linux/drivers/media/pci/cx23885/cx23888-ir.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Driver for the Conexant CX23885/7/8 PCIe bridge
   4 *
   5 *  CX23888 Integrated Consumer Infrared Controller
   6 *
   7 *  Copyright (C) 2009  Andy Walls <awalls@md.metrocast.net>
   8 */
   9
  10#include "cx23885.h"
  11#include "cx23888-ir.h"
  12
  13#include <linux/kfifo.h>
  14#include <linux/slab.h>
  15
  16#include <media/v4l2-device.h>
  17#include <media/rc-core.h>
  18
  19static unsigned int ir_888_debug;
  20module_param(ir_888_debug, int, 0644);
  21MODULE_PARM_DESC(ir_888_debug, "enable debug messages [CX23888 IR controller]");
  22
  23#define CX23888_IR_REG_BASE     0x170000
  24/*
  25 * These CX23888 register offsets have a straightforward one to one mapping
  26 * to the CX23885 register offsets of 0x200 through 0x218
  27 */
  28#define CX23888_IR_CNTRL_REG    0x170000
  29#define CNTRL_WIN_3_3   0x00000000
  30#define CNTRL_WIN_4_3   0x00000001
  31#define CNTRL_WIN_3_4   0x00000002
  32#define CNTRL_WIN_4_4   0x00000003
  33#define CNTRL_WIN       0x00000003
  34#define CNTRL_EDG_NONE  0x00000000
  35#define CNTRL_EDG_FALL  0x00000004
  36#define CNTRL_EDG_RISE  0x00000008
  37#define CNTRL_EDG_BOTH  0x0000000C
  38#define CNTRL_EDG       0x0000000C
  39#define CNTRL_DMD       0x00000010
  40#define CNTRL_MOD       0x00000020
  41#define CNTRL_RFE       0x00000040
  42#define CNTRL_TFE       0x00000080
  43#define CNTRL_RXE       0x00000100
  44#define CNTRL_TXE       0x00000200
  45#define CNTRL_RIC       0x00000400
  46#define CNTRL_TIC       0x00000800
  47#define CNTRL_CPL       0x00001000
  48#define CNTRL_LBM       0x00002000
  49#define CNTRL_R         0x00004000
  50/* CX23888 specific control flag */
  51#define CNTRL_IVO       0x00008000
  52
  53#define CX23888_IR_TXCLK_REG    0x170004
  54#define TXCLK_TCD       0x0000FFFF
  55
  56#define CX23888_IR_RXCLK_REG    0x170008
  57#define RXCLK_RCD       0x0000FFFF
  58
  59#define CX23888_IR_CDUTY_REG    0x17000C
  60#define CDUTY_CDC       0x0000000F
  61
  62#define CX23888_IR_STATS_REG    0x170010
  63#define STATS_RTO       0x00000001
  64#define STATS_ROR       0x00000002
  65#define STATS_RBY       0x00000004
  66#define STATS_TBY       0x00000008
  67#define STATS_RSR       0x00000010
  68#define STATS_TSR       0x00000020
  69
  70#define CX23888_IR_IRQEN_REG    0x170014
  71#define IRQEN_RTE       0x00000001
  72#define IRQEN_ROE       0x00000002
  73#define IRQEN_RSE       0x00000010
  74#define IRQEN_TSE       0x00000020
  75
  76#define CX23888_IR_FILTR_REG    0x170018
  77#define FILTR_LPF       0x0000FFFF
  78
  79/* This register doesn't follow the pattern; it's 0x23C on a CX23885 */
  80#define CX23888_IR_FIFO_REG     0x170040
  81#define FIFO_RXTX       0x0000FFFF
  82#define FIFO_RXTX_LVL   0x00010000
  83#define FIFO_RXTX_RTO   0x0001FFFF
  84#define FIFO_RX_NDV     0x00020000
  85#define FIFO_RX_DEPTH   8
  86#define FIFO_TX_DEPTH   8
  87
  88/* CX23888 unique registers */
  89#define CX23888_IR_SEEDP_REG    0x17001C
  90#define CX23888_IR_TIMOL_REG    0x170020
  91#define CX23888_IR_WAKE0_REG    0x170024
  92#define CX23888_IR_WAKE1_REG    0x170028
  93#define CX23888_IR_WAKE2_REG    0x17002C
  94#define CX23888_IR_MASK0_REG    0x170030
  95#define CX23888_IR_MASK1_REG    0x170034
  96#define CX23888_IR_MAKS2_REG    0x170038
  97#define CX23888_IR_DPIPG_REG    0x17003C
  98#define CX23888_IR_LEARN_REG    0x170044
  99
 100#define CX23888_VIDCLK_FREQ     108000000 /* 108 MHz, BT.656 */
 101#define CX23888_IR_REFCLK_FREQ  (CX23888_VIDCLK_FREQ / 2)
 102
 103/*
 104 * We use this union internally for convenience, but callers to tx_write
 105 * and rx_read will be expecting records of type struct ir_raw_event.
 106 * Always ensure the size of this union is dictated by struct ir_raw_event.
 107 */
 108union cx23888_ir_fifo_rec {
 109        u32 hw_fifo_data;
 110        struct ir_raw_event ir_core_data;
 111};
 112
 113#define CX23888_IR_RX_KFIFO_SIZE    (256 * sizeof(union cx23888_ir_fifo_rec))
 114#define CX23888_IR_TX_KFIFO_SIZE    (256 * sizeof(union cx23888_ir_fifo_rec))
 115
 116struct cx23888_ir_state {
 117        struct v4l2_subdev sd;
 118        struct cx23885_dev *dev;
 119
 120        struct v4l2_subdev_ir_parameters rx_params;
 121        struct mutex rx_params_lock;
 122        atomic_t rxclk_divider;
 123        atomic_t rx_invert;
 124
 125        struct kfifo rx_kfifo;
 126        spinlock_t rx_kfifo_lock;
 127
 128        struct v4l2_subdev_ir_parameters tx_params;
 129        struct mutex tx_params_lock;
 130        atomic_t txclk_divider;
 131};
 132
 133static inline struct cx23888_ir_state *to_state(struct v4l2_subdev *sd)
 134{
 135        return v4l2_get_subdevdata(sd);
 136}
 137
 138/*
 139 * IR register block read and write functions
 140 */
 141static
 142inline int cx23888_ir_write4(struct cx23885_dev *dev, u32 addr, u32 value)
 143{
 144        cx_write(addr, value);
 145        return 0;
 146}
 147
 148static inline u32 cx23888_ir_read4(struct cx23885_dev *dev, u32 addr)
 149{
 150        return cx_read(addr);
 151}
 152
 153static inline int cx23888_ir_and_or4(struct cx23885_dev *dev, u32 addr,
 154                                     u32 and_mask, u32 or_value)
 155{
 156        cx_andor(addr, ~and_mask, or_value);
 157        return 0;
 158}
 159
 160/*
 161 * Rx and Tx Clock Divider register computations
 162 *
 163 * Note the largest clock divider value of 0xffff corresponds to:
 164 *      (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
 165 * which fits in 21 bits, so we'll use unsigned int for time arguments.
 166 */
 167static inline u16 count_to_clock_divider(unsigned int d)
 168{
 169        if (d > RXCLK_RCD + 1)
 170                d = RXCLK_RCD;
 171        else if (d < 2)
 172                d = 1;
 173        else
 174                d--;
 175        return (u16) d;
 176}
 177
 178static inline u16 ns_to_clock_divider(unsigned int ns)
 179{
 180        return count_to_clock_divider(
 181                DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
 182}
 183
 184static inline unsigned int clock_divider_to_ns(unsigned int divider)
 185{
 186        /* Period of the Rx or Tx clock in ns */
 187        return DIV_ROUND_CLOSEST((divider + 1) * 1000,
 188                                 CX23888_IR_REFCLK_FREQ / 1000000);
 189}
 190
 191static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
 192{
 193        return count_to_clock_divider(
 194                          DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * 16));
 195}
 196
 197static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
 198{
 199        return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, (divider + 1) * 16);
 200}
 201
 202static inline u16 freq_to_clock_divider(unsigned int freq,
 203                                        unsigned int rollovers)
 204{
 205        return count_to_clock_divider(
 206                   DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * rollovers));
 207}
 208
 209static inline unsigned int clock_divider_to_freq(unsigned int divider,
 210                                                 unsigned int rollovers)
 211{
 212        return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ,
 213                                 (divider + 1) * rollovers);
 214}
 215
 216/*
 217 * Low Pass Filter register calculations
 218 *
 219 * Note the largest count value of 0xffff corresponds to:
 220 *      0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
 221 * which fits in 21 bits, so we'll use unsigned int for time arguments.
 222 */
 223static inline u16 count_to_lpf_count(unsigned int d)
 224{
 225        if (d > FILTR_LPF)
 226                d = FILTR_LPF;
 227        else if (d < 4)
 228                d = 0;
 229        return (u16) d;
 230}
 231
 232static inline u16 ns_to_lpf_count(unsigned int ns)
 233{
 234        return count_to_lpf_count(
 235                DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
 236}
 237
 238static inline unsigned int lpf_count_to_ns(unsigned int count)
 239{
 240        /* Duration of the Low Pass Filter rejection window in ns */
 241        return DIV_ROUND_CLOSEST(count * 1000,
 242                                 CX23888_IR_REFCLK_FREQ / 1000000);
 243}
 244
 245static inline unsigned int lpf_count_to_us(unsigned int count)
 246{
 247        /* Duration of the Low Pass Filter rejection window in us */
 248        return DIV_ROUND_CLOSEST(count, CX23888_IR_REFCLK_FREQ / 1000000);
 249}
 250
 251/*
 252 * FIFO register pulse width count computations
 253 */
 254static u32 clock_divider_to_resolution(u16 divider)
 255{
 256        /*
 257         * Resolution is the duration of 1 tick of the readable portion of
 258         * of the pulse width counter as read from the FIFO.  The two lsb's are
 259         * not readable, hence the << 2.  This function returns ns.
 260         */
 261        return DIV_ROUND_CLOSEST((1 << 2)  * ((u32) divider + 1) * 1000,
 262                                 CX23888_IR_REFCLK_FREQ / 1000000);
 263}
 264
 265static u64 pulse_width_count_to_ns(u16 count, u16 divider)
 266{
 267        u64 n;
 268        u32 rem;
 269
 270        /*
 271         * The 2 lsb's of the pulse width timer count are not readable, hence
 272         * the (count << 2) | 0x3
 273         */
 274        n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
 275        rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000);     /* / MHz => ns */
 276        if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
 277                n++;
 278        return n;
 279}
 280
 281static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
 282{
 283        u64 n;
 284        u32 rem;
 285
 286        /*
 287         * The 2 lsb's of the pulse width timer count are not readable, hence
 288         * the (count << 2) | 0x3
 289         */
 290        n = (((u64) count << 2) | 0x3) * (divider + 1);    /* cycles      */
 291        rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
 292        if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
 293                n++;
 294        return (unsigned int) n;
 295}
 296
 297/*
 298 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
 299 *
 300 * The total pulse clock count is an 18 bit pulse width timer count as the most
 301 * significant part and (up to) 16 bit clock divider count as a modulus.
 302 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
 303 * width timer count's least significant bit.
 304 */
 305static u64 ns_to_pulse_clocks(u32 ns)
 306{
 307        u64 clocks;
 308        u32 rem;
 309        clocks = CX23888_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles  */
 310        rem = do_div(clocks, 1000);                         /* /1000 = cycles */
 311        if (rem >= 1000 / 2)
 312                clocks++;
 313        return clocks;
 314}
 315
 316static u16 pulse_clocks_to_clock_divider(u64 count)
 317{
 318        do_div(count, (FIFO_RXTX << 2) | 0x3);
 319
 320        /* net result needs to be rounded down and decremented by 1 */
 321        if (count > RXCLK_RCD + 1)
 322                count = RXCLK_RCD;
 323        else if (count < 2)
 324                count = 1;
 325        else
 326                count--;
 327        return (u16) count;
 328}
 329
 330/*
 331 * IR Control Register helpers
 332 */
 333enum tx_fifo_watermark {
 334        TX_FIFO_HALF_EMPTY = 0,
 335        TX_FIFO_EMPTY      = CNTRL_TIC,
 336};
 337
 338enum rx_fifo_watermark {
 339        RX_FIFO_HALF_FULL = 0,
 340        RX_FIFO_NOT_EMPTY = CNTRL_RIC,
 341};
 342
 343static inline void control_tx_irq_watermark(struct cx23885_dev *dev,
 344                                            enum tx_fifo_watermark level)
 345{
 346        cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_TIC, level);
 347}
 348
 349static inline void control_rx_irq_watermark(struct cx23885_dev *dev,
 350                                            enum rx_fifo_watermark level)
 351{
 352        cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_RIC, level);
 353}
 354
 355static inline void control_tx_enable(struct cx23885_dev *dev, bool enable)
 356{
 357        cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
 358                           enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
 359}
 360
 361static inline void control_rx_enable(struct cx23885_dev *dev, bool enable)
 362{
 363        cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
 364                           enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
 365}
 366
 367static inline void control_tx_modulation_enable(struct cx23885_dev *dev,
 368                                                bool enable)
 369{
 370        cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_MOD,
 371                           enable ? CNTRL_MOD : 0);
 372}
 373
 374static inline void control_rx_demodulation_enable(struct cx23885_dev *dev,
 375                                                  bool enable)
 376{
 377        cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_DMD,
 378                           enable ? CNTRL_DMD : 0);
 379}
 380
 381static inline void control_rx_s_edge_detection(struct cx23885_dev *dev,
 382                                               u32 edge_types)
 383{
 384        cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
 385                           edge_types & CNTRL_EDG_BOTH);
 386}
 387
 388static void control_rx_s_carrier_window(struct cx23885_dev *dev,
 389                                        unsigned int carrier,
 390                                        unsigned int *carrier_range_low,
 391                                        unsigned int *carrier_range_high)
 392{
 393        u32 v;
 394        unsigned int c16 = carrier * 16;
 395
 396        if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
 397                v = CNTRL_WIN_3_4;
 398                *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
 399        } else {
 400                v = CNTRL_WIN_3_3;
 401                *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
 402        }
 403
 404        if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
 405                v |= CNTRL_WIN_4_3;
 406                *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
 407        } else {
 408                v |= CNTRL_WIN_3_3;
 409                *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
 410        }
 411        cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_WIN, v);
 412}
 413
 414static inline void control_tx_polarity_invert(struct cx23885_dev *dev,
 415                                              bool invert)
 416{
 417        cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_CPL,
 418                           invert ? CNTRL_CPL : 0);
 419}
 420
 421static inline void control_tx_level_invert(struct cx23885_dev *dev,
 422                                          bool invert)
 423{
 424        cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_IVO,
 425                           invert ? CNTRL_IVO : 0);
 426}
 427
 428/*
 429 * IR Rx & Tx Clock Register helpers
 430 */
 431static unsigned int txclk_tx_s_carrier(struct cx23885_dev *dev,
 432                                       unsigned int freq,
 433                                       u16 *divider)
 434{
 435        *divider = carrier_freq_to_clock_divider(freq);
 436        cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
 437        return clock_divider_to_carrier_freq(*divider);
 438}
 439
 440static unsigned int rxclk_rx_s_carrier(struct cx23885_dev *dev,
 441                                       unsigned int freq,
 442                                       u16 *divider)
 443{
 444        *divider = carrier_freq_to_clock_divider(freq);
 445        cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
 446        return clock_divider_to_carrier_freq(*divider);
 447}
 448
 449static u32 txclk_tx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
 450                                      u16 *divider)
 451{
 452        u64 pulse_clocks;
 453
 454        if (ns > IR_MAX_DURATION)
 455                ns = IR_MAX_DURATION;
 456        pulse_clocks = ns_to_pulse_clocks(ns);
 457        *divider = pulse_clocks_to_clock_divider(pulse_clocks);
 458        cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
 459        return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
 460}
 461
 462static u32 rxclk_rx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
 463                                      u16 *divider)
 464{
 465        u64 pulse_clocks;
 466
 467        if (ns > IR_MAX_DURATION)
 468                ns = IR_MAX_DURATION;
 469        pulse_clocks = ns_to_pulse_clocks(ns);
 470        *divider = pulse_clocks_to_clock_divider(pulse_clocks);
 471        cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
 472        return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
 473}
 474
 475/*
 476 * IR Tx Carrier Duty Cycle register helpers
 477 */
 478static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev *dev,
 479                                          unsigned int duty_cycle)
 480{
 481        u32 n;
 482        n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
 483        if (n != 0)
 484                n--;
 485        if (n > 15)
 486                n = 15;
 487        cx23888_ir_write4(dev, CX23888_IR_CDUTY_REG, n);
 488        return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
 489}
 490
 491/*
 492 * IR Filter Register helpers
 493 */
 494static u32 filter_rx_s_min_width(struct cx23885_dev *dev, u32 min_width_ns)
 495{
 496        u32 count = ns_to_lpf_count(min_width_ns);
 497        cx23888_ir_write4(dev, CX23888_IR_FILTR_REG, count);
 498        return lpf_count_to_ns(count);
 499}
 500
 501/*
 502 * IR IRQ Enable Register helpers
 503 */
 504static inline void irqenable_rx(struct cx23885_dev *dev, u32 mask)
 505{
 506        mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
 507        cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG,
 508                           ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
 509}
 510
 511static inline void irqenable_tx(struct cx23885_dev *dev, u32 mask)
 512{
 513        mask &= IRQEN_TSE;
 514        cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG, ~IRQEN_TSE, mask);
 515}
 516
 517/*
 518 * V4L2 Subdevice IR Ops
 519 */
 520static int cx23888_ir_irq_handler(struct v4l2_subdev *sd, u32 status,
 521                                  bool *handled)
 522{
 523        struct cx23888_ir_state *state = to_state(sd);
 524        struct cx23885_dev *dev = state->dev;
 525        unsigned long flags;
 526
 527        u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
 528        u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
 529        u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
 530
 531        union cx23888_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
 532        unsigned int i, j, k;
 533        u32 events, v;
 534        int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
 535
 536        tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
 537        rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
 538        rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
 539        ror = stats & STATS_ROR; /* Rx FIFO Over Run */
 540
 541        tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
 542        rse = irqen & IRQEN_RSE; /* Rx FIFO Service Request IRQ Enable */
 543        rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
 544        roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
 545
 546        *handled = false;
 547        v4l2_dbg(2, ir_888_debug, sd, "IRQ Status:  %s %s %s %s %s %s\n",
 548                 tsr ? "tsr" : "   ", rsr ? "rsr" : "   ",
 549                 rto ? "rto" : "   ", ror ? "ror" : "   ",
 550                 stats & STATS_TBY ? "tby" : "   ",
 551                 stats & STATS_RBY ? "rby" : "   ");
 552
 553        v4l2_dbg(2, ir_888_debug, sd, "IRQ Enables: %s %s %s %s\n",
 554                 tse ? "tse" : "   ", rse ? "rse" : "   ",
 555                 rte ? "rte" : "   ", roe ? "roe" : "   ");
 556
 557        /*
 558         * Transmitter interrupt service
 559         */
 560        if (tse && tsr) {
 561                /*
 562                 * TODO:
 563                 * Check the watermark threshold setting
 564                 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
 565                 * Push the data to the hardware FIFO.
 566                 * If there was nothing more to send in the tx_kfifo, disable
 567                 *      the TSR IRQ and notify the v4l2_device.
 568                 * If there was something in the tx_kfifo, check the tx_kfifo
 569                 *      level and notify the v4l2_device, if it is low.
 570                 */
 571                /* For now, inhibit TSR interrupt until Tx is implemented */
 572                irqenable_tx(dev, 0);
 573                events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
 574                v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
 575                *handled = true;
 576        }
 577
 578        /*
 579         * Receiver interrupt service
 580         */
 581        kror = 0;
 582        if ((rse && rsr) || (rte && rto)) {
 583                /*
 584                 * Receive data on RSR to clear the STATS_RSR.
 585                 * Receive data on RTO, since we may not have yet hit the RSR
 586                 * watermark when we receive the RTO.
 587                 */
 588                for (i = 0, v = FIFO_RX_NDV;
 589                     (v & FIFO_RX_NDV) && !kror; i = 0) {
 590                        for (j = 0;
 591                             (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
 592                                v = cx23888_ir_read4(dev, CX23888_IR_FIFO_REG);
 593                                rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
 594                                i++;
 595                        }
 596                        if (i == 0)
 597                                break;
 598                        j = i * sizeof(union cx23888_ir_fifo_rec);
 599                        k = kfifo_in_locked(&state->rx_kfifo,
 600                                      (unsigned char *) rx_data, j,
 601                                      &state->rx_kfifo_lock);
 602                        if (k != j)
 603                                kror++; /* rx_kfifo over run */
 604                }
 605                *handled = true;
 606        }
 607
 608        events = 0;
 609        v = 0;
 610        if (kror) {
 611                events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
 612                v4l2_err(sd, "IR receiver software FIFO overrun\n");
 613        }
 614        if (roe && ror) {
 615                /*
 616                 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
 617                 * the Rx FIFO Over Run status (STATS_ROR)
 618                 */
 619                v |= CNTRL_RFE;
 620                events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
 621                v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
 622        }
 623        if (rte && rto) {
 624                /*
 625                 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
 626                 * the Rx Pulse Width Timer Time Out (STATS_RTO)
 627                 */
 628                v |= CNTRL_RXE;
 629                events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
 630        }
 631        if (v) {
 632                /* Clear STATS_ROR & STATS_RTO as needed by resetting hardware */
 633                cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl & ~v);
 634                cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl);
 635                *handled = true;
 636        }
 637
 638        spin_lock_irqsave(&state->rx_kfifo_lock, flags);
 639        if (kfifo_len(&state->rx_kfifo) >= CX23888_IR_RX_KFIFO_SIZE / 2)
 640                events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
 641        spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
 642
 643        if (events)
 644                v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
 645        return 0;
 646}
 647
 648/* Receiver */
 649static int cx23888_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
 650                              ssize_t *num)
 651{
 652        struct cx23888_ir_state *state = to_state(sd);
 653        bool invert = (bool) atomic_read(&state->rx_invert);
 654        u16 divider = (u16) atomic_read(&state->rxclk_divider);
 655
 656        unsigned int i, n;
 657        union cx23888_ir_fifo_rec *p;
 658        unsigned u, v, w;
 659
 660        n = count / sizeof(union cx23888_ir_fifo_rec)
 661                * sizeof(union cx23888_ir_fifo_rec);
 662        if (n == 0) {
 663                *num = 0;
 664                return 0;
 665        }
 666
 667        n = kfifo_out_locked(&state->rx_kfifo, buf, n, &state->rx_kfifo_lock);
 668
 669        n /= sizeof(union cx23888_ir_fifo_rec);
 670        *num = n * sizeof(union cx23888_ir_fifo_rec);
 671
 672        for (p = (union cx23888_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
 673
 674                if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
 675                        /* Assume RTO was because of no IR light input */
 676                        u = 0;
 677                        w = 1;
 678                } else {
 679                        u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
 680                        if (invert)
 681                                u = u ? 0 : 1;
 682                        w = 0;
 683                }
 684
 685                v = (unsigned) pulse_width_count_to_ns(
 686                                  (u16) (p->hw_fifo_data & FIFO_RXTX), divider);
 687                if (v > IR_MAX_DURATION)
 688                        v = IR_MAX_DURATION;
 689
 690                p->ir_core_data = (struct ir_raw_event)
 691                        { .pulse = u, .duration = v, .timeout = w };
 692
 693                v4l2_dbg(2, ir_888_debug, sd, "rx read: %10u ns  %s  %s\n",
 694                         v, u ? "mark" : "space", w ? "(timed out)" : "");
 695                if (w)
 696                        v4l2_dbg(2, ir_888_debug, sd, "rx read: end of rx\n");
 697        }
 698        return 0;
 699}
 700
 701static int cx23888_ir_rx_g_parameters(struct v4l2_subdev *sd,
 702                                      struct v4l2_subdev_ir_parameters *p)
 703{
 704        struct cx23888_ir_state *state = to_state(sd);
 705        mutex_lock(&state->rx_params_lock);
 706        memcpy(p, &state->rx_params, sizeof(struct v4l2_subdev_ir_parameters));
 707        mutex_unlock(&state->rx_params_lock);
 708        return 0;
 709}
 710
 711static int cx23888_ir_rx_shutdown(struct v4l2_subdev *sd)
 712{
 713        struct cx23888_ir_state *state = to_state(sd);
 714        struct cx23885_dev *dev = state->dev;
 715
 716        mutex_lock(&state->rx_params_lock);
 717
 718        /* Disable or slow down all IR Rx circuits and counters */
 719        irqenable_rx(dev, 0);
 720        control_rx_enable(dev, false);
 721        control_rx_demodulation_enable(dev, false);
 722        control_rx_s_edge_detection(dev, CNTRL_EDG_NONE);
 723        filter_rx_s_min_width(dev, 0);
 724        cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, RXCLK_RCD);
 725
 726        state->rx_params.shutdown = true;
 727
 728        mutex_unlock(&state->rx_params_lock);
 729        return 0;
 730}
 731
 732static int cx23888_ir_rx_s_parameters(struct v4l2_subdev *sd,
 733                                      struct v4l2_subdev_ir_parameters *p)
 734{
 735        struct cx23888_ir_state *state = to_state(sd);
 736        struct cx23885_dev *dev = state->dev;
 737        struct v4l2_subdev_ir_parameters *o = &state->rx_params;
 738        u16 rxclk_divider;
 739
 740        if (p->shutdown)
 741                return cx23888_ir_rx_shutdown(sd);
 742
 743        if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
 744                return -ENOSYS;
 745
 746        mutex_lock(&state->rx_params_lock);
 747
 748        o->shutdown = p->shutdown;
 749
 750        o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
 751
 752        o->bytes_per_data_element = p->bytes_per_data_element
 753                                  = sizeof(union cx23888_ir_fifo_rec);
 754
 755        /* Before we tweak the hardware, we have to disable the receiver */
 756        irqenable_rx(dev, 0);
 757        control_rx_enable(dev, false);
 758
 759        control_rx_demodulation_enable(dev, p->modulation);
 760        o->modulation = p->modulation;
 761
 762        if (p->modulation) {
 763                p->carrier_freq = rxclk_rx_s_carrier(dev, p->carrier_freq,
 764                                                     &rxclk_divider);
 765
 766                o->carrier_freq = p->carrier_freq;
 767
 768                o->duty_cycle = p->duty_cycle = 50;
 769
 770                control_rx_s_carrier_window(dev, p->carrier_freq,
 771                                            &p->carrier_range_lower,
 772                                            &p->carrier_range_upper);
 773                o->carrier_range_lower = p->carrier_range_lower;
 774                o->carrier_range_upper = p->carrier_range_upper;
 775
 776                p->max_pulse_width =
 777                        (u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
 778        } else {
 779                p->max_pulse_width =
 780                            rxclk_rx_s_max_pulse_width(dev, p->max_pulse_width,
 781                                                       &rxclk_divider);
 782        }
 783        o->max_pulse_width = p->max_pulse_width;
 784        atomic_set(&state->rxclk_divider, rxclk_divider);
 785
 786        p->noise_filter_min_width =
 787                          filter_rx_s_min_width(dev, p->noise_filter_min_width);
 788        o->noise_filter_min_width = p->noise_filter_min_width;
 789
 790        p->resolution = clock_divider_to_resolution(rxclk_divider);
 791        o->resolution = p->resolution;
 792
 793        /* FIXME - make this dependent on resolution for better performance */
 794        control_rx_irq_watermark(dev, RX_FIFO_HALF_FULL);
 795
 796        control_rx_s_edge_detection(dev, CNTRL_EDG_BOTH);
 797
 798        o->invert_level = p->invert_level;
 799        atomic_set(&state->rx_invert, p->invert_level);
 800
 801        o->interrupt_enable = p->interrupt_enable;
 802        o->enable = p->enable;
 803        if (p->enable) {
 804                unsigned long flags;
 805
 806                spin_lock_irqsave(&state->rx_kfifo_lock, flags);
 807                kfifo_reset(&state->rx_kfifo);
 808                /* reset tx_fifo too if there is one... */
 809                spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
 810                if (p->interrupt_enable)
 811                        irqenable_rx(dev, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
 812                control_rx_enable(dev, p->enable);
 813        }
 814
 815        mutex_unlock(&state->rx_params_lock);
 816        return 0;
 817}
 818
 819/* Transmitter */
 820static int cx23888_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
 821                               ssize_t *num)
 822{
 823        struct cx23888_ir_state *state = to_state(sd);
 824        struct cx23885_dev *dev = state->dev;
 825        /* For now enable the Tx FIFO Service interrupt & pretend we did work */
 826        irqenable_tx(dev, IRQEN_TSE);
 827        *num = count;
 828        return 0;
 829}
 830
 831static int cx23888_ir_tx_g_parameters(struct v4l2_subdev *sd,
 832                                      struct v4l2_subdev_ir_parameters *p)
 833{
 834        struct cx23888_ir_state *state = to_state(sd);
 835        mutex_lock(&state->tx_params_lock);
 836        memcpy(p, &state->tx_params, sizeof(struct v4l2_subdev_ir_parameters));
 837        mutex_unlock(&state->tx_params_lock);
 838        return 0;
 839}
 840
 841static int cx23888_ir_tx_shutdown(struct v4l2_subdev *sd)
 842{
 843        struct cx23888_ir_state *state = to_state(sd);
 844        struct cx23885_dev *dev = state->dev;
 845
 846        mutex_lock(&state->tx_params_lock);
 847
 848        /* Disable or slow down all IR Tx circuits and counters */
 849        irqenable_tx(dev, 0);
 850        control_tx_enable(dev, false);
 851        control_tx_modulation_enable(dev, false);
 852        cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, TXCLK_TCD);
 853
 854        state->tx_params.shutdown = true;
 855
 856        mutex_unlock(&state->tx_params_lock);
 857        return 0;
 858}
 859
 860static int cx23888_ir_tx_s_parameters(struct v4l2_subdev *sd,
 861                                      struct v4l2_subdev_ir_parameters *p)
 862{
 863        struct cx23888_ir_state *state = to_state(sd);
 864        struct cx23885_dev *dev = state->dev;
 865        struct v4l2_subdev_ir_parameters *o = &state->tx_params;
 866        u16 txclk_divider;
 867
 868        if (p->shutdown)
 869                return cx23888_ir_tx_shutdown(sd);
 870
 871        if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
 872                return -ENOSYS;
 873
 874        mutex_lock(&state->tx_params_lock);
 875
 876        o->shutdown = p->shutdown;
 877
 878        o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
 879
 880        o->bytes_per_data_element = p->bytes_per_data_element
 881                                  = sizeof(union cx23888_ir_fifo_rec);
 882
 883        /* Before we tweak the hardware, we have to disable the transmitter */
 884        irqenable_tx(dev, 0);
 885        control_tx_enable(dev, false);
 886
 887        control_tx_modulation_enable(dev, p->modulation);
 888        o->modulation = p->modulation;
 889
 890        if (p->modulation) {
 891                p->carrier_freq = txclk_tx_s_carrier(dev, p->carrier_freq,
 892                                                     &txclk_divider);
 893                o->carrier_freq = p->carrier_freq;
 894
 895                p->duty_cycle = cduty_tx_s_duty_cycle(dev, p->duty_cycle);
 896                o->duty_cycle = p->duty_cycle;
 897
 898                p->max_pulse_width =
 899                        (u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
 900        } else {
 901                p->max_pulse_width =
 902                            txclk_tx_s_max_pulse_width(dev, p->max_pulse_width,
 903                                                       &txclk_divider);
 904        }
 905        o->max_pulse_width = p->max_pulse_width;
 906        atomic_set(&state->txclk_divider, txclk_divider);
 907
 908        p->resolution = clock_divider_to_resolution(txclk_divider);
 909        o->resolution = p->resolution;
 910
 911        /* FIXME - make this dependent on resolution for better performance */
 912        control_tx_irq_watermark(dev, TX_FIFO_HALF_EMPTY);
 913
 914        control_tx_polarity_invert(dev, p->invert_carrier_sense);
 915        o->invert_carrier_sense = p->invert_carrier_sense;
 916
 917        control_tx_level_invert(dev, p->invert_level);
 918        o->invert_level = p->invert_level;
 919
 920        o->interrupt_enable = p->interrupt_enable;
 921        o->enable = p->enable;
 922        if (p->enable) {
 923                if (p->interrupt_enable)
 924                        irqenable_tx(dev, IRQEN_TSE);
 925                control_tx_enable(dev, p->enable);
 926        }
 927
 928        mutex_unlock(&state->tx_params_lock);
 929        return 0;
 930}
 931
 932
 933/*
 934 * V4L2 Subdevice Core Ops
 935 */
 936static int cx23888_ir_log_status(struct v4l2_subdev *sd)
 937{
 938        struct cx23888_ir_state *state = to_state(sd);
 939        struct cx23885_dev *dev = state->dev;
 940        char *s;
 941        int i, j;
 942
 943        u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
 944        u32 txclk = cx23888_ir_read4(dev, CX23888_IR_TXCLK_REG) & TXCLK_TCD;
 945        u32 rxclk = cx23888_ir_read4(dev, CX23888_IR_RXCLK_REG) & RXCLK_RCD;
 946        u32 cduty = cx23888_ir_read4(dev, CX23888_IR_CDUTY_REG) & CDUTY_CDC;
 947        u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
 948        u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
 949        u32 filtr = cx23888_ir_read4(dev, CX23888_IR_FILTR_REG) & FILTR_LPF;
 950
 951        v4l2_info(sd, "IR Receiver:\n");
 952        v4l2_info(sd, "\tEnabled:                           %s\n",
 953                  cntrl & CNTRL_RXE ? "yes" : "no");
 954        v4l2_info(sd, "\tDemodulation from a carrier:       %s\n",
 955                  cntrl & CNTRL_DMD ? "enabled" : "disabled");
 956        v4l2_info(sd, "\tFIFO:                              %s\n",
 957                  cntrl & CNTRL_RFE ? "enabled" : "disabled");
 958        switch (cntrl & CNTRL_EDG) {
 959        case CNTRL_EDG_NONE:
 960                s = "disabled";
 961                break;
 962        case CNTRL_EDG_FALL:
 963                s = "falling edge";
 964                break;
 965        case CNTRL_EDG_RISE:
 966                s = "rising edge";
 967                break;
 968        case CNTRL_EDG_BOTH:
 969                s = "rising & falling edges";
 970                break;
 971        default:
 972                s = "??? edge";
 973                break;
 974        }
 975        v4l2_info(sd, "\tPulse timers' start/stop trigger:  %s\n", s);
 976        v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
 977                  cntrl & CNTRL_R ? "not loaded" : "overflow marker");
 978        v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
 979                  cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
 980        v4l2_info(sd, "\tLoopback mode:                     %s\n",
 981                  cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
 982        if (cntrl & CNTRL_DMD) {
 983                v4l2_info(sd, "\tExpected carrier (16 clocks):      %u Hz\n",
 984                          clock_divider_to_carrier_freq(rxclk));
 985                switch (cntrl & CNTRL_WIN) {
 986                case CNTRL_WIN_3_3:
 987                        i = 3;
 988                        j = 3;
 989                        break;
 990                case CNTRL_WIN_4_3:
 991                        i = 4;
 992                        j = 3;
 993                        break;
 994                case CNTRL_WIN_3_4:
 995                        i = 3;
 996                        j = 4;
 997                        break;
 998                case CNTRL_WIN_4_4:
 999                        i = 4;
1000                        j = 4;
1001                        break;
1002                default:
1003                        i = 0;
1004                        j = 0;
1005                        break;
1006                }
1007                v4l2_info(sd, "\tNext carrier edge window:          16 clocks -%1d/+%1d, %u to %u Hz\n",
1008                          i, j,
1009                          clock_divider_to_freq(rxclk, 16 + j),
1010                          clock_divider_to_freq(rxclk, 16 - i));
1011        }
1012        v4l2_info(sd, "\tMax measurable pulse width:        %u us, %llu ns\n",
1013                  pulse_width_count_to_us(FIFO_RXTX, rxclk),
1014                  pulse_width_count_to_ns(FIFO_RXTX, rxclk));
1015        v4l2_info(sd, "\tLow pass filter:                   %s\n",
1016                  filtr ? "enabled" : "disabled");
1017        if (filtr)
1018                v4l2_info(sd, "\tMin acceptable pulse width (LPF):  %u us, %u ns\n",
1019                          lpf_count_to_us(filtr),
1020                          lpf_count_to_ns(filtr));
1021        v4l2_info(sd, "\tPulse width timer timed-out:       %s\n",
1022                  stats & STATS_RTO ? "yes" : "no");
1023        v4l2_info(sd, "\tPulse width timer time-out intr:   %s\n",
1024                  irqen & IRQEN_RTE ? "enabled" : "disabled");
1025        v4l2_info(sd, "\tFIFO overrun:                      %s\n",
1026                  stats & STATS_ROR ? "yes" : "no");
1027        v4l2_info(sd, "\tFIFO overrun interrupt:            %s\n",
1028                  irqen & IRQEN_ROE ? "enabled" : "disabled");
1029        v4l2_info(sd, "\tBusy:                              %s\n",
1030                  stats & STATS_RBY ? "yes" : "no");
1031        v4l2_info(sd, "\tFIFO service requested:            %s\n",
1032                  stats & STATS_RSR ? "yes" : "no");
1033        v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
1034                  irqen & IRQEN_RSE ? "enabled" : "disabled");
1035
1036        v4l2_info(sd, "IR Transmitter:\n");
1037        v4l2_info(sd, "\tEnabled:                           %s\n",
1038                  cntrl & CNTRL_TXE ? "yes" : "no");
1039        v4l2_info(sd, "\tModulation onto a carrier:         %s\n",
1040                  cntrl & CNTRL_MOD ? "enabled" : "disabled");
1041        v4l2_info(sd, "\tFIFO:                              %s\n",
1042                  cntrl & CNTRL_TFE ? "enabled" : "disabled");
1043        v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
1044                  cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1045        v4l2_info(sd, "\tOutput pin level inversion         %s\n",
1046                  cntrl & CNTRL_IVO ? "yes" : "no");
1047        v4l2_info(sd, "\tCarrier polarity:                  %s\n",
1048                  cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1049                                    : "space:noburst mark:burst");
1050        if (cntrl & CNTRL_MOD) {
1051                v4l2_info(sd, "\tCarrier (16 clocks):               %u Hz\n",
1052                          clock_divider_to_carrier_freq(txclk));
1053                v4l2_info(sd, "\tCarrier duty cycle:                %2u/16\n",
1054                          cduty + 1);
1055        }
1056        v4l2_info(sd, "\tMax pulse width:                   %u us, %llu ns\n",
1057                  pulse_width_count_to_us(FIFO_RXTX, txclk),
1058                  pulse_width_count_to_ns(FIFO_RXTX, txclk));
1059        v4l2_info(sd, "\tBusy:                              %s\n",
1060                  stats & STATS_TBY ? "yes" : "no");
1061        v4l2_info(sd, "\tFIFO service requested:            %s\n",
1062                  stats & STATS_TSR ? "yes" : "no");
1063        v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
1064                  irqen & IRQEN_TSE ? "enabled" : "disabled");
1065
1066        return 0;
1067}
1068
1069#ifdef CONFIG_VIDEO_ADV_DEBUG
1070static int cx23888_ir_g_register(struct v4l2_subdev *sd,
1071                                 struct v4l2_dbg_register *reg)
1072{
1073        struct cx23888_ir_state *state = to_state(sd);
1074        u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1075
1076        if ((addr & 0x3) != 0)
1077                return -EINVAL;
1078        if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1079                return -EINVAL;
1080        reg->size = 4;
1081        reg->val = cx23888_ir_read4(state->dev, addr);
1082        return 0;
1083}
1084
1085static int cx23888_ir_s_register(struct v4l2_subdev *sd,
1086                                 const struct v4l2_dbg_register *reg)
1087{
1088        struct cx23888_ir_state *state = to_state(sd);
1089        u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1090
1091        if ((addr & 0x3) != 0)
1092                return -EINVAL;
1093        if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1094                return -EINVAL;
1095        cx23888_ir_write4(state->dev, addr, reg->val);
1096        return 0;
1097}
1098#endif
1099
1100static const struct v4l2_subdev_core_ops cx23888_ir_core_ops = {
1101        .log_status = cx23888_ir_log_status,
1102#ifdef CONFIG_VIDEO_ADV_DEBUG
1103        .g_register = cx23888_ir_g_register,
1104        .s_register = cx23888_ir_s_register,
1105#endif
1106        .interrupt_service_routine = cx23888_ir_irq_handler,
1107};
1108
1109static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops = {
1110        .rx_read = cx23888_ir_rx_read,
1111        .rx_g_parameters = cx23888_ir_rx_g_parameters,
1112        .rx_s_parameters = cx23888_ir_rx_s_parameters,
1113
1114        .tx_write = cx23888_ir_tx_write,
1115        .tx_g_parameters = cx23888_ir_tx_g_parameters,
1116        .tx_s_parameters = cx23888_ir_tx_s_parameters,
1117};
1118
1119static const struct v4l2_subdev_ops cx23888_ir_controller_ops = {
1120        .core = &cx23888_ir_core_ops,
1121        .ir = &cx23888_ir_ir_ops,
1122};
1123
1124static const struct v4l2_subdev_ir_parameters default_rx_params = {
1125        .bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1126        .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1127
1128        .enable = false,
1129        .interrupt_enable = false,
1130        .shutdown = true,
1131
1132        .modulation = true,
1133        .carrier_freq = 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */
1134
1135        /* RC-5:    666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1136        /* RC-6A:   333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1137        .noise_filter_min_width = 333333, /* ns */
1138        .carrier_range_lower = 35000,
1139        .carrier_range_upper = 37000,
1140        .invert_level = false,
1141};
1142
1143static const struct v4l2_subdev_ir_parameters default_tx_params = {
1144        .bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1145        .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1146
1147        .enable = false,
1148        .interrupt_enable = false,
1149        .shutdown = true,
1150
1151        .modulation = true,
1152        .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1153        .duty_cycle = 25,      /* 25 %   - RC-5 carrier */
1154        .invert_level = false,
1155        .invert_carrier_sense = false,
1156};
1157
1158int cx23888_ir_probe(struct cx23885_dev *dev)
1159{
1160        struct cx23888_ir_state *state;
1161        struct v4l2_subdev *sd;
1162        struct v4l2_subdev_ir_parameters default_params;
1163        int ret;
1164
1165        state = kzalloc(sizeof(struct cx23888_ir_state), GFP_KERNEL);
1166        if (state == NULL)
1167                return -ENOMEM;
1168
1169        spin_lock_init(&state->rx_kfifo_lock);
1170        if (kfifo_alloc(&state->rx_kfifo, CX23888_IR_RX_KFIFO_SIZE, GFP_KERNEL))
1171                return -ENOMEM;
1172
1173        state->dev = dev;
1174        sd = &state->sd;
1175
1176        v4l2_subdev_init(sd, &cx23888_ir_controller_ops);
1177        v4l2_set_subdevdata(sd, state);
1178        /* FIXME - fix the formatting of dev->v4l2_dev.name and use it */
1179        snprintf(sd->name, sizeof(sd->name), "%s/888-ir", dev->name);
1180        sd->grp_id = CX23885_HW_888_IR;
1181
1182        ret = v4l2_device_register_subdev(&dev->v4l2_dev, sd);
1183        if (ret == 0) {
1184                /*
1185                 * Ensure no interrupts arrive from '888 specific conditions,
1186                 * since we ignore them in this driver to have commonality with
1187                 * similar IR controller cores.
1188                 */
1189                cx23888_ir_write4(dev, CX23888_IR_IRQEN_REG, 0);
1190
1191                mutex_init(&state->rx_params_lock);
1192                default_params = default_rx_params;
1193                v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1194
1195                mutex_init(&state->tx_params_lock);
1196                default_params = default_tx_params;
1197                v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1198        } else {
1199                kfifo_free(&state->rx_kfifo);
1200        }
1201        return ret;
1202}
1203
1204int cx23888_ir_remove(struct cx23885_dev *dev)
1205{
1206        struct v4l2_subdev *sd;
1207        struct cx23888_ir_state *state;
1208
1209        sd = cx23885_find_hw(dev, CX23885_HW_888_IR);
1210        if (sd == NULL)
1211                return -ENODEV;
1212
1213        cx23888_ir_rx_shutdown(sd);
1214        cx23888_ir_tx_shutdown(sd);
1215
1216        state = to_state(sd);
1217        v4l2_device_unregister_subdev(sd);
1218        kfifo_free(&state->rx_kfifo);
1219        kfree(state);
1220        /* Nothing more to free() as state held the actual v4l2_subdev object */
1221        return 0;
1222}
1223