linux/drivers/net/wireless/ath/wil6210/main.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
   3 * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
   4 *
   5 * Permission to use, copy, modify, and/or distribute this software for any
   6 * purpose with or without fee is hereby granted, provided that the above
   7 * copyright notice and this permission notice appear in all copies.
   8 *
   9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16 */
  17
  18#include <linux/moduleparam.h>
  19#include <linux/if_arp.h>
  20#include <linux/etherdevice.h>
  21#include <linux/rtnetlink.h>
  22
  23#include "wil6210.h"
  24#include "txrx.h"
  25#include "txrx_edma.h"
  26#include "wmi.h"
  27#include "boot_loader.h"
  28
  29#define WAIT_FOR_HALP_VOTE_MS 100
  30#define WAIT_FOR_SCAN_ABORT_MS 1000
  31#define WIL_DEFAULT_NUM_RX_STATUS_RINGS 1
  32#define WIL_BOARD_FILE_MAX_NAMELEN 128
  33
  34bool debug_fw; /* = false; */
  35module_param(debug_fw, bool, 0444);
  36MODULE_PARM_DESC(debug_fw, " do not perform card reset. For FW debug");
  37
  38static u8 oob_mode;
  39module_param(oob_mode, byte, 0444);
  40MODULE_PARM_DESC(oob_mode,
  41                 " enable out of the box (OOB) mode in FW, for diagnostics and certification");
  42
  43bool no_fw_recovery;
  44module_param(no_fw_recovery, bool, 0644);
  45MODULE_PARM_DESC(no_fw_recovery, " disable automatic FW error recovery");
  46
  47/* if not set via modparam, will be set to default value of 1/8 of
  48 * rx ring size during init flow
  49 */
  50unsigned short rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_INIT;
  51module_param(rx_ring_overflow_thrsh, ushort, 0444);
  52MODULE_PARM_DESC(rx_ring_overflow_thrsh,
  53                 " RX ring overflow threshold in descriptors.");
  54
  55/* We allow allocation of more than 1 page buffers to support large packets.
  56 * It is suboptimal behavior performance wise in case MTU above page size.
  57 */
  58unsigned int mtu_max = TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
  59static int mtu_max_set(const char *val, const struct kernel_param *kp)
  60{
  61        int ret;
  62
  63        /* sets mtu_max directly. no need to restore it in case of
  64         * illegal value since we assume this will fail insmod
  65         */
  66        ret = param_set_uint(val, kp);
  67        if (ret)
  68                return ret;
  69
  70        if (mtu_max < 68 || mtu_max > WIL_MAX_ETH_MTU)
  71                ret = -EINVAL;
  72
  73        return ret;
  74}
  75
  76static const struct kernel_param_ops mtu_max_ops = {
  77        .set = mtu_max_set,
  78        .get = param_get_uint,
  79};
  80
  81module_param_cb(mtu_max, &mtu_max_ops, &mtu_max, 0444);
  82MODULE_PARM_DESC(mtu_max, " Max MTU value.");
  83
  84static uint rx_ring_order;
  85static uint tx_ring_order = WIL_TX_RING_SIZE_ORDER_DEFAULT;
  86static uint bcast_ring_order = WIL_BCAST_RING_SIZE_ORDER_DEFAULT;
  87
  88static int ring_order_set(const char *val, const struct kernel_param *kp)
  89{
  90        int ret;
  91        uint x;
  92
  93        ret = kstrtouint(val, 0, &x);
  94        if (ret)
  95                return ret;
  96
  97        if ((x < WIL_RING_SIZE_ORDER_MIN) || (x > WIL_RING_SIZE_ORDER_MAX))
  98                return -EINVAL;
  99
 100        *((uint *)kp->arg) = x;
 101
 102        return 0;
 103}
 104
 105static const struct kernel_param_ops ring_order_ops = {
 106        .set = ring_order_set,
 107        .get = param_get_uint,
 108};
 109
 110module_param_cb(rx_ring_order, &ring_order_ops, &rx_ring_order, 0444);
 111MODULE_PARM_DESC(rx_ring_order, " Rx ring order; size = 1 << order");
 112module_param_cb(tx_ring_order, &ring_order_ops, &tx_ring_order, 0444);
 113MODULE_PARM_DESC(tx_ring_order, " Tx ring order; size = 1 << order");
 114module_param_cb(bcast_ring_order, &ring_order_ops, &bcast_ring_order, 0444);
 115MODULE_PARM_DESC(bcast_ring_order, " Bcast ring order; size = 1 << order");
 116
 117enum {
 118        WIL_BOOT_ERR,
 119        WIL_BOOT_VANILLA,
 120        WIL_BOOT_PRODUCTION,
 121        WIL_BOOT_DEVELOPMENT,
 122};
 123
 124enum {
 125        WIL_SIG_STATUS_VANILLA = 0x0,
 126        WIL_SIG_STATUS_DEVELOPMENT = 0x1,
 127        WIL_SIG_STATUS_PRODUCTION = 0x2,
 128        WIL_SIG_STATUS_CORRUPTED_PRODUCTION = 0x3,
 129};
 130
 131#define RST_DELAY (20) /* msec, for loop in @wil_wait_device_ready */
 132#define RST_COUNT (1 + 1000/RST_DELAY) /* round up to be above 1 sec total */
 133
 134#define PMU_READY_DELAY_MS (4) /* ms, for sleep in @wil_wait_device_ready */
 135
 136#define OTP_HW_DELAY (200) /* usec, loop in @wil_wait_device_ready_talyn_mb */
 137/* round up to be above 2 ms total */
 138#define OTP_HW_COUNT (1 + 2000 / OTP_HW_DELAY)
 139
 140/*
 141 * Due to a hardware issue,
 142 * one has to read/write to/from NIC in 32-bit chunks;
 143 * regular memcpy_fromio and siblings will
 144 * not work on 64-bit platform - it uses 64-bit transactions
 145 *
 146 * Force 32-bit transactions to enable NIC on 64-bit platforms
 147 *
 148 * To avoid byte swap on big endian host, __raw_{read|write}l
 149 * should be used - {read|write}l would swap bytes to provide
 150 * little endian on PCI value in host endianness.
 151 */
 152void wil_memcpy_fromio_32(void *dst, const volatile void __iomem *src,
 153                          size_t count)
 154{
 155        u32 *d = dst;
 156        const volatile u32 __iomem *s = src;
 157
 158        for (; count >= 4; count -= 4)
 159                *d++ = __raw_readl(s++);
 160
 161        if (unlikely(count)) {
 162                /* count can be 1..3 */
 163                u32 tmp = __raw_readl(s);
 164
 165                memcpy(d, &tmp, count);
 166        }
 167}
 168
 169void wil_memcpy_toio_32(volatile void __iomem *dst, const void *src,
 170                        size_t count)
 171{
 172        volatile u32 __iomem *d = dst;
 173        const u32 *s = src;
 174
 175        for (; count >= 4; count -= 4)
 176                __raw_writel(*s++, d++);
 177
 178        if (unlikely(count)) {
 179                /* count can be 1..3 */
 180                u32 tmp = 0;
 181
 182                memcpy(&tmp, s, count);
 183                __raw_writel(tmp, d);
 184        }
 185}
 186
 187/* Device memory access is prohibited while reset or suspend.
 188 * wil_mem_access_lock protects accessing device memory in these cases
 189 */
 190int wil_mem_access_lock(struct wil6210_priv *wil)
 191{
 192        if (!down_read_trylock(&wil->mem_lock))
 193                return -EBUSY;
 194
 195        if (test_bit(wil_status_suspending, wil->status) ||
 196            test_bit(wil_status_suspended, wil->status)) {
 197                up_read(&wil->mem_lock);
 198                return -EBUSY;
 199        }
 200
 201        return 0;
 202}
 203
 204void wil_mem_access_unlock(struct wil6210_priv *wil)
 205{
 206        up_read(&wil->mem_lock);
 207}
 208
 209static void wil_ring_fini_tx(struct wil6210_priv *wil, int id)
 210{
 211        struct wil_ring *ring = &wil->ring_tx[id];
 212        struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
 213
 214        lockdep_assert_held(&wil->mutex);
 215
 216        if (!ring->va)
 217                return;
 218
 219        wil_dbg_misc(wil, "vring_fini_tx: id=%d\n", id);
 220
 221        spin_lock_bh(&txdata->lock);
 222        txdata->dot1x_open = false;
 223        txdata->mid = U8_MAX;
 224        txdata->enabled = 0; /* no Tx can be in progress or start anew */
 225        spin_unlock_bh(&txdata->lock);
 226        /* napi_synchronize waits for completion of the current NAPI but will
 227         * not prevent the next NAPI run.
 228         * Add a memory barrier to guarantee that txdata->enabled is zeroed
 229         * before napi_synchronize so that the next scheduled NAPI will not
 230         * handle this vring
 231         */
 232        wmb();
 233        /* make sure NAPI won't touch this vring */
 234        if (test_bit(wil_status_napi_en, wil->status))
 235                napi_synchronize(&wil->napi_tx);
 236
 237        wil->txrx_ops.ring_fini_tx(wil, ring);
 238}
 239
 240static bool wil_vif_is_connected(struct wil6210_priv *wil, u8 mid)
 241{
 242        int i;
 243
 244        for (i = 0; i < wil->max_assoc_sta; i++) {
 245                if (wil->sta[i].mid == mid &&
 246                    wil->sta[i].status == wil_sta_connected)
 247                        return true;
 248        }
 249
 250        return false;
 251}
 252
 253static void wil_disconnect_cid_complete(struct wil6210_vif *vif, int cid,
 254                                        u16 reason_code)
 255__acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock)
 256{
 257        uint i;
 258        struct wil6210_priv *wil = vif_to_wil(vif);
 259        struct net_device *ndev = vif_to_ndev(vif);
 260        struct wireless_dev *wdev = vif_to_wdev(vif);
 261        struct wil_sta_info *sta = &wil->sta[cid];
 262        int min_ring_id = wil_get_min_tx_ring_id(wil);
 263
 264        might_sleep();
 265        wil_dbg_misc(wil,
 266                     "disconnect_cid_complete: CID %d, MID %d, status %d\n",
 267                     cid, sta->mid, sta->status);
 268        /* inform upper layers */
 269        if (sta->status != wil_sta_unused) {
 270                if (vif->mid != sta->mid) {
 271                        wil_err(wil, "STA MID mismatch with VIF MID(%d)\n",
 272                                vif->mid);
 273                }
 274
 275                switch (wdev->iftype) {
 276                case NL80211_IFTYPE_AP:
 277                case NL80211_IFTYPE_P2P_GO:
 278                        /* AP-like interface */
 279                        cfg80211_del_sta(ndev, sta->addr, GFP_KERNEL);
 280                        break;
 281                default:
 282                        break;
 283                }
 284                sta->status = wil_sta_unused;
 285                sta->mid = U8_MAX;
 286        }
 287        /* reorder buffers */
 288        for (i = 0; i < WIL_STA_TID_NUM; i++) {
 289                struct wil_tid_ampdu_rx *r;
 290
 291                spin_lock_bh(&sta->tid_rx_lock);
 292
 293                r = sta->tid_rx[i];
 294                sta->tid_rx[i] = NULL;
 295                wil_tid_ampdu_rx_free(wil, r);
 296
 297                spin_unlock_bh(&sta->tid_rx_lock);
 298        }
 299        /* crypto context */
 300        memset(sta->tid_crypto_rx, 0, sizeof(sta->tid_crypto_rx));
 301        memset(&sta->group_crypto_rx, 0, sizeof(sta->group_crypto_rx));
 302        /* release vrings */
 303        for (i = min_ring_id; i < ARRAY_SIZE(wil->ring_tx); i++) {
 304                if (wil->ring2cid_tid[i][0] == cid)
 305                        wil_ring_fini_tx(wil, i);
 306        }
 307        /* statistics */
 308        memset(&sta->stats, 0, sizeof(sta->stats));
 309        sta->stats.tx_latency_min_us = U32_MAX;
 310}
 311
 312static void _wil6210_disconnect_complete(struct wil6210_vif *vif,
 313                                         const u8 *bssid, u16 reason_code)
 314{
 315        struct wil6210_priv *wil = vif_to_wil(vif);
 316        int cid = -ENOENT;
 317        struct net_device *ndev;
 318        struct wireless_dev *wdev;
 319
 320        ndev = vif_to_ndev(vif);
 321        wdev = vif_to_wdev(vif);
 322
 323        might_sleep();
 324        wil_info(wil, "disconnect_complete: bssid=%pM, reason=%d\n",
 325                 bssid, reason_code);
 326
 327        /* Cases are:
 328         * - disconnect single STA, still connected
 329         * - disconnect single STA, already disconnected
 330         * - disconnect all
 331         *
 332         * For "disconnect all", there are 3 options:
 333         * - bssid == NULL
 334         * - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
 335         * - bssid is our MAC address
 336         */
 337        if (bssid && !is_broadcast_ether_addr(bssid) &&
 338            !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
 339                cid = wil_find_cid(wil, vif->mid, bssid);
 340                wil_dbg_misc(wil,
 341                             "Disconnect complete %pM, CID=%d, reason=%d\n",
 342                             bssid, cid, reason_code);
 343                if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */
 344                        wil_disconnect_cid_complete(vif, cid, reason_code);
 345        } else { /* all */
 346                wil_dbg_misc(wil, "Disconnect complete all\n");
 347                for (cid = 0; cid < wil->max_assoc_sta; cid++)
 348                        wil_disconnect_cid_complete(vif, cid, reason_code);
 349        }
 350
 351        /* link state */
 352        switch (wdev->iftype) {
 353        case NL80211_IFTYPE_STATION:
 354        case NL80211_IFTYPE_P2P_CLIENT:
 355                wil_bcast_fini(vif);
 356                wil_update_net_queues_bh(wil, vif, NULL, true);
 357                netif_carrier_off(ndev);
 358                if (!wil_has_other_active_ifaces(wil, ndev, false, true))
 359                        wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
 360
 361                if (test_and_clear_bit(wil_vif_fwconnected, vif->status)) {
 362                        atomic_dec(&wil->connected_vifs);
 363                        cfg80211_disconnected(ndev, reason_code,
 364                                              NULL, 0,
 365                                              vif->locally_generated_disc,
 366                                              GFP_KERNEL);
 367                        vif->locally_generated_disc = false;
 368                } else if (test_bit(wil_vif_fwconnecting, vif->status)) {
 369                        cfg80211_connect_result(ndev, bssid, NULL, 0, NULL, 0,
 370                                                WLAN_STATUS_UNSPECIFIED_FAILURE,
 371                                                GFP_KERNEL);
 372                        vif->bss = NULL;
 373                }
 374                clear_bit(wil_vif_fwconnecting, vif->status);
 375                clear_bit(wil_vif_ft_roam, vif->status);
 376                vif->ptk_rekey_state = WIL_REKEY_IDLE;
 377
 378                break;
 379        case NL80211_IFTYPE_AP:
 380        case NL80211_IFTYPE_P2P_GO:
 381                if (!wil_vif_is_connected(wil, vif->mid)) {
 382                        wil_update_net_queues_bh(wil, vif, NULL, true);
 383                        if (test_and_clear_bit(wil_vif_fwconnected,
 384                                               vif->status))
 385                                atomic_dec(&wil->connected_vifs);
 386                } else {
 387                        wil_update_net_queues_bh(wil, vif, NULL, false);
 388                }
 389                break;
 390        default:
 391                break;
 392        }
 393}
 394
 395static int wil_disconnect_cid(struct wil6210_vif *vif, int cid,
 396                              u16 reason_code)
 397{
 398        struct wil6210_priv *wil = vif_to_wil(vif);
 399        struct wireless_dev *wdev = vif_to_wdev(vif);
 400        struct wil_sta_info *sta = &wil->sta[cid];
 401        bool del_sta = false;
 402
 403        might_sleep();
 404        wil_dbg_misc(wil, "disconnect_cid: CID %d, MID %d, status %d\n",
 405                     cid, sta->mid, sta->status);
 406
 407        if (sta->status == wil_sta_unused)
 408                return 0;
 409
 410        if (vif->mid != sta->mid) {
 411                wil_err(wil, "STA MID mismatch with VIF MID(%d)\n", vif->mid);
 412                return -EINVAL;
 413        }
 414
 415        /* inform lower layers */
 416        if (wdev->iftype == NL80211_IFTYPE_AP && disable_ap_sme)
 417                del_sta = true;
 418
 419        /* disconnect by sending command disconnect/del_sta and wait
 420         * synchronously for WMI_DISCONNECT_EVENTID event.
 421         */
 422        return wmi_disconnect_sta(vif, sta->addr, reason_code, del_sta);
 423}
 424
 425static void _wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
 426                                u16 reason_code)
 427{
 428        struct wil6210_priv *wil;
 429        struct net_device *ndev;
 430        int cid = -ENOENT;
 431
 432        if (unlikely(!vif))
 433                return;
 434
 435        wil = vif_to_wil(vif);
 436        ndev = vif_to_ndev(vif);
 437
 438        might_sleep();
 439        wil_info(wil, "disconnect bssid=%pM, reason=%d\n", bssid, reason_code);
 440
 441        /* Cases are:
 442         * - disconnect single STA, still connected
 443         * - disconnect single STA, already disconnected
 444         * - disconnect all
 445         *
 446         * For "disconnect all", there are 3 options:
 447         * - bssid == NULL
 448         * - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
 449         * - bssid is our MAC address
 450         */
 451        if (bssid && !is_broadcast_ether_addr(bssid) &&
 452            !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
 453                cid = wil_find_cid(wil, vif->mid, bssid);
 454                wil_dbg_misc(wil, "Disconnect %pM, CID=%d, reason=%d\n",
 455                             bssid, cid, reason_code);
 456                if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */
 457                        wil_disconnect_cid(vif, cid, reason_code);
 458        } else { /* all */
 459                wil_dbg_misc(wil, "Disconnect all\n");
 460                for (cid = 0; cid < wil->max_assoc_sta; cid++)
 461                        wil_disconnect_cid(vif, cid, reason_code);
 462        }
 463
 464        /* call event handler manually after processing wmi_call,
 465         * to avoid deadlock - disconnect event handler acquires
 466         * wil->mutex while it is already held here
 467         */
 468        _wil6210_disconnect_complete(vif, bssid, reason_code);
 469}
 470
 471void wil_disconnect_worker(struct work_struct *work)
 472{
 473        struct wil6210_vif *vif = container_of(work,
 474                        struct wil6210_vif, disconnect_worker);
 475        struct wil6210_priv *wil = vif_to_wil(vif);
 476        struct net_device *ndev = vif_to_ndev(vif);
 477        int rc;
 478        struct {
 479                struct wmi_cmd_hdr wmi;
 480                struct wmi_disconnect_event evt;
 481        } __packed reply;
 482
 483        if (test_bit(wil_vif_fwconnected, vif->status))
 484                /* connect succeeded after all */
 485                return;
 486
 487        if (!test_bit(wil_vif_fwconnecting, vif->status))
 488                /* already disconnected */
 489                return;
 490
 491        memset(&reply, 0, sizeof(reply));
 492
 493        rc = wmi_call(wil, WMI_DISCONNECT_CMDID, vif->mid, NULL, 0,
 494                      WMI_DISCONNECT_EVENTID, &reply, sizeof(reply),
 495                      WIL6210_DISCONNECT_TO_MS);
 496        if (rc) {
 497                wil_err(wil, "disconnect error %d\n", rc);
 498                return;
 499        }
 500
 501        wil_update_net_queues_bh(wil, vif, NULL, true);
 502        netif_carrier_off(ndev);
 503        cfg80211_connect_result(ndev, NULL, NULL, 0, NULL, 0,
 504                                WLAN_STATUS_UNSPECIFIED_FAILURE, GFP_KERNEL);
 505        clear_bit(wil_vif_fwconnecting, vif->status);
 506}
 507
 508static int wil_wait_for_recovery(struct wil6210_priv *wil)
 509{
 510        if (wait_event_interruptible(wil->wq, wil->recovery_state !=
 511                                     fw_recovery_pending)) {
 512                wil_err(wil, "Interrupt, canceling recovery\n");
 513                return -ERESTARTSYS;
 514        }
 515        if (wil->recovery_state != fw_recovery_running) {
 516                wil_info(wil, "Recovery cancelled\n");
 517                return -EINTR;
 518        }
 519        wil_info(wil, "Proceed with recovery\n");
 520        return 0;
 521}
 522
 523void wil_set_recovery_state(struct wil6210_priv *wil, int state)
 524{
 525        wil_dbg_misc(wil, "set_recovery_state: %d -> %d\n",
 526                     wil->recovery_state, state);
 527
 528        wil->recovery_state = state;
 529        wake_up_interruptible(&wil->wq);
 530}
 531
 532bool wil_is_recovery_blocked(struct wil6210_priv *wil)
 533{
 534        return no_fw_recovery && (wil->recovery_state == fw_recovery_pending);
 535}
 536
 537static void wil_fw_error_worker(struct work_struct *work)
 538{
 539        struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
 540                                                fw_error_worker);
 541        struct net_device *ndev = wil->main_ndev;
 542        struct wireless_dev *wdev;
 543
 544        wil_dbg_misc(wil, "fw error worker\n");
 545
 546        if (!ndev || !(ndev->flags & IFF_UP)) {
 547                wil_info(wil, "No recovery - interface is down\n");
 548                return;
 549        }
 550        wdev = ndev->ieee80211_ptr;
 551
 552        /* increment @recovery_count if less then WIL6210_FW_RECOVERY_TO
 553         * passed since last recovery attempt
 554         */
 555        if (time_is_after_jiffies(wil->last_fw_recovery +
 556                                  WIL6210_FW_RECOVERY_TO))
 557                wil->recovery_count++;
 558        else
 559                wil->recovery_count = 1; /* fw was alive for a long time */
 560
 561        if (wil->recovery_count > WIL6210_FW_RECOVERY_RETRIES) {
 562                wil_err(wil, "too many recovery attempts (%d), giving up\n",
 563                        wil->recovery_count);
 564                return;
 565        }
 566
 567        wil->last_fw_recovery = jiffies;
 568
 569        wil_info(wil, "fw error recovery requested (try %d)...\n",
 570                 wil->recovery_count);
 571        if (!no_fw_recovery)
 572                wil->recovery_state = fw_recovery_running;
 573        if (wil_wait_for_recovery(wil) != 0)
 574                return;
 575
 576        rtnl_lock();
 577        mutex_lock(&wil->mutex);
 578        /* Needs adaptation for multiple VIFs
 579         * need to go over all VIFs and consider the appropriate
 580         * recovery because each one can have different iftype.
 581         */
 582        switch (wdev->iftype) {
 583        case NL80211_IFTYPE_STATION:
 584        case NL80211_IFTYPE_P2P_CLIENT:
 585        case NL80211_IFTYPE_MONITOR:
 586                /* silent recovery, upper layers will see disconnect */
 587                __wil_down(wil);
 588                __wil_up(wil);
 589                break;
 590        case NL80211_IFTYPE_AP:
 591        case NL80211_IFTYPE_P2P_GO:
 592                if (no_fw_recovery) /* upper layers do recovery */
 593                        break;
 594                /* silent recovery, upper layers will see disconnect */
 595                __wil_down(wil);
 596                __wil_up(wil);
 597                mutex_unlock(&wil->mutex);
 598                wil_cfg80211_ap_recovery(wil);
 599                mutex_lock(&wil->mutex);
 600                wil_info(wil, "... completed\n");
 601                break;
 602        default:
 603                wil_err(wil, "No recovery - unknown interface type %d\n",
 604                        wdev->iftype);
 605                break;
 606        }
 607
 608        mutex_unlock(&wil->mutex);
 609        rtnl_unlock();
 610}
 611
 612static int wil_find_free_ring(struct wil6210_priv *wil)
 613{
 614        int i;
 615        int min_ring_id = wil_get_min_tx_ring_id(wil);
 616
 617        for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
 618                if (!wil->ring_tx[i].va)
 619                        return i;
 620        }
 621        return -EINVAL;
 622}
 623
 624int wil_ring_init_tx(struct wil6210_vif *vif, int cid)
 625{
 626        struct wil6210_priv *wil = vif_to_wil(vif);
 627        int rc = -EINVAL, ringid;
 628
 629        if (cid < 0) {
 630                wil_err(wil, "No connection pending\n");
 631                goto out;
 632        }
 633        ringid = wil_find_free_ring(wil);
 634        if (ringid < 0) {
 635                wil_err(wil, "No free vring found\n");
 636                goto out;
 637        }
 638
 639        wil_dbg_wmi(wil, "Configure for connection CID %d MID %d ring %d\n",
 640                    cid, vif->mid, ringid);
 641
 642        rc = wil->txrx_ops.ring_init_tx(vif, ringid, 1 << tx_ring_order,
 643                                        cid, 0);
 644        if (rc)
 645                wil_err(wil, "init TX for CID %d MID %d vring %d failed\n",
 646                        cid, vif->mid, ringid);
 647
 648out:
 649        return rc;
 650}
 651
 652int wil_bcast_init(struct wil6210_vif *vif)
 653{
 654        struct wil6210_priv *wil = vif_to_wil(vif);
 655        int ri = vif->bcast_ring, rc;
 656
 657        if (ri >= 0 && wil->ring_tx[ri].va)
 658                return 0;
 659
 660        ri = wil_find_free_ring(wil);
 661        if (ri < 0)
 662                return ri;
 663
 664        vif->bcast_ring = ri;
 665        rc = wil->txrx_ops.ring_init_bcast(vif, ri, 1 << bcast_ring_order);
 666        if (rc)
 667                vif->bcast_ring = -1;
 668
 669        return rc;
 670}
 671
 672void wil_bcast_fini(struct wil6210_vif *vif)
 673{
 674        struct wil6210_priv *wil = vif_to_wil(vif);
 675        int ri = vif->bcast_ring;
 676
 677        if (ri < 0)
 678                return;
 679
 680        vif->bcast_ring = -1;
 681        wil_ring_fini_tx(wil, ri);
 682}
 683
 684void wil_bcast_fini_all(struct wil6210_priv *wil)
 685{
 686        int i;
 687        struct wil6210_vif *vif;
 688
 689        for (i = 0; i < GET_MAX_VIFS(wil); i++) {
 690                vif = wil->vifs[i];
 691                if (vif)
 692                        wil_bcast_fini(vif);
 693        }
 694}
 695
 696int wil_priv_init(struct wil6210_priv *wil)
 697{
 698        uint i;
 699
 700        wil_dbg_misc(wil, "priv_init\n");
 701
 702        memset(wil->sta, 0, sizeof(wil->sta));
 703        for (i = 0; i < WIL6210_MAX_CID; i++) {
 704                spin_lock_init(&wil->sta[i].tid_rx_lock);
 705                wil->sta[i].mid = U8_MAX;
 706        }
 707
 708        for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
 709                spin_lock_init(&wil->ring_tx_data[i].lock);
 710                wil->ring2cid_tid[i][0] = WIL6210_MAX_CID;
 711        }
 712
 713        mutex_init(&wil->mutex);
 714        mutex_init(&wil->vif_mutex);
 715        mutex_init(&wil->wmi_mutex);
 716        mutex_init(&wil->halp.lock);
 717
 718        init_completion(&wil->wmi_ready);
 719        init_completion(&wil->wmi_call);
 720        init_completion(&wil->halp.comp);
 721
 722        INIT_WORK(&wil->wmi_event_worker, wmi_event_worker);
 723        INIT_WORK(&wil->fw_error_worker, wil_fw_error_worker);
 724
 725        INIT_LIST_HEAD(&wil->pending_wmi_ev);
 726        spin_lock_init(&wil->wmi_ev_lock);
 727        spin_lock_init(&wil->net_queue_lock);
 728        spin_lock_init(&wil->eap_lock);
 729
 730        init_waitqueue_head(&wil->wq);
 731        init_rwsem(&wil->mem_lock);
 732
 733        wil->wmi_wq = create_singlethread_workqueue(WIL_NAME "_wmi");
 734        if (!wil->wmi_wq)
 735                return -EAGAIN;
 736
 737        wil->wq_service = create_singlethread_workqueue(WIL_NAME "_service");
 738        if (!wil->wq_service)
 739                goto out_wmi_wq;
 740
 741        wil->last_fw_recovery = jiffies;
 742        wil->tx_interframe_timeout = WIL6210_ITR_TX_INTERFRAME_TIMEOUT_DEFAULT;
 743        wil->rx_interframe_timeout = WIL6210_ITR_RX_INTERFRAME_TIMEOUT_DEFAULT;
 744        wil->tx_max_burst_duration = WIL6210_ITR_TX_MAX_BURST_DURATION_DEFAULT;
 745        wil->rx_max_burst_duration = WIL6210_ITR_RX_MAX_BURST_DURATION_DEFAULT;
 746
 747        if (rx_ring_overflow_thrsh == WIL6210_RX_HIGH_TRSH_INIT)
 748                rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_DEFAULT;
 749
 750        wil->ps_profile =  WMI_PS_PROFILE_TYPE_DEFAULT;
 751
 752        wil->wakeup_trigger = WMI_WAKEUP_TRIGGER_UCAST |
 753                              WMI_WAKEUP_TRIGGER_BCAST;
 754        memset(&wil->suspend_stats, 0, sizeof(wil->suspend_stats));
 755        wil->ring_idle_trsh = 16;
 756
 757        wil->reply_mid = U8_MAX;
 758        wil->max_vifs = 1;
 759        wil->max_assoc_sta = max_assoc_sta;
 760
 761        /* edma configuration can be updated via debugfs before allocation */
 762        wil->num_rx_status_rings = WIL_DEFAULT_NUM_RX_STATUS_RINGS;
 763        wil->tx_status_ring_order = WIL_TX_SRING_SIZE_ORDER_DEFAULT;
 764
 765        /* Rx status ring size should be bigger than the number of RX buffers
 766         * in order to prevent backpressure on the status ring, which may
 767         * cause HW freeze.
 768         */
 769        wil->rx_status_ring_order = WIL_RX_SRING_SIZE_ORDER_DEFAULT;
 770        /* Number of RX buffer IDs should be bigger than the RX descriptor
 771         * ring size as in HW reorder flow, the HW can consume additional
 772         * buffers before releasing the previous ones.
 773         */
 774        wil->rx_buff_id_count = WIL_RX_BUFF_ARR_SIZE_DEFAULT;
 775
 776        wil->amsdu_en = 1;
 777
 778        return 0;
 779
 780out_wmi_wq:
 781        destroy_workqueue(wil->wmi_wq);
 782
 783        return -EAGAIN;
 784}
 785
 786void wil6210_bus_request(struct wil6210_priv *wil, u32 kbps)
 787{
 788        if (wil->platform_ops.bus_request) {
 789                wil->bus_request_kbps = kbps;
 790                wil->platform_ops.bus_request(wil->platform_handle, kbps);
 791        }
 792}
 793
 794/**
 795 * wil6210_disconnect - disconnect one connection
 796 * @vif: virtual interface context
 797 * @bssid: peer to disconnect, NULL to disconnect all
 798 * @reason_code: Reason code for the Disassociation frame
 799 *
 800 * Disconnect and release associated resources. Issue WMI
 801 * command(s) to trigger MAC disconnect. When command was issued
 802 * successfully, call the wil6210_disconnect_complete function
 803 * to handle the event synchronously
 804 */
 805void wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
 806                        u16 reason_code)
 807{
 808        struct wil6210_priv *wil = vif_to_wil(vif);
 809
 810        wil_dbg_misc(wil, "disconnecting\n");
 811
 812        del_timer_sync(&vif->connect_timer);
 813        _wil6210_disconnect(vif, bssid, reason_code);
 814}
 815
 816/**
 817 * wil6210_disconnect_complete - handle disconnect event
 818 * @vif: virtual interface context
 819 * @bssid: peer to disconnect, NULL to disconnect all
 820 * @reason_code: Reason code for the Disassociation frame
 821 *
 822 * Release associated resources and indicate upper layers the
 823 * connection is terminated.
 824 */
 825void wil6210_disconnect_complete(struct wil6210_vif *vif, const u8 *bssid,
 826                                 u16 reason_code)
 827{
 828        struct wil6210_priv *wil = vif_to_wil(vif);
 829
 830        wil_dbg_misc(wil, "got disconnect\n");
 831
 832        del_timer_sync(&vif->connect_timer);
 833        _wil6210_disconnect_complete(vif, bssid, reason_code);
 834}
 835
 836void wil_priv_deinit(struct wil6210_priv *wil)
 837{
 838        wil_dbg_misc(wil, "priv_deinit\n");
 839
 840        wil_set_recovery_state(wil, fw_recovery_idle);
 841        cancel_work_sync(&wil->fw_error_worker);
 842        wmi_event_flush(wil);
 843        destroy_workqueue(wil->wq_service);
 844        destroy_workqueue(wil->wmi_wq);
 845        kfree(wil->brd_info);
 846}
 847
 848static void wil_shutdown_bl(struct wil6210_priv *wil)
 849{
 850        u32 val;
 851
 852        wil_s(wil, RGF_USER_BL +
 853              offsetof(struct bl_dedicated_registers_v1,
 854                       bl_shutdown_handshake), BL_SHUTDOWN_HS_GRTD);
 855
 856        usleep_range(100, 150);
 857
 858        val = wil_r(wil, RGF_USER_BL +
 859                    offsetof(struct bl_dedicated_registers_v1,
 860                             bl_shutdown_handshake));
 861        if (val & BL_SHUTDOWN_HS_RTD) {
 862                wil_dbg_misc(wil, "BL is ready for halt\n");
 863                return;
 864        }
 865
 866        wil_err(wil, "BL did not report ready for halt\n");
 867}
 868
 869/* this format is used by ARC embedded CPU for instruction memory */
 870static inline u32 ARC_me_imm32(u32 d)
 871{
 872        return ((d & 0xffff0000) >> 16) | ((d & 0x0000ffff) << 16);
 873}
 874
 875/* defines access to interrupt vectors for wil_freeze_bl */
 876#define ARC_IRQ_VECTOR_OFFSET(N)        ((N) * 8)
 877/* ARC long jump instruction */
 878#define ARC_JAL_INST                    (0x20200f80)
 879
 880static void wil_freeze_bl(struct wil6210_priv *wil)
 881{
 882        u32 jal, upc, saved;
 883        u32 ivt3 = ARC_IRQ_VECTOR_OFFSET(3);
 884
 885        jal = wil_r(wil, wil->iccm_base + ivt3);
 886        if (jal != ARC_me_imm32(ARC_JAL_INST)) {
 887                wil_dbg_misc(wil, "invalid IVT entry found, skipping\n");
 888                return;
 889        }
 890
 891        /* prevent the target from entering deep sleep
 892         * and disabling memory access
 893         */
 894        saved = wil_r(wil, RGF_USER_USAGE_8);
 895        wil_w(wil, RGF_USER_USAGE_8, saved | BIT_USER_PREVENT_DEEP_SLEEP);
 896        usleep_range(20, 25); /* let the BL process the bit */
 897
 898        /* redirect to endless loop in the INT_L1 context and let it trap */
 899        wil_w(wil, wil->iccm_base + ivt3 + 4, ARC_me_imm32(ivt3));
 900        usleep_range(20, 25); /* let the BL get into the trap */
 901
 902        /* verify the BL is frozen */
 903        upc = wil_r(wil, RGF_USER_CPU_PC);
 904        if (upc < ivt3 || (upc > (ivt3 + 8)))
 905                wil_dbg_misc(wil, "BL freeze failed, PC=0x%08X\n", upc);
 906
 907        wil_w(wil, RGF_USER_USAGE_8, saved);
 908}
 909
 910static void wil_bl_prepare_halt(struct wil6210_priv *wil)
 911{
 912        u32 tmp, ver;
 913
 914        /* before halting device CPU driver must make sure BL is not accessing
 915         * host memory. This is done differently depending on BL version:
 916         * 1. For very old BL versions the procedure is skipped
 917         * (not supported).
 918         * 2. For old BL version we use a special trick to freeze the BL
 919         * 3. For new BL versions we shutdown the BL using handshake procedure.
 920         */
 921        tmp = wil_r(wil, RGF_USER_BL +
 922                    offsetof(struct bl_dedicated_registers_v0,
 923                             boot_loader_struct_version));
 924        if (!tmp) {
 925                wil_dbg_misc(wil, "old BL, skipping halt preparation\n");
 926                return;
 927        }
 928
 929        tmp = wil_r(wil, RGF_USER_BL +
 930                    offsetof(struct bl_dedicated_registers_v1,
 931                             bl_shutdown_handshake));
 932        ver = BL_SHUTDOWN_HS_PROT_VER(tmp);
 933
 934        if (ver > 0)
 935                wil_shutdown_bl(wil);
 936        else
 937                wil_freeze_bl(wil);
 938}
 939
 940static inline void wil_halt_cpu(struct wil6210_priv *wil)
 941{
 942        if (wil->hw_version >= HW_VER_TALYN_MB) {
 943                wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB,
 944                      BIT_USER_USER_CPU_MAN_RST);
 945                wil_w(wil, RGF_USER_MAC_CPU_0_TALYN_MB,
 946                      BIT_USER_MAC_CPU_MAN_RST);
 947        } else {
 948                wil_w(wil, RGF_USER_USER_CPU_0, BIT_USER_USER_CPU_MAN_RST);
 949                wil_w(wil, RGF_USER_MAC_CPU_0,  BIT_USER_MAC_CPU_MAN_RST);
 950        }
 951}
 952
 953static inline void wil_release_cpu(struct wil6210_priv *wil)
 954{
 955        /* Start CPU */
 956        if (wil->hw_version >= HW_VER_TALYN_MB)
 957                wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB, 1);
 958        else
 959                wil_w(wil, RGF_USER_USER_CPU_0, 1);
 960}
 961
 962static void wil_set_oob_mode(struct wil6210_priv *wil, u8 mode)
 963{
 964        wil_info(wil, "oob_mode to %d\n", mode);
 965        switch (mode) {
 966        case 0:
 967                wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE |
 968                      BIT_USER_OOB_R2_MODE);
 969                break;
 970        case 1:
 971                wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
 972                wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
 973                break;
 974        case 2:
 975                wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
 976                wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
 977                break;
 978        default:
 979                wil_err(wil, "invalid oob_mode: %d\n", mode);
 980        }
 981}
 982
 983static int wil_wait_device_ready(struct wil6210_priv *wil, int no_flash)
 984{
 985        int delay = 0;
 986        u32 x, x1 = 0;
 987
 988        /* wait until device ready. */
 989        if (no_flash) {
 990                msleep(PMU_READY_DELAY_MS);
 991
 992                wil_dbg_misc(wil, "Reset completed\n");
 993        } else {
 994                do {
 995                        msleep(RST_DELAY);
 996                        x = wil_r(wil, RGF_USER_BL +
 997                                  offsetof(struct bl_dedicated_registers_v0,
 998                                           boot_loader_ready));
 999                        if (x1 != x) {
1000                                wil_dbg_misc(wil, "BL.ready 0x%08x => 0x%08x\n",
1001                                             x1, x);
1002                                x1 = x;
1003                        }
1004                        if (delay++ > RST_COUNT) {
1005                                wil_err(wil, "Reset not completed, bl.ready 0x%08x\n",
1006                                        x);
1007                                return -ETIME;
1008                        }
1009                } while (x != BL_READY);
1010
1011                wil_dbg_misc(wil, "Reset completed in %d ms\n",
1012                             delay * RST_DELAY);
1013        }
1014
1015        return 0;
1016}
1017
1018static int wil_wait_device_ready_talyn_mb(struct wil6210_priv *wil)
1019{
1020        u32 otp_hw;
1021        u8 signature_status;
1022        bool otp_signature_err;
1023        bool hw_section_done;
1024        u32 otp_qc_secured;
1025        int delay = 0;
1026
1027        /* Wait for OTP signature test to complete */
1028        usleep_range(2000, 2200);
1029
1030        wil->boot_config = WIL_BOOT_ERR;
1031
1032        /* Poll until OTP signature status is valid.
1033         * In vanilla and development modes, when signature test is complete
1034         * HW sets BIT_OTP_SIGNATURE_ERR_TALYN_MB.
1035         * In production mode BIT_OTP_SIGNATURE_ERR_TALYN_MB remains 0, poll
1036         * for signature status change to 2 or 3.
1037         */
1038        do {
1039                otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
1040                signature_status = WIL_GET_BITS(otp_hw, 8, 9);
1041                otp_signature_err = otp_hw & BIT_OTP_SIGNATURE_ERR_TALYN_MB;
1042
1043                if (otp_signature_err &&
1044                    signature_status == WIL_SIG_STATUS_VANILLA) {
1045                        wil->boot_config = WIL_BOOT_VANILLA;
1046                        break;
1047                }
1048                if (otp_signature_err &&
1049                    signature_status == WIL_SIG_STATUS_DEVELOPMENT) {
1050                        wil->boot_config = WIL_BOOT_DEVELOPMENT;
1051                        break;
1052                }
1053                if (!otp_signature_err &&
1054                    signature_status == WIL_SIG_STATUS_PRODUCTION) {
1055                        wil->boot_config = WIL_BOOT_PRODUCTION;
1056                        break;
1057                }
1058                if  (!otp_signature_err &&
1059                     signature_status ==
1060                     WIL_SIG_STATUS_CORRUPTED_PRODUCTION) {
1061                        /* Unrecognized OTP signature found. Possibly a
1062                         * corrupted production signature, access control
1063                         * is applied as in production mode, therefore
1064                         * do not fail
1065                         */
1066                        wil->boot_config = WIL_BOOT_PRODUCTION;
1067                        break;
1068                }
1069                if (delay++ > OTP_HW_COUNT)
1070                        break;
1071
1072                usleep_range(OTP_HW_DELAY, OTP_HW_DELAY + 10);
1073        } while (!otp_signature_err && signature_status == 0);
1074
1075        if (wil->boot_config == WIL_BOOT_ERR) {
1076                wil_err(wil,
1077                        "invalid boot config, signature_status %d otp_signature_err %d\n",
1078                        signature_status, otp_signature_err);
1079                return -ETIME;
1080        }
1081
1082        wil_dbg_misc(wil,
1083                     "signature test done in %d usec, otp_hw 0x%x, boot_config %d\n",
1084                     delay * OTP_HW_DELAY, otp_hw, wil->boot_config);
1085
1086        if (wil->boot_config == WIL_BOOT_VANILLA)
1087                /* Assuming not SPI boot (currently not supported) */
1088                goto out;
1089
1090        hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
1091        delay = 0;
1092
1093        while (!hw_section_done) {
1094                msleep(RST_DELAY);
1095
1096                otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
1097                hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
1098
1099                if (delay++ > RST_COUNT) {
1100                        wil_err(wil, "TO waiting for hw_section_done\n");
1101                        return -ETIME;
1102                }
1103        }
1104
1105        wil_dbg_misc(wil, "HW section done in %d ms\n", delay * RST_DELAY);
1106
1107        otp_qc_secured = wil_r(wil, RGF_OTP_QC_SECURED);
1108        wil->secured_boot = otp_qc_secured & BIT_BOOT_FROM_ROM ? 1 : 0;
1109        wil_dbg_misc(wil, "secured boot is %sabled\n",
1110                     wil->secured_boot ? "en" : "dis");
1111
1112out:
1113        wil_dbg_misc(wil, "Reset completed\n");
1114
1115        return 0;
1116}
1117
1118static int wil_target_reset(struct wil6210_priv *wil, int no_flash)
1119{
1120        u32 x;
1121        int rc;
1122
1123        wil_dbg_misc(wil, "Resetting \"%s\"...\n", wil->hw_name);
1124
1125        if (wil->hw_version < HW_VER_TALYN) {
1126                /* Clear MAC link up */
1127                wil_s(wil, RGF_HP_CTRL, BIT(15));
1128                wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0,
1129                      BIT_HPAL_PERST_FROM_PAD);
1130                wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT_CAR_PERST_RST);
1131        }
1132
1133        wil_halt_cpu(wil);
1134
1135        if (!no_flash) {
1136                /* clear all boot loader "ready" bits */
1137                wil_w(wil, RGF_USER_BL +
1138                      offsetof(struct bl_dedicated_registers_v0,
1139                               boot_loader_ready), 0);
1140                /* this should be safe to write even with old BLs */
1141                wil_w(wil, RGF_USER_BL +
1142                      offsetof(struct bl_dedicated_registers_v1,
1143                               bl_shutdown_handshake), 0);
1144        }
1145        /* Clear Fw Download notification */
1146        wil_c(wil, RGF_USER_USAGE_6, BIT(0));
1147
1148        wil_s(wil, RGF_CAF_OSC_CONTROL, BIT_CAF_OSC_XTAL_EN);
1149        /* XTAL stabilization should take about 3ms */
1150        usleep_range(5000, 7000);
1151        x = wil_r(wil, RGF_CAF_PLL_LOCK_STATUS);
1152        if (!(x & BIT_CAF_OSC_DIG_XTAL_STABLE)) {
1153                wil_err(wil, "Xtal stabilization timeout\n"
1154                        "RGF_CAF_PLL_LOCK_STATUS = 0x%08x\n", x);
1155                return -ETIME;
1156        }
1157        /* switch 10k to XTAL*/
1158        wil_c(wil, RGF_USER_SPARROW_M_4, BIT_SPARROW_M_4_SEL_SLEEP_OR_REF);
1159        /* 40 MHz */
1160        wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_CAR_AHB_SW_SEL);
1161
1162        wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x3ff81f);
1163        wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0xf);
1164
1165        if (wil->hw_version >= HW_VER_TALYN_MB) {
1166                wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x7e000000);
1167                wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
1168                wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0xc00000f0);
1169                wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
1170        } else {
1171                wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0xfe000000);
1172                wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
1173                wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x000000f0);
1174                wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
1175        }
1176
1177        wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x0);
1178        wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0x0);
1179
1180        wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0);
1181        wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0);
1182        wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0);
1183        wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
1184
1185        wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x00000003);
1186        /* reset A2 PCIE AHB */
1187        wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x00008000);
1188
1189        wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
1190
1191        if (wil->hw_version == HW_VER_TALYN_MB)
1192                rc = wil_wait_device_ready_talyn_mb(wil);
1193        else
1194                rc = wil_wait_device_ready(wil, no_flash);
1195        if (rc)
1196                return rc;
1197
1198        wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_RST_PWGD);
1199
1200        /* enable fix for HW bug related to the SA/DA swap in AP Rx */
1201        wil_s(wil, RGF_DMA_OFUL_NID_0, BIT_DMA_OFUL_NID_0_RX_EXT_TR_EN |
1202              BIT_DMA_OFUL_NID_0_RX_EXT_A3_SRC);
1203
1204        if (wil->hw_version < HW_VER_TALYN_MB && no_flash) {
1205                /* Reset OTP HW vectors to fit 40MHz */
1206                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME1, 0x60001);
1207                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME2, 0x20027);
1208                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME3, 0x1);
1209                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME4, 0x20027);
1210                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME5, 0x30003);
1211                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME6, 0x20002);
1212                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME7, 0x60001);
1213                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME8, 0x60001);
1214                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME9, 0x60001);
1215                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME10, 0x60001);
1216                wil_w(wil, RGF_USER_XPM_RD_DOUT_SAMPLE_TIME, 0x57);
1217        }
1218
1219        return 0;
1220}
1221
1222static void wil_collect_fw_info(struct wil6210_priv *wil)
1223{
1224        struct wiphy *wiphy = wil_to_wiphy(wil);
1225        u8 retry_short;
1226        int rc;
1227
1228        wil_refresh_fw_capabilities(wil);
1229
1230        rc = wmi_get_mgmt_retry(wil, &retry_short);
1231        if (!rc) {
1232                wiphy->retry_short = retry_short;
1233                wil_dbg_misc(wil, "FW retry_short: %d\n", retry_short);
1234        }
1235}
1236
1237void wil_refresh_fw_capabilities(struct wil6210_priv *wil)
1238{
1239        struct wiphy *wiphy = wil_to_wiphy(wil);
1240        int features;
1241
1242        wil->keep_radio_on_during_sleep =
1243                test_bit(WIL_PLATFORM_CAPA_RADIO_ON_IN_SUSPEND,
1244                         wil->platform_capa) &&
1245                test_bit(WMI_FW_CAPABILITY_D3_SUSPEND, wil->fw_capabilities);
1246
1247        wil_info(wil, "keep_radio_on_during_sleep (%d)\n",
1248                 wil->keep_radio_on_during_sleep);
1249
1250        if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
1251                wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
1252        else
1253                wiphy->signal_type = CFG80211_SIGNAL_TYPE_UNSPEC;
1254
1255        if (test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities)) {
1256                wiphy->max_sched_scan_reqs = 1;
1257                wiphy->max_sched_scan_ssids = WMI_MAX_PNO_SSID_NUM;
1258                wiphy->max_match_sets = WMI_MAX_PNO_SSID_NUM;
1259                wiphy->max_sched_scan_ie_len = WMI_MAX_IE_LEN;
1260                wiphy->max_sched_scan_plans = WMI_MAX_PLANS_NUM;
1261        }
1262
1263        if (test_bit(WMI_FW_CAPABILITY_TX_REQ_EXT, wil->fw_capabilities))
1264                wiphy->flags |= WIPHY_FLAG_OFFCHAN_TX;
1265
1266        if (wil->platform_ops.set_features) {
1267                features = (test_bit(WMI_FW_CAPABILITY_REF_CLOCK_CONTROL,
1268                                     wil->fw_capabilities) &&
1269                            test_bit(WIL_PLATFORM_CAPA_EXT_CLK,
1270                                     wil->platform_capa)) ?
1271                        BIT(WIL_PLATFORM_FEATURE_FW_EXT_CLK_CONTROL) : 0;
1272
1273                if (wil->n_msi == 3)
1274                        features |= BIT(WIL_PLATFORM_FEATURE_TRIPLE_MSI);
1275
1276                wil->platform_ops.set_features(wil->platform_handle, features);
1277        }
1278
1279        if (test_bit(WMI_FW_CAPABILITY_BACK_WIN_SIZE_64,
1280                     wil->fw_capabilities)) {
1281                wil->max_agg_wsize = WIL_MAX_AGG_WSIZE_64;
1282                wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE_128;
1283        } else {
1284                wil->max_agg_wsize = WIL_MAX_AGG_WSIZE;
1285                wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE;
1286        }
1287
1288        update_supported_bands(wil);
1289}
1290
1291void wil_mbox_ring_le2cpus(struct wil6210_mbox_ring *r)
1292{
1293        le32_to_cpus(&r->base);
1294        le16_to_cpus(&r->entry_size);
1295        le16_to_cpus(&r->size);
1296        le32_to_cpus(&r->tail);
1297        le32_to_cpus(&r->head);
1298}
1299
1300/* construct actual board file name to use */
1301void wil_get_board_file(struct wil6210_priv *wil, char *buf, size_t len)
1302{
1303        const char *board_file;
1304        const char *wil_talyn_fw_name = ftm_mode ? WIL_FW_NAME_FTM_TALYN :
1305                              WIL_FW_NAME_TALYN;
1306
1307        if (wil->board_file) {
1308                board_file = wil->board_file;
1309        } else {
1310                /* If specific FW file is used for Talyn,
1311                 * use specific board file
1312                 */
1313                if (strcmp(wil->wil_fw_name, wil_talyn_fw_name) == 0)
1314                        board_file = WIL_BRD_NAME_TALYN;
1315                else
1316                        board_file = WIL_BOARD_FILE_NAME;
1317        }
1318
1319        strlcpy(buf, board_file, len);
1320}
1321
1322static int wil_get_bl_info(struct wil6210_priv *wil)
1323{
1324        struct net_device *ndev = wil->main_ndev;
1325        struct wiphy *wiphy = wil_to_wiphy(wil);
1326        union {
1327                struct bl_dedicated_registers_v0 bl0;
1328                struct bl_dedicated_registers_v1 bl1;
1329        } bl;
1330        u32 bl_ver;
1331        u8 *mac;
1332        u16 rf_status;
1333
1334        wil_memcpy_fromio_32(&bl, wil->csr + HOSTADDR(RGF_USER_BL),
1335                             sizeof(bl));
1336        bl_ver = le32_to_cpu(bl.bl0.boot_loader_struct_version);
1337        mac = bl.bl0.mac_address;
1338
1339        if (bl_ver == 0) {
1340                le32_to_cpus(&bl.bl0.rf_type);
1341                le32_to_cpus(&bl.bl0.baseband_type);
1342                rf_status = 0; /* actually, unknown */
1343                wil_info(wil,
1344                         "Boot Loader struct v%d: MAC = %pM RF = 0x%08x bband = 0x%08x\n",
1345                         bl_ver, mac,
1346                         bl.bl0.rf_type, bl.bl0.baseband_type);
1347                wil_info(wil, "Boot Loader build unknown for struct v0\n");
1348        } else {
1349                le16_to_cpus(&bl.bl1.rf_type);
1350                rf_status = le16_to_cpu(bl.bl1.rf_status);
1351                le32_to_cpus(&bl.bl1.baseband_type);
1352                le16_to_cpus(&bl.bl1.bl_version_subminor);
1353                le16_to_cpus(&bl.bl1.bl_version_build);
1354                wil_info(wil,
1355                         "Boot Loader struct v%d: MAC = %pM RF = 0x%04x (status 0x%04x) bband = 0x%08x\n",
1356                         bl_ver, mac,
1357                         bl.bl1.rf_type, rf_status,
1358                         bl.bl1.baseband_type);
1359                wil_info(wil, "Boot Loader build %d.%d.%d.%d\n",
1360                         bl.bl1.bl_version_major, bl.bl1.bl_version_minor,
1361                         bl.bl1.bl_version_subminor, bl.bl1.bl_version_build);
1362        }
1363
1364        if (!is_valid_ether_addr(mac)) {
1365                wil_err(wil, "BL: Invalid MAC %pM\n", mac);
1366                return -EINVAL;
1367        }
1368
1369        ether_addr_copy(ndev->perm_addr, mac);
1370        ether_addr_copy(wiphy->perm_addr, mac);
1371        if (!is_valid_ether_addr(ndev->dev_addr))
1372                ether_addr_copy(ndev->dev_addr, mac);
1373
1374        if (rf_status) {/* bad RF cable? */
1375                wil_err(wil, "RF communication error 0x%04x",
1376                        rf_status);
1377                return -EAGAIN;
1378        }
1379
1380        return 0;
1381}
1382
1383static void wil_bl_crash_info(struct wil6210_priv *wil, bool is_err)
1384{
1385        u32 bl_assert_code, bl_assert_blink, bl_magic_number;
1386        u32 bl_ver = wil_r(wil, RGF_USER_BL +
1387                           offsetof(struct bl_dedicated_registers_v0,
1388                                    boot_loader_struct_version));
1389
1390        if (bl_ver < 2)
1391                return;
1392
1393        bl_assert_code = wil_r(wil, RGF_USER_BL +
1394                               offsetof(struct bl_dedicated_registers_v1,
1395                                        bl_assert_code));
1396        bl_assert_blink = wil_r(wil, RGF_USER_BL +
1397                                offsetof(struct bl_dedicated_registers_v1,
1398                                         bl_assert_blink));
1399        bl_magic_number = wil_r(wil, RGF_USER_BL +
1400                                offsetof(struct bl_dedicated_registers_v1,
1401                                         bl_magic_number));
1402
1403        if (is_err) {
1404                wil_err(wil,
1405                        "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1406                        bl_assert_code, bl_assert_blink, bl_magic_number);
1407        } else {
1408                wil_dbg_misc(wil,
1409                             "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1410                             bl_assert_code, bl_assert_blink, bl_magic_number);
1411        }
1412}
1413
1414static int wil_get_otp_info(struct wil6210_priv *wil)
1415{
1416        struct net_device *ndev = wil->main_ndev;
1417        struct wiphy *wiphy = wil_to_wiphy(wil);
1418        u8 mac[8];
1419        int mac_addr;
1420
1421        /* OEM MAC has precedence */
1422        mac_addr = RGF_OTP_OEM_MAC;
1423        wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr), sizeof(mac));
1424
1425        if (is_valid_ether_addr(mac)) {
1426                wil_info(wil, "using OEM MAC %pM\n", mac);
1427        } else {
1428                if (wil->hw_version >= HW_VER_TALYN_MB)
1429                        mac_addr = RGF_OTP_MAC_TALYN_MB;
1430                else
1431                        mac_addr = RGF_OTP_MAC;
1432
1433                wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr),
1434                                     sizeof(mac));
1435        }
1436
1437        if (!is_valid_ether_addr(mac)) {
1438                wil_err(wil, "Invalid MAC %pM\n", mac);
1439                return -EINVAL;
1440        }
1441
1442        ether_addr_copy(ndev->perm_addr, mac);
1443        ether_addr_copy(wiphy->perm_addr, mac);
1444        if (!is_valid_ether_addr(ndev->dev_addr))
1445                ether_addr_copy(ndev->dev_addr, mac);
1446
1447        return 0;
1448}
1449
1450static int wil_wait_for_fw_ready(struct wil6210_priv *wil)
1451{
1452        ulong to = msecs_to_jiffies(2000);
1453        ulong left = wait_for_completion_timeout(&wil->wmi_ready, to);
1454
1455        if (0 == left) {
1456                wil_err(wil, "Firmware not ready\n");
1457                return -ETIME;
1458        } else {
1459                wil_info(wil, "FW ready after %d ms. HW version 0x%08x\n",
1460                         jiffies_to_msecs(to-left), wil->hw_version);
1461        }
1462        return 0;
1463}
1464
1465void wil_abort_scan(struct wil6210_vif *vif, bool sync)
1466{
1467        struct wil6210_priv *wil = vif_to_wil(vif);
1468        int rc;
1469        struct cfg80211_scan_info info = {
1470                .aborted = true,
1471        };
1472
1473        lockdep_assert_held(&wil->vif_mutex);
1474
1475        if (!vif->scan_request)
1476                return;
1477
1478        wil_dbg_misc(wil, "Abort scan_request 0x%p\n", vif->scan_request);
1479        del_timer_sync(&vif->scan_timer);
1480        mutex_unlock(&wil->vif_mutex);
1481        rc = wmi_abort_scan(vif);
1482        if (!rc && sync)
1483                wait_event_interruptible_timeout(wil->wq, !vif->scan_request,
1484                                                 msecs_to_jiffies(
1485                                                 WAIT_FOR_SCAN_ABORT_MS));
1486
1487        mutex_lock(&wil->vif_mutex);
1488        if (vif->scan_request) {
1489                cfg80211_scan_done(vif->scan_request, &info);
1490                vif->scan_request = NULL;
1491        }
1492}
1493
1494void wil_abort_scan_all_vifs(struct wil6210_priv *wil, bool sync)
1495{
1496        int i;
1497
1498        lockdep_assert_held(&wil->vif_mutex);
1499
1500        for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1501                struct wil6210_vif *vif = wil->vifs[i];
1502
1503                if (vif)
1504                        wil_abort_scan(vif, sync);
1505        }
1506}
1507
1508int wil_ps_update(struct wil6210_priv *wil, enum wmi_ps_profile_type ps_profile)
1509{
1510        int rc;
1511
1512        if (!test_bit(WMI_FW_CAPABILITY_PS_CONFIG, wil->fw_capabilities)) {
1513                wil_err(wil, "set_power_mgmt not supported\n");
1514                return -EOPNOTSUPP;
1515        }
1516
1517        rc  = wmi_ps_dev_profile_cfg(wil, ps_profile);
1518        if (rc)
1519                wil_err(wil, "wmi_ps_dev_profile_cfg failed (%d)\n", rc);
1520        else
1521                wil->ps_profile = ps_profile;
1522
1523        return rc;
1524}
1525
1526static void wil_pre_fw_config(struct wil6210_priv *wil)
1527{
1528        wil_clear_fw_log_addr(wil);
1529        /* Mark FW as loaded from host */
1530        wil_s(wil, RGF_USER_USAGE_6, 1);
1531
1532        /* clear any interrupts which on-card-firmware
1533         * may have set
1534         */
1535        wil6210_clear_irq(wil);
1536        /* CAF_ICR - clear and mask */
1537        /* it is W1C, clear by writing back same value */
1538        if (wil->hw_version < HW_VER_TALYN_MB) {
1539                wil_s(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, ICR), 0);
1540                wil_w(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, IMV), ~0);
1541        }
1542        /* clear PAL_UNIT_ICR (potential D0->D3 leftover)
1543         * In Talyn-MB host cannot access this register due to
1544         * access control, hence PAL_UNIT_ICR is cleared by the FW
1545         */
1546        if (wil->hw_version < HW_VER_TALYN_MB)
1547                wil_s(wil, RGF_PAL_UNIT_ICR + offsetof(struct RGF_ICR, ICR),
1548                      0);
1549
1550        if (wil->fw_calib_result > 0) {
1551                __le32 val = cpu_to_le32(wil->fw_calib_result |
1552                                                (CALIB_RESULT_SIGNATURE << 8));
1553                wil_w(wil, RGF_USER_FW_CALIB_RESULT, (u32 __force)val);
1554        }
1555}
1556
1557static int wil_restore_vifs(struct wil6210_priv *wil)
1558{
1559        struct wil6210_vif *vif;
1560        struct net_device *ndev;
1561        struct wireless_dev *wdev;
1562        int i, rc;
1563
1564        for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1565                vif = wil->vifs[i];
1566                if (!vif)
1567                        continue;
1568                vif->ap_isolate = 0;
1569                if (vif->mid) {
1570                        ndev = vif_to_ndev(vif);
1571                        wdev = vif_to_wdev(vif);
1572                        rc = wmi_port_allocate(wil, vif->mid, ndev->dev_addr,
1573                                               wdev->iftype);
1574                        if (rc) {
1575                                wil_err(wil, "fail to restore VIF %d type %d, rc %d\n",
1576                                        i, wdev->iftype, rc);
1577                                return rc;
1578                        }
1579                }
1580        }
1581
1582        return 0;
1583}
1584
1585/*
1586 * Clear FW and ucode log start addr to indicate FW log is not ready. The host
1587 * driver clears the addresses before FW starts and FW initializes the address
1588 * when it is ready to send logs.
1589 */
1590void wil_clear_fw_log_addr(struct wil6210_priv *wil)
1591{
1592        /* FW log addr */
1593        wil_w(wil, RGF_USER_USAGE_1, 0);
1594        /* ucode log addr */
1595        wil_w(wil, RGF_USER_USAGE_2, 0);
1596        wil_dbg_misc(wil, "Cleared FW and ucode log address");
1597}
1598
1599/*
1600 * We reset all the structures, and we reset the UMAC.
1601 * After calling this routine, you're expected to reload
1602 * the firmware.
1603 */
1604int wil_reset(struct wil6210_priv *wil, bool load_fw)
1605{
1606        int rc, i;
1607        unsigned long status_flags = BIT(wil_status_resetting);
1608        int no_flash;
1609        struct wil6210_vif *vif;
1610
1611        wil_dbg_misc(wil, "reset\n");
1612
1613        WARN_ON(!mutex_is_locked(&wil->mutex));
1614        WARN_ON(test_bit(wil_status_napi_en, wil->status));
1615
1616        if (debug_fw) {
1617                static const u8 mac[ETH_ALEN] = {
1618                        0x00, 0xde, 0xad, 0x12, 0x34, 0x56,
1619                };
1620                struct net_device *ndev = wil->main_ndev;
1621
1622                ether_addr_copy(ndev->perm_addr, mac);
1623                ether_addr_copy(ndev->dev_addr, ndev->perm_addr);
1624                return 0;
1625        }
1626
1627        if (wil->hw_version == HW_VER_UNKNOWN)
1628                return -ENODEV;
1629
1630        if (test_bit(WIL_PLATFORM_CAPA_T_PWR_ON_0, wil->platform_capa) &&
1631            wil->hw_version < HW_VER_TALYN_MB) {
1632                wil_dbg_misc(wil, "Notify FW to set T_POWER_ON=0\n");
1633                wil_s(wil, RGF_USER_USAGE_8, BIT_USER_SUPPORT_T_POWER_ON_0);
1634        }
1635
1636        if (test_bit(WIL_PLATFORM_CAPA_EXT_CLK, wil->platform_capa)) {
1637                wil_dbg_misc(wil, "Notify FW on ext clock configuration\n");
1638                wil_s(wil, RGF_USER_USAGE_8, BIT_USER_EXT_CLK);
1639        }
1640
1641        if (wil->platform_ops.notify) {
1642                rc = wil->platform_ops.notify(wil->platform_handle,
1643                                              WIL_PLATFORM_EVT_PRE_RESET);
1644                if (rc)
1645                        wil_err(wil, "PRE_RESET platform notify failed, rc %d\n",
1646                                rc);
1647        }
1648
1649        set_bit(wil_status_resetting, wil->status);
1650        mutex_lock(&wil->vif_mutex);
1651        wil_abort_scan_all_vifs(wil, false);
1652        mutex_unlock(&wil->vif_mutex);
1653
1654        for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1655                vif = wil->vifs[i];
1656                if (vif) {
1657                        cancel_work_sync(&vif->disconnect_worker);
1658                        wil6210_disconnect(vif, NULL,
1659                                           WLAN_REASON_DEAUTH_LEAVING);
1660                        vif->ptk_rekey_state = WIL_REKEY_IDLE;
1661                }
1662        }
1663        wil_bcast_fini_all(wil);
1664
1665        /* Disable device led before reset*/
1666        wmi_led_cfg(wil, false);
1667
1668        /* prevent NAPI from being scheduled and prevent wmi commands */
1669        mutex_lock(&wil->wmi_mutex);
1670        if (test_bit(wil_status_suspending, wil->status))
1671                status_flags |= BIT(wil_status_suspending);
1672        bitmap_and(wil->status, wil->status, &status_flags,
1673                   wil_status_last);
1674        wil_dbg_misc(wil, "wil->status (0x%lx)\n", *wil->status);
1675        mutex_unlock(&wil->wmi_mutex);
1676
1677        wil_mask_irq(wil);
1678
1679        wmi_event_flush(wil);
1680
1681        flush_workqueue(wil->wq_service);
1682        flush_workqueue(wil->wmi_wq);
1683
1684        no_flash = test_bit(hw_capa_no_flash, wil->hw_capa);
1685        if (!no_flash)
1686                wil_bl_crash_info(wil, false);
1687        wil_disable_irq(wil);
1688        rc = wil_target_reset(wil, no_flash);
1689        wil6210_clear_irq(wil);
1690        wil_enable_irq(wil);
1691        wil->txrx_ops.rx_fini(wil);
1692        wil->txrx_ops.tx_fini(wil);
1693        if (rc) {
1694                if (!no_flash)
1695                        wil_bl_crash_info(wil, true);
1696                goto out;
1697        }
1698
1699        if (no_flash) {
1700                rc = wil_get_otp_info(wil);
1701        } else {
1702                rc = wil_get_bl_info(wil);
1703                if (rc == -EAGAIN && !load_fw)
1704                        /* ignore RF error if not going up */
1705                        rc = 0;
1706        }
1707        if (rc)
1708                goto out;
1709
1710        wil_set_oob_mode(wil, oob_mode);
1711        if (load_fw) {
1712                char board_file[WIL_BOARD_FILE_MAX_NAMELEN];
1713
1714                if  (wil->secured_boot) {
1715                        wil_err(wil, "secured boot is not supported\n");
1716                        return -ENOTSUPP;
1717                }
1718
1719                board_file[0] = '\0';
1720                wil_get_board_file(wil, board_file, sizeof(board_file));
1721                wil_info(wil, "Use firmware <%s> + board <%s>\n",
1722                         wil->wil_fw_name, board_file);
1723
1724                if (!no_flash)
1725                        wil_bl_prepare_halt(wil);
1726
1727                wil_halt_cpu(wil);
1728                memset(wil->fw_version, 0, sizeof(wil->fw_version));
1729                /* Loading f/w from the file */
1730                rc = wil_request_firmware(wil, wil->wil_fw_name, true);
1731                if (rc)
1732                        goto out;
1733                if (wil->num_of_brd_entries)
1734                        rc = wil_request_board(wil, board_file);
1735                else
1736                        rc = wil_request_firmware(wil, board_file, true);
1737                if (rc)
1738                        goto out;
1739
1740                wil_pre_fw_config(wil);
1741                wil_release_cpu(wil);
1742        }
1743
1744        /* init after reset */
1745        reinit_completion(&wil->wmi_ready);
1746        reinit_completion(&wil->wmi_call);
1747        reinit_completion(&wil->halp.comp);
1748
1749        clear_bit(wil_status_resetting, wil->status);
1750
1751        if (load_fw) {
1752                wil_unmask_irq(wil);
1753
1754                /* we just started MAC, wait for FW ready */
1755                rc = wil_wait_for_fw_ready(wil);
1756                if (rc)
1757                        return rc;
1758
1759                /* check FW is responsive */
1760                rc = wmi_echo(wil);
1761                if (rc) {
1762                        wil_err(wil, "wmi_echo failed, rc %d\n", rc);
1763                        return rc;
1764                }
1765
1766                wil->txrx_ops.configure_interrupt_moderation(wil);
1767
1768                /* Enable OFU rdy valid bug fix, to prevent hang in oful34_rx
1769                 * while there is back-pressure from Host during RX
1770                 */
1771                if (wil->hw_version >= HW_VER_TALYN_MB)
1772                        wil_s(wil, RGF_DMA_MISC_CTL,
1773                              BIT_OFUL34_RDY_VALID_BUG_FIX_EN);
1774
1775                rc = wil_restore_vifs(wil);
1776                if (rc) {
1777                        wil_err(wil, "failed to restore vifs, rc %d\n", rc);
1778                        return rc;
1779                }
1780
1781                wil_collect_fw_info(wil);
1782
1783                if (wil->ps_profile != WMI_PS_PROFILE_TYPE_DEFAULT)
1784                        wil_ps_update(wil, wil->ps_profile);
1785
1786                if (wil->platform_ops.notify) {
1787                        rc = wil->platform_ops.notify(wil->platform_handle,
1788                                                      WIL_PLATFORM_EVT_FW_RDY);
1789                        if (rc) {
1790                                wil_err(wil, "FW_RDY notify failed, rc %d\n",
1791                                        rc);
1792                                rc = 0;
1793                        }
1794                }
1795        }
1796
1797        return rc;
1798
1799out:
1800        clear_bit(wil_status_resetting, wil->status);
1801        return rc;
1802}
1803
1804void wil_fw_error_recovery(struct wil6210_priv *wil)
1805{
1806        wil_dbg_misc(wil, "starting fw error recovery\n");
1807
1808        if (test_bit(wil_status_resetting, wil->status)) {
1809                wil_info(wil, "Reset already in progress\n");
1810                return;
1811        }
1812
1813        wil->recovery_state = fw_recovery_pending;
1814        schedule_work(&wil->fw_error_worker);
1815}
1816
1817int __wil_up(struct wil6210_priv *wil)
1818{
1819        struct net_device *ndev = wil->main_ndev;
1820        struct wireless_dev *wdev = ndev->ieee80211_ptr;
1821        int rc;
1822
1823        WARN_ON(!mutex_is_locked(&wil->mutex));
1824
1825        down_write(&wil->mem_lock);
1826        rc = wil_reset(wil, true);
1827        up_write(&wil->mem_lock);
1828        if (rc)
1829                return rc;
1830
1831        /* Rx RING. After MAC and beacon */
1832        if (rx_ring_order == 0)
1833                rx_ring_order = wil->hw_version < HW_VER_TALYN_MB ?
1834                        WIL_RX_RING_SIZE_ORDER_DEFAULT :
1835                        WIL_RX_RING_SIZE_ORDER_TALYN_DEFAULT;
1836
1837        rc = wil->txrx_ops.rx_init(wil, rx_ring_order);
1838        if (rc)
1839                return rc;
1840
1841        rc = wil->txrx_ops.tx_init(wil);
1842        if (rc)
1843                return rc;
1844
1845        switch (wdev->iftype) {
1846        case NL80211_IFTYPE_STATION:
1847                wil_dbg_misc(wil, "type: STATION\n");
1848                ndev->type = ARPHRD_ETHER;
1849                break;
1850        case NL80211_IFTYPE_AP:
1851                wil_dbg_misc(wil, "type: AP\n");
1852                ndev->type = ARPHRD_ETHER;
1853                break;
1854        case NL80211_IFTYPE_P2P_CLIENT:
1855                wil_dbg_misc(wil, "type: P2P_CLIENT\n");
1856                ndev->type = ARPHRD_ETHER;
1857                break;
1858        case NL80211_IFTYPE_P2P_GO:
1859                wil_dbg_misc(wil, "type: P2P_GO\n");
1860                ndev->type = ARPHRD_ETHER;
1861                break;
1862        case NL80211_IFTYPE_MONITOR:
1863                wil_dbg_misc(wil, "type: Monitor\n");
1864                ndev->type = ARPHRD_IEEE80211_RADIOTAP;
1865                /* ARPHRD_IEEE80211 or ARPHRD_IEEE80211_RADIOTAP ? */
1866                break;
1867        default:
1868                return -EOPNOTSUPP;
1869        }
1870
1871        /* MAC address - pre-requisite for other commands */
1872        wmi_set_mac_address(wil, ndev->dev_addr);
1873
1874        wil_dbg_misc(wil, "NAPI enable\n");
1875        napi_enable(&wil->napi_rx);
1876        napi_enable(&wil->napi_tx);
1877        set_bit(wil_status_napi_en, wil->status);
1878
1879        wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
1880
1881        return 0;
1882}
1883
1884int wil_up(struct wil6210_priv *wil)
1885{
1886        int rc;
1887
1888        wil_dbg_misc(wil, "up\n");
1889
1890        mutex_lock(&wil->mutex);
1891        rc = __wil_up(wil);
1892        mutex_unlock(&wil->mutex);
1893
1894        return rc;
1895}
1896
1897int __wil_down(struct wil6210_priv *wil)
1898{
1899        int rc;
1900        WARN_ON(!mutex_is_locked(&wil->mutex));
1901
1902        set_bit(wil_status_resetting, wil->status);
1903
1904        wil6210_bus_request(wil, 0);
1905
1906        wil_disable_irq(wil);
1907        if (test_and_clear_bit(wil_status_napi_en, wil->status)) {
1908                napi_disable(&wil->napi_rx);
1909                napi_disable(&wil->napi_tx);
1910                wil_dbg_misc(wil, "NAPI disable\n");
1911        }
1912        wil_enable_irq(wil);
1913
1914        mutex_lock(&wil->vif_mutex);
1915        wil_p2p_stop_radio_operations(wil);
1916        wil_abort_scan_all_vifs(wil, false);
1917        mutex_unlock(&wil->vif_mutex);
1918
1919        down_write(&wil->mem_lock);
1920        rc = wil_reset(wil, false);
1921        up_write(&wil->mem_lock);
1922
1923        return rc;
1924}
1925
1926int wil_down(struct wil6210_priv *wil)
1927{
1928        int rc;
1929
1930        wil_dbg_misc(wil, "down\n");
1931
1932        wil_set_recovery_state(wil, fw_recovery_idle);
1933        mutex_lock(&wil->mutex);
1934        rc = __wil_down(wil);
1935        mutex_unlock(&wil->mutex);
1936
1937        return rc;
1938}
1939
1940int wil_find_cid(struct wil6210_priv *wil, u8 mid, const u8 *mac)
1941{
1942        int i;
1943        int rc = -ENOENT;
1944
1945        for (i = 0; i < wil->max_assoc_sta; i++) {
1946                if (wil->sta[i].mid == mid &&
1947                    wil->sta[i].status != wil_sta_unused &&
1948                    ether_addr_equal(wil->sta[i].addr, mac)) {
1949                        rc = i;
1950                        break;
1951                }
1952        }
1953
1954        return rc;
1955}
1956
1957void wil_halp_vote(struct wil6210_priv *wil)
1958{
1959        unsigned long rc;
1960        unsigned long to_jiffies = msecs_to_jiffies(WAIT_FOR_HALP_VOTE_MS);
1961
1962        if (wil->hw_version >= HW_VER_TALYN_MB)
1963                return;
1964
1965        mutex_lock(&wil->halp.lock);
1966
1967        wil_dbg_irq(wil, "halp_vote: start, HALP ref_cnt (%d)\n",
1968                    wil->halp.ref_cnt);
1969
1970        if (++wil->halp.ref_cnt == 1) {
1971                reinit_completion(&wil->halp.comp);
1972                /* mark to IRQ context to handle HALP ICR */
1973                wil->halp.handle_icr = true;
1974                wil6210_set_halp(wil);
1975                rc = wait_for_completion_timeout(&wil->halp.comp, to_jiffies);
1976                if (!rc) {
1977                        wil_err(wil, "HALP vote timed out\n");
1978                        /* Mask HALP as done in case the interrupt is raised */
1979                        wil->halp.handle_icr = false;
1980                        wil6210_mask_halp(wil);
1981                } else {
1982                        wil_dbg_irq(wil,
1983                                    "halp_vote: HALP vote completed after %d ms\n",
1984                                    jiffies_to_msecs(to_jiffies - rc));
1985                }
1986        }
1987
1988        wil_dbg_irq(wil, "halp_vote: end, HALP ref_cnt (%d)\n",
1989                    wil->halp.ref_cnt);
1990
1991        mutex_unlock(&wil->halp.lock);
1992}
1993
1994void wil_halp_unvote(struct wil6210_priv *wil)
1995{
1996        if (wil->hw_version >= HW_VER_TALYN_MB)
1997                return;
1998
1999        WARN_ON(wil->halp.ref_cnt == 0);
2000
2001        mutex_lock(&wil->halp.lock);
2002
2003        wil_dbg_irq(wil, "halp_unvote: start, HALP ref_cnt (%d)\n",
2004                    wil->halp.ref_cnt);
2005
2006        if (--wil->halp.ref_cnt == 0) {
2007                wil6210_clear_halp(wil);
2008                wil_dbg_irq(wil, "HALP unvote\n");
2009        }
2010
2011        wil_dbg_irq(wil, "halp_unvote:end, HALP ref_cnt (%d)\n",
2012                    wil->halp.ref_cnt);
2013
2014        mutex_unlock(&wil->halp.lock);
2015}
2016
2017void wil_init_txrx_ops(struct wil6210_priv *wil)
2018{
2019        if (wil->use_enhanced_dma_hw)
2020                wil_init_txrx_ops_edma(wil);
2021        else
2022                wil_init_txrx_ops_legacy_dma(wil);
2023}
2024