVA range must start
 850                 *   exactly on a boundary, therefore we can lay things out
 851                 *   based purely on segment lengths without needing to know
 852                 *   the actual addresses beforehand.
 853                 * - The mask must be a power of 2, so pad_len == 0 if
 854                 *   iova_len == 0, thus we cannot dereference prev the first
 855                 *   time through here (i.e. before it has a meaningful value).
 856                 */
 857                if (pad_len && pad_len < s_length - 1) {
 858                        prev->length += pad_len;
 859                        iova_len += pad_len;
 860                }
 861
 862                iova_len += s_length;
 863                prev = s;
 864        }
 865
 866        iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
 867        if (!iova)
 868                goto out_restore_sg;
 869
 870        /*
 871         * We'll leave any physical concatenation to the IOMMU driver's
 872         * implementation - it knows better than we do.
 873         */
 874        if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len)
 875                goto out_free_iova;
 876
 877        return __finalise_sg(dev, sg, nents, iova);
 878
 879out_free_iova:
 880        iommu_dma_free_iova(cookie, iova, iova_len);
 881out_restore_sg:
 882        __invalidate_sg(sg, nents);
 883        return 0;
 884}
 885
 886static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
 887                int nents, enum dma_data_direction dir, unsigned long attrs)
 888{
 889        dma_addr_t start, end;
 890        struct scatterlist *tmp;
 891        int i;
 892
 893        if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
 894                iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
 895
 896        /*
 897         * The scatterlist segments are mapped into a single
 898         * contiguous IOVA allocation, so this is incredibly easy.
 899         */
 900        start = sg_dma_address(sg);
 901        for_each_sg(sg_next(sg), tmp, nents - 1, i) {
 902                if (sg_dma_len(tmp) == 0)
 903                        break;
 904                sg = tmp;
 905        }
 906        end = sg_dma_address(sg) + sg_dma_len(sg);
 907        __iommu_dma_unmap(dev, start, end - start);
 908}
 909
 910static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
 911                size_t size, enum dma_data_direction dir, unsigned long attrs)
 912{
 913        return __iommu_dma_map(dev, phys, size,
 914                        dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO);
 915}
 916
 917static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
 918                size_t size, enum dma_data_direction dir, unsigned long attrs)
 919{
 920        __iommu_dma_unmap(dev, handle, size);
 921}
 922
 923static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
 924{
 925        size_t alloc_size = PAGE_ALIGN(size);
 926        int count = alloc_size >> PAGE_SHIFT;
 927        struct page *page = NULL, **pages = NULL;
 928
 929        /* Non-coherent atomic allocation? Easy */
 930        if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
 931            dma_free_from_pool(cpu_addr, alloc_size))
 932                return;
 933
 934        if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
 935                /*
 936                 * If it the address is remapped, then it's either non-coherent
 937                 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
 938                 */
 939                pages = dma_common_find_pages(cpu_addr);
 940                if (!pages)
 941                        page = vmalloc_to_page(cpu_addr);
 942                dma_common_free_remap(cpu_addr, alloc_size);
 943        } else {
 944                /* Lowmem means a coherent atomic or CMA allocation */
 945                page = virt_to_page(cpu_addr);
 946        }
 947
 948        if (pages)
 949                __iommu_dma_free_pages(pages, count);
 950        if (page)
 951                dma_free_contiguous(dev, page, alloc_size);
 952}
 953
 954static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
 955                dma_addr_t handle, unsigned long attrs)
 956{
 957        __iommu_dma_unmap(dev, handle, size);
 958        __iommu_dma_free(dev, size, cpu_addr);
 959}
 960
 961static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
 962                struct page **pagep, gfp_t gfp, unsigned long attrs)
 963{
 964        bool coherent = dev_is_dma_coherent(dev);
 965        size_t alloc_size = PAGE_ALIGN(size);
 966        int node = dev_to_node(dev);
 967        struct page *page = NULL;
 968        void *cpu_addr;
 969
 970        page = dma_alloc_contiguous(dev, alloc_size, gfp);
 971        if (!page)
 972                page = alloc_pages_node(node, gfp, get_order(alloc_size));
 973        if (!page)
 974                return NULL;
 975
 976        if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
 977                pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
 978
 979                cpu_addr = dma_common_contiguous_remap(page, alloc_size,
 980                                prot, __builtin_return_address(0));
 981                if (!cpu_addr)
 982                        goto out_free_pages;
 983
 984                if (!coherent)
 985                        arch_dma_prep_coherent(page, size);
 986        } else {
 987                cpu_addr = page_address(page);
 988        }
 989
 990        *pagep = page;
 991        memset(cpu_addr, 0, alloc_size);
 992        return cpu_addr;
 993out_free_pages:
 994        dma_free_contiguous(dev, page, alloc_size);
 995        return NULL;
 996}
 997
 998static void *iommu_dma_alloc(struct device *dev, size_t size,
 999                dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1000{
1001        bool coherent = dev_is_dma_coherent(dev);
1002        int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1003        struct page *page = NULL;
1004        void *cpu_addr;
1005
1006        gfp |= __GFP_ZERO;
1007
1008        if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
1009            !(attrs & DMA_ATTR_FORCE_CONTIGUOUS))
1010                return iommu_dma_alloc_remap(dev, size, handle, gfp, attrs);
1011
1012        if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1013            !gfpflags_allow_blocking(gfp) && !coherent)
1014                cpu_addr = dma_alloc_from_pool(PAGE_ALIGN(size), &page, gfp);
1015        else
1016                cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1017        if (!cpu_addr)
1018                return NULL;
1019
1020        *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot);
1021        if (*handle == DMA_MAPPING_ERROR) {
1022                __iommu_dma_free(dev, size, cpu_addr);
1023                return NULL;
1024        }
1025
1026        return cpu_addr;
1027}
1028
1029static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1030                void *cpu_addr, dma_addr_t dma_addr, size_t size,
1031                unsigned long attrs)
1032{
1033        unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1034        unsigned long pfn, off = vma->vm_pgoff;
1035        int ret;
1036
1037        vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1038
1039        if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1040                return ret;
1041
1042        if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1043                return -ENXIO;
1044
1045        if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1046                struct page **pages = dma_common_find_pages(cpu_addr);
1047
1048                if (pages)
1049                        return __iommu_dma_mmap(pages, size, vma);
1050                pfn = vmalloc_to_pfn(cpu_addr);
1051        } else {
1052                pfn = page_to_pfn(virt_to_page(cpu_addr));
1053        }
1054
1055        return remap_pfn_range(vma, vma->vm_start, pfn + off,
1056                               vma->vm_end - vma->vm_start,
1057                               vma->vm_page_prot);
1058}
1059
1060static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1061                void *cpu_addr, dma_addr_t dma_addr, size_t size,
1062                unsigned long attrs)
1063{
1064        struct page *page;
1065        int ret;
1066
1067        if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1068                struct page **pages = dma_common_find_pages(cpu_addr);
1069
1070                if (pages) {
1071                        return sg_alloc_table_from_pages(sgt, pages,
1072                                        PAGE_ALIGN(size) >> PAGE_SHIFT,
1073                                        0, size, GFP_KERNEL);
1074                }
1075
1076                page = vmalloc_to_page(cpu_addr);
1077        } else {
1078                page = virt_to_page(cpu_addr);
1079        }
1080
1081        ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1082        if (!ret)
1083                sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1084        return ret;
1085}
1086
1087static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1088{
1089        struct iommu_domain *domain = iommu_get_dma_domain(dev);
1090
1091        return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1092}
1093
1094static const struct dma_map_ops iommu_dma_ops = {
1095        .alloc                  = iommu_dma_alloc,
1096        .free                   = iommu_dma_free,
1097        .mmap                   = iommu_dma_mmap,
1098        .get_sgtable            = iommu_dma_get_sgtable,
1099        .map_page               = iommu_dma_map_page,
1100        .unmap_page             = iommu_dma_unmap_page,
1101        .map_sg                 = iommu_dma_map_sg,
1102        .unmap_sg               = iommu_dma_unmap_sg,
1103        .sync_single_for_cpu    = iommu_dma_sync_single_for_cpu,
1104        .sync_single_for_device = iommu_dma_sync_single_for_device,
1105        .sync_sg_for_cpu        = iommu_dma_sync_sg_for_cpu,
1106        .sync_sg_for_device     = iommu_dma_sync_sg_for_device,
1107        .map_resource           = iommu_dma_map_resource,
1108        .unmap_resource         = iommu_dma_unmap_resource,
1109        .get_merge_boundary     = iommu_dma_get_merge_boundary,
1110};
1111
1112/*
1113 * The IOMMU core code allocates the default DMA domain, which the underlying
1114 * IOMMU driver needs to support via the dma-iommu layer.
1115 */
1116void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size)
1117{
1118        struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1119
1120        if (!domain)
1121                goto out_err;
1122
1123        /*
1124         * The IOMMU core code allocates the default DMA domain, which the
1125         * underlying IOMMU driver needs to support via the dma-iommu layer.
1126         */
1127        if (domain->type == IOMMU_DOMAIN_DMA) {
1128                if (iommu_dma_init_domain(domain, dma_base, size, dev))
1129                        goto out_err;
1130                dev->dma_ops = &iommu_dma_ops;
1131        }
1132
1133        return;
1134out_err:
1135         pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1136                 dev_name(dev));
1137}
1138
1139static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1140                phys_addr_t msi_addr, struct iommu_domain *domain)
1141{
1142        struct iommu_dma_cookie *cookie = domain->iova_cookie;
1143        struct iommu_dma_msi_page *msi_page;
1144        dma_addr_t iova;
1145        int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1146        size_t size = cookie_msi_granule(cookie);
1147
1148        msi_addr &= ~(phys_addr_t)(size - 1);
1149        list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1150                if (msi_page->phys == msi_addr)
1151                        return msi_page;
1152
1153        msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
1154        if (!msi_page)
1155                return NULL;
1156
1157        iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1158        if (!iova)
1159                goto out_free_page;
1160
1161        if (iommu_map(domain, iova, msi_addr, size, prot))
1162                goto out_free_iova;
1163
1164        INIT_LIST_HEAD(&msi_page->list);
1165        msi_page->phys = msi_addr;
1166        msi_page->iova = iova;
1167        list_add(&msi_page->list, &cookie->msi_page_list);
1168        return msi_page;
1169
1170out_free_iova:
1171        iommu_dma_free_iova(cookie, iova, size);
1172out_free_page:
1173        kfree(msi_page);
1174        return NULL;
1175}
1176
1177int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1178{
1179        struct device *dev = msi_desc_to_dev(desc);
1180        struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1181        struct iommu_dma_cookie *cookie;
1182        struct iommu_dma_msi_page *msi_page;
1183        unsigned long flags;
1184
1185        if (!domain || !domain->iova_cookie) {
1186                desc->iommu_cookie = NULL;
1187                return 0;
1188        }
1189
1190        cookie = domain->iova_cookie;
1191
1192        /*
1193         * We disable IRQs to rule out a possible inversion against
1194         * irq_desc_lock if, say, someone tries to retarget the affinity
1195         * of an MSI from within an IPI handler.
1196         */
1197        spin_lock_irqsave(&cookie->msi_lock, flags);
1198        msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1199        spin_unlock_irqrestore(&cookie->msi_lock, flags);
1200
1201        msi_desc_set_iommu_cookie(desc, msi_page);
1202
1203        if (!msi_page)
1204                return -ENOMEM;
1205        return 0;
1206}
1207
1208void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1209                               struct msi_msg *msg)
1210{
1211        struct device *dev = msi_desc_to_dev(desc);
1212        const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1213        const struct iommu_dma_msi_page *msi_page;
1214
1215        msi_page = msi_desc_get_iommu_cookie(desc);
1216
1217        if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1218                return;
1219
1220        msg->address_hi = upper_32_bits(msi_page->iova);
1221        msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1222        msg->address_lo += lower_32_bits(msi_page->iova);
1223}
1224
1225static int iommu_dma_init(void)
1226{
1227        return iova_cache_get();
1228}
1229arch_initcall(iommu_dma_init);
1230