linux/drivers/md/raid1.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid1.c : Multiple Devices driver for Linux
   4 *
   5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   6 *
   7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   8 *
   9 * RAID-1 management functions.
  10 *
  11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  12 *
  13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  15 *
  16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  17 * bitmapped intelligence in resync:
  18 *
  19 *      - bitmap marked during normal i/o
  20 *      - bitmap used to skip nondirty blocks during sync
  21 *
  22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  23 * - persistent bitmap code
  24 */
  25
  26#include <linux/slab.h>
  27#include <linux/delay.h>
  28#include <linux/blkdev.h>
  29#include <linux/module.h>
  30#include <linux/seq_file.h>
  31#include <linux/ratelimit.h>
  32
  33#include <trace/events/block.h>
  34
  35#include "md.h"
  36#include "raid1.h"
  37#include "md-bitmap.h"
  38
  39#define UNSUPPORTED_MDDEV_FLAGS         \
  40        ((1L << MD_HAS_JOURNAL) |       \
  41         (1L << MD_JOURNAL_CLEAN) |     \
  42         (1L << MD_HAS_PPL) |           \
  43         (1L << MD_HAS_MULTIPLE_PPLS))
  44
  45static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
  46static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
  47
  48#define raid1_log(md, fmt, args...)                             \
  49        do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
  50
  51#include "raid1-10.c"
  52
  53static int check_and_add_wb(struct md_rdev *rdev, sector_t lo, sector_t hi)
  54{
  55        struct wb_info *wi, *temp_wi;
  56        unsigned long flags;
  57        int ret = 0;
  58        struct mddev *mddev = rdev->mddev;
  59
  60        wi = mempool_alloc(mddev->wb_info_pool, GFP_NOIO);
  61
  62        spin_lock_irqsave(&rdev->wb_list_lock, flags);
  63        list_for_each_entry(temp_wi, &rdev->wb_list, list) {
  64                /* collision happened */
  65                if (hi > temp_wi->lo && lo < temp_wi->hi) {
  66                        ret = -EBUSY;
  67                        break;
  68                }
  69        }
  70
  71        if (!ret) {
  72                wi->lo = lo;
  73                wi->hi = hi;
  74                list_add(&wi->list, &rdev->wb_list);
  75        } else
  76                mempool_free(wi, mddev->wb_info_pool);
  77        spin_unlock_irqrestore(&rdev->wb_list_lock, flags);
  78
  79        return ret;
  80}
  81
  82static void remove_wb(struct md_rdev *rdev, sector_t lo, sector_t hi)
  83{
  84        struct wb_info *wi;
  85        unsigned long flags;
  86        int found = 0;
  87        struct mddev *mddev = rdev->mddev;
  88
  89        spin_lock_irqsave(&rdev->wb_list_lock, flags);
  90        list_for_each_entry(wi, &rdev->wb_list, list)
  91                if (hi == wi->hi && lo == wi->lo) {
  92                        list_del(&wi->list);
  93                        mempool_free(wi, mddev->wb_info_pool);
  94                        found = 1;
  95                        break;
  96                }
  97
  98        if (!found)
  99                WARN(1, "The write behind IO is not recorded\n");
 100        spin_unlock_irqrestore(&rdev->wb_list_lock, flags);
 101        wake_up(&rdev->wb_io_wait);
 102}
 103
 104/*
 105 * for resync bio, r1bio pointer can be retrieved from the per-bio
 106 * 'struct resync_pages'.
 107 */
 108static inline struct r1bio *get_resync_r1bio(struct bio *bio)
 109{
 110        return get_resync_pages(bio)->raid_bio;
 111}
 112
 113static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
 114{
 115        struct pool_info *pi = data;
 116        int size = offsetof(struct r1bio, bios[pi->raid_disks]);
 117
 118        /* allocate a r1bio with room for raid_disks entries in the bios array */
 119        return kzalloc(size, gfp_flags);
 120}
 121
 122#define RESYNC_DEPTH 32
 123#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 124#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
 125#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
 126#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
 127#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 128
 129static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
 130{
 131        struct pool_info *pi = data;
 132        struct r1bio *r1_bio;
 133        struct bio *bio;
 134        int need_pages;
 135        int j;
 136        struct resync_pages *rps;
 137
 138        r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 139        if (!r1_bio)
 140                return NULL;
 141
 142        rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
 143                            gfp_flags);
 144        if (!rps)
 145                goto out_free_r1bio;
 146
 147        /*
 148         * Allocate bios : 1 for reading, n-1 for writing
 149         */
 150        for (j = pi->raid_disks ; j-- ; ) {
 151                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 152                if (!bio)
 153                        goto out_free_bio;
 154                r1_bio->bios[j] = bio;
 155        }
 156        /*
 157         * Allocate RESYNC_PAGES data pages and attach them to
 158         * the first bio.
 159         * If this is a user-requested check/repair, allocate
 160         * RESYNC_PAGES for each bio.
 161         */
 162        if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 163                need_pages = pi->raid_disks;
 164        else
 165                need_pages = 1;
 166        for (j = 0; j < pi->raid_disks; j++) {
 167                struct resync_pages *rp = &rps[j];
 168
 169                bio = r1_bio->bios[j];
 170
 171                if (j < need_pages) {
 172                        if (resync_alloc_pages(rp, gfp_flags))
 173                                goto out_free_pages;
 174                } else {
 175                        memcpy(rp, &rps[0], sizeof(*rp));
 176                        resync_get_all_pages(rp);
 177                }
 178
 179                rp->raid_bio = r1_bio;
 180                bio->bi_private = rp;
 181        }
 182
 183        r1_bio->master_bio = NULL;
 184
 185        return r1_bio;
 186
 187out_free_pages:
 188        while (--j >= 0)
 189                resync_free_pages(&rps[j]);
 190
 191out_free_bio:
 192        while (++j < pi->raid_disks)
 193                bio_put(r1_bio->bios[j]);
 194        kfree(rps);
 195
 196out_free_r1bio:
 197        rbio_pool_free(r1_bio, data);
 198        return NULL;
 199}
 200
 201static void r1buf_pool_free(void *__r1_bio, void *data)
 202{
 203        struct pool_info *pi = data;
 204        int i;
 205        struct r1bio *r1bio = __r1_bio;
 206        struct resync_pages *rp = NULL;
 207
 208        for (i = pi->raid_disks; i--; ) {
 209                rp = get_resync_pages(r1bio->bios[i]);
 210                resync_free_pages(rp);
 211                bio_put(r1bio->bios[i]);
 212        }
 213
 214        /* resync pages array stored in the 1st bio's .bi_private */
 215        kfree(rp);
 216
 217        rbio_pool_free(r1bio, data);
 218}
 219
 220static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 221{
 222        int i;
 223
 224        for (i = 0; i < conf->raid_disks * 2; i++) {
 225                struct bio **bio = r1_bio->bios + i;
 226                if (!BIO_SPECIAL(*bio))
 227                        bio_put(*bio);
 228                *bio = NULL;
 229        }
 230}
 231
 232static void free_r1bio(struct r1bio *r1_bio)
 233{
 234        struct r1conf *conf = r1_bio->mddev->private;
 235
 236        put_all_bios(conf, r1_bio);
 237        mempool_free(r1_bio, &conf->r1bio_pool);
 238}
 239
 240static void put_buf(struct r1bio *r1_bio)
 241{
 242        struct r1conf *conf = r1_bio->mddev->private;
 243        sector_t sect = r1_bio->sector;
 244        int i;
 245
 246        for (i = 0; i < conf->raid_disks * 2; i++) {
 247                struct bio *bio = r1_bio->bios[i];
 248                if (bio->bi_end_io)
 249                        rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 250        }
 251
 252        mempool_free(r1_bio, &conf->r1buf_pool);
 253
 254        lower_barrier(conf, sect);
 255}
 256
 257static void reschedule_retry(struct r1bio *r1_bio)
 258{
 259        unsigned long flags;
 260        struct mddev *mddev = r1_bio->mddev;
 261        struct r1conf *conf = mddev->private;
 262        int idx;
 263
 264        idx = sector_to_idx(r1_bio->sector);
 265        spin_lock_irqsave(&conf->device_lock, flags);
 266        list_add(&r1_bio->retry_list, &conf->retry_list);
 267        atomic_inc(&conf->nr_queued[idx]);
 268        spin_unlock_irqrestore(&conf->device_lock, flags);
 269
 270        wake_up(&conf->wait_barrier);
 271        md_wakeup_thread(mddev->thread);
 272}
 273
 274/*
 275 * raid_end_bio_io() is called when we have finished servicing a mirrored
 276 * operation and are ready to return a success/failure code to the buffer
 277 * cache layer.
 278 */
 279static void call_bio_endio(struct r1bio *r1_bio)
 280{
 281        struct bio *bio = r1_bio->master_bio;
 282        struct r1conf *conf = r1_bio->mddev->private;
 283
 284        if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 285                bio->bi_status = BLK_STS_IOERR;
 286
 287        bio_endio(bio);
 288        /*
 289         * Wake up any possible resync thread that waits for the device
 290         * to go idle.
 291         */
 292        allow_barrier(conf, r1_bio->sector);
 293}
 294
 295static void raid_end_bio_io(struct r1bio *r1_bio)
 296{
 297        struct bio *bio = r1_bio->master_bio;
 298
 299        /* if nobody has done the final endio yet, do it now */
 300        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 301                pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 302                         (bio_data_dir(bio) == WRITE) ? "write" : "read",
 303                         (unsigned long long) bio->bi_iter.bi_sector,
 304                         (unsigned long long) bio_end_sector(bio) - 1);
 305
 306                call_bio_endio(r1_bio);
 307        }
 308        free_r1bio(r1_bio);
 309}
 310
 311/*
 312 * Update disk head position estimator based on IRQ completion info.
 313 */
 314static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 315{
 316        struct r1conf *conf = r1_bio->mddev->private;
 317
 318        conf->mirrors[disk].head_position =
 319                r1_bio->sector + (r1_bio->sectors);
 320}
 321
 322/*
 323 * Find the disk number which triggered given bio
 324 */
 325static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 326{
 327        int mirror;
 328        struct r1conf *conf = r1_bio->mddev->private;
 329        int raid_disks = conf->raid_disks;
 330
 331        for (mirror = 0; mirror < raid_disks * 2; mirror++)
 332                if (r1_bio->bios[mirror] == bio)
 333                        break;
 334
 335        BUG_ON(mirror == raid_disks * 2);
 336        update_head_pos(mirror, r1_bio);
 337
 338        return mirror;
 339}
 340
 341static void raid1_end_read_request(struct bio *bio)
 342{
 343        int uptodate = !bio->bi_status;
 344        struct r1bio *r1_bio = bio->bi_private;
 345        struct r1conf *conf = r1_bio->mddev->private;
 346        struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
 347
 348        /*
 349         * this branch is our 'one mirror IO has finished' event handler:
 350         */
 351        update_head_pos(r1_bio->read_disk, r1_bio);
 352
 353        if (uptodate)
 354                set_bit(R1BIO_Uptodate, &r1_bio->state);
 355        else if (test_bit(FailFast, &rdev->flags) &&
 356                 test_bit(R1BIO_FailFast, &r1_bio->state))
 357                /* This was a fail-fast read so we definitely
 358                 * want to retry */
 359                ;
 360        else {
 361                /* If all other devices have failed, we want to return
 362                 * the error upwards rather than fail the last device.
 363                 * Here we redefine "uptodate" to mean "Don't want to retry"
 364                 */
 365                unsigned long flags;
 366                spin_lock_irqsave(&conf->device_lock, flags);
 367                if (r1_bio->mddev->degraded == conf->raid_disks ||
 368                    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 369                     test_bit(In_sync, &rdev->flags)))
 370                        uptodate = 1;
 371                spin_unlock_irqrestore(&conf->device_lock, flags);
 372        }
 373
 374        if (uptodate) {
 375                raid_end_bio_io(r1_bio);
 376                rdev_dec_pending(rdev, conf->mddev);
 377        } else {
 378                /*
 379                 * oops, read error:
 380                 */
 381                char b[BDEVNAME_SIZE];
 382                pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
 383                                   mdname(conf->mddev),
 384                                   bdevname(rdev->bdev, b),
 385                                   (unsigned long long)r1_bio->sector);
 386                set_bit(R1BIO_ReadError, &r1_bio->state);
 387                reschedule_retry(r1_bio);
 388                /* don't drop the reference on read_disk yet */
 389        }
 390}
 391
 392static void close_write(struct r1bio *r1_bio)
 393{
 394        /* it really is the end of this request */
 395        if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 396                bio_free_pages(r1_bio->behind_master_bio);
 397                bio_put(r1_bio->behind_master_bio);
 398                r1_bio->behind_master_bio = NULL;
 399        }
 400        /* clear the bitmap if all writes complete successfully */
 401        md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 402                           r1_bio->sectors,
 403                           !test_bit(R1BIO_Degraded, &r1_bio->state),
 404                           test_bit(R1BIO_BehindIO, &r1_bio->state));
 405        md_write_end(r1_bio->mddev);
 406}
 407
 408static void r1_bio_write_done(struct r1bio *r1_bio)
 409{
 410        if (!atomic_dec_and_test(&r1_bio->remaining))
 411                return;
 412
 413        if (test_bit(R1BIO_WriteError, &r1_bio->state))
 414                reschedule_retry(r1_bio);
 415        else {
 416                close_write(r1_bio);
 417                if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 418                        reschedule_retry(r1_bio);
 419                else
 420                        raid_end_bio_io(r1_bio);
 421        }
 422}
 423
 424static void raid1_end_write_request(struct bio *bio)
 425{
 426        struct r1bio *r1_bio = bio->bi_private;
 427        int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 428        struct r1conf *conf = r1_bio->mddev->private;
 429        struct bio *to_put = NULL;
 430        int mirror = find_bio_disk(r1_bio, bio);
 431        struct md_rdev *rdev = conf->mirrors[mirror].rdev;
 432        bool discard_error;
 433
 434        discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 435
 436        /*
 437         * 'one mirror IO has finished' event handler:
 438         */
 439        if (bio->bi_status && !discard_error) {
 440                set_bit(WriteErrorSeen, &rdev->flags);
 441                if (!test_and_set_bit(WantReplacement, &rdev->flags))
 442                        set_bit(MD_RECOVERY_NEEDED, &
 443                                conf->mddev->recovery);
 444
 445                if (test_bit(FailFast, &rdev->flags) &&
 446                    (bio->bi_opf & MD_FAILFAST) &&
 447                    /* We never try FailFast to WriteMostly devices */
 448                    !test_bit(WriteMostly, &rdev->flags)) {
 449                        md_error(r1_bio->mddev, rdev);
 450                }
 451
 452                /*
 453                 * When the device is faulty, it is not necessary to
 454                 * handle write error.
 455                 * For failfast, this is the only remaining device,
 456                 * We need to retry the write without FailFast.
 457                 */
 458                if (!test_bit(Faulty, &rdev->flags))
 459                        set_bit(R1BIO_WriteError, &r1_bio->state);
 460                else {
 461                        /* Finished with this branch */
 462                        r1_bio->bios[mirror] = NULL;
 463                        to_put = bio;
 464                }
 465        } else {
 466                /*
 467                 * Set R1BIO_Uptodate in our master bio, so that we
 468                 * will return a good error code for to the higher
 469                 * levels even if IO on some other mirrored buffer
 470                 * fails.
 471                 *
 472                 * The 'master' represents the composite IO operation
 473                 * to user-side. So if something waits for IO, then it
 474                 * will wait for the 'master' bio.
 475                 */
 476                sector_t first_bad;
 477                int bad_sectors;
 478
 479                r1_bio->bios[mirror] = NULL;
 480                to_put = bio;
 481                /*
 482                 * Do not set R1BIO_Uptodate if the current device is
 483                 * rebuilding or Faulty. This is because we cannot use
 484                 * such device for properly reading the data back (we could
 485                 * potentially use it, if the current write would have felt
 486                 * before rdev->recovery_offset, but for simplicity we don't
 487                 * check this here.
 488                 */
 489                if (test_bit(In_sync, &rdev->flags) &&
 490                    !test_bit(Faulty, &rdev->flags))
 491                        set_bit(R1BIO_Uptodate, &r1_bio->state);
 492
 493                /* Maybe we can clear some bad blocks. */
 494                if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
 495                                &first_bad, &bad_sectors) && !discard_error) {
 496                        r1_bio->bios[mirror] = IO_MADE_GOOD;
 497                        set_bit(R1BIO_MadeGood, &r1_bio->state);
 498                }
 499        }
 500
 501        if (behind) {
 502                if (test_bit(WBCollisionCheck, &rdev->flags)) {
 503                        sector_t lo = r1_bio->sector;
 504                        sector_t hi = r1_bio->sector + r1_bio->sectors;
 505
 506                        remove_wb(rdev, lo, hi);
 507                }
 508                if (test_bit(WriteMostly, &rdev->flags))
 509                        atomic_dec(&r1_bio->behind_remaining);
 510
 511                /*
 512                 * In behind mode, we ACK the master bio once the I/O
 513                 * has safely reached all non-writemostly
 514                 * disks. Setting the Returned bit ensures that this
 515                 * gets done only once -- we don't ever want to return
 516                 * -EIO here, instead we'll wait
 517                 */
 518                if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 519                    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 520                        /* Maybe we can return now */
 521                        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 522                                struct bio *mbio = r1_bio->master_bio;
 523                                pr_debug("raid1: behind end write sectors"
 524                                         " %llu-%llu\n",
 525                                         (unsigned long long) mbio->bi_iter.bi_sector,
 526                                         (unsigned long long) bio_end_sector(mbio) - 1);
 527                                call_bio_endio(r1_bio);
 528                        }
 529                }
 530        }
 531        if (r1_bio->bios[mirror] == NULL)
 532                rdev_dec_pending(rdev, conf->mddev);
 533
 534        /*
 535         * Let's see if all mirrored write operations have finished
 536         * already.
 537         */
 538        r1_bio_write_done(r1_bio);
 539
 540        if (to_put)
 541                bio_put(to_put);
 542}
 543
 544static sector_t align_to_barrier_unit_end(sector_t start_sector,
 545                                          sector_t sectors)
 546{
 547        sector_t len;
 548
 549        WARN_ON(sectors == 0);
 550        /*
 551         * len is the number of sectors from start_sector to end of the
 552         * barrier unit which start_sector belongs to.
 553         */
 554        len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
 555              start_sector;
 556
 557        if (len > sectors)
 558                len = sectors;
 559
 560        return len;
 561}
 562
 563/*
 564 * This routine returns the disk from which the requested read should
 565 * be done. There is a per-array 'next expected sequential IO' sector
 566 * number - if this matches on the next IO then we use the last disk.
 567 * There is also a per-disk 'last know head position' sector that is
 568 * maintained from IRQ contexts, both the normal and the resync IO
 569 * completion handlers update this position correctly. If there is no
 570 * perfect sequential match then we pick the disk whose head is closest.
 571 *
 572 * If there are 2 mirrors in the same 2 devices, performance degrades
 573 * because position is mirror, not device based.
 574 *
 575 * The rdev for the device selected will have nr_pending incremented.
 576 */
 577static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 578{
 579        const sector_t this_sector = r1_bio->sector;
 580        int sectors;
 581        int best_good_sectors;
 582        int best_disk, best_dist_disk, best_pending_disk;
 583        int has_nonrot_disk;
 584        int disk;
 585        sector_t best_dist;
 586        unsigned int min_pending;
 587        struct md_rdev *rdev;
 588        int choose_first;
 589        int choose_next_idle;
 590
 591        rcu_read_lock();
 592        /*
 593         * Check if we can balance. We can balance on the whole
 594         * device if no resync is going on, or below the resync window.
 595         * We take the first readable disk when above the resync window.
 596         */
 597 retry:
 598        sectors = r1_bio->sectors;
 599        best_disk = -1;
 600        best_dist_disk = -1;
 601        best_dist = MaxSector;
 602        best_pending_disk = -1;
 603        min_pending = UINT_MAX;
 604        best_good_sectors = 0;
 605        has_nonrot_disk = 0;
 606        choose_next_idle = 0;
 607        clear_bit(R1BIO_FailFast, &r1_bio->state);
 608
 609        if ((conf->mddev->recovery_cp < this_sector + sectors) ||
 610            (mddev_is_clustered(conf->mddev) &&
 611            md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 612                    this_sector + sectors)))
 613                choose_first = 1;
 614        else
 615                choose_first = 0;
 616
 617        for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 618                sector_t dist;
 619                sector_t first_bad;
 620                int bad_sectors;
 621                unsigned int pending;
 622                bool nonrot;
 623
 624                rdev = rcu_dereference(conf->mirrors[disk].rdev);
 625                if (r1_bio->bios[disk] == IO_BLOCKED
 626                    || rdev == NULL
 627                    || test_bit(Faulty, &rdev->flags))
 628                        continue;
 629                if (!test_bit(In_sync, &rdev->flags) &&
 630                    rdev->recovery_offset < this_sector + sectors)
 631                        continue;
 632                if (test_bit(WriteMostly, &rdev->flags)) {
 633                        /* Don't balance among write-mostly, just
 634                         * use the first as a last resort */
 635                        if (best_dist_disk < 0) {
 636                                if (is_badblock(rdev, this_sector, sectors,
 637                                                &first_bad, &bad_sectors)) {
 638                                        if (first_bad <= this_sector)
 639                                                /* Cannot use this */
 640                                                continue;
 641                                        best_good_sectors = first_bad - this_sector;
 642                                } else
 643                                        best_good_sectors = sectors;
 644                                best_dist_disk = disk;
 645                                best_pending_disk = disk;
 646                        }
 647                        continue;
 648                }
 649                /* This is a reasonable device to use.  It might
 650                 * even be best.
 651                 */
 652                if (is_badblock(rdev, this_sector, sectors,
 653                                &first_bad, &bad_sectors)) {
 654                        if (best_dist < MaxSector)
 655                                /* already have a better device */
 656                                continue;
 657                        if (first_bad <= this_sector) {
 658                                /* cannot read here. If this is the 'primary'
 659                                 * device, then we must not read beyond
 660                                 * bad_sectors from another device..
 661                                 */
 662                                bad_sectors -= (this_sector - first_bad);
 663                                if (choose_first && sectors > bad_sectors)
 664                                        sectors = bad_sectors;
 665                                if (best_good_sectors > sectors)
 666                                        best_good_sectors = sectors;
 667
 668                        } else {
 669                                sector_t good_sectors = first_bad - this_sector;
 670                                if (good_sectors > best_good_sectors) {
 671                                        best_good_sectors = good_sectors;
 672                                        best_disk = disk;
 673                                }
 674                                if (choose_first)
 675                                        break;
 676                        }
 677                        continue;
 678                } else {
 679                        if ((sectors > best_good_sectors) && (best_disk >= 0))
 680                                best_disk = -1;
 681                        best_good_sectors = sectors;
 682                }
 683
 684                if (best_disk >= 0)
 685                        /* At least two disks to choose from so failfast is OK */
 686                        set_bit(R1BIO_FailFast, &r1_bio->state);
 687
 688                nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 689                has_nonrot_disk |= nonrot;
 690                pending = atomic_read(&rdev->nr_pending);
 691                dist = abs(this_sector - conf->mirrors[disk].head_position);
 692                if (choose_first) {
 693                        best_disk = disk;
 694                        break;
 695                }
 696                /* Don't change to another disk for sequential reads */
 697                if (conf->mirrors[disk].next_seq_sect == this_sector
 698                    || dist == 0) {
 699                        int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 700                        struct raid1_info *mirror = &conf->mirrors[disk];
 701
 702                        best_disk = disk;
 703                        /*
 704                         * If buffered sequential IO size exceeds optimal
 705                         * iosize, check if there is idle disk. If yes, choose
 706                         * the idle disk. read_balance could already choose an
 707                         * idle disk before noticing it's a sequential IO in
 708                         * this disk. This doesn't matter because this disk
 709                         * will idle, next time it will be utilized after the
 710                         * first disk has IO size exceeds optimal iosize. In
 711                         * this way, iosize of the first disk will be optimal
 712                         * iosize at least. iosize of the second disk might be
 713                         * small, but not a big deal since when the second disk
 714                         * starts IO, the first disk is likely still busy.
 715                         */
 716                        if (nonrot && opt_iosize > 0 &&
 717                            mirror->seq_start != MaxSector &&
 718                            mirror->next_seq_sect > opt_iosize &&
 719                            mirror->next_seq_sect - opt_iosize >=
 720                            mirror->seq_start) {
 721                                choose_next_idle = 1;
 722                                continue;
 723                        }
 724                        break;
 725                }
 726
 727                if (choose_next_idle)
 728                        continue;
 729
 730                if (min_pending > pending) {
 731                        min_pending = pending;
 732                        best_pending_disk = disk;
 733                }
 734
 735                if (dist < best_dist) {
 736                        best_dist = dist;
 737                        best_dist_disk = disk;
 738                }
 739        }
 740
 741        /*
 742         * If all disks are rotational, choose the closest disk. If any disk is
 743         * non-rotational, choose the disk with less pending request even the
 744         * disk is rotational, which might/might not be optimal for raids with
 745         * mixed ratation/non-rotational disks depending on workload.
 746         */
 747        if (best_disk == -1) {
 748                if (has_nonrot_disk || min_pending == 0)
 749                        best_disk = best_pending_disk;
 750                else
 751                        best_disk = best_dist_disk;
 752        }
 753
 754        if (best_disk >= 0) {
 755                rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 756                if (!rdev)
 757                        goto retry;
 758                atomic_inc(&rdev->nr_pending);
 759                sectors = best_good_sectors;
 760
 761                if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 762                        conf->mirrors[best_disk].seq_start = this_sector;
 763
 764                conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 765        }
 766        rcu_read_unlock();
 767        *max_sectors = sectors;
 768
 769        return best_disk;
 770}
 771
 772static int raid1_congested(struct mddev *mddev, int bits)
 773{
 774        struct r1conf *conf = mddev->private;
 775        int i, ret = 0;
 776
 777        if ((bits & (1 << WB_async_congested)) &&
 778            conf->pending_count >= max_queued_requests)
 779                return 1;
 780
 781        rcu_read_lock();
 782        for (i = 0; i < conf->raid_disks * 2; i++) {
 783                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 784                if (rdev && !test_bit(Faulty, &rdev->flags)) {
 785                        struct request_queue *q = bdev_get_queue(rdev->bdev);
 786
 787                        BUG_ON(!q);
 788
 789                        /* Note the '|| 1' - when read_balance prefers
 790                         * non-congested targets, it can be removed
 791                         */
 792                        if ((bits & (1 << WB_async_congested)) || 1)
 793                                ret |= bdi_congested(q->backing_dev_info, bits);
 794                        else
 795                                ret &= bdi_congested(q->backing_dev_info, bits);
 796                }
 797        }
 798        rcu_read_unlock();
 799        return ret;
 800}
 801
 802static void flush_bio_list(struct r1conf *conf, struct bio *bio)
 803{
 804        /* flush any pending bitmap writes to disk before proceeding w/ I/O */
 805        md_bitmap_unplug(conf->mddev->bitmap);
 806        wake_up(&conf->wait_barrier);
 807
 808        while (bio) { /* submit pending writes */
 809                struct bio *next = bio->bi_next;
 810                struct md_rdev *rdev = (void *)bio->bi_disk;
 811                bio->bi_next = NULL;
 812                bio_set_dev(bio, rdev->bdev);
 813                if (test_bit(Faulty, &rdev->flags)) {
 814                        bio_io_error(bio);
 815                } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
 816                                    !blk_queue_discard(bio->bi_disk->queue)))
 817                        /* Just ignore it */
 818                        bio_endio(bio);
 819                else
 820                        generic_make_request(bio);
 821                bio = next;
 822        }
 823}
 824
 825static void flush_pending_writes(struct r1conf *conf)
 826{
 827        /* Any writes that have been queued but are awaiting
 828         * bitmap updates get flushed here.
 829         */
 830        spin_lock_irq(&conf->device_lock);
 831
 832        if (conf->pending_bio_list.head) {
 833                struct blk_plug plug;
 834                struct bio *bio;
 835
 836                bio = bio_list_get(&conf->pending_bio_list);
 837                conf->pending_count = 0;
 838                spin_unlock_irq(&conf->device_lock);
 839
 840                /*
 841                 * As this is called in a wait_event() loop (see freeze_array),
 842                 * current->state might be TASK_UNINTERRUPTIBLE which will
 843                 * cause a warning when we prepare to wait again.  As it is
 844                 * rare that this path is taken, it is perfectly safe to force
 845                 * us to go around the wait_event() loop again, so the warning
 846                 * is a false-positive.  Silence the warning by resetting
 847                 * thread state
 848                 */
 849                __set_current_state(TASK_RUNNING);
 850                blk_start_plug(&plug);
 851                flush_bio_list(conf, bio);
 852                blk_finish_plug(&plug);
 853        } else
 854                spin_unlock_irq(&conf->device_lock);
 855}
 856
 857/* Barriers....
 858 * Sometimes we need to suspend IO while we do something else,
 859 * either some resync/recovery, or reconfigure the array.
 860 * To do this we raise a 'barrier'.
 861 * The 'barrier' is a counter that can be raised multiple times
 862 * to count how many activities are happening which preclude
 863 * normal IO.
 864 * We can only raise the barrier if there is no pending IO.
 865 * i.e. if nr_pending == 0.
 866 * We choose only to raise the barrier if no-one is waiting for the
 867 * barrier to go down.  This means that as soon as an IO request
 868 * is ready, no other operations which require a barrier will start
 869 * until the IO request has had a chance.
 870 *
 871 * So: regular IO calls 'wait_barrier'.  When that returns there
 872 *    is no backgroup IO happening,  It must arrange to call
 873 *    allow_barrier when it has finished its IO.
 874 * backgroup IO calls must call raise_barrier.  Once that returns
 875 *    there is no normal IO happeing.  It must arrange to call
 876 *    lower_barrier when the particular background IO completes.
 877 *
 878 * If resync/recovery is interrupted, returns -EINTR;
 879 * Otherwise, returns 0.
 880 */
 881static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
 882{
 883        int idx = sector_to_idx(sector_nr);
 884
 885        spin_lock_irq(&conf->resync_lock);
 886
 887        /* Wait until no block IO is waiting */
 888        wait_event_lock_irq(conf->wait_barrier,
 889                            !atomic_read(&conf->nr_waiting[idx]),
 890                            conf->resync_lock);
 891
 892        /* block any new IO from starting */
 893        atomic_inc(&conf->barrier[idx]);
 894        /*
 895         * In raise_barrier() we firstly increase conf->barrier[idx] then
 896         * check conf->nr_pending[idx]. In _wait_barrier() we firstly
 897         * increase conf->nr_pending[idx] then check conf->barrier[idx].
 898         * A memory barrier here to make sure conf->nr_pending[idx] won't
 899         * be fetched before conf->barrier[idx] is increased. Otherwise
 900         * there will be a race between raise_barrier() and _wait_barrier().
 901         */
 902        smp_mb__after_atomic();
 903
 904        /* For these conditions we must wait:
 905         * A: while the array is in frozen state
 906         * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
 907         *    existing in corresponding I/O barrier bucket.
 908         * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
 909         *    max resync count which allowed on current I/O barrier bucket.
 910         */
 911        wait_event_lock_irq(conf->wait_barrier,
 912                            (!conf->array_frozen &&
 913                             !atomic_read(&conf->nr_pending[idx]) &&
 914                             atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
 915                                test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
 916                            conf->resync_lock);
 917
 918        if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
 919                atomic_dec(&conf->barrier[idx]);
 920                spin_unlock_irq(&conf->resync_lock);
 921                wake_up(&conf->wait_barrier);
 922                return -EINTR;
 923        }
 924
 925        atomic_inc(&conf->nr_sync_pending);
 926        spin_unlock_irq(&conf->resync_lock);
 927
 928        return 0;
 929}
 930
 931static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
 932{
 933        int idx = sector_to_idx(sector_nr);
 934
 935        BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
 936
 937        atomic_dec(&conf->barrier[idx]);
 938        atomic_dec(&conf->nr_sync_pending);
 939        wake_up(&conf->wait_barrier);
 940}
 941
 942static void _wait_barrier(struct r1conf *conf, int idx)
 943{
 944        /*
 945         * We need to increase conf->nr_pending[idx] very early here,
 946         * then raise_barrier() can be blocked when it waits for
 947         * conf->nr_pending[idx] to be 0. Then we can avoid holding
 948         * conf->resync_lock when there is no barrier raised in same
 949         * barrier unit bucket. Also if the array is frozen, I/O
 950         * should be blocked until array is unfrozen.
 951         */
 952        atomic_inc(&conf->nr_pending[idx]);
 953        /*
 954         * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
 955         * check conf->barrier[idx]. In raise_barrier() we firstly increase
 956         * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
 957         * barrier is necessary here to make sure conf->barrier[idx] won't be
 958         * fetched before conf->nr_pending[idx] is increased. Otherwise there
 959         * will be a race between _wait_barrier() and raise_barrier().
 960         */
 961        smp_mb__after_atomic();
 962
 963        /*
 964         * Don't worry about checking two atomic_t variables at same time
 965         * here. If during we check conf->barrier[idx], the array is
 966         * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
 967         * 0, it is safe to return and make the I/O continue. Because the
 968         * array is frozen, all I/O returned here will eventually complete
 969         * or be queued, no race will happen. See code comment in
 970         * frozen_array().
 971         */
 972        if (!READ_ONCE(conf->array_frozen) &&
 973            !atomic_read(&conf->barrier[idx]))
 974                return;
 975
 976        /*
 977         * After holding conf->resync_lock, conf->nr_pending[idx]
 978         * should be decreased before waiting for barrier to drop.
 979         * Otherwise, we may encounter a race condition because
 980         * raise_barrer() might be waiting for conf->nr_pending[idx]
 981         * to be 0 at same time.
 982         */
 983        spin_lock_irq(&conf->resync_lock);
 984        atomic_inc(&conf->nr_waiting[idx]);
 985        atomic_dec(&conf->nr_pending[idx]);
 986        /*
 987         * In case freeze_array() is waiting for
 988         * get_unqueued_pending() == extra
 989         */
 990        wake_up(&conf->wait_barrier);
 991        /* Wait for the barrier in same barrier unit bucket to drop. */
 992        wait_event_lock_irq(conf->wait_barrier,
 993                            !conf->array_frozen &&
 994                             !atomic_read(&conf->barrier[idx]),
 995                            conf->resync_lock);
 996        atomic_inc(&conf->nr_pending[idx]);
 997        atomic_dec(&conf->nr_waiting[idx]);
 998        spin_unlock_irq(&conf->resync_lock);
 999}
1000
1001static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
1002{
1003        int idx = sector_to_idx(sector_nr);
1004
1005        /*
1006         * Very similar to _wait_barrier(). The difference is, for read
1007         * I/O we don't need wait for sync I/O, but if the whole array
1008         * is frozen, the read I/O still has to wait until the array is
1009         * unfrozen. Since there is no ordering requirement with
1010         * conf->barrier[idx] here, memory barrier is unnecessary as well.
1011         */
1012        atomic_inc(&conf->nr_pending[idx]);
1013
1014        if (!READ_ONCE(conf->array_frozen))
1015                return;
1016
1017        spin_lock_irq(&conf->resync_lock);
1018        atomic_inc(&conf->nr_waiting[idx]);
1019        atomic_dec(&conf->nr_pending[idx]);
1020        /*
1021         * In case freeze_array() is waiting for
1022         * get_unqueued_pending() == extra
1023         */
1024        wake_up(&conf->wait_barrier);
1025        /* Wait for array to be unfrozen */
1026        wait_event_lock_irq(conf->wait_barrier,
1027                            !conf->array_frozen,
1028                            conf->resync_lock);
1029        atomic_inc(&conf->nr_pending[idx]);
1030        atomic_dec(&conf->nr_waiting[idx]);
1031        spin_unlock_irq(&conf->resync_lock);
1032}
1033
1034static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1035{
1036        int idx = sector_to_idx(sector_nr);
1037
1038        _wait_barrier(conf, idx);
1039}
1040
1041static void _allow_barrier(struct r1conf *conf, int idx)
1042{
1043        atomic_dec(&conf->nr_pending[idx]);
1044        wake_up(&conf->wait_barrier);
1045}
1046
1047static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1048{
1049        int idx = sector_to_idx(sector_nr);
1050
1051        _allow_barrier(conf, idx);
1052}
1053
1054/* conf->resync_lock should be held */
1055static int get_unqueued_pending(struct r1conf *conf)
1056{
1057        int idx, ret;
1058
1059        ret = atomic_read(&conf->nr_sync_pending);
1060        for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1061                ret += atomic_read(&conf->nr_pending[idx]) -
1062                        atomic_read(&conf->nr_queued[idx]);
1063
1064        return ret;
1065}
1066
1067static void freeze_array(struct r1conf *conf, int extra)
1068{
1069        /* Stop sync I/O and normal I/O and wait for everything to
1070         * go quiet.
1071         * This is called in two situations:
1072         * 1) management command handlers (reshape, remove disk, quiesce).
1073         * 2) one normal I/O request failed.
1074
1075         * After array_frozen is set to 1, new sync IO will be blocked at
1076         * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1077         * or wait_read_barrier(). The flying I/Os will either complete or be
1078         * queued. When everything goes quite, there are only queued I/Os left.
1079
1080         * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1081         * barrier bucket index which this I/O request hits. When all sync and
1082         * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1083         * of all conf->nr_queued[]. But normal I/O failure is an exception,
1084         * in handle_read_error(), we may call freeze_array() before trying to
1085         * fix the read error. In this case, the error read I/O is not queued,
1086         * so get_unqueued_pending() == 1.
1087         *
1088         * Therefore before this function returns, we need to wait until
1089         * get_unqueued_pendings(conf) gets equal to extra. For
1090         * normal I/O context, extra is 1, in rested situations extra is 0.
1091         */
1092        spin_lock_irq(&conf->resync_lock);
1093        conf->array_frozen = 1;
1094        raid1_log(conf->mddev, "wait freeze");
1095        wait_event_lock_irq_cmd(
1096                conf->wait_barrier,
1097                get_unqueued_pending(conf) == extra,
1098                conf->resync_lock,
1099                flush_pending_writes(conf));
1100        spin_unlock_irq(&conf->resync_lock);
1101}
1102static void unfreeze_array(struct r1conf *conf)
1103{
1104        /* reverse the effect of the freeze */
1105        spin_lock_irq(&conf->resync_lock);
1106        conf->array_frozen = 0;
1107        spin_unlock_irq(&conf->resync_lock);
1108        wake_up(&conf->wait_barrier);
1109}
1110
1111static void alloc_behind_master_bio(struct r1bio *r1_bio,
1112                                           struct bio *bio)
1113{
1114        int size = bio->bi_iter.bi_size;
1115        unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1116        int i = 0;
1117        struct bio *behind_bio = NULL;
1118
1119        behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1120        if (!behind_bio)
1121                return;
1122
1123        /* discard op, we don't support writezero/writesame yet */
1124        if (!bio_has_data(bio)) {
1125                behind_bio->bi_iter.bi_size = size;
1126                goto skip_copy;
1127        }
1128
1129        behind_bio->bi_write_hint = bio->bi_write_hint;
1130
1131        while (i < vcnt && size) {
1132                struct page *page;
1133                int len = min_t(int, PAGE_SIZE, size);
1134
1135                page = alloc_page(GFP_NOIO);
1136                if (unlikely(!page))
1137                        goto free_pages;
1138
1139                bio_add_page(behind_bio, page, len, 0);
1140
1141                size -= len;
1142                i++;
1143        }
1144
1145        bio_copy_data(behind_bio, bio);
1146skip_copy:
1147        r1_bio->behind_master_bio = behind_bio;
1148        set_bit(R1BIO_BehindIO, &r1_bio->state);
1149
1150        return;
1151
1152free_pages:
1153        pr_debug("%dB behind alloc failed, doing sync I/O\n",
1154                 bio->bi_iter.bi_size);
1155        bio_free_pages(behind_bio);
1156        bio_put(behind_bio);
1157}
1158
1159struct raid1_plug_cb {
1160        struct blk_plug_cb      cb;
1161        struct bio_list         pending;
1162        int                     pending_cnt;
1163};
1164
1165static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1166{
1167        struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1168                                                  cb);
1169        struct mddev *mddev = plug->cb.data;
1170        struct r1conf *conf = mddev->private;
1171        struct bio *bio;
1172
1173        if (from_schedule || current->bio_list) {
1174                spin_lock_irq(&conf->device_lock);
1175                bio_list_merge(&conf->pending_bio_list, &plug->pending);
1176                conf->pending_count += plug->pending_cnt;
1177                spin_unlock_irq(&conf->device_lock);
1178                wake_up(&conf->wait_barrier);
1179                md_wakeup_thread(mddev->thread);
1180                kfree(plug);
1181                return;
1182        }
1183
1184        /* we aren't scheduling, so we can do the write-out directly. */
1185        bio = bio_list_get(&plug->pending);
1186        flush_bio_list(conf, bio);
1187        kfree(plug);
1188}
1189
1190static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1191{
1192        r1_bio->master_bio = bio;
1193        r1_bio->sectors = bio_sectors(bio);
1194        r1_bio->state = 0;
1195        r1_bio->mddev = mddev;
1196        r1_bio->sector = bio->bi_iter.bi_sector;
1197}
1198
1199static inline struct r1bio *
1200alloc_r1bio(struct mddev *mddev, struct bio *bio)
1201{
1202        struct r1conf *conf = mddev->private;
1203        struct r1bio *r1_bio;
1204
1205        r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1206        /* Ensure no bio records IO_BLOCKED */
1207        memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1208        init_r1bio(r1_bio, mddev, bio);
1209        return r1_bio;
1210}
1211
1212static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1213                               int max_read_sectors, struct r1bio *r1_bio)
1214{
1215        struct r1conf *conf = mddev->private;
1216        struct raid1_info *mirror;
1217        struct bio *read_bio;
1218        struct bitmap *bitmap = mddev->bitmap;
1219        const int op = bio_op(bio);
1220        const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1221        int max_sectors;
1222        int rdisk;
1223        bool print_msg = !!r1_bio;
1224        char b[BDEVNAME_SIZE];
1225
1226        /*
1227         * If r1_bio is set, we are blocking the raid1d thread
1228         * so there is a tiny risk of deadlock.  So ask for
1229         * emergency memory if needed.
1230         */
1231        gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1232
1233        if (print_msg) {
1234                /* Need to get the block device name carefully */
1235                struct md_rdev *rdev;
1236                rcu_read_lock();
1237                rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1238                if (rdev)
1239                        bdevname(rdev->bdev, b);
1240                else
1241                        strcpy(b, "???");
1242                rcu_read_unlock();
1243        }
1244
1245        /*
1246         * Still need barrier for READ in case that whole
1247         * array is frozen.
1248         */
1249        wait_read_barrier(conf, bio->bi_iter.bi_sector);
1250
1251        if (!r1_bio)
1252                r1_bio = alloc_r1bio(mddev, bio);
1253        else
1254                init_r1bio(r1_bio, mddev, bio);
1255        r1_bio->sectors = max_read_sectors;
1256
1257        /*
1258         * make_request() can abort the operation when read-ahead is being
1259         * used and no empty request is available.
1260         */
1261        rdisk = read_balance(conf, r1_bio, &max_sectors);
1262
1263        if (rdisk < 0) {
1264                /* couldn't find anywhere to read from */
1265                if (print_msg) {
1266                        pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1267                                            mdname(mddev),
1268                                            b,
1269                                            (unsigned long long)r1_bio->sector);
1270                }
1271                raid_end_bio_io(r1_bio);
1272                return;
1273        }
1274        mirror = conf->mirrors + rdisk;
1275
1276        if (print_msg)
1277                pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1278                                    mdname(mddev),
1279                                    (unsigned long long)r1_bio->sector,
1280                                    bdevname(mirror->rdev->bdev, b));
1281
1282        if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1283            bitmap) {
1284                /*
1285                 * Reading from a write-mostly device must take care not to
1286                 * over-take any writes that are 'behind'
1287                 */
1288                raid1_log(mddev, "wait behind writes");
1289                wait_event(bitmap->behind_wait,
1290                           atomic_read(&bitmap->behind_writes) == 0);
1291        }
1292
1293        if (max_sectors < bio_sectors(bio)) {
1294                struct bio *split = bio_split(bio, max_sectors,
1295                                              gfp, &conf->bio_split);
1296                bio_chain(split, bio);
1297                generic_make_request(bio);
1298                bio = split;
1299                r1_bio->master_bio = bio;
1300                r1_bio->sectors = max_sectors;
1301        }
1302
1303        r1_bio->read_disk = rdisk;
1304
1305        read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1306
1307        r1_bio->bios[rdisk] = read_bio;
1308
1309        read_bio->bi_iter.bi_sector = r1_bio->sector +
1310                mirror->rdev->data_offset;
1311        bio_set_dev(read_bio, mirror->rdev->bdev);
1312        read_bio->bi_end_io = raid1_end_read_request;
1313        bio_set_op_attrs(read_bio, op, do_sync);
1314        if (test_bit(FailFast, &mirror->rdev->flags) &&
1315            test_bit(R1BIO_FailFast, &r1_bio->state))
1316                read_bio->bi_opf |= MD_FAILFAST;
1317        read_bio->bi_private = r1_bio;
1318
1319        if (mddev->gendisk)
1320                trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1321                                disk_devt(mddev->gendisk), r1_bio->sector);
1322
1323        generic_make_request(read_bio);
1324}
1325
1326static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1327                                int max_write_sectors)
1328{
1329        struct r1conf *conf = mddev->private;
1330        struct r1bio *r1_bio;
1331        int i, disks;
1332        struct bitmap *bitmap = mddev->bitmap;
1333        unsigned long flags;
1334        struct md_rdev *blocked_rdev;
1335        struct blk_plug_cb *cb;
1336        struct raid1_plug_cb *plug = NULL;
1337        int first_clone;
1338        int max_sectors;
1339
1340        if (mddev_is_clustered(mddev) &&
1341             md_cluster_ops->area_resyncing(mddev, WRITE,
1342                     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1343
1344                DEFINE_WAIT(w);
1345                for (;;) {
1346                        prepare_to_wait(&conf->wait_barrier,
1347                                        &w, TASK_IDLE);
1348                        if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1349                                                        bio->bi_iter.bi_sector,
1350                                                        bio_end_sector(bio)))
1351                                break;
1352                        schedule();
1353                }
1354                finish_wait(&conf->wait_barrier, &w);
1355        }
1356
1357        /*
1358         * Register the new request and wait if the reconstruction
1359         * thread has put up a bar for new requests.
1360         * Continue immediately if no resync is active currently.
1361         */
1362        wait_barrier(conf, bio->bi_iter.bi_sector);
1363
1364        r1_bio = alloc_r1bio(mddev, bio);
1365        r1_bio->sectors = max_write_sectors;
1366
1367        if (conf->pending_count >= max_queued_requests) {
1368                md_wakeup_thread(mddev->thread);
1369                raid1_log(mddev, "wait queued");
1370                wait_event(conf->wait_barrier,
1371                           conf->pending_count < max_queued_requests);
1372        }
1373        /* first select target devices under rcu_lock and
1374         * inc refcount on their rdev.  Record them by setting
1375         * bios[x] to bio
1376         * If there are known/acknowledged bad blocks on any device on
1377         * which we have seen a write error, we want to avoid writing those
1378         * blocks.
1379         * This potentially requires several writes to write around
1380         * the bad blocks.  Each set of writes gets it's own r1bio
1381         * with a set of bios attached.
1382         */
1383
1384        disks = conf->raid_disks * 2;
1385 retry_write:
1386        blocked_rdev = NULL;
1387        rcu_read_lock();
1388        max_sectors = r1_bio->sectors;
1389        for (i = 0;  i < disks; i++) {
1390                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1391                if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1392                        atomic_inc(&rdev->nr_pending);
1393                        blocked_rdev = rdev;
1394                        break;
1395                }
1396                r1_bio->bios[i] = NULL;
1397                if (!rdev || test_bit(Faulty, &rdev->flags)) {
1398                        if (i < conf->raid_disks)
1399                                set_bit(R1BIO_Degraded, &r1_bio->state);
1400                        continue;
1401                }
1402
1403                atomic_inc(&rdev->nr_pending);
1404                if (test_bit(WriteErrorSeen, &rdev->flags)) {
1405                        sector_t first_bad;
1406                        int bad_sectors;
1407                        int is_bad;
1408
1409                        is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1410                                             &first_bad, &bad_sectors);
1411                        if (is_bad < 0) {
1412                                /* mustn't write here until the bad block is
1413                                 * acknowledged*/
1414                                set_bit(BlockedBadBlocks, &rdev->flags);
1415                                blocked_rdev = rdev;
1416                                break;
1417                        }
1418                        if (is_bad && first_bad <= r1_bio->sector) {
1419                                /* Cannot write here at all */
1420                                bad_sectors -= (r1_bio->sector - first_bad);
1421                                if (bad_sectors < max_sectors)
1422                                        /* mustn't write more than bad_sectors
1423                                         * to other devices yet
1424                                         */
1425                                        max_sectors = bad_sectors;
1426                                rdev_dec_pending(rdev, mddev);
1427                                /* We don't set R1BIO_Degraded as that
1428                                 * only applies if the disk is
1429                                 * missing, so it might be re-added,
1430                                 * and we want to know to recover this
1431                                 * chunk.
1432                                 * In this case the device is here,
1433                                 * and the fact that this chunk is not
1434                                 * in-sync is recorded in the bad
1435                                 * block log
1436                                 */
1437                                continue;
1438                        }
1439                        if (is_bad) {
1440                                int good_sectors = first_bad - r1_bio->sector;
1441                                if (good_sectors < max_sectors)
1442                                        max_sectors = good_sectors;
1443                        }
1444                }
1445                r1_bio->bios[i] = bio;
1446        }
1447        rcu_read_unlock();
1448
1449        if (unlikely(blocked_rdev)) {
1450                /* Wait for this device to become unblocked */
1451                int j;
1452
1453                for (j = 0; j < i; j++)
1454                        if (r1_bio->bios[j])
1455                                rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1456                r1_bio->state = 0;
1457                allow_barrier(conf, bio->bi_iter.bi_sector);
1458                raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1459                md_wait_for_blocked_rdev(blocked_rdev, mddev);
1460                wait_barrier(conf, bio->bi_iter.bi_sector);
1461                goto retry_write;
1462        }
1463
1464        if (max_sectors < bio_sectors(bio)) {
1465                struct bio *split = bio_split(bio, max_sectors,
1466                                              GFP_NOIO, &conf->bio_split);
1467                bio_chain(split, bio);
1468                generic_make_request(bio);
1469                bio = split;
1470                r1_bio->master_bio = bio;
1471                r1_bio->sectors = max_sectors;
1472        }
1473
1474        atomic_set(&r1_bio->remaining, 1);
1475        atomic_set(&r1_bio->behind_remaining, 0);
1476
1477        first_clone = 1;
1478
1479        for (i = 0; i < disks; i++) {
1480                struct bio *mbio = NULL;
1481                if (!r1_bio->bios[i])
1482                        continue;
1483
1484                if (first_clone) {
1485                        /* do behind I/O ?
1486                         * Not if there are too many, or cannot
1487                         * allocate memory, or a reader on WriteMostly
1488                         * is waiting for behind writes to flush */
1489                        if (bitmap &&
1490                            (atomic_read(&bitmap->behind_writes)
1491                             < mddev->bitmap_info.max_write_behind) &&
1492                            !waitqueue_active(&bitmap->behind_wait)) {
1493                                alloc_behind_master_bio(r1_bio, bio);
1494                        }
1495
1496                        md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1497                                             test_bit(R1BIO_BehindIO, &r1_bio->state));
1498                        first_clone = 0;
1499                }
1500
1501                if (r1_bio->behind_master_bio)
1502                        mbio = bio_clone_fast(r1_bio->behind_master_bio,
1503                                              GFP_NOIO, &mddev->bio_set);
1504                else
1505                        mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1506
1507                if (r1_bio->behind_master_bio) {
1508                        struct md_rdev *rdev = conf->mirrors[i].rdev;
1509
1510                        if (test_bit(WBCollisionCheck, &rdev->flags)) {
1511                                sector_t lo = r1_bio->sector;
1512                                sector_t hi = r1_bio->sector + r1_bio->sectors;
1513
1514                                wait_event(rdev->wb_io_wait,
1515                                           check_and_add_wb(rdev, lo, hi) == 0);
1516                        }
1517                        if (test_bit(WriteMostly, &rdev->flags))
1518                                atomic_inc(&r1_bio->behind_remaining);
1519                }
1520
1521                r1_bio->bios[i] = mbio;
1522
1523                mbio->bi_iter.bi_sector = (r1_bio->sector +
1524                                   conf->mirrors[i].rdev->data_offset);
1525                bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1526                mbio->bi_end_io = raid1_end_write_request;
1527                mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1528                if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1529                    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1530                    conf->raid_disks - mddev->degraded > 1)
1531                        mbio->bi_opf |= MD_FAILFAST;
1532                mbio->bi_private = r1_bio;
1533
1534                atomic_inc(&r1_bio->remaining);
1535
1536                if (mddev->gendisk)
1537                        trace_block_bio_remap(mbio->bi_disk->queue,
1538                                              mbio, disk_devt(mddev->gendisk),
1539                                              r1_bio->sector);
1540                /* flush_pending_writes() needs access to the rdev so...*/
1541                mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1542
1543                cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1544                if (cb)
1545                        plug = container_of(cb, struct raid1_plug_cb, cb);
1546                else
1547                        plug = NULL;
1548                if (plug) {
1549                        bio_list_add(&plug->pending, mbio);
1550                        plug->pending_cnt++;
1551                } else {
1552                        spin_lock_irqsave(&conf->device_lock, flags);
1553                        bio_list_add(&conf->pending_bio_list, mbio);
1554                        conf->pending_count++;
1555                        spin_unlock_irqrestore(&conf->device_lock, flags);
1556                        md_wakeup_thread(mddev->thread);
1557                }
1558        }
1559
1560        r1_bio_write_done(r1_bio);
1561
1562        /* In case raid1d snuck in to freeze_array */
1563        wake_up(&conf->wait_barrier);
1564}
1565
1566static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1567{
1568        sector_t sectors;
1569
1570        if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1571                md_flush_request(mddev, bio);
1572                return true;
1573        }
1574
1575        /*
1576         * There is a limit to the maximum size, but
1577         * the read/write handler might find a lower limit
1578         * due to bad blocks.  To avoid multiple splits,
1579         * we pass the maximum number of sectors down
1580         * and let the lower level perform the split.
1581         */
1582        sectors = align_to_barrier_unit_end(
1583                bio->bi_iter.bi_sector, bio_sectors(bio));
1584
1585        if (bio_data_dir(bio) == READ)
1586                raid1_read_request(mddev, bio, sectors, NULL);
1587        else {
1588                if (!md_write_start(mddev,bio))
1589                        return false;
1590                raid1_write_request(mddev, bio, sectors);
1591        }
1592        return true;
1593}
1594
1595static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1596{
1597        struct r1conf *conf = mddev->private;
1598        int i;
1599
1600        seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1601                   conf->raid_disks - mddev->degraded);
1602        rcu_read_lock();
1603        for (i = 0; i < conf->raid_disks; i++) {
1604                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1605                seq_printf(seq, "%s",
1606                           rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1607        }
1608        rcu_read_unlock();
1609        seq_printf(seq, "]");
1610}
1611
1612static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1613{
1614        char b[BDEVNAME_SIZE];
1615        struct r1conf *conf = mddev->private;
1616        unsigned long flags;
1617
1618        /*
1619         * If it is not operational, then we have already marked it as dead
1620         * else if it is the last working disks with "fail_last_dev == false",
1621         * ignore the error, let the next level up know.
1622         * else mark the drive as failed
1623         */
1624        spin_lock_irqsave(&conf->device_lock, flags);
1625        if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1626            && (conf->raid_disks - mddev->degraded) == 1) {
1627                /*
1628                 * Don't fail the drive, act as though we were just a
1629                 * normal single drive.
1630                 * However don't try a recovery from this drive as
1631                 * it is very likely to fail.
1632                 */
1633                conf->recovery_disabled = mddev->recovery_disabled;
1634                spin_unlock_irqrestore(&conf->device_lock, flags);
1635                return;
1636        }
1637        set_bit(Blocked, &rdev->flags);
1638        if (test_and_clear_bit(In_sync, &rdev->flags))
1639                mddev->degraded++;
1640        set_bit(Faulty, &rdev->flags);
1641        spin_unlock_irqrestore(&conf->device_lock, flags);
1642        /*
1643         * if recovery is running, make sure it aborts.
1644         */
1645        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1646        set_mask_bits(&mddev->sb_flags, 0,
1647                      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1648        pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1649                "md/raid1:%s: Operation continuing on %d devices.\n",
1650                mdname(mddev), bdevname(rdev->bdev, b),
1651                mdname(mddev), conf->raid_disks - mddev->degraded);
1652}
1653
1654static void print_conf(struct r1conf *conf)
1655{
1656        int i;
1657
1658        pr_debug("RAID1 conf printout:\n");
1659        if (!conf) {
1660                pr_debug("(!conf)\n");
1661                return;
1662        }
1663        pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1664                 conf->raid_disks);
1665
1666        rcu_read_lock();
1667        for (i = 0; i < conf->raid_disks; i++) {
1668                char b[BDEVNAME_SIZE];
1669                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1670                if (rdev)
1671                        pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1672                                 i, !test_bit(In_sync, &rdev->flags),
1673                                 !test_bit(Faulty, &rdev->flags),
1674                                 bdevname(rdev->bdev,b));
1675        }
1676        rcu_read_unlock();
1677}
1678
1679static void close_sync(struct r1conf *conf)
1680{
1681        int idx;
1682
1683        for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1684                _wait_barrier(conf, idx);
1685                _allow_barrier(conf, idx);
1686        }
1687
1688        mempool_exit(&conf->r1buf_pool);
1689}
1690
1691static int raid1_spare_active(struct mddev *mddev)
1692{
1693        int i;
1694        struct r1conf *conf = mddev->private;
1695        int count = 0;
1696        unsigned long flags;
1697
1698        /*
1699         * Find all failed disks within the RAID1 configuration
1700         * and mark them readable.
1701         * Called under mddev lock, so rcu protection not needed.
1702         * device_lock used to avoid races with raid1_end_read_request
1703         * which expects 'In_sync' flags and ->degraded to be consistent.
1704         */
1705        spin_lock_irqsave(&conf->device_lock, flags);
1706        for (i = 0; i < conf->raid_disks; i++) {
1707                struct md_rdev *rdev = conf->mirrors[i].rdev;
1708                struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1709                if (repl
1710                    && !test_bit(Candidate, &repl->flags)
1711                    && repl->recovery_offset == MaxSector
1712                    && !test_bit(Faulty, &repl->flags)
1713                    && !test_and_set_bit(In_sync, &repl->flags)) {
1714                        /* replacement has just become active */
1715                        if (!rdev ||
1716                            !test_and_clear_bit(In_sync, &rdev->flags))
1717                                count++;
1718                        if (rdev) {
1719                                /* Replaced device not technically
1720                                 * faulty, but we need to be sure
1721                                 * it gets removed and never re-added
1722                                 */
1723                                set_bit(Faulty, &rdev->flags);
1724                                sysfs_notify_dirent_safe(
1725                                        rdev->sysfs_state);
1726                        }
1727                }
1728                if (rdev
1729                    && rdev->recovery_offset == MaxSector
1730                    && !test_bit(Faulty, &rdev->flags)
1731                    && !test_and_set_bit(In_sync, &rdev->flags)) {
1732                        count++;
1733                        sysfs_notify_dirent_safe(rdev->sysfs_state);
1734                }
1735        }
1736        mddev->degraded -= count;
1737        spin_unlock_irqrestore(&conf->device_lock, flags);
1738
1739        print_conf(conf);
1740        return count;
1741}
1742
1743static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1744{
1745        struct r1conf *conf = mddev->private;
1746        int err = -EEXIST;
1747        int mirror = 0;
1748        struct raid1_info *p;
1749        int first = 0;
1750        int last = conf->raid_disks - 1;
1751
1752        if (mddev->recovery_disabled == conf->recovery_disabled)
1753                return -EBUSY;
1754
1755        if (md_integrity_add_rdev(rdev, mddev))
1756                return -ENXIO;
1757
1758        if (rdev->raid_disk >= 0)
1759                first = last = rdev->raid_disk;
1760
1761        /*
1762         * find the disk ... but prefer rdev->saved_raid_disk
1763         * if possible.
1764         */
1765        if (rdev->saved_raid_disk >= 0 &&
1766            rdev->saved_raid_disk >= first &&
1767            rdev->saved_raid_disk < conf->raid_disks &&
1768            conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1769                first = last = rdev->saved_raid_disk;
1770
1771        for (mirror = first; mirror <= last; mirror++) {
1772                p = conf->mirrors + mirror;
1773                if (!p->rdev) {
1774                        if (mddev->gendisk)
1775                                disk_stack_limits(mddev->gendisk, rdev->bdev,
1776                                                  rdev->data_offset << 9);
1777
1778                        p->head_position = 0;
1779                        rdev->raid_disk = mirror;
1780                        err = 0;
1781                        /* As all devices are equivalent, we don't need a full recovery
1782                         * if this was recently any drive of the array
1783                         */
1784                        if (rdev->saved_raid_disk < 0)
1785                                conf->fullsync = 1;
1786                        rcu_assign_pointer(p->rdev, rdev);
1787                        break;
1788                }
1789                if (test_bit(WantReplacement, &p->rdev->flags) &&
1790                    p[conf->raid_disks].rdev == NULL) {
1791                        /* Add this device as a replacement */
1792                        clear_bit(In_sync, &rdev->flags);
1793                        set_bit(Replacement, &rdev->flags);
1794                        rdev->raid_disk = mirror;
1795                        err = 0;
1796                        conf->fullsync = 1;
1797                        rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1798                        break;
1799                }
1800        }
1801        if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1802                blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1803        print_conf(conf);
1804        return err;
1805}
1806
1807static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1808{
1809        struct r1conf *conf = mddev->private;
1810        int err = 0;
1811        int number = rdev->raid_disk;
1812        struct raid1_info *p = conf->mirrors + number;
1813
1814        if (rdev != p->rdev)
1815                p = conf->mirrors + conf->raid_disks + number;
1816
1817        print_conf(conf);
1818        if (rdev == p->rdev) {
1819                if (test_bit(In_sync, &rdev->flags) ||
1820                    atomic_read(&rdev->nr_pending)) {
1821                        err = -EBUSY;
1822                        goto abort;
1823                }
1824                /* Only remove non-faulty devices if recovery
1825                 * is not possible.
1826                 */
1827                if (!test_bit(Faulty, &rdev->flags) &&
1828                    mddev->recovery_disabled != conf->recovery_disabled &&
1829                    mddev->degraded < conf->raid_disks) {
1830                        err = -EBUSY;
1831                        goto abort;
1832                }
1833                p->rdev = NULL;
1834                if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1835                        synchronize_rcu();
1836                        if (atomic_read(&rdev->nr_pending)) {
1837                                /* lost the race, try later */
1838                                err = -EBUSY;
1839                                p->rdev = rdev;
1840                                goto abort;
1841                        }
1842                }
1843                if (conf->mirrors[conf->raid_disks + number].rdev) {
1844                        /* We just removed a device that is being replaced.
1845                         * Move down the replacement.  We drain all IO before
1846                         * doing this to avoid confusion.
1847                         */
1848                        struct md_rdev *repl =
1849                                conf->mirrors[conf->raid_disks + number].rdev;
1850                        freeze_array(conf, 0);
1851                        if (atomic_read(&repl->nr_pending)) {
1852                                /* It means that some queued IO of retry_list
1853                                 * hold repl. Thus, we cannot set replacement
1854                                 * as NULL, avoiding rdev NULL pointer
1855                                 * dereference in sync_request_write and
1856                                 * handle_write_finished.
1857                                 */
1858                                err = -EBUSY;
1859                                unfreeze_array(conf);
1860                                goto abort;
1861                        }
1862                        clear_bit(Replacement, &repl->flags);
1863                        p->rdev = repl;
1864                        conf->mirrors[conf->raid_disks + number].rdev = NULL;
1865                        unfreeze_array(conf);
1866                }
1867
1868                clear_bit(WantReplacement, &rdev->flags);
1869                err = md_integrity_register(mddev);
1870        }
1871abort:
1872
1873        print_conf(conf);
1874        return err;
1875}
1876
1877static void end_sync_read(struct bio *bio)
1878{
1879        struct r1bio *r1_bio = get_resync_r1bio(bio);
1880
1881        update_head_pos(r1_bio->read_disk, r1_bio);
1882
1883        /*
1884         * we have read a block, now it needs to be re-written,
1885         * or re-read if the read failed.
1886         * We don't do much here, just schedule handling by raid1d
1887         */
1888        if (!bio->bi_status)
1889                set_bit(R1BIO_Uptodate, &r1_bio->state);
1890
1891        if (atomic_dec_and_test(&r1_bio->remaining))
1892                reschedule_retry(r1_bio);
1893}
1894
1895static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1896{
1897        sector_t sync_blocks = 0;
1898        sector_t s = r1_bio->sector;
1899        long sectors_to_go = r1_bio->sectors;
1900
1901        /* make sure these bits don't get cleared. */
1902        do {
1903                md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1904                s += sync_blocks;
1905                sectors_to_go -= sync_blocks;
1906        } while (sectors_to_go > 0);
1907}
1908
1909static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1910{
1911        if (atomic_dec_and_test(&r1_bio->remaining)) {
1912                struct mddev *mddev = r1_bio->mddev;
1913                int s = r1_bio->sectors;
1914
1915                if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1916                    test_bit(R1BIO_WriteError, &r1_bio->state))
1917                        reschedule_retry(r1_bio);
1918                else {
1919                        put_buf(r1_bio);
1920                        md_done_sync(mddev, s, uptodate);
1921                }
1922        }
1923}
1924
1925static void end_sync_write(struct bio *bio)
1926{
1927        int uptodate = !bio->bi_status;
1928        struct r1bio *r1_bio = get_resync_r1bio(bio);
1929        struct mddev *mddev = r1_bio->mddev;
1930        struct r1conf *conf = mddev->private;
1931        sector_t first_bad;
1932        int bad_sectors;
1933        struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1934
1935        if (!uptodate) {
1936                abort_sync_write(mddev, r1_bio);
1937                set_bit(WriteErrorSeen, &rdev->flags);
1938                if (!test_and_set_bit(WantReplacement, &rdev->flags))
1939                        set_bit(MD_RECOVERY_NEEDED, &
1940                                mddev->recovery);
1941                set_bit(R1BIO_WriteError, &r1_bio->state);
1942        } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1943                               &first_bad, &bad_sectors) &&
1944                   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1945                                r1_bio->sector,
1946                                r1_bio->sectors,
1947                                &first_bad, &bad_sectors)
1948                )
1949                set_bit(R1BIO_MadeGood, &r1_bio->state);
1950
1951        put_sync_write_buf(r1_bio, uptodate);
1952}
1953
1954static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1955                            int sectors, struct page *page, int rw)
1956{
1957        if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1958                /* success */
1959                return 1;
1960        if (rw == WRITE) {
1961                set_bit(WriteErrorSeen, &rdev->flags);
1962                if (!test_and_set_bit(WantReplacement,
1963                                      &rdev->flags))
1964                        set_bit(MD_RECOVERY_NEEDED, &
1965                                rdev->mddev->recovery);
1966        }
1967        /* need to record an error - either for the block or the device */
1968        if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1969                md_error(rdev->mddev, rdev);
1970        return 0;
1971}
1972
1973static int fix_sync_read_error(struct r1bio *r1_bio)
1974{
1975        /* Try some synchronous reads of other devices to get
1976         * good data, much like with normal read errors.  Only
1977         * read into the pages we already have so we don't
1978         * need to re-issue the read request.
1979         * We don't need to freeze the array, because being in an
1980         * active sync request, there is no normal IO, and
1981         * no overlapping syncs.
1982         * We don't need to check is_badblock() again as we
1983         * made sure that anything with a bad block in range
1984         * will have bi_end_io clear.
1985         */
1986        struct mddev *mddev = r1_bio->mddev;
1987        struct r1conf *conf = mddev->private;
1988        struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1989        struct page **pages = get_resync_pages(bio)->pages;
1990        sector_t sect = r1_bio->sector;
1991        int sectors = r1_bio->sectors;
1992        int idx = 0;
1993        struct md_rdev *rdev;
1994
1995        rdev = conf->mirrors[r1_bio->read_disk].rdev;
1996        if (test_bit(FailFast, &rdev->flags)) {
1997                /* Don't try recovering from here - just fail it
1998                 * ... unless it is the last working device of course */
1999                md_error(mddev, rdev);
2000                if (test_bit(Faulty, &rdev->flags))
2001                        /* Don't try to read from here, but make sure
2002                         * put_buf does it's thing
2003                         */
2004                        bio->bi_end_io = end_sync_write;
2005        }
2006
2007        while(sectors) {
2008                int s = sectors;
2009                int d = r1_bio->read_disk;
2010                int success = 0;
2011                int start;
2012
2013                if (s > (PAGE_SIZE>>9))
2014                        s = PAGE_SIZE >> 9;
2015                do {
2016                        if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2017                                /* No rcu protection needed here devices
2018                                 * can only be removed when no resync is
2019                                 * active, and resync is currently active
2020                                 */
2021                                rdev = conf->mirrors[d].rdev;
2022                                if (sync_page_io(rdev, sect, s<<9,
2023                                                 pages[idx],
2024                                                 REQ_OP_READ, 0, false)) {
2025                                        success = 1;
2026                                        break;
2027                                }
2028                        }
2029                        d++;
2030                        if (d == conf->raid_disks * 2)
2031                                d = 0;
2032                } while (!success && d != r1_bio->read_disk);
2033
2034                if (!success) {
2035                        char b[BDEVNAME_SIZE];
2036                        int abort = 0;
2037                        /* Cannot read from anywhere, this block is lost.
2038                         * Record a bad block on each device.  If that doesn't
2039                         * work just disable and interrupt the recovery.
2040                         * Don't fail devices as that won't really help.
2041                         */
2042                        pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2043                                            mdname(mddev), bio_devname(bio, b),
2044                                            (unsigned long long)r1_bio->sector);
2045                        for (d = 0; d < conf->raid_disks * 2; d++) {
2046                                rdev = conf->mirrors[d].rdev;
2047                                if (!rdev || test_bit(Faulty, &rdev->flags))
2048                                        continue;
2049                                if (!rdev_set_badblocks(rdev, sect, s, 0))
2050                                        abort = 1;
2051                        }
2052                        if (abort) {
2053                                conf->recovery_disabled =
2054                                        mddev->recovery_disabled;
2055                                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2056                                md_done_sync(mddev, r1_bio->sectors, 0);
2057                                put_buf(r1_bio);
2058                                return 0;
2059                        }
2060                        /* Try next page */
2061                        sectors -= s;
2062                        sect += s;
2063                        idx++;
2064                        continue;
2065                }
2066
2067                start = d;
2068                /* write it back and re-read */
2069                while (d != r1_bio->read_disk) {
2070                        if (d == 0)
2071                                d = conf->raid_disks * 2;
2072                        d--;
2073                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2074                                continue;
2075                        rdev = conf->mirrors[d].rdev;
2076                        if (r1_sync_page_io(rdev, sect, s,
2077                                            pages[idx],
2078                                            WRITE) == 0) {
2079                                r1_bio->bios[d]->bi_end_io = NULL;
2080                                rdev_dec_pending(rdev, mddev);
2081                        }
2082                }
2083                d = start;
2084                while (d != r1_bio->read_disk) {
2085                        if (d == 0)
2086                                d = conf->raid_disks * 2;
2087                        d--;
2088                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2089                                continue;
2090                        rdev = conf->mirrors[d].rdev;
2091                        if (r1_sync_page_io(rdev, sect, s,
2092                                            pages[idx],
2093                                            READ) != 0)
2094                                atomic_add(s, &rdev->corrected_errors);
2095                }
2096                sectors -= s;
2097                sect += s;
2098                idx ++;
2099        }
2100        set_bit(R1BIO_Uptodate, &r1_bio->state);
2101        bio->bi_status = 0;
2102        return 1;
2103}
2104
2105static void process_checks(struct r1bio *r1_bio)
2106{
2107        /* We have read all readable devices.  If we haven't
2108         * got the block, then there is no hope left.
2109         * If we have, then we want to do a comparison
2110         * and skip the write if everything is the same.
2111         * If any blocks failed to read, then we need to
2112         * attempt an over-write
2113         */
2114        struct mddev *mddev = r1_bio->mddev;
2115        struct r1conf *conf = mddev->private;
2116        int primary;
2117        int i;
2118        int vcnt;
2119
2120        /* Fix variable parts of all bios */
2121        vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2122        for (i = 0; i < conf->raid_disks * 2; i++) {
2123                blk_status_t status;
2124                struct bio *b = r1_bio->bios[i];
2125                struct resync_pages *rp = get_resync_pages(b);
2126                if (b->bi_end_io != end_sync_read)
2127                        continue;
2128                /* fixup the bio for reuse, but preserve errno */
2129                status = b->bi_status;
2130                bio_reset(b);
2131                b->bi_status = status;
2132                b->bi_iter.bi_sector = r1_bio->sector +
2133                        conf->mirrors[i].rdev->data_offset;
2134                bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2135                b->bi_end_io = end_sync_read;
2136                rp->raid_bio = r1_bio;
2137                b->bi_private = rp;
2138
2139                /* initialize bvec table again */
2140                md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2141        }
2142        for (primary = 0; primary < conf->raid_disks * 2; primary++)
2143                if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2144                    !r1_bio->bios[primary]->bi_status) {
2145                        r1_bio->bios[primary]->bi_end_io = NULL;
2146                        rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2147                        break;
2148                }
2149        r1_bio->read_disk = primary;
2150        for (i = 0; i < conf->raid_disks * 2; i++) {
2151                int j = 0;
2152                struct bio *pbio = r1_bio->bios[primary];
2153                struct bio *sbio = r1_bio->bios[i];
2154                blk_status_t status = sbio->bi_status;
2155                struct page **ppages = get_resync_pages(pbio)->pages;
2156                struct page **spages = get_resync_pages(sbio)->pages;
2157                struct bio_vec *bi;
2158                int page_len[RESYNC_PAGES] = { 0 };
2159                struct bvec_iter_all iter_all;
2160
2161                if (sbio->bi_end_io != end_sync_read)
2162                        continue;
2163                /* Now we can 'fixup' the error value */
2164                sbio->bi_status = 0;
2165
2166                bio_for_each_segment_all(bi, sbio, iter_all)
2167                        page_len[j++] = bi->bv_len;
2168
2169                if (!status) {
2170                        for (j = vcnt; j-- ; ) {
2171                                if (memcmp(page_address(ppages[j]),
2172                                           page_address(spages[j]),
2173                                           page_len[j]))
2174                                        break;
2175                        }
2176                } else
2177                        j = 0;
2178                if (j >= 0)
2179                        atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2180                if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2181                              && !status)) {
2182                        /* No need to write to this device. */
2183                        sbio->bi_end_io = NULL;
2184                        rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2185                        continue;
2186                }
2187
2188                bio_copy_data(sbio, pbio);
2189        }
2190}
2191
2192static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2193{
2194        struct r1conf *conf = mddev->private;
2195        int i;
2196        int disks = conf->raid_disks * 2;
2197        struct bio *wbio;
2198
2199        if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2200                /* ouch - failed to read all of that. */
2201                if (!fix_sync_read_error(r1_bio))
2202                        return;
2203
2204        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2205                process_checks(r1_bio);
2206
2207        /*
2208         * schedule writes
2209         */
2210        atomic_set(&r1_bio->remaining, 1);
2211        for (i = 0; i < disks ; i++) {
2212                wbio = r1_bio->bios[i];
2213                if (wbio->bi_end_io == NULL ||
2214                    (wbio->bi_end_io == end_sync_read &&
2215                     (i == r1_bio->read_disk ||
2216                      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2217                        continue;
2218                if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2219                        abort_sync_write(mddev, r1_bio);
2220                        continue;
2221                }
2222
2223                bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2224                if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2225                        wbio->bi_opf |= MD_FAILFAST;
2226
2227                wbio->bi_end_io = end_sync_write;
2228                atomic_inc(&r1_bio->remaining);
2229                md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2230
2231                generic_make_request(wbio);
2232        }
2233
2234        put_sync_write_buf(r1_bio, 1);
2235}
2236
2237/*
2238 * This is a kernel thread which:
2239 *
2240 *      1.      Retries failed read operations on working mirrors.
2241 *      2.      Updates the raid superblock when problems encounter.
2242 *      3.      Performs writes following reads for array synchronising.
2243 */
2244
2245static void fix_read_error(struct r1conf *conf, int read_disk,
2246                           sector_t sect, int sectors)
2247{
2248        struct mddev *mddev = conf->mddev;
2249        while(sectors) {
2250                int s = sectors;
2251                int d = read_disk;
2252                int success = 0;
2253                int start;
2254                struct md_rdev *rdev;
2255
2256                if (s > (PAGE_SIZE>>9))
2257                        s = PAGE_SIZE >> 9;
2258
2259                do {
2260                        sector_t first_bad;
2261                        int bad_sectors;
2262
2263                        rcu_read_lock();
2264                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2265                        if (rdev &&
2266                            (test_bit(In_sync, &rdev->flags) ||
2267                             (!test_bit(Faulty, &rdev->flags) &&
2268                              rdev->recovery_offset >= sect + s)) &&
2269                            is_badblock(rdev, sect, s,
2270                                        &first_bad, &bad_sectors) == 0) {
2271                                atomic_inc(&rdev->nr_pending);
2272                                rcu_read_unlock();
2273                                if (sync_page_io(rdev, sect, s<<9,
2274                                         conf->tmppage, REQ_OP_READ, 0, false))
2275                                        success = 1;
2276                                rdev_dec_pending(rdev, mddev);
2277                                if (success)
2278                                        break;
2279                        } else
2280                                rcu_read_unlock();
2281                        d++;
2282                        if (d == conf->raid_disks * 2)
2283                                d = 0;
2284                } while (!success && d != read_disk);
2285
2286                if (!success) {
2287                        /* Cannot read from anywhere - mark it bad */
2288                        struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2289                        if (!rdev_set_badblocks(rdev, sect, s, 0))
2290                                md_error(mddev, rdev);
2291                        break;
2292                }
2293                /* write it back and re-read */
2294                start = d;
2295                while (d != read_disk) {
2296                        if (d==0)
2297                                d = conf->raid_disks * 2;
2298                        d--;
2299                        rcu_read_lock();
2300                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2301                        if (rdev &&
2302                            !test_bit(Faulty, &rdev->flags)) {
2303                                atomic_inc(&rdev->nr_pending);
2304                                rcu_read_unlock();
2305                                r1_sync_page_io(rdev, sect, s,
2306                                                conf->tmppage, WRITE);
2307                                rdev_dec_pending(rdev, mddev);
2308                        } else
2309                                rcu_read_unlock();
2310                }
2311                d = start;
2312                while (d != read_disk) {
2313                        char b[BDEVNAME_SIZE];
2314                        if (d==0)
2315                                d = conf->raid_disks * 2;
2316                        d--;
2317                        rcu_read_lock();
2318                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2319                        if (rdev &&
2320                            !test_bit(Faulty, &rdev->flags)) {
2321                                atomic_inc(&rdev->nr_pending);
2322                                rcu_read_unlock();
2323                                if (r1_sync_page_io(rdev, sect, s,
2324                                                    conf->tmppage, READ)) {
2325                                        atomic_add(s, &rdev->corrected_errors);
2326                                        pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2327                                                mdname(mddev), s,
2328                                                (unsigned long long)(sect +
2329                                                                     rdev->data_offset),
2330                                                bdevname(rdev->bdev, b));
2331                                }
2332                                rdev_dec_pending(rdev, mddev);
2333                        } else
2334                                rcu_read_unlock();
2335                }
2336                sectors -= s;
2337                sect += s;
2338        }
2339}
2340
2341static int narrow_write_error(struct r1bio *r1_bio, int i)
2342{
2343        struct mddev *mddev = r1_bio->mddev;
2344        struct r1conf *conf = mddev->private;
2345        struct md_rdev *rdev = conf->mirrors[i].rdev;
2346
2347        /* bio has the data to be written to device 'i' where
2348         * we just recently had a write error.
2349         * We repeatedly clone the bio and trim down to one block,
2350         * then try the write.  Where the write fails we record
2351         * a bad block.
2352         * It is conceivable that the bio doesn't exactly align with
2353         * blocks.  We must handle this somehow.
2354         *
2355         * We currently own a reference on the rdev.
2356         */
2357
2358        int block_sectors;
2359        sector_t sector;
2360        int sectors;
2361        int sect_to_write = r1_bio->sectors;
2362        int ok = 1;
2363
2364        if (rdev->badblocks.shift < 0)
2365                return 0;
2366
2367        block_sectors = roundup(1 << rdev->badblocks.shift,
2368                                bdev_logical_block_size(rdev->bdev) >> 9);
2369        sector = r1_bio->sector;
2370        sectors = ((sector + block_sectors)
2371                   & ~(sector_t)(block_sectors - 1))
2372                - sector;
2373
2374        while (sect_to_write) {
2375                struct bio *wbio;
2376                if (sectors > sect_to_write)
2377                        sectors = sect_to_write;
2378                /* Write at 'sector' for 'sectors'*/
2379
2380                if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2381                        wbio = bio_clone_fast(r1_bio->behind_master_bio,
2382                                              GFP_NOIO,
2383                                              &mddev->bio_set);
2384                } else {
2385                        wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2386                                              &mddev->bio_set);
2387                }
2388
2389                bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2390                wbio->bi_iter.bi_sector = r1_bio->sector;
2391                wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2392
2393                bio_trim(wbio, sector - r1_bio->sector, sectors);
2394                wbio->bi_iter.bi_sector += rdev->data_offset;
2395                bio_set_dev(wbio, rdev->bdev);
2396
2397                if (submit_bio_wait(wbio) < 0)
2398                        /* failure! */
2399                        ok = rdev_set_badblocks(rdev, sector,
2400                                                sectors, 0)
2401                                && ok;
2402
2403                bio_put(wbio);
2404                sect_to_write -= sectors;
2405                sector += sectors;
2406                sectors = block_sectors;
2407        }
2408        return ok;
2409}
2410
2411static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2412{
2413        int m;
2414        int s = r1_bio->sectors;
2415        for (m = 0; m < conf->raid_disks * 2 ; m++) {
2416                struct md_rdev *rdev = conf->mirrors[m].rdev;
2417                struct bio *bio = r1_bio->bios[m];
2418                if (bio->bi_end_io == NULL)
2419                        continue;
2420                if (!bio->bi_status &&
2421                    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2422                        rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2423                }
2424                if (bio->bi_status &&
2425                    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2426                        if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2427                                md_error(conf->mddev, rdev);
2428                }
2429        }
2430        put_buf(r1_bio);
2431        md_done_sync(conf->mddev, s, 1);
2432}
2433
2434static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2435{
2436        int m, idx;
2437        bool fail = false;
2438
2439        for (m = 0; m < conf->raid_disks * 2 ; m++)
2440                if (r1_bio->bios[m] == IO_MADE_GOOD) {
2441                        struct md_rdev *rdev = conf->mirrors[m].rdev;
2442                        rdev_clear_badblocks(rdev,
2443                                             r1_bio->sector,
2444                                             r1_bio->sectors, 0);
2445                        rdev_dec_pending(rdev, conf->mddev);
2446                } else if (r1_bio->bios[m] != NULL) {
2447                        /* This drive got a write error.  We need to
2448                         * narrow down and record precise write
2449                         * errors.
2450                         */
2451                        fail = true;
2452                        if (!narrow_write_error(r1_bio, m)) {
2453                                md_error(conf->mddev,
2454                                         conf->mirrors[m].rdev);
2455                                /* an I/O failed, we can't clear the bitmap */
2456                                set_bit(R1BIO_Degraded, &r1_bio->state);
2457                        }
2458                        rdev_dec_pending(conf->mirrors[m].rdev,
2459                                         conf->mddev);
2460                }
2461        if (fail) {
2462                spin_lock_irq(&conf->device_lock);
2463                list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2464                idx = sector_to_idx(r1_bio->sector);
2465                atomic_inc(&conf->nr_queued[idx]);
2466                spin_unlock_irq(&conf->device_lock);
2467                /*
2468                 * In case freeze_array() is waiting for condition
2469                 * get_unqueued_pending() == extra to be true.
2470                 */
2471                wake_up(&conf->wait_barrier);
2472                md_wakeup_thread(conf->mddev->thread);
2473        } else {
2474                if (test_bit(R1BIO_WriteError, &r1_bio->state))
2475                        close_write(r1_bio);
2476                raid_end_bio_io(r1_bio);
2477        }
2478}
2479
2480static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2481{
2482        struct mddev *mddev = conf->mddev;
2483        struct bio *bio;
2484        struct md_rdev *rdev;
2485
2486        clear_bit(R1BIO_ReadError, &r1_bio->state);
2487        /* we got a read error. Maybe the drive is bad.  Maybe just
2488         * the block and we can fix it.
2489         * We freeze all other IO, and try reading the block from
2490         * other devices.  When we find one, we re-write
2491         * and check it that fixes the read error.
2492         * This is all done synchronously while the array is
2493         * frozen
2494         */
2495
2496        bio = r1_bio->bios[r1_bio->read_disk];
2497        bio_put(bio);
2498        r1_bio->bios[r1_bio->read_disk] = NULL;
2499
2500        rdev = conf->mirrors[r1_bio->read_disk].rdev;
2501        if (mddev->ro == 0
2502            && !test_bit(FailFast, &rdev->flags)) {
2503                freeze_array(conf, 1);
2504                fix_read_error(conf, r1_bio->read_disk,
2505                               r1_bio->sector, r1_bio->sectors);
2506                unfreeze_array(conf);
2507        } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2508                md_error(mddev, rdev);
2509        } else {
2510                r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2511        }
2512
2513        rdev_dec_pending(rdev, conf->mddev);
2514        allow_barrier(conf, r1_bio->sector);
2515        bio = r1_bio->master_bio;
2516
2517        /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2518        r1_bio->state = 0;
2519        raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2520}
2521
2522static void raid1d(struct md_thread *thread)
2523{
2524        struct mddev *mddev = thread->mddev;
2525        struct r1bio *r1_bio;
2526        unsigned long flags;
2527        struct r1conf *conf = mddev->private;
2528        struct list_head *head = &conf->retry_list;
2529        struct blk_plug plug;
2530        int idx;
2531
2532        md_check_recovery(mddev);
2533
2534        if (!list_empty_careful(&conf->bio_end_io_list) &&
2535            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2536                LIST_HEAD(tmp);
2537                spin_lock_irqsave(&conf->device_lock, flags);
2538                if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2539                        list_splice_init(&conf->bio_end_io_list, &tmp);
2540                spin_unlock_irqrestore(&conf->device_lock, flags);
2541                while (!list_empty(&tmp)) {
2542                        r1_bio = list_first_entry(&tmp, struct r1bio,
2543                                                  retry_list);
2544                        list_del(&r1_bio->retry_list);
2545                        idx = sector_to_idx(r1_bio->sector);
2546                        atomic_dec(&conf->nr_queued[idx]);
2547                        if (mddev->degraded)
2548                                set_bit(R1BIO_Degraded, &r1_bio->state);
2549                        if (test_bit(R1BIO_WriteError, &r1_bio->state))
2550                                close_write(r1_bio);
2551                        raid_end_bio_io(r1_bio);
2552                }
2553        }
2554
2555        blk_start_plug(&plug);
2556        for (;;) {
2557
2558                flush_pending_writes(conf);
2559
2560                spin_lock_irqsave(&conf->device_lock, flags);
2561                if (list_empty(head)) {
2562                        spin_unlock_irqrestore(&conf->device_lock, flags);
2563                        break;
2564                }
2565                r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2566                list_del(head->prev);
2567                idx = sector_to_idx(r1_bio->sector);
2568                atomic_dec(&conf->nr_queued[idx]);
2569                spin_unlock_irqrestore(&conf->device_lock, flags);
2570
2571                mddev = r1_bio->mddev;
2572                conf = mddev->private;
2573                if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2574                        if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2575                            test_bit(R1BIO_WriteError, &r1_bio->state))
2576                                handle_sync_write_finished(conf, r1_bio);
2577                        else
2578                                sync_request_write(mddev, r1_bio);
2579                } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2580                           test_bit(R1BIO_WriteError, &r1_bio->state))
2581                        handle_write_finished(conf, r1_bio);
2582                else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2583                        handle_read_error(conf, r1_bio);
2584                else
2585                        WARN_ON_ONCE(1);
2586
2587                cond_resched();
2588                if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2589                        md_check_recovery(mddev);
2590        }
2591        blk_finish_plug(&plug);
2592}
2593
2594static int init_resync(struct r1conf *conf)
2595{
2596        int buffs;
2597
2598        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2599        BUG_ON(mempool_initialized(&conf->r1buf_pool));
2600
2601        return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2602                            r1buf_pool_free, conf->poolinfo);
2603}
2604
2605static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2606{
2607        struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2608        struct resync_pages *rps;
2609        struct bio *bio;
2610        int i;
2611
2612        for (i = conf->poolinfo->raid_disks; i--; ) {
2613                bio = r1bio->bios[i];
2614                rps = bio->bi_private;
2615                bio_reset(bio);
2616                bio->bi_private = rps;
2617        }
2618        r1bio->master_bio = NULL;
2619        return r1bio;
2620}
2621
2622/*
2623 * perform a "sync" on one "block"
2624 *
2625 * We need to make sure that no normal I/O request - particularly write
2626 * requests - conflict with active sync requests.
2627 *
2628 * This is achieved by tracking pending requests and a 'barrier' concept
2629 * that can be installed to exclude normal IO requests.
2630 */
2631
2632static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2633                                   int *skipped)
2634{
2635        struct r1conf *conf = mddev->private;
2636        struct r1bio *r1_bio;
2637        struct bio *bio;
2638        sector_t max_sector, nr_sectors;
2639        int disk = -1;
2640        int i;
2641        int wonly = -1;
2642        int write_targets = 0, read_targets = 0;
2643        sector_t sync_blocks;
2644        int still_degraded = 0;
2645        int good_sectors = RESYNC_SECTORS;
2646        int min_bad = 0; /* number of sectors that are bad in all devices */
2647        int idx = sector_to_idx(sector_nr);
2648        int page_idx = 0;
2649
2650        if (!mempool_initialized(&conf->r1buf_pool))
2651                if (init_resync(conf))
2652                        return 0;
2653
2654        max_sector = mddev->dev_sectors;
2655        if (sector_nr >= max_sector) {
2656                /* If we aborted, we need to abort the
2657                 * sync on the 'current' bitmap chunk (there will
2658                 * only be one in raid1 resync.
2659                 * We can find the current addess in mddev->curr_resync
2660                 */
2661                if (mddev->curr_resync < max_sector) /* aborted */
2662                        md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2663                                           &sync_blocks, 1);
2664                else /* completed sync */
2665                        conf->fullsync = 0;
2666
2667                md_bitmap_close_sync(mddev->bitmap);
2668                close_sync(conf);
2669
2670                if (mddev_is_clustered(mddev)) {
2671                        conf->cluster_sync_low = 0;
2672                        conf->cluster_sync_high = 0;
2673                }
2674                return 0;
2675        }
2676
2677        if (mddev->bitmap == NULL &&
2678            mddev->recovery_cp == MaxSector &&
2679            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2680            conf->fullsync == 0) {
2681                *skipped = 1;
2682                return max_sector - sector_nr;
2683        }
2684        /* before building a request, check if we can skip these blocks..
2685         * This call the bitmap_start_sync doesn't actually record anything
2686         */
2687        if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2688            !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2689                /* We can skip this block, and probably several more */
2690                *skipped = 1;
2691                return sync_blocks;
2692        }
2693
2694        /*
2695         * If there is non-resync activity waiting for a turn, then let it
2696         * though before starting on this new sync request.
2697         */
2698        if (atomic_read(&conf->nr_waiting[idx]))
2699                schedule_timeout_uninterruptible(1);
2700
2701        /* we are incrementing sector_nr below. To be safe, we check against
2702         * sector_nr + two times RESYNC_SECTORS
2703         */
2704
2705        md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2706                mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2707
2708
2709        if (raise_barrier(conf, sector_nr))
2710                return 0;
2711
2712        r1_bio = raid1_alloc_init_r1buf(conf);
2713
2714        rcu_read_lock();
2715        /*
2716         * If we get a correctably read error during resync or recovery,
2717         * we might want to read from a different device.  So we
2718         * flag all drives that could conceivably be read from for READ,
2719         * and any others (which will be non-In_sync devices) for WRITE.
2720         * If a read fails, we try reading from something else for which READ
2721         * is OK.
2722         */
2723
2724        r1_bio->mddev = mddev;
2725        r1_bio->sector = sector_nr;
2726        r1_bio->state = 0;
2727        set_bit(R1BIO_IsSync, &r1_bio->state);
2728        /* make sure good_sectors won't go across barrier unit boundary */
2729        good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2730
2731        for (i = 0; i < conf->raid_disks * 2; i++) {
2732                struct md_rdev *rdev;
2733                bio = r1_bio->bios[i];
2734
2735                rdev = rcu_dereference(conf->mirrors[i].rdev);
2736                if (rdev == NULL ||
2737                    test_bit(Faulty, &rdev->flags)) {
2738                        if (i < conf->raid_disks)
2739                                still_degraded = 1;
2740                } else if (!test_bit(In_sync, &rdev->flags)) {
2741                        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2742                        bio->bi_end_io = end_sync_write;
2743                        write_targets ++;
2744                } else {
2745                        /* may need to read from here */
2746                        sector_t first_bad = MaxSector;
2747                        int bad_sectors;
2748
2749                        if (is_badblock(rdev, sector_nr, good_sectors,
2750                                        &first_bad, &bad_sectors)) {
2751                                if (first_bad > sector_nr)
2752                                        good_sectors = first_bad - sector_nr;
2753                                else {
2754                                        bad_sectors -= (sector_nr - first_bad);
2755                                        if (min_bad == 0 ||
2756                                            min_bad > bad_sectors)
2757                                                min_bad = bad_sectors;
2758                                }
2759                        }
2760                        if (sector_nr < first_bad) {
2761                                if (test_bit(WriteMostly, &rdev->flags)) {
2762                                        if (wonly < 0)
2763                                                wonly = i;
2764                                } else {
2765                                        if (disk < 0)
2766                                                disk = i;
2767                                }
2768                                bio_set_op_attrs(bio, REQ_OP_READ, 0);
2769                                bio->bi_end_io = end_sync_read;
2770                                read_targets++;
2771                        } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2772                                test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2773                                !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2774                                /*
2775                                 * The device is suitable for reading (InSync),
2776                                 * but has bad block(s) here. Let's try to correct them,
2777                                 * if we are doing resync or repair. Otherwise, leave
2778                                 * this device alone for this sync request.
2779                                 */
2780                                bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2781                                bio->bi_end_io = end_sync_write;
2782                                write_targets++;
2783                        }
2784                }
2785                if (bio->bi_end_io) {
2786                        atomic_inc(&rdev->nr_pending);
2787                        bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2788                        bio_set_dev(bio, rdev->bdev);
2789                        if (test_bit(FailFast, &rdev->flags))
2790                                bio->bi_opf |= MD_FAILFAST;
2791                }
2792        }
2793        rcu_read_unlock();
2794        if (disk < 0)
2795                disk = wonly;
2796        r1_bio->read_disk = disk;
2797
2798        if (read_targets == 0 && min_bad > 0) {
2799                /* These sectors are bad on all InSync devices, so we
2800                 * need to mark them bad on all write targets
2801                 */
2802                int ok = 1;
2803                for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2804                        if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2805                                struct md_rdev *rdev = conf->mirrors[i].rdev;
2806                                ok = rdev_set_badblocks(rdev, sector_nr,
2807                                                        min_bad, 0
2808                                        ) && ok;
2809                        }
2810                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2811                *skipped = 1;
2812                put_buf(r1_bio);
2813
2814                if (!ok) {
2815                        /* Cannot record the badblocks, so need to
2816                         * abort the resync.
2817                         * If there are multiple read targets, could just
2818                         * fail the really bad ones ???
2819                         */
2820                        conf->recovery_disabled = mddev->recovery_disabled;
2821                        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2822                        return 0;
2823                } else
2824                        return min_bad;
2825
2826        }
2827        if (min_bad > 0 && min_bad < good_sectors) {
2828                /* only resync enough to reach the next bad->good
2829                 * transition */
2830                good_sectors = min_bad;
2831        }
2832
2833        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2834                /* extra read targets are also write targets */
2835                write_targets += read_targets-1;
2836
2837        if (write_targets == 0 || read_targets == 0) {
2838                /* There is nowhere to write, so all non-sync
2839                 * drives must be failed - so we are finished
2840                 */
2841                sector_t rv;
2842                if (min_bad > 0)
2843                        max_sector = sector_nr + min_bad;
2844                rv = max_sector - sector_nr;
2845                *skipped = 1;
2846                put_buf(r1_bio);
2847                return rv;
2848        }
2849
2850        if (max_sector > mddev->resync_max)
2851                max_sector = mddev->resync_max; /* Don't do IO beyond here */
2852        if (max_sector > sector_nr + good_sectors)
2853                max_sector = sector_nr + good_sectors;
2854        nr_sectors = 0;
2855        sync_blocks = 0;
2856        do {
2857                struct page *page;
2858                int len = PAGE_SIZE;
2859                if (sector_nr + (len>>9) > max_sector)
2860                        len = (max_sector - sector_nr) << 9;
2861                if (len == 0)
2862                        break;
2863                if (sync_blocks == 0) {
2864                        if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2865                                                  &sync_blocks, still_degraded) &&
2866                            !conf->fullsync &&
2867                            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2868                                break;
2869                        if ((len >> 9) > sync_blocks)
2870                                len = sync_blocks<<9;
2871                }
2872
2873                for (i = 0 ; i < conf->raid_disks * 2; i++) {
2874                        struct resync_pages *rp;
2875
2876                        bio = r1_bio->bios[i];
2877                        rp = get_resync_pages(bio);
2878                        if (bio->bi_end_io) {
2879                                page = resync_fetch_page(rp, page_idx);
2880
2881                                /*
2882                                 * won't fail because the vec table is big
2883                                 * enough to hold all these pages
2884                                 */
2885                                bio_add_page(bio, page, len, 0);
2886                        }
2887                }
2888                nr_sectors += len>>9;
2889                sector_nr += len>>9;
2890                sync_blocks -= (len>>9);
2891        } while (++page_idx < RESYNC_PAGES);
2892
2893        r1_bio->sectors = nr_sectors;
2894
2895        if (mddev_is_clustered(mddev) &&
2896                        conf->cluster_sync_high < sector_nr + nr_sectors) {
2897                conf->cluster_sync_low = mddev->curr_resync_completed;
2898                conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2899                /* Send resync message */
2900                md_cluster_ops->resync_info_update(mddev,
2901                                conf->cluster_sync_low,
2902                                conf->cluster_sync_high);
2903        }
2904
2905        /* For a user-requested sync, we read all readable devices and do a
2906         * compare
2907         */
2908        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2909                atomic_set(&r1_bio->remaining, read_targets);
2910                for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2911                        bio = r1_bio->bios[i];
2912                        if (bio->bi_end_io == end_sync_read) {
2913                                read_targets--;
2914                                md_sync_acct_bio(bio, nr_sectors);
2915                                if (read_targets == 1)
2916                                        bio->bi_opf &= ~MD_FAILFAST;
2917                                generic_make_request(bio);
2918                        }
2919                }
2920        } else {
2921                atomic_set(&r1_bio->remaining, 1);
2922                bio = r1_bio->bios[r1_bio->read_disk];
2923                md_sync_acct_bio(bio, nr_sectors);
2924                if (read_targets == 1)
2925                        bio->bi_opf &= ~MD_FAILFAST;
2926                generic_make_request(bio);
2927        }
2928        return nr_sectors;
2929}
2930
2931static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2932{
2933        if (sectors)
2934                return sectors;
2935
2936        return mddev->dev_sectors;
2937}
2938
2939static struct r1conf *setup_conf(struct mddev *mddev)
2940{
2941        struct r1conf *conf;
2942        int i;
2943        struct raid1_info *disk;
2944        struct md_rdev *rdev;
2945        int err = -ENOMEM;
2946
2947        conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2948        if (!conf)
2949                goto abort;
2950
2951        conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2952                                   sizeof(atomic_t), GFP_KERNEL);
2953        if (!conf->nr_pending)
2954                goto abort;
2955
2956        conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2957                                   sizeof(atomic_t), GFP_KERNEL);
2958        if (!conf->nr_waiting)
2959                goto abort;
2960
2961        conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2962                                  sizeof(atomic_t), GFP_KERNEL);
2963        if (!conf->nr_queued)
2964                goto abort;
2965
2966        conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2967                                sizeof(atomic_t), GFP_KERNEL);
2968        if (!conf->barrier)
2969                goto abort;
2970
2971        conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2972                                            mddev->raid_disks, 2),
2973                                GFP_KERNEL);
2974        if (!conf->mirrors)
2975                goto abort;
2976
2977        conf->tmppage = alloc_page(GFP_KERNEL);
2978        if (!conf->tmppage)
2979                goto abort;
2980
2981        conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2982        if (!conf->poolinfo)
2983                goto abort;
2984        conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2985        err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2986                           rbio_pool_free, conf->poolinfo);
2987        if (err)
2988                goto abort;
2989
2990        err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2991        if (err)
2992                goto abort;
2993
2994        conf->poolinfo->mddev = mddev;
2995
2996        err = -EINVAL;
2997        spin_lock_init(&conf->device_lock);
2998        rdev_for_each(rdev, mddev) {
2999                int disk_idx = rdev->raid_disk;
3000                if (disk_idx >= mddev->raid_disks
3001                    || disk_idx < 0)
3002                        continue;
3003                if (test_bit(Replacement, &rdev->flags))
3004                        disk = conf->mirrors + mddev->raid_disks + disk_idx;
3005                else
3006                        disk = conf->mirrors + disk_idx;
3007
3008                if (disk->rdev)
3009                        goto abort;
3010                disk->rdev = rdev;
3011                disk->head_position = 0;
3012                disk->seq_start = MaxSector;
3013        }
3014        conf->raid_disks = mddev->raid_disks;
3015        conf->mddev = mddev;
3016        INIT_LIST_HEAD(&conf->retry_list);
3017        INIT_LIST_HEAD(&conf->bio_end_io_list);
3018
3019        spin_lock_init(&conf->resync_lock);
3020        init_waitqueue_head(&conf->wait_barrier);
3021
3022        bio_list_init(&conf->pending_bio_list);
3023        conf->pending_count = 0;
3024        conf->recovery_disabled = mddev->recovery_disabled - 1;
3025
3026        err = -EIO;
3027        for (i = 0; i < conf->raid_disks * 2; i++) {
3028
3029                disk = conf->mirrors + i;
3030
3031                if (i < conf->raid_disks &&
3032                    disk[conf->raid_disks].rdev) {
3033                        /* This slot has a replacement. */
3034                        if (!disk->rdev) {
3035                                /* No original, just make the replacement
3036                                 * a recovering spare
3037                                 */
3038                                disk->rdev =
3039                                        disk[conf->raid_disks].rdev;
3040                                disk[conf->raid_disks].rdev = NULL;
3041                        } else if (!test_bit(In_sync, &disk->rdev->flags))
3042                                /* Original is not in_sync - bad */
3043                                goto abort;
3044                }
3045
3046                if (!disk->rdev ||
3047                    !test_bit(In_sync, &disk->rdev->flags)) {
3048                        disk->head_position = 0;
3049                        if (disk->rdev &&
3050                            (disk->rdev->saved_raid_disk < 0))
3051                                conf->fullsync = 1;
3052                }
3053        }
3054
3055        err = -ENOMEM;
3056        conf->thread = md_register_thread(raid1d, mddev, "raid1");
3057        if (!conf->thread)
3058                goto abort;
3059
3060        return conf;
3061
3062 abort:
3063        if (conf) {
3064                mempool_exit(&conf->r1bio_pool);
3065                kfree(conf->mirrors);
3066                safe_put_page(conf->tmppage);
3067                kfree(conf->poolinfo);
3068                kfree(conf->nr_pending);
3069                kfree(conf->nr_waiting);
3070                kfree(conf->nr_queued);
3071                kfree(conf->barrier);
3072                bioset_exit(&conf->bio_split);
3073                kfree(conf);
3074        }
3075        return ERR_PTR(err);
3076}
3077
3078static void raid1_free(struct mddev *mddev, void *priv);
3079static int raid1_run(struct mddev *mddev)
3080{
3081        struct r1conf *conf;
3082        int i;
3083        struct md_rdev *rdev;
3084        int ret;
3085        bool discard_supported = false;
3086
3087        if (mddev->level != 1) {
3088                pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3089                        mdname(mddev), mddev->level);
3090                return -EIO;
3091        }
3092        if (mddev->reshape_position != MaxSector) {
3093                pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3094                        mdname(mddev));
3095                return -EIO;
3096        }
3097        if (mddev_init_writes_pending(mddev) < 0)
3098                return -ENOMEM;
3099        /*
3100         * copy the already verified devices into our private RAID1
3101         * bookkeeping area. [whatever we allocate in run(),
3102         * should be freed in raid1_free()]
3103         */
3104        if (mddev->private == NULL)
3105                conf = setup_conf(mddev);
3106        else
3107                conf = mddev->private;
3108
3109        if (IS_ERR(conf))
3110                return PTR_ERR(conf);
3111
3112        if (mddev->queue) {
3113                blk_queue_max_write_same_sectors(mddev->queue, 0);
3114                blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3115        }
3116
3117        rdev_for_each(rdev, mddev) {
3118                if (!mddev->gendisk)
3119                        continue;
3120                disk_stack_limits(mddev->gendisk, rdev->bdev,
3121                                  rdev->data_offset << 9);
3122                if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3123                        discard_supported = true;
3124        }
3125
3126        mddev->degraded = 0;
3127        for (i = 0; i < conf->raid_disks; i++)
3128                if (conf->mirrors[i].rdev == NULL ||
3129                    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3130                    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3131                        mddev->degraded++;
3132        /*
3133         * RAID1 needs at least one disk in active
3134         */
3135        if (conf->raid_disks - mddev->degraded < 1) {
3136                ret = -EINVAL;
3137                goto abort;
3138        }
3139
3140        if (conf->raid_disks - mddev->degraded == 1)
3141                mddev->recovery_cp = MaxSector;
3142
3143        if (mddev->recovery_cp != MaxSector)
3144                pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3145                        mdname(mddev));
3146        pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3147                mdname(mddev), mddev->raid_disks - mddev->degraded,
3148                mddev->raid_disks);
3149
3150        /*
3151         * Ok, everything is just fine now
3152         */
3153        mddev->thread = conf->thread;
3154        conf->thread = NULL;
3155        mddev->private = conf;
3156        set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3157
3158        md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3159
3160        if (mddev->queue) {
3161                if (discard_supported)
3162                        blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3163                                                mddev->queue);
3164                else
3165                        blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3166                                                  mddev->queue);
3167        }
3168
3169        ret = md_integrity_register(mddev);
3170        if (ret) {
3171                md_unregister_thread(&mddev->thread);
3172                goto abort;
3173        }
3174        return 0;
3175
3176abort:
3177        raid1_free(mddev, conf);
3178        return ret;
3179}
3180
3181static void raid1_free(struct mddev *mddev, void *priv)
3182{
3183        struct r1conf *conf = priv;
3184
3185        mempool_exit(&conf->r1bio_pool);
3186        kfree(conf->mirrors);
3187        safe_put_page(conf->tmppage);
3188        kfree(conf->poolinfo);
3189        kfree(conf->nr_pending);
3190        kfree(conf->nr_waiting);
3191        kfree(conf->nr_queued);
3192        kfree(conf->barrier);
3193        bioset_exit(&conf->bio_split);
3194        kfree(conf);
3195}
3196
3197static int raid1_resize(struct mddev *mddev, sector_t sectors)
3198{
3199        /* no resync is happening, and there is enough space
3200         * on all devices, so we can resize.
3201         * We need to make sure resync covers any new space.
3202         * If the array is shrinking we should possibly wait until
3203         * any io in the removed space completes, but it hardly seems
3204         * worth it.
3205         */
3206        sector_t newsize = raid1_size(mddev, sectors, 0);
3207        if (mddev->external_size &&
3208            mddev->array_sectors > newsize)
3209                return -EINVAL;
3210        if (mddev->bitmap) {
3211                int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3212                if (ret)
3213                        return ret;
3214        }
3215        md_set_array_sectors(mddev, newsize);
3216        if (sectors > mddev->dev_sectors &&
3217            mddev->recovery_cp > mddev->dev_sectors) {
3218                mddev->recovery_cp = mddev->dev_sectors;
3219                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3220        }
3221        mddev->dev_sectors = sectors;
3222        mddev->resync_max_sectors = sectors;
3223        return 0;
3224}
3225
3226static int raid1_reshape(struct mddev *mddev)
3227{
3228        /* We need to:
3229         * 1/ resize the r1bio_pool
3230         * 2/ resize conf->mirrors
3231         *
3232         * We allocate a new r1bio_pool if we can.
3233         * Then raise a device barrier and wait until all IO stops.
3234         * Then resize conf->mirrors and swap in the new r1bio pool.
3235         *
3236         * At the same time, we "pack" the devices so that all the missing
3237         * devices have the higher raid_disk numbers.
3238         */
3239        mempool_t newpool, oldpool;
3240        struct pool_info *newpoolinfo;
3241        struct raid1_info *newmirrors;
3242        struct r1conf *conf = mddev->private;
3243        int cnt, raid_disks;
3244        unsigned long flags;
3245        int d, d2;
3246        int ret;
3247
3248        memset(&newpool, 0, sizeof(newpool));
3249        memset(&oldpool, 0, sizeof(oldpool));
3250
3251        /* Cannot change chunk_size, layout, or level */
3252        if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3253            mddev->layout != mddev->new_layout ||
3254            mddev->level != mddev->new_level) {
3255                mddev->new_chunk_sectors = mddev->chunk_sectors;
3256                mddev->new_layout = mddev->layout;
3257                mddev->new_level = mddev->level;
3258                return -EINVAL;
3259        }
3260
3261        if (!mddev_is_clustered(mddev))
3262                md_allow_write(mddev);
3263
3264        raid_disks = mddev->raid_disks + mddev->delta_disks;
3265
3266        if (raid_disks < conf->raid_disks) {
3267                cnt=0;
3268                for (d= 0; d < conf->raid_disks; d++)
3269                        if (conf->mirrors[d].rdev)
3270                                cnt++;
3271                if (cnt > raid_disks)
3272                        return -EBUSY;
3273        }
3274
3275        newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3276        if (!newpoolinfo)
3277                return -ENOMEM;
3278        newpoolinfo->mddev = mddev;
3279        newpoolinfo->raid_disks = raid_disks * 2;
3280
3281        ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3282                           rbio_pool_free, newpoolinfo);
3283        if (ret) {
3284                kfree(newpoolinfo);
3285                return ret;
3286        }
3287        newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3288                                         raid_disks, 2),
3289                             GFP_KERNEL);
3290        if (!newmirrors) {
3291                kfree(newpoolinfo);
3292                mempool_exit(&newpool);
3293                return -ENOMEM;
3294        }
3295
3296        freeze_array(conf, 0);
3297
3298        /* ok, everything is stopped */
3299        oldpool = conf->r1bio_pool;
3300        conf->r1bio_pool = newpool;
3301
3302        for (d = d2 = 0; d < conf->raid_disks; d++) {
3303                struct md_rdev *rdev = conf->mirrors[d].rdev;
3304                if (rdev && rdev->raid_disk != d2) {
3305                        sysfs_unlink_rdev(mddev, rdev);
3306                        rdev->raid_disk = d2;
3307                        sysfs_unlink_rdev(mddev, rdev);
3308                        if (sysfs_link_rdev(mddev, rdev))
3309                                pr_warn("md/raid1:%s: cannot register rd%d\n",
3310                                        mdname(mddev), rdev->raid_disk);
3311                }
3312                if (rdev)
3313                        newmirrors[d2++].rdev = rdev;
3314        }
3315        kfree(conf->mirrors);
3316        conf->mirrors = newmirrors;
3317        kfree(conf->poolinfo);
3318        conf->poolinfo = newpoolinfo;
3319
3320        spin_lock_irqsave(&conf->device_lock, flags);
3321        mddev->degraded += (raid_disks - conf->raid_disks);
3322        spin_unlock_irqrestore(&conf->device_lock, flags);
3323        conf->raid_disks = mddev->raid_disks = raid_disks;
3324        mddev->delta_disks = 0;
3325
3326        unfreeze_array(conf);
3327
3328        set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3329        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3330        md_wakeup_thread(mddev->thread);
3331
3332        mempool_exit(&oldpool);
3333        return 0;
3334}
3335
3336static void raid1_quiesce(struct mddev *mddev, int quiesce)
3337{
3338        struct r1conf *conf = mddev->private;
3339
3340        if (quiesce)
3341                freeze_array(conf, 0);
3342        else
3343                unfreeze_array(conf);
3344}
3345
3346static void *raid1_takeover(struct mddev *mddev)
3347{
3348        /* raid1 can take over:
3349         *  raid5 with 2 devices, any layout or chunk size
3350         */
3351        if (mddev->level == 5 && mddev->raid_disks == 2) {
3352                struct r1conf *conf;
3353                mddev->new_level = 1;
3354                mddev->new_layout = 0;
3355                mddev->new_chunk_sectors = 0;
3356                conf = setup_conf(mddev);
3357                if (!IS_ERR(conf)) {
3358                        /* Array must appear to be quiesced */
3359                        conf->array_frozen = 1;
3360                        mddev_clear_unsupported_flags(mddev,
3361                                UNSUPPORTED_MDDEV_FLAGS);
3362                }
3363                return conf;
3364        }
3365        return ERR_PTR(-EINVAL);
3366}
3367
3368static struct md_personality raid1_personality =
3369{
3370        .name           = "raid1",
3371        .level          = 1,
3372        .owner          = THIS_MODULE,
3373        .make_request   = raid1_make_request,
3374        .run            = raid1_run,
3375        .free           = raid1_free,
3376        .status         = raid1_status,
3377        .error_handler  = raid1_error,
3378        .hot_add_disk   = raid1_add_disk,
3379        .hot_remove_disk= raid1_remove_disk,
3380        .spare_active   = raid1_spare_active,
3381        .sync_request   = raid1_sync_request,
3382        .resize         = raid1_resize,
3383        .size           = raid1_size,
3384        .check_reshape  = raid1_reshape,
3385        .quiesce        = raid1_quiesce,
3386        .takeover       = raid1_takeover,
3387        .congested      = raid1_congested,
3388};
3389
3390static int __init raid_init(void)
3391{
3392        return register_md_personality(&raid1_personality);
3393}
3394
3395static void raid_exit(void)
3396{
3397        unregister_md_personality(&raid1_personality);
3398}
3399
3400module_init(raid_init);
3401module_exit(raid_exit);
3402MODULE_LICENSE("GPL");
3403MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3404MODULE_ALIAS("md-personality-3"); /* RAID1 */
3405MODULE_ALIAS("md-raid1");
3406MODULE_ALIAS("md-level-1");
3407
3408module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3409