linux/drivers/pci/pci.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 * David Mosberger-Tang
   7 *
   8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
  16#include <linux/of.h>
  17#include <linux/of_pci.h>
  18#include <linux/pci.h>
  19#include <linux/pm.h>
  20#include <linux/slab.h>
  21#include <linux/module.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/log2.h>
  25#include <linux/logic_pio.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/interrupt.h>
  28#include <linux/device.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/pci_hotplug.h>
  31#include <linux/vmalloc.h>
  32#include <linux/pci-ats.h>
  33#include <asm/setup.h>
  34#include <asm/dma.h>
  35#include <linux/aer.h>
  36#include "pci.h"
  37
  38DEFINE_MUTEX(pci_slot_mutex);
  39
  40const char *pci_power_names[] = {
  41        "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  42};
  43EXPORT_SYMBOL_GPL(pci_power_names);
  44
  45int isa_dma_bridge_buggy;
  46EXPORT_SYMBOL(isa_dma_bridge_buggy);
  47
  48int pci_pci_problems;
  49EXPORT_SYMBOL(pci_pci_problems);
  50
  51unsigned int pci_pm_d3_delay;
  52
  53static void pci_pme_list_scan(struct work_struct *work);
  54
  55static LIST_HEAD(pci_pme_list);
  56static DEFINE_MUTEX(pci_pme_list_mutex);
  57static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  58
  59struct pci_pme_device {
  60        struct list_head list;
  61        struct pci_dev *dev;
  62};
  63
  64#define PME_TIMEOUT 1000 /* How long between PME checks */
  65
  66static void pci_dev_d3_sleep(struct pci_dev *dev)
  67{
  68        unsigned int delay = dev->d3_delay;
  69
  70        if (delay < pci_pm_d3_delay)
  71                delay = pci_pm_d3_delay;
  72
  73        if (delay)
  74                msleep(delay);
  75}
  76
  77#ifdef CONFIG_PCI_DOMAINS
  78int pci_domains_supported = 1;
  79#endif
  80
  81#define DEFAULT_CARDBUS_IO_SIZE         (256)
  82#define DEFAULT_CARDBUS_MEM_SIZE        (64*1024*1024)
  83/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  84unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  85unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  86
  87#define DEFAULT_HOTPLUG_IO_SIZE         (256)
  88#define DEFAULT_HOTPLUG_MEM_SIZE        (2*1024*1024)
  89/* pci=hpmemsize=nnM,hpiosize=nn can override this */
  90unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  91unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
  92
  93#define DEFAULT_HOTPLUG_BUS_SIZE        1
  94unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
  95
  96enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
  97
  98/*
  99 * The default CLS is used if arch didn't set CLS explicitly and not
 100 * all pci devices agree on the same value.  Arch can override either
 101 * the dfl or actual value as it sees fit.  Don't forget this is
 102 * measured in 32-bit words, not bytes.
 103 */
 104u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 105u8 pci_cache_line_size;
 106
 107/*
 108 * If we set up a device for bus mastering, we need to check the latency
 109 * timer as certain BIOSes forget to set it properly.
 110 */
 111unsigned int pcibios_max_latency = 255;
 112
 113/* If set, the PCIe ARI capability will not be used. */
 114static bool pcie_ari_disabled;
 115
 116/* If set, the PCIe ATS capability will not be used. */
 117static bool pcie_ats_disabled;
 118
 119/* If set, the PCI config space of each device is printed during boot. */
 120bool pci_early_dump;
 121
 122bool pci_ats_disabled(void)
 123{
 124        return pcie_ats_disabled;
 125}
 126
 127/* Disable bridge_d3 for all PCIe ports */
 128static bool pci_bridge_d3_disable;
 129/* Force bridge_d3 for all PCIe ports */
 130static bool pci_bridge_d3_force;
 131
 132static int __init pcie_port_pm_setup(char *str)
 133{
 134        if (!strcmp(str, "off"))
 135                pci_bridge_d3_disable = true;
 136        else if (!strcmp(str, "force"))
 137                pci_bridge_d3_force = true;
 138        return 1;
 139}
 140__setup("pcie_port_pm=", pcie_port_pm_setup);
 141
 142/* Time to wait after a reset for device to become responsive */
 143#define PCIE_RESET_READY_POLL_MS 60000
 144
 145/**
 146 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 147 * @bus: pointer to PCI bus structure to search
 148 *
 149 * Given a PCI bus, returns the highest PCI bus number present in the set
 150 * including the given PCI bus and its list of child PCI buses.
 151 */
 152unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 153{
 154        struct pci_bus *tmp;
 155        unsigned char max, n;
 156
 157        max = bus->busn_res.end;
 158        list_for_each_entry(tmp, &bus->children, node) {
 159                n = pci_bus_max_busnr(tmp);
 160                if (n > max)
 161                        max = n;
 162        }
 163        return max;
 164}
 165EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 166
 167#ifdef CONFIG_HAS_IOMEM
 168void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 169{
 170        struct resource *res = &pdev->resource[bar];
 171
 172        /*
 173         * Make sure the BAR is actually a memory resource, not an IO resource
 174         */
 175        if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 176                pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 177                return NULL;
 178        }
 179        return ioremap_nocache(res->start, resource_size(res));
 180}
 181EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 182
 183void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 184{
 185        /*
 186         * Make sure the BAR is actually a memory resource, not an IO resource
 187         */
 188        if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 189                WARN_ON(1);
 190                return NULL;
 191        }
 192        return ioremap_wc(pci_resource_start(pdev, bar),
 193                          pci_resource_len(pdev, bar));
 194}
 195EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 196#endif
 197
 198/**
 199 * pci_dev_str_match_path - test if a path string matches a device
 200 * @dev: the PCI device to test
 201 * @path: string to match the device against
 202 * @endptr: pointer to the string after the match
 203 *
 204 * Test if a string (typically from a kernel parameter) formatted as a
 205 * path of device/function addresses matches a PCI device. The string must
 206 * be of the form:
 207 *
 208 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 209 *
 210 * A path for a device can be obtained using 'lspci -t'.  Using a path
 211 * is more robust against bus renumbering than using only a single bus,
 212 * device and function address.
 213 *
 214 * Returns 1 if the string matches the device, 0 if it does not and
 215 * a negative error code if it fails to parse the string.
 216 */
 217static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
 218                                  const char **endptr)
 219{
 220        int ret;
 221        int seg, bus, slot, func;
 222        char *wpath, *p;
 223        char end;
 224
 225        *endptr = strchrnul(path, ';');
 226
 227        wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
 228        if (!wpath)
 229                return -ENOMEM;
 230
 231        while (1) {
 232                p = strrchr(wpath, '/');
 233                if (!p)
 234                        break;
 235                ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
 236                if (ret != 2) {
 237                        ret = -EINVAL;
 238                        goto free_and_exit;
 239                }
 240
 241                if (dev->devfn != PCI_DEVFN(slot, func)) {
 242                        ret = 0;
 243                        goto free_and_exit;
 244                }
 245
 246                /*
 247                 * Note: we don't need to get a reference to the upstream
 248                 * bridge because we hold a reference to the top level
 249                 * device which should hold a reference to the bridge,
 250                 * and so on.
 251                 */
 252                dev = pci_upstream_bridge(dev);
 253                if (!dev) {
 254                        ret = 0;
 255                        goto free_and_exit;
 256                }
 257
 258                *p = 0;
 259        }
 260
 261        ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
 262                     &func, &end);
 263        if (ret != 4) {
 264                seg = 0;
 265                ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
 266                if (ret != 3) {
 267                        ret = -EINVAL;
 268                        goto free_and_exit;
 269                }
 270        }
 271
 272        ret = (seg == pci_domain_nr(dev->bus) &&
 273               bus == dev->bus->number &&
 274               dev->devfn == PCI_DEVFN(slot, func));
 275
 276free_and_exit:
 277        kfree(wpath);
 278        return ret;
 279}
 280
 281/**
 282 * pci_dev_str_match - test if a string matches a device
 283 * @dev: the PCI device to test
 284 * @p: string to match the device against
 285 * @endptr: pointer to the string after the match
 286 *
 287 * Test if a string (typically from a kernel parameter) matches a specified
 288 * PCI device. The string may be of one of the following formats:
 289 *
 290 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 291 *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
 292 *
 293 * The first format specifies a PCI bus/device/function address which
 294 * may change if new hardware is inserted, if motherboard firmware changes,
 295 * or due to changes caused in kernel parameters. If the domain is
 296 * left unspecified, it is taken to be 0.  In order to be robust against
 297 * bus renumbering issues, a path of PCI device/function numbers may be used
 298 * to address the specific device.  The path for a device can be determined
 299 * through the use of 'lspci -t'.
 300 *
 301 * The second format matches devices using IDs in the configuration
 302 * space which may match multiple devices in the system. A value of 0
 303 * for any field will match all devices. (Note: this differs from
 304 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
 305 * legacy reasons and convenience so users don't have to specify
 306 * FFFFFFFFs on the command line.)
 307 *
 308 * Returns 1 if the string matches the device, 0 if it does not and
 309 * a negative error code if the string cannot be parsed.
 310 */
 311static int pci_dev_str_match(struct pci_dev *dev, const char *p,
 312                             const char **endptr)
 313{
 314        int ret;
 315        int count;
 316        unsigned short vendor, device, subsystem_vendor, subsystem_device;
 317
 318        if (strncmp(p, "pci:", 4) == 0) {
 319                /* PCI vendor/device (subvendor/subdevice) IDs are specified */
 320                p += 4;
 321                ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
 322                             &subsystem_vendor, &subsystem_device, &count);
 323                if (ret != 4) {
 324                        ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
 325                        if (ret != 2)
 326                                return -EINVAL;
 327
 328                        subsystem_vendor = 0;
 329                        subsystem_device = 0;
 330                }
 331
 332                p += count;
 333
 334                if ((!vendor || vendor == dev->vendor) &&
 335                    (!device || device == dev->device) &&
 336                    (!subsystem_vendor ||
 337                            subsystem_vendor == dev->subsystem_vendor) &&
 338                    (!subsystem_device ||
 339                            subsystem_device == dev->subsystem_device))
 340                        goto found;
 341        } else {
 342                /*
 343                 * PCI Bus, Device, Function IDs are specified
 344                 * (optionally, may include a path of devfns following it)
 345                 */
 346                ret = pci_dev_str_match_path(dev, p, &p);
 347                if (ret < 0)
 348                        return ret;
 349                else if (ret)
 350                        goto found;
 351        }
 352
 353        *endptr = p;
 354        return 0;
 355
 356found:
 357        *endptr = p;
 358        return 1;
 359}
 360
 361static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 362                                   u8 pos, int cap, int *ttl)
 363{
 364        u8 id;
 365        u16 ent;
 366
 367        pci_bus_read_config_byte(bus, devfn, pos, &pos);
 368
 369        while ((*ttl)--) {
 370                if (pos < 0x40)
 371                        break;
 372                pos &= ~3;
 373                pci_bus_read_config_word(bus, devfn, pos, &ent);
 374
 375                id = ent & 0xff;
 376                if (id == 0xff)
 377                        break;
 378                if (id == cap)
 379                        return pos;
 380                pos = (ent >> 8);
 381        }
 382        return 0;
 383}
 384
 385static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 386                               u8 pos, int cap)
 387{
 388        int ttl = PCI_FIND_CAP_TTL;
 389
 390        return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 391}
 392
 393int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 394{
 395        return __pci_find_next_cap(dev->bus, dev->devfn,
 396                                   pos + PCI_CAP_LIST_NEXT, cap);
 397}
 398EXPORT_SYMBOL_GPL(pci_find_next_capability);
 399
 400static int __pci_bus_find_cap_start(struct pci_bus *bus,
 401                                    unsigned int devfn, u8 hdr_type)
 402{
 403        u16 status;
 404
 405        pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 406        if (!(status & PCI_STATUS_CAP_LIST))
 407                return 0;
 408
 409        switch (hdr_type) {
 410        case PCI_HEADER_TYPE_NORMAL:
 411        case PCI_HEADER_TYPE_BRIDGE:
 412                return PCI_CAPABILITY_LIST;
 413        case PCI_HEADER_TYPE_CARDBUS:
 414                return PCI_CB_CAPABILITY_LIST;
 415        }
 416
 417        return 0;
 418}
 419
 420/**
 421 * pci_find_capability - query for devices' capabilities
 422 * @dev: PCI device to query
 423 * @cap: capability code
 424 *
 425 * Tell if a device supports a given PCI capability.
 426 * Returns the address of the requested capability structure within the
 427 * device's PCI configuration space or 0 in case the device does not
 428 * support it.  Possible values for @cap include:
 429 *
 430 *  %PCI_CAP_ID_PM           Power Management
 431 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 432 *  %PCI_CAP_ID_VPD          Vital Product Data
 433 *  %PCI_CAP_ID_SLOTID       Slot Identification
 434 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 435 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 436 *  %PCI_CAP_ID_PCIX         PCI-X
 437 *  %PCI_CAP_ID_EXP          PCI Express
 438 */
 439int pci_find_capability(struct pci_dev *dev, int cap)
 440{
 441        int pos;
 442
 443        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 444        if (pos)
 445                pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 446
 447        return pos;
 448}
 449EXPORT_SYMBOL(pci_find_capability);
 450
 451/**
 452 * pci_bus_find_capability - query for devices' capabilities
 453 * @bus: the PCI bus to query
 454 * @devfn: PCI device to query
 455 * @cap: capability code
 456 *
 457 * Like pci_find_capability() but works for PCI devices that do not have a
 458 * pci_dev structure set up yet.
 459 *
 460 * Returns the address of the requested capability structure within the
 461 * device's PCI configuration space or 0 in case the device does not
 462 * support it.
 463 */
 464int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 465{
 466        int pos;
 467        u8 hdr_type;
 468
 469        pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 470
 471        pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 472        if (pos)
 473                pos = __pci_find_next_cap(bus, devfn, pos, cap);
 474
 475        return pos;
 476}
 477EXPORT_SYMBOL(pci_bus_find_capability);
 478
 479/**
 480 * pci_find_next_ext_capability - Find an extended capability
 481 * @dev: PCI device to query
 482 * @start: address at which to start looking (0 to start at beginning of list)
 483 * @cap: capability code
 484 *
 485 * Returns the address of the next matching extended capability structure
 486 * within the device's PCI configuration space or 0 if the device does
 487 * not support it.  Some capabilities can occur several times, e.g., the
 488 * vendor-specific capability, and this provides a way to find them all.
 489 */
 490int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
 491{
 492        u32 header;
 493        int ttl;
 494        int pos = PCI_CFG_SPACE_SIZE;
 495
 496        /* minimum 8 bytes per capability */
 497        ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 498
 499        if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 500                return 0;
 501
 502        if (start)
 503                pos = start;
 504
 505        if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 506                return 0;
 507
 508        /*
 509         * If we have no capabilities, this is indicated by cap ID,
 510         * cap version and next pointer all being 0.
 511         */
 512        if (header == 0)
 513                return 0;
 514
 515        while (ttl-- > 0) {
 516                if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 517                        return pos;
 518
 519                pos = PCI_EXT_CAP_NEXT(header);
 520                if (pos < PCI_CFG_SPACE_SIZE)
 521                        break;
 522
 523                if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 524                        break;
 525        }
 526
 527        return 0;
 528}
 529EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 530
 531/**
 532 * pci_find_ext_capability - Find an extended capability
 533 * @dev: PCI device to query
 534 * @cap: capability code
 535 *
 536 * Returns the address of the requested extended capability structure
 537 * within the device's PCI configuration space or 0 if the device does
 538 * not support it.  Possible values for @cap include:
 539 *
 540 *  %PCI_EXT_CAP_ID_ERR         Advanced Error Reporting
 541 *  %PCI_EXT_CAP_ID_VC          Virtual Channel
 542 *  %PCI_EXT_CAP_ID_DSN         Device Serial Number
 543 *  %PCI_EXT_CAP_ID_PWR         Power Budgeting
 544 */
 545int pci_find_ext_capability(struct pci_dev *dev, int cap)
 546{
 547        return pci_find_next_ext_capability(dev, 0, cap);
 548}
 549EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 550
 551static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
 552{
 553        int rc, ttl = PCI_FIND_CAP_TTL;
 554        u8 cap, mask;
 555
 556        if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 557                mask = HT_3BIT_CAP_MASK;
 558        else
 559                mask = HT_5BIT_CAP_MASK;
 560
 561        pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 562                                      PCI_CAP_ID_HT, &ttl);
 563        while (pos) {
 564                rc = pci_read_config_byte(dev, pos + 3, &cap);
 565                if (rc != PCIBIOS_SUCCESSFUL)
 566                        return 0;
 567
 568                if ((cap & mask) == ht_cap)
 569                        return pos;
 570
 571                pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 572                                              pos + PCI_CAP_LIST_NEXT,
 573                                              PCI_CAP_ID_HT, &ttl);
 574        }
 575
 576        return 0;
 577}
 578/**
 579 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
 580 * @dev: PCI device to query
 581 * @pos: Position from which to continue searching
 582 * @ht_cap: Hypertransport capability code
 583 *
 584 * To be used in conjunction with pci_find_ht_capability() to search for
 585 * all capabilities matching @ht_cap. @pos should always be a value returned
 586 * from pci_find_ht_capability().
 587 *
 588 * NB. To be 100% safe against broken PCI devices, the caller should take
 589 * steps to avoid an infinite loop.
 590 */
 591int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
 592{
 593        return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 594}
 595EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 596
 597/**
 598 * pci_find_ht_capability - query a device's Hypertransport capabilities
 599 * @dev: PCI device to query
 600 * @ht_cap: Hypertransport capability code
 601 *
 602 * Tell if a device supports a given Hypertransport capability.
 603 * Returns an address within the device's PCI configuration space
 604 * or 0 in case the device does not support the request capability.
 605 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 606 * which has a Hypertransport capability matching @ht_cap.
 607 */
 608int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 609{
 610        int pos;
 611
 612        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 613        if (pos)
 614                pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 615
 616        return pos;
 617}
 618EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 619
 620/**
 621 * pci_find_parent_resource - return resource region of parent bus of given
 622 *                            region
 623 * @dev: PCI device structure contains resources to be searched
 624 * @res: child resource record for which parent is sought
 625 *
 626 * For given resource region of given device, return the resource region of
 627 * parent bus the given region is contained in.
 628 */
 629struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 630                                          struct resource *res)
 631{
 632        const struct pci_bus *bus = dev->bus;
 633        struct resource *r;
 634        int i;
 635
 636        pci_bus_for_each_resource(bus, r, i) {
 637                if (!r)
 638                        continue;
 639                if (resource_contains(r, res)) {
 640
 641                        /*
 642                         * If the window is prefetchable but the BAR is
 643                         * not, the allocator made a mistake.
 644                         */
 645                        if (r->flags & IORESOURCE_PREFETCH &&
 646                            !(res->flags & IORESOURCE_PREFETCH))
 647                                return NULL;
 648
 649                        /*
 650                         * If we're below a transparent bridge, there may
 651                         * be both a positively-decoded aperture and a
 652                         * subtractively-decoded region that contain the BAR.
 653                         * We want the positively-decoded one, so this depends
 654                         * on pci_bus_for_each_resource() giving us those
 655                         * first.
 656                         */
 657                        return r;
 658                }
 659        }
 660        return NULL;
 661}
 662EXPORT_SYMBOL(pci_find_parent_resource);
 663
 664/**
 665 * pci_find_resource - Return matching PCI device resource
 666 * @dev: PCI device to query
 667 * @res: Resource to look for
 668 *
 669 * Goes over standard PCI resources (BARs) and checks if the given resource
 670 * is partially or fully contained in any of them. In that case the
 671 * matching resource is returned, %NULL otherwise.
 672 */
 673struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 674{
 675        int i;
 676
 677        for (i = 0; i < PCI_ROM_RESOURCE; i++) {
 678                struct resource *r = &dev->resource[i];
 679
 680                if (r->start && resource_contains(r, res))
 681                        return r;
 682        }
 683
 684        return NULL;
 685}
 686EXPORT_SYMBOL(pci_find_resource);
 687
 688/**
 689 * pci_find_pcie_root_port - return PCIe Root Port
 690 * @dev: PCI device to query
 691 *
 692 * Traverse up the parent chain and return the PCIe Root Port PCI Device
 693 * for a given PCI Device.
 694 */
 695struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
 696{
 697        struct pci_dev *bridge, *highest_pcie_bridge = dev;
 698
 699        bridge = pci_upstream_bridge(dev);
 700        while (bridge && pci_is_pcie(bridge)) {
 701                highest_pcie_bridge = bridge;
 702                bridge = pci_upstream_bridge(bridge);
 703        }
 704
 705        if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
 706                return NULL;
 707
 708        return highest_pcie_bridge;
 709}
 710EXPORT_SYMBOL(pci_find_pcie_root_port);
 711
 712/**
 713 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 714 * @dev: the PCI device to operate on
 715 * @pos: config space offset of status word
 716 * @mask: mask of bit(s) to care about in status word
 717 *
 718 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 719 */
 720int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 721{
 722        int i;
 723
 724        /* Wait for Transaction Pending bit clean */
 725        for (i = 0; i < 4; i++) {
 726                u16 status;
 727                if (i)
 728                        msleep((1 << (i - 1)) * 100);
 729
 730                pci_read_config_word(dev, pos, &status);
 731                if (!(status & mask))
 732                        return 1;
 733        }
 734
 735        return 0;
 736}
 737
 738/**
 739 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
 740 * @dev: PCI device to have its BARs restored
 741 *
 742 * Restore the BAR values for a given device, so as to make it
 743 * accessible by its driver.
 744 */
 745static void pci_restore_bars(struct pci_dev *dev)
 746{
 747        int i;
 748
 749        for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 750                pci_update_resource(dev, i);
 751}
 752
 753static const struct pci_platform_pm_ops *pci_platform_pm;
 754
 755int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
 756{
 757        if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
 758            !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
 759                return -EINVAL;
 760        pci_platform_pm = ops;
 761        return 0;
 762}
 763
 764static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 765{
 766        return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 767}
 768
 769static inline int platform_pci_set_power_state(struct pci_dev *dev,
 770                                               pci_power_t t)
 771{
 772        return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 773}
 774
 775static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
 776{
 777        return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
 778}
 779
 780static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
 781{
 782        if (pci_platform_pm && pci_platform_pm->refresh_state)
 783                pci_platform_pm->refresh_state(dev);
 784}
 785
 786static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 787{
 788        return pci_platform_pm ?
 789                        pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 790}
 791
 792static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
 793{
 794        return pci_platform_pm ?
 795                        pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
 796}
 797
 798static inline bool platform_pci_need_resume(struct pci_dev *dev)
 799{
 800        return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
 801}
 802
 803static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
 804{
 805        return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false;
 806}
 807
 808/**
 809 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
 810 *                           given PCI device
 811 * @dev: PCI device to handle.
 812 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 813 *
 814 * RETURN VALUE:
 815 * -EINVAL if the requested state is invalid.
 816 * -EIO if device does not support PCI PM or its PM capabilities register has a
 817 * wrong version, or device doesn't support the requested state.
 818 * 0 if device already is in the requested state.
 819 * 0 if device's power state has been successfully changed.
 820 */
 821static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
 822{
 823        u16 pmcsr;
 824        bool need_restore = false;
 825
 826        /* Check if we're already there */
 827        if (dev->current_state == state)
 828                return 0;
 829
 830        if (!dev->pm_cap)
 831                return -EIO;
 832
 833        if (state < PCI_D0 || state > PCI_D3hot)
 834                return -EINVAL;
 835
 836        /*
 837         * Validate current state:
 838         * Can enter D0 from any state, but if we can only go deeper
 839         * to sleep if we're already in a low power state
 840         */
 841        if (state != PCI_D0 && dev->current_state <= PCI_D3cold
 842            && dev->current_state > state) {
 843                pci_err(dev, "invalid power transition (from state %d to %d)\n",
 844                        dev->current_state, state);
 845                return -EINVAL;
 846        }
 847
 848        /* Check if this device supports the desired state */
 849        if ((state == PCI_D1 && !dev->d1_support)
 850           || (state == PCI_D2 && !dev->d2_support))
 851                return -EIO;
 852
 853        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 854
 855        /*
 856         * If we're (effectively) in D3, force entire word to 0.
 857         * This doesn't affect PME_Status, disables PME_En, and
 858         * sets PowerState to 0.
 859         */
 860        switch (dev->current_state) {
 861        case PCI_D0:
 862        case PCI_D1:
 863        case PCI_D2:
 864                pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
 865                pmcsr |= state;
 866                break;
 867        case PCI_D3hot:
 868        case PCI_D3cold:
 869        case PCI_UNKNOWN: /* Boot-up */
 870                if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
 871                 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
 872                        need_restore = true;
 873                /* Fall-through - force to D0 */
 874        default:
 875                pmcsr = 0;
 876                break;
 877        }
 878
 879        /* Enter specified state */
 880        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
 881
 882        /*
 883         * Mandatory power management transition delays; see PCI PM 1.1
 884         * 5.6.1 table 18
 885         */
 886        if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
 887                pci_dev_d3_sleep(dev);
 888        else if (state == PCI_D2 || dev->current_state == PCI_D2)
 889                udelay(PCI_PM_D2_DELAY);
 890
 891        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 892        dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 893        if (dev->current_state != state)
 894                pci_info_ratelimited(dev, "Refused to change power state, currently in D%d\n",
 895                         dev->current_state);
 896
 897        /*
 898         * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
 899         * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
 900         * from D3hot to D0 _may_ perform an internal reset, thereby
 901         * going to "D0 Uninitialized" rather than "D0 Initialized".
 902         * For example, at least some versions of the 3c905B and the
 903         * 3c556B exhibit this behaviour.
 904         *
 905         * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
 906         * devices in a D3hot state at boot.  Consequently, we need to
 907         * restore at least the BARs so that the device will be
 908         * accessible to its driver.
 909         */
 910        if (need_restore)
 911                pci_restore_bars(dev);
 912
 913        if (dev->bus->self)
 914                pcie_aspm_pm_state_change(dev->bus->self);
 915
 916        return 0;
 917}
 918
 919/**
 920 * pci_update_current_state - Read power state of given device and cache it
 921 * @dev: PCI device to handle.
 922 * @state: State to cache in case the device doesn't have the PM capability
 923 *
 924 * The power state is read from the PMCSR register, which however is
 925 * inaccessible in D3cold.  The platform firmware is therefore queried first
 926 * to detect accessibility of the register.  In case the platform firmware
 927 * reports an incorrect state or the device isn't power manageable by the
 928 * platform at all, we try to detect D3cold by testing accessibility of the
 929 * vendor ID in config space.
 930 */
 931void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
 932{
 933        if (platform_pci_get_power_state(dev) == PCI_D3cold ||
 934            !pci_device_is_present(dev)) {
 935                dev->current_state = PCI_D3cold;
 936        } else if (dev->pm_cap) {
 937                u16 pmcsr;
 938
 939                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 940                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 941        } else {
 942                dev->current_state = state;
 943        }
 944}
 945
 946/**
 947 * pci_refresh_power_state - Refresh the given device's power state data
 948 * @dev: Target PCI device.
 949 *
 950 * Ask the platform to refresh the devices power state information and invoke
 951 * pci_update_current_state() to update its current PCI power state.
 952 */
 953void pci_refresh_power_state(struct pci_dev *dev)
 954{
 955        if (platform_pci_power_manageable(dev))
 956                platform_pci_refresh_power_state(dev);
 957
 958        pci_update_current_state(dev, dev->current_state);
 959}
 960
 961/**
 962 * pci_platform_power_transition - Use platform to change device power state
 963 * @dev: PCI device to handle.
 964 * @state: State to put the device into.
 965 */
 966static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
 967{
 968        int error;
 969
 970        if (platform_pci_power_manageable(dev)) {
 971                error = platform_pci_set_power_state(dev, state);
 972                if (!error)
 973                        pci_update_current_state(dev, state);
 974        } else
 975                error = -ENODEV;
 976
 977        if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
 978                dev->current_state = PCI_D0;
 979
 980        return error;
 981}
 982
 983/**
 984 * pci_wakeup - Wake up a PCI device
 985 * @pci_dev: Device to handle.
 986 * @ign: ignored parameter
 987 */
 988static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
 989{
 990        pci_wakeup_event(pci_dev);
 991        pm_request_resume(&pci_dev->dev);
 992        return 0;
 993}
 994
 995/**
 996 * pci_wakeup_bus - Walk given bus and wake up devices on it
 997 * @bus: Top bus of the subtree to walk.
 998 */
 999void pci_wakeup_bus(struct pci_bus *bus)
1000{
1001        if (bus)
1002                pci_walk_bus(bus, pci_wakeup, NULL);
1003}
1004
1005/**
1006 * __pci_start_power_transition - Start power transition of a PCI device
1007 * @dev: PCI device to handle.
1008 * @state: State to put the device into.
1009 */
1010static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
1011{
1012        if (state == PCI_D0) {
1013                pci_platform_power_transition(dev, PCI_D0);
1014                /*
1015                 * Mandatory power management transition delays, see
1016                 * PCI Express Base Specification Revision 2.0 Section
1017                 * 6.6.1: Conventional Reset.  Do not delay for
1018                 * devices powered on/off by corresponding bridge,
1019                 * because have already delayed for the bridge.
1020                 */
1021                if (dev->runtime_d3cold) {
1022                        if (dev->d3cold_delay && !dev->imm_ready)
1023                                msleep(dev->d3cold_delay);
1024                        /*
1025                         * When powering on a bridge from D3cold, the
1026                         * whole hierarchy may be powered on into
1027                         * D0uninitialized state, resume them to give
1028                         * them a chance to suspend again
1029                         */
1030                        pci_wakeup_bus(dev->subordinate);
1031                }
1032        }
1033}
1034
1035/**
1036 * __pci_dev_set_current_state - Set current state of a PCI device
1037 * @dev: Device to handle
1038 * @data: pointer to state to be set
1039 */
1040static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1041{
1042        pci_power_t state = *(pci_power_t *)data;
1043
1044        dev->current_state = state;
1045        return 0;
1046}
1047
1048/**
1049 * pci_bus_set_current_state - Walk given bus and set current state of devices
1050 * @bus: Top bus of the subtree to walk.
1051 * @state: state to be set
1052 */
1053void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1054{
1055        if (bus)
1056                pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1057}
1058
1059/**
1060 * __pci_complete_power_transition - Complete power transition of a PCI device
1061 * @dev: PCI device to handle.
1062 * @state: State to put the device into.
1063 *
1064 * This function should not be called directly by device drivers.
1065 */
1066int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
1067{
1068        int ret;
1069
1070        if (state <= PCI_D0)
1071                return -EINVAL;
1072        ret = pci_platform_power_transition(dev, state);
1073        /* Power off the bridge may power off the whole hierarchy */
1074        if (!ret && state == PCI_D3cold)
1075                pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1076        return ret;
1077}
1078EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
1079
1080/**
1081 * pci_set_power_state - Set the power state of a PCI device
1082 * @dev: PCI device to handle.
1083 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1084 *
1085 * Transition a device to a new power state, using the platform firmware and/or
1086 * the device's PCI PM registers.
1087 *
1088 * RETURN VALUE:
1089 * -EINVAL if the requested state is invalid.
1090 * -EIO if device does not support PCI PM or its PM capabilities register has a
1091 * wrong version, or device doesn't support the requested state.
1092 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1093 * 0 if device already is in the requested state.
1094 * 0 if the transition is to D3 but D3 is not supported.
1095 * 0 if device's power state has been successfully changed.
1096 */
1097int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1098{
1099        int error;
1100
1101        /* Bound the state we're entering */
1102        if (state > PCI_D3cold)
1103                state = PCI_D3cold;
1104        else if (state < PCI_D0)
1105                state = PCI_D0;
1106        else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1107
1108                /*
1109                 * If the device or the parent bridge do not support PCI
1110                 * PM, ignore the request if we're doing anything other
1111                 * than putting it into D0 (which would only happen on
1112                 * boot).
1113                 */
1114                return 0;
1115
1116        /* Check if we're already there */
1117        if (dev->current_state == state)
1118                return 0;
1119
1120        __pci_start_power_transition(dev, state);
1121
1122        /*
1123         * This device is quirked not to be put into D3, so don't put it in
1124         * D3
1125         */
1126        if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1127                return 0;
1128
1129        /*
1130         * To put device in D3cold, we put device into D3hot in native
1131         * way, then put device into D3cold with platform ops
1132         */
1133        error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1134                                        PCI_D3hot : state);
1135
1136        if (!__pci_complete_power_transition(dev, state))
1137                error = 0;
1138
1139        return error;
1140}
1141EXPORT_SYMBOL(pci_set_power_state);
1142
1143/**
1144 * pci_power_up - Put the given device into D0 forcibly
1145 * @dev: PCI device to power up
1146 */
1147void pci_power_up(struct pci_dev *dev)
1148{
1149        __pci_start_power_transition(dev, PCI_D0);
1150        pci_raw_set_power_state(dev, PCI_D0);
1151        pci_update_current_state(dev, PCI_D0);
1152}
1153
1154/**
1155 * pci_choose_state - Choose the power state of a PCI device
1156 * @dev: PCI device to be suspended
1157 * @state: target sleep state for the whole system. This is the value
1158 *         that is passed to suspend() function.
1159 *
1160 * Returns PCI power state suitable for given device and given system
1161 * message.
1162 */
1163pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1164{
1165        pci_power_t ret;
1166
1167        if (!dev->pm_cap)
1168                return PCI_D0;
1169
1170        ret = platform_pci_choose_state(dev);
1171        if (ret != PCI_POWER_ERROR)
1172                return ret;
1173
1174        switch (state.event) {
1175        case PM_EVENT_ON:
1176                return PCI_D0;
1177        case PM_EVENT_FREEZE:
1178        case PM_EVENT_PRETHAW:
1179                /* REVISIT both freeze and pre-thaw "should" use D0 */
1180        case PM_EVENT_SUSPEND:
1181        case PM_EVENT_HIBERNATE:
1182                return PCI_D3hot;
1183        default:
1184                pci_info(dev, "unrecognized suspend event %d\n",
1185                         state.event);
1186                BUG();
1187        }
1188        return PCI_D0;
1189}
1190EXPORT_SYMBOL(pci_choose_state);
1191
1192#define PCI_EXP_SAVE_REGS       7
1193
1194static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1195                                                       u16 cap, bool extended)
1196{
1197        struct pci_cap_saved_state *tmp;
1198
1199        hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1200                if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1201                        return tmp;
1202        }
1203        return NULL;
1204}
1205
1206struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1207{
1208        return _pci_find_saved_cap(dev, cap, false);
1209}
1210
1211struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1212{
1213        return _pci_find_saved_cap(dev, cap, true);
1214}
1215
1216static int pci_save_pcie_state(struct pci_dev *dev)
1217{
1218        int i = 0;
1219        struct pci_cap_saved_state *save_state;
1220        u16 *cap;
1221
1222        if (!pci_is_pcie(dev))
1223                return 0;
1224
1225        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1226        if (!save_state) {
1227                pci_err(dev, "buffer not found in %s\n", __func__);
1228                return -ENOMEM;
1229        }
1230
1231        cap = (u16 *)&save_state->cap.data[0];
1232        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1233        pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1234        pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1235        pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1236        pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1237        pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1238        pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1239
1240        return 0;
1241}
1242
1243static void pci_restore_pcie_state(struct pci_dev *dev)
1244{
1245        int i = 0;
1246        struct pci_cap_saved_state *save_state;
1247        u16 *cap;
1248
1249        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1250        if (!save_state)
1251                return;
1252
1253        cap = (u16 *)&save_state->cap.data[0];
1254        pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1255        pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1256        pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1257        pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1258        pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1259        pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1260        pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1261}
1262
1263static int pci_save_pcix_state(struct pci_dev *dev)
1264{
1265        int pos;
1266        struct pci_cap_saved_state *save_state;
1267
1268        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1269        if (!pos)
1270                return 0;
1271
1272        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1273        if (!save_state) {
1274                pci_err(dev, "buffer not found in %s\n", __func__);
1275                return -ENOMEM;
1276        }
1277
1278        pci_read_config_word(dev, pos + PCI_X_CMD,
1279                             (u16 *)save_state->cap.data);
1280
1281        return 0;
1282}
1283
1284static void pci_restore_pcix_state(struct pci_dev *dev)
1285{
1286        int i = 0, pos;
1287        struct pci_cap_saved_state *save_state;
1288        u16 *cap;
1289
1290        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1291        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1292        if (!save_state || !pos)
1293                return;
1294        cap = (u16 *)&save_state->cap.data[0];
1295
1296        pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1297}
1298
1299static void pci_save_ltr_state(struct pci_dev *dev)
1300{
1301        int ltr;
1302        struct pci_cap_saved_state *save_state;
1303        u16 *cap;
1304
1305        if (!pci_is_pcie(dev))
1306                return;
1307
1308        ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1309        if (!ltr)
1310                return;
1311
1312        save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1313        if (!save_state) {
1314                pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1315                return;
1316        }
1317
1318        cap = (u16 *)&save_state->cap.data[0];
1319        pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1320        pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1321}
1322
1323static void pci_restore_ltr_state(struct pci_dev *dev)
1324{
1325        struct pci_cap_saved_state *save_state;
1326        int ltr;
1327        u16 *cap;
1328
1329        save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1330        ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1331        if (!save_state || !ltr)
1332                return;
1333
1334        cap = (u16 *)&save_state->cap.data[0];
1335        pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1336        pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1337}
1338
1339/**
1340 * pci_save_state - save the PCI configuration space of a device before
1341 *                  suspending
1342 * @dev: PCI device that we're dealing with
1343 */
1344int pci_save_state(struct pci_dev *dev)
1345{
1346        int i;
1347        /* XXX: 100% dword access ok here? */
1348        for (i = 0; i < 16; i++)
1349                pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1350        dev->state_saved = true;
1351
1352        i = pci_save_pcie_state(dev);
1353        if (i != 0)
1354                return i;
1355
1356        i = pci_save_pcix_state(dev);
1357        if (i != 0)
1358                return i;
1359
1360        pci_save_ltr_state(dev);
1361        pci_save_dpc_state(dev);
1362        return pci_save_vc_state(dev);
1363}
1364EXPORT_SYMBOL(pci_save_state);
1365
1366static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1367                                     u32 saved_val, int retry, bool force)
1368{
1369        u32 val;
1370
1371        pci_read_config_dword(pdev, offset, &val);
1372        if (!force && val == saved_val)
1373                return;
1374
1375        for (;;) {
1376                pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1377                        offset, val, saved_val);
1378                pci_write_config_dword(pdev, offset, saved_val);
1379                if (retry-- <= 0)
1380                        return;
1381
1382                pci_read_config_dword(pdev, offset, &val);
1383                if (val == saved_val)
1384                        return;
1385
1386                mdelay(1);
1387        }
1388}
1389
1390static void pci_restore_config_space_range(struct pci_dev *pdev,
1391                                           int start, int end, int retry,
1392                                           bool force)
1393{
1394        int index;
1395
1396        for (index = end; index >= start; index--)
1397                pci_restore_config_dword(pdev, 4 * index,
1398                                         pdev->saved_config_space[index],
1399                                         retry, force);
1400}
1401
1402static void pci_restore_config_space(struct pci_dev *pdev)
1403{
1404        if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1405                pci_restore_config_space_range(pdev, 10, 15, 0, false);
1406                /* Restore BARs before the command register. */
1407                pci_restore_config_space_range(pdev, 4, 9, 10, false);
1408                pci_restore_config_space_range(pdev, 0, 3, 0, false);
1409        } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1410                pci_restore_config_space_range(pdev, 12, 15, 0, false);
1411
1412                /*
1413                 * Force rewriting of prefetch registers to avoid S3 resume
1414                 * issues on Intel PCI bridges that occur when these
1415                 * registers are not explicitly written.
1416                 */
1417                pci_restore_config_space_range(pdev, 9, 11, 0, true);
1418                pci_restore_config_space_range(pdev, 0, 8, 0, false);
1419        } else {
1420                pci_restore_config_space_range(pdev, 0, 15, 0, false);
1421        }
1422}
1423
1424static void pci_restore_rebar_state(struct pci_dev *pdev)
1425{
1426        unsigned int pos, nbars, i;
1427        u32 ctrl;
1428
1429        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1430        if (!pos)
1431                return;
1432
1433        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1434        nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1435                    PCI_REBAR_CTRL_NBAR_SHIFT;
1436
1437        for (i = 0; i < nbars; i++, pos += 8) {
1438                struct resource *res;
1439                int bar_idx, size;
1440
1441                pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1442                bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1443                res = pdev->resource + bar_idx;
1444                size = ilog2(resource_size(res)) - 20;
1445                ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1446                ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1447                pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1448        }
1449}
1450
1451/**
1452 * pci_restore_state - Restore the saved state of a PCI device
1453 * @dev: PCI device that we're dealing with
1454 */
1455void pci_restore_state(struct pci_dev *dev)
1456{
1457        if (!dev->state_saved)
1458                return;
1459
1460        /*
1461         * Restore max latencies (in the LTR capability) before enabling
1462         * LTR itself (in the PCIe capability).
1463         */
1464        pci_restore_ltr_state(dev);
1465
1466        pci_restore_pcie_state(dev);
1467        pci_restore_pasid_state(dev);
1468        pci_restore_pri_state(dev);
1469        pci_restore_ats_state(dev);
1470        pci_restore_vc_state(dev);
1471        pci_restore_rebar_state(dev);
1472        pci_restore_dpc_state(dev);
1473
1474        pci_cleanup_aer_error_status_regs(dev);
1475
1476        pci_restore_config_space(dev);
1477
1478        pci_restore_pcix_state(dev);
1479        pci_restore_msi_state(dev);
1480
1481        /* Restore ACS and IOV configuration state */
1482        pci_enable_acs(dev);
1483        pci_restore_iov_state(dev);
1484
1485        dev->state_saved = false;
1486}
1487EXPORT_SYMBOL(pci_restore_state);
1488
1489struct pci_saved_state {
1490        u32 config_space[16];
1491        struct pci_cap_saved_data cap[0];
1492};
1493
1494/**
1495 * pci_store_saved_state - Allocate and return an opaque struct containing
1496 *                         the device saved state.
1497 * @dev: PCI device that we're dealing with
1498 *
1499 * Return NULL if no state or error.
1500 */
1501struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1502{
1503        struct pci_saved_state *state;
1504        struct pci_cap_saved_state *tmp;
1505        struct pci_cap_saved_data *cap;
1506        size_t size;
1507
1508        if (!dev->state_saved)
1509                return NULL;
1510
1511        size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1512
1513        hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1514                size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1515
1516        state = kzalloc(size, GFP_KERNEL);
1517        if (!state)
1518                return NULL;
1519
1520        memcpy(state->config_space, dev->saved_config_space,
1521               sizeof(state->config_space));
1522
1523        cap = state->cap;
1524        hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1525                size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1526                memcpy(cap, &tmp->cap, len);
1527                cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1528        }
1529        /* Empty cap_save terminates list */
1530
1531        return state;
1532}
1533EXPORT_SYMBOL_GPL(pci_store_saved_state);
1534
1535/**
1536 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1537 * @dev: PCI device that we're dealing with
1538 * @state: Saved state returned from pci_store_saved_state()
1539 */
1540int pci_load_saved_state(struct pci_dev *dev,
1541                         struct pci_saved_state *state)
1542{
1543        struct pci_cap_saved_data *cap;
1544
1545        dev->state_saved = false;
1546
1547        if (!state)
1548                return 0;
1549
1550        memcpy(dev->saved_config_space, state->config_space,
1551               sizeof(state->config_space));
1552
1553        cap = state->cap;
1554        while (cap->size) {
1555                struct pci_cap_saved_state *tmp;
1556
1557                tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1558                if (!tmp || tmp->cap.size != cap->size)
1559                        return -EINVAL;
1560
1561                memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1562                cap = (struct pci_cap_saved_data *)((u8 *)cap +
1563                       sizeof(struct pci_cap_saved_data) + cap->size);
1564        }
1565
1566        dev->state_saved = true;
1567        return 0;
1568}
1569EXPORT_SYMBOL_GPL(pci_load_saved_state);
1570
1571/**
1572 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1573 *                                 and free the memory allocated for it.
1574 * @dev: PCI device that we're dealing with
1575 * @state: Pointer to saved state returned from pci_store_saved_state()
1576 */
1577int pci_load_and_free_saved_state(struct pci_dev *dev,
1578                                  struct pci_saved_state **state)
1579{
1580        int ret = pci_load_saved_state(dev, *state);
1581        kfree(*state);
1582        *state = NULL;
1583        return ret;
1584}
1585EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1586
1587int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1588{
1589        return pci_enable_resources(dev, bars);
1590}
1591
1592static int do_pci_enable_device(struct pci_dev *dev, int bars)
1593{
1594        int err;
1595        struct pci_dev *bridge;
1596        u16 cmd;
1597        u8 pin;
1598
1599        err = pci_set_power_state(dev, PCI_D0);
1600        if (err < 0 && err != -EIO)
1601                return err;
1602
1603        bridge = pci_upstream_bridge(dev);
1604        if (bridge)
1605                pcie_aspm_powersave_config_link(bridge);
1606
1607        err = pcibios_enable_device(dev, bars);
1608        if (err < 0)
1609                return err;
1610        pci_fixup_device(pci_fixup_enable, dev);
1611
1612        if (dev->msi_enabled || dev->msix_enabled)
1613                return 0;
1614
1615        pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1616        if (pin) {
1617                pci_read_config_word(dev, PCI_COMMAND, &cmd);
1618                if (cmd & PCI_COMMAND_INTX_DISABLE)
1619                        pci_write_config_word(dev, PCI_COMMAND,
1620                                              cmd & ~PCI_COMMAND_INTX_DISABLE);
1621        }
1622
1623        return 0;
1624}
1625
1626/**
1627 * pci_reenable_device - Resume abandoned device
1628 * @dev: PCI device to be resumed
1629 *
1630 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1631 * to be called by normal code, write proper resume handler and use it instead.
1632 */
1633int pci_reenable_device(struct pci_dev *dev)
1634{
1635        if (pci_is_enabled(dev))
1636                return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1637        return 0;
1638}
1639EXPORT_SYMBOL(pci_reenable_device);
1640
1641static void pci_enable_bridge(struct pci_dev *dev)
1642{
1643        struct pci_dev *bridge;
1644        int retval;
1645
1646        bridge = pci_upstream_bridge(dev);
1647        if (bridge)
1648                pci_enable_bridge(bridge);
1649
1650        if (pci_is_enabled(dev)) {
1651                if (!dev->is_busmaster)
1652                        pci_set_master(dev);
1653                return;
1654        }
1655
1656        retval = pci_enable_device(dev);
1657        if (retval)
1658                pci_err(dev, "Error enabling bridge (%d), continuing\n",
1659                        retval);
1660        pci_set_master(dev);
1661}
1662
1663static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1664{
1665        struct pci_dev *bridge;
1666        int err;
1667        int i, bars = 0;
1668
1669        /*
1670         * Power state could be unknown at this point, either due to a fresh
1671         * boot or a device removal call.  So get the current power state
1672         * so that things like MSI message writing will behave as expected
1673         * (e.g. if the device really is in D0 at enable time).
1674         */
1675        if (dev->pm_cap) {
1676                u16 pmcsr;
1677                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1678                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1679        }
1680
1681        if (atomic_inc_return(&dev->enable_cnt) > 1)
1682                return 0;               /* already enabled */
1683
1684        bridge = pci_upstream_bridge(dev);
1685        if (bridge)
1686                pci_enable_bridge(bridge);
1687
1688        /* only skip sriov related */
1689        for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1690                if (dev->resource[i].flags & flags)
1691                        bars |= (1 << i);
1692        for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1693                if (dev->resource[i].flags & flags)
1694                        bars |= (1 << i);
1695
1696        err = do_pci_enable_device(dev, bars);
1697        if (err < 0)
1698                atomic_dec(&dev->enable_cnt);
1699        return err;
1700}
1701
1702/**
1703 * pci_enable_device_io - Initialize a device for use with IO space
1704 * @dev: PCI device to be initialized
1705 *
1706 * Initialize device before it's used by a driver. Ask low-level code
1707 * to enable I/O resources. Wake up the device if it was suspended.
1708 * Beware, this function can fail.
1709 */
1710int pci_enable_device_io(struct pci_dev *dev)
1711{
1712        return pci_enable_device_flags(dev, IORESOURCE_IO);
1713}
1714EXPORT_SYMBOL(pci_enable_device_io);
1715
1716/**
1717 * pci_enable_device_mem - Initialize a device for use with Memory space
1718 * @dev: PCI device to be initialized
1719 *
1720 * Initialize device before it's used by a driver. Ask low-level code
1721 * to enable Memory resources. Wake up the device if it was suspended.
1722 * Beware, this function can fail.
1723 */
1724int pci_enable_device_mem(struct pci_dev *dev)
1725{
1726        return pci_enable_device_flags(dev, IORESOURCE_MEM);
1727}
1728EXPORT_SYMBOL(pci_enable_device_mem);
1729
1730/**
1731 * pci_enable_device - Initialize device before it's used by a driver.
1732 * @dev: PCI device to be initialized
1733 *
1734 * Initialize device before it's used by a driver. Ask low-level code
1735 * to enable I/O and memory. Wake up the device if it was suspended.
1736 * Beware, this function can fail.
1737 *
1738 * Note we don't actually enable the device many times if we call
1739 * this function repeatedly (we just increment the count).
1740 */
1741int pci_enable_device(struct pci_dev *dev)
1742{
1743        return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1744}
1745EXPORT_SYMBOL(pci_enable_device);
1746
1747/*
1748 * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1749 * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1750 * there's no need to track it separately.  pci_devres is initialized
1751 * when a device is enabled using managed PCI device enable interface.
1752 */
1753struct pci_devres {
1754        unsigned int enabled:1;
1755        unsigned int pinned:1;
1756        unsigned int orig_intx:1;
1757        unsigned int restore_intx:1;
1758        unsigned int mwi:1;
1759        u32 region_mask;
1760};
1761
1762static void pcim_release(struct device *gendev, void *res)
1763{
1764        struct pci_dev *dev = to_pci_dev(gendev);
1765        struct pci_devres *this = res;
1766        int i;
1767
1768        if (dev->msi_enabled)
1769                pci_disable_msi(dev);
1770        if (dev->msix_enabled)
1771                pci_disable_msix(dev);
1772
1773        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1774                if (this->region_mask & (1 << i))
1775                        pci_release_region(dev, i);
1776
1777        if (this->mwi)
1778                pci_clear_mwi(dev);
1779
1780        if (this->restore_intx)
1781                pci_intx(dev, this->orig_intx);
1782
1783        if (this->enabled && !this->pinned)
1784                pci_disable_device(dev);
1785}
1786
1787static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1788{
1789        struct pci_devres *dr, *new_dr;
1790
1791        dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1792        if (dr)
1793                return dr;
1794
1795        new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1796        if (!new_dr)
1797                return NULL;
1798        return devres_get(&pdev->dev, new_dr, NULL, NULL);
1799}
1800
1801static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1802{
1803        if (pci_is_managed(pdev))
1804                return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1805        return NULL;
1806}
1807
1808/**
1809 * pcim_enable_device - Managed pci_enable_device()
1810 * @pdev: PCI device to be initialized
1811 *
1812 * Managed pci_enable_device().
1813 */
1814int pcim_enable_device(struct pci_dev *pdev)
1815{
1816        struct pci_devres *dr;
1817        int rc;
1818
1819        dr = get_pci_dr(pdev);
1820        if (unlikely(!dr))
1821                return -ENOMEM;
1822        if (dr->enabled)
1823                return 0;
1824
1825        rc = pci_enable_device(pdev);
1826        if (!rc) {
1827                pdev->is_managed = 1;
1828                dr->enabled = 1;
1829        }
1830        return rc;
1831}
1832EXPORT_SYMBOL(pcim_enable_device);
1833
1834/**
1835 * pcim_pin_device - Pin managed PCI device
1836 * @pdev: PCI device to pin
1837 *
1838 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1839 * driver detach.  @pdev must have been enabled with
1840 * pcim_enable_device().
1841 */
1842void pcim_pin_device(struct pci_dev *pdev)
1843{
1844        struct pci_devres *dr;
1845
1846        dr = find_pci_dr(pdev);
1847        WARN_ON(!dr || !dr->enabled);
1848        if (dr)
1849                dr->pinned = 1;
1850}
1851EXPORT_SYMBOL(pcim_pin_device);
1852
1853/*
1854 * pcibios_add_device - provide arch specific hooks when adding device dev
1855 * @dev: the PCI device being added
1856 *
1857 * Permits the platform to provide architecture specific functionality when
1858 * devices are added. This is the default implementation. Architecture
1859 * implementations can override this.
1860 */
1861int __weak pcibios_add_device(struct pci_dev *dev)
1862{
1863        return 0;
1864}
1865
1866/**
1867 * pcibios_release_device - provide arch specific hooks when releasing
1868 *                          device dev
1869 * @dev: the PCI device being released
1870 *
1871 * Permits the platform to provide architecture specific functionality when
1872 * devices are released. This is the default implementation. Architecture
1873 * implementations can override this.
1874 */
1875void __weak pcibios_release_device(struct pci_dev *dev) {}
1876
1877/**
1878 * pcibios_disable_device - disable arch specific PCI resources for device dev
1879 * @dev: the PCI device to disable
1880 *
1881 * Disables architecture specific PCI resources for the device. This
1882 * is the default implementation. Architecture implementations can
1883 * override this.
1884 */
1885void __weak pcibios_disable_device(struct pci_dev *dev) {}
1886
1887/**
1888 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1889 * @irq: ISA IRQ to penalize
1890 * @active: IRQ active or not
1891 *
1892 * Permits the platform to provide architecture-specific functionality when
1893 * penalizing ISA IRQs. This is the default implementation. Architecture
1894 * implementations can override this.
1895 */
1896void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1897
1898static void do_pci_disable_device(struct pci_dev *dev)
1899{
1900        u16 pci_command;
1901
1902        pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1903        if (pci_command & PCI_COMMAND_MASTER) {
1904                pci_command &= ~PCI_COMMAND_MASTER;
1905                pci_write_config_word(dev, PCI_COMMAND, pci_command);
1906        }
1907
1908        pcibios_disable_device(dev);
1909}
1910
1911/**
1912 * pci_disable_enabled_device - Disable device without updating enable_cnt
1913 * @dev: PCI device to disable
1914 *
1915 * NOTE: This function is a backend of PCI power management routines and is
1916 * not supposed to be called drivers.
1917 */
1918void pci_disable_enabled_device(struct pci_dev *dev)
1919{
1920        if (pci_is_enabled(dev))
1921                do_pci_disable_device(dev);
1922}
1923
1924/**
1925 * pci_disable_device - Disable PCI device after use
1926 * @dev: PCI device to be disabled
1927 *
1928 * Signal to the system that the PCI device is not in use by the system
1929 * anymore.  This only involves disabling PCI bus-mastering, if active.
1930 *
1931 * Note we don't actually disable the device until all callers of
1932 * pci_enable_device() have called pci_disable_device().
1933 */
1934void pci_disable_device(struct pci_dev *dev)
1935{
1936        struct pci_devres *dr;
1937
1938        dr = find_pci_dr(dev);
1939        if (dr)
1940                dr->enabled = 0;
1941
1942        dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1943                      "disabling already-disabled device");
1944
1945        if (atomic_dec_return(&dev->enable_cnt) != 0)
1946                return;
1947
1948        do_pci_disable_device(dev);
1949
1950        dev->is_busmaster = 0;
1951}
1952EXPORT_SYMBOL(pci_disable_device);
1953
1954/**
1955 * pcibios_set_pcie_reset_state - set reset state for device dev
1956 * @dev: the PCIe device reset
1957 * @state: Reset state to enter into
1958 *
1959 * Set the PCIe reset state for the device. This is the default
1960 * implementation. Architecture implementations can override this.
1961 */
1962int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1963                                        enum pcie_reset_state state)
1964{
1965        return -EINVAL;
1966}
1967
1968/**
1969 * pci_set_pcie_reset_state - set reset state for device dev
1970 * @dev: the PCIe device reset
1971 * @state: Reset state to enter into
1972 *
1973 * Sets the PCI reset state for the device.
1974 */
1975int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1976{
1977        return pcibios_set_pcie_reset_state(dev, state);
1978}
1979EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1980
1981/**
1982 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1983 * @dev: PCIe root port or event collector.
1984 */
1985void pcie_clear_root_pme_status(struct pci_dev *dev)
1986{
1987        pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1988}
1989
1990/**
1991 * pci_check_pme_status - Check if given device has generated PME.
1992 * @dev: Device to check.
1993 *
1994 * Check the PME status of the device and if set, clear it and clear PME enable
1995 * (if set).  Return 'true' if PME status and PME enable were both set or
1996 * 'false' otherwise.
1997 */
1998bool pci_check_pme_status(struct pci_dev *dev)
1999{
2000        int pmcsr_pos;
2001        u16 pmcsr;
2002        bool ret = false;
2003
2004        if (!dev->pm_cap)
2005                return false;
2006
2007        pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2008        pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2009        if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2010                return false;
2011
2012        /* Clear PME status. */
2013        pmcsr |= PCI_PM_CTRL_PME_STATUS;
2014        if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2015                /* Disable PME to avoid interrupt flood. */
2016                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2017                ret = true;
2018        }
2019
2020        pci_write_config_word(dev, pmcsr_pos, pmcsr);
2021
2022        return ret;
2023}
2024
2025/**
2026 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2027 * @dev: Device to handle.
2028 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2029 *
2030 * Check if @dev has generated PME and queue a resume request for it in that
2031 * case.
2032 */
2033static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2034{
2035        if (pme_poll_reset && dev->pme_poll)
2036                dev->pme_poll = false;
2037
2038        if (pci_check_pme_status(dev)) {
2039                pci_wakeup_event(dev);
2040                pm_request_resume(&dev->dev);
2041        }
2042        return 0;
2043}
2044
2045/**
2046 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2047 * @bus: Top bus of the subtree to walk.
2048 */
2049void pci_pme_wakeup_bus(struct pci_bus *bus)
2050{
2051        if (bus)
2052                pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2053}
2054
2055
2056/**
2057 * pci_pme_capable - check the capability of PCI device to generate PME#
2058 * @dev: PCI device to handle.
2059 * @state: PCI state from which device will issue PME#.
2060 */
2061bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2062{
2063        if (!dev->pm_cap)
2064                return false;
2065
2066        return !!(dev->pme_support & (1 << state));
2067}
2068EXPORT_SYMBOL(pci_pme_capable);
2069
2070static void pci_pme_list_scan(struct work_struct *work)
2071{
2072        struct pci_pme_device *pme_dev, *n;
2073
2074        mutex_lock(&pci_pme_list_mutex);
2075        list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2076                if (pme_dev->dev->pme_poll) {
2077                        struct pci_dev *bridge;
2078
2079                        bridge = pme_dev->dev->bus->self;
2080                        /*
2081                         * If bridge is in low power state, the
2082                         * configuration space of subordinate devices
2083                         * may be not accessible
2084                         */
2085                        if (bridge && bridge->current_state != PCI_D0)
2086                                continue;
2087                        /*
2088                         * If the device is in D3cold it should not be
2089                         * polled either.
2090                         */
2091                        if (pme_dev->dev->current_state == PCI_D3cold)
2092                                continue;
2093
2094                        pci_pme_wakeup(pme_dev->dev, NULL);
2095                } else {
2096                        list_del(&pme_dev->list);
2097                        kfree(pme_dev);
2098                }
2099        }
2100        if (!list_empty(&pci_pme_list))
2101                queue_delayed_work(system_freezable_wq, &pci_pme_work,
2102                                   msecs_to_jiffies(PME_TIMEOUT));
2103        mutex_unlock(&pci_pme_list_mutex);
2104}
2105
2106static void __pci_pme_active(struct pci_dev *dev, bool enable)
2107{
2108        u16 pmcsr;
2109
2110        if (!dev->pme_support)
2111                return;
2112
2113        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2114        /* Clear PME_Status by writing 1 to it and enable PME# */
2115        pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2116        if (!enable)
2117                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2118
2119        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2120}
2121
2122/**
2123 * pci_pme_restore - Restore PME configuration after config space restore.
2124 * @dev: PCI device to update.
2125 */
2126void pci_pme_restore(struct pci_dev *dev)
2127{
2128        u16 pmcsr;
2129
2130        if (!dev->pme_support)
2131                return;
2132
2133        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2134        if (dev->wakeup_prepared) {
2135                pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2136                pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2137        } else {
2138                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2139                pmcsr |= PCI_PM_CTRL_PME_STATUS;
2140        }
2141        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2142}
2143
2144/**
2145 * pci_pme_active - enable or disable PCI device's PME# function
2146 * @dev: PCI device to handle.
2147 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2148 *
2149 * The caller must verify that the device is capable of generating PME# before
2150 * calling this function with @enable equal to 'true'.
2151 */
2152void pci_pme_active(struct pci_dev *dev, bool enable)
2153{
2154        __pci_pme_active(dev, enable);
2155
2156        /*
2157         * PCI (as opposed to PCIe) PME requires that the device have
2158         * its PME# line hooked up correctly. Not all hardware vendors
2159         * do this, so the PME never gets delivered and the device
2160         * remains asleep. The easiest way around this is to
2161         * periodically walk the list of suspended devices and check
2162         * whether any have their PME flag set. The assumption is that
2163         * we'll wake up often enough anyway that this won't be a huge
2164         * hit, and the power savings from the devices will still be a
2165         * win.
2166         *
2167         * Although PCIe uses in-band PME message instead of PME# line
2168         * to report PME, PME does not work for some PCIe devices in
2169         * reality.  For example, there are devices that set their PME
2170         * status bits, but don't really bother to send a PME message;
2171         * there are PCI Express Root Ports that don't bother to
2172         * trigger interrupts when they receive PME messages from the
2173         * devices below.  So PME poll is used for PCIe devices too.
2174         */
2175
2176        if (dev->pme_poll) {
2177                struct pci_pme_device *pme_dev;
2178                if (enable) {
2179                        pme_dev = kmalloc(sizeof(struct pci_pme_device),
2180                                          GFP_KERNEL);
2181                        if (!pme_dev) {
2182                                pci_warn(dev, "can't enable PME#\n");
2183                                return;
2184                        }
2185                        pme_dev->dev = dev;
2186                        mutex_lock(&pci_pme_list_mutex);
2187                        list_add(&pme_dev->list, &pci_pme_list);
2188                        if (list_is_singular(&pci_pme_list))
2189                                queue_delayed_work(system_freezable_wq,
2190                                                   &pci_pme_work,
2191                                                   msecs_to_jiffies(PME_TIMEOUT));
2192                        mutex_unlock(&pci_pme_list_mutex);
2193                } else {
2194                        mutex_lock(&pci_pme_list_mutex);
2195                        list_for_each_entry(pme_dev, &pci_pme_list, list) {
2196                                if (pme_dev->dev == dev) {
2197                                        list_del(&pme_dev->list);
2198                                        kfree(pme_dev);
2199                                        break;
2200                                }
2201                        }
2202                        mutex_unlock(&pci_pme_list_mutex);
2203                }
2204        }
2205
2206        pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2207}
2208EXPORT_SYMBOL(pci_pme_active);
2209
2210/**
2211 * __pci_enable_wake - enable PCI device as wakeup event source
2212 * @dev: PCI device affected
2213 * @state: PCI state from which device will issue wakeup events
2214 * @enable: True to enable event generation; false to disable
2215 *
2216 * This enables the device as a wakeup event source, or disables it.
2217 * When such events involves platform-specific hooks, those hooks are
2218 * called automatically by this routine.
2219 *
2220 * Devices with legacy power management (no standard PCI PM capabilities)
2221 * always require such platform hooks.
2222 *
2223 * RETURN VALUE:
2224 * 0 is returned on success
2225 * -EINVAL is returned if device is not supposed to wake up the system
2226 * Error code depending on the platform is returned if both the platform and
2227 * the native mechanism fail to enable the generation of wake-up events
2228 */
2229static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2230{
2231        int ret = 0;
2232
2233        /*
2234         * Bridges that are not power-manageable directly only signal
2235         * wakeup on behalf of subordinate devices which is set up
2236         * elsewhere, so skip them. However, bridges that are
2237         * power-manageable may signal wakeup for themselves (for example,
2238         * on a hotplug event) and they need to be covered here.
2239         */
2240        if (!pci_power_manageable(dev))
2241                return 0;
2242
2243        /* Don't do the same thing twice in a row for one device. */
2244        if (!!enable == !!dev->wakeup_prepared)
2245                return 0;
2246
2247        /*
2248         * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2249         * Anderson we should be doing PME# wake enable followed by ACPI wake
2250         * enable.  To disable wake-up we call the platform first, for symmetry.
2251         */
2252
2253        if (enable) {
2254                int error;
2255
2256                if (pci_pme_capable(dev, state))
2257                        pci_pme_active(dev, true);
2258                else
2259                        ret = 1;
2260                error = platform_pci_set_wakeup(dev, true);
2261                if (ret)
2262                        ret = error;
2263                if (!ret)
2264                        dev->wakeup_prepared = true;
2265        } else {
2266                platform_pci_set_wakeup(dev, false);
2267                pci_pme_active(dev, false);
2268                dev->wakeup_prepared = false;
2269        }
2270
2271        return ret;
2272}
2273
2274/**
2275 * pci_enable_wake - change wakeup settings for a PCI device
2276 * @pci_dev: Target device
2277 * @state: PCI state from which device will issue wakeup events
2278 * @enable: Whether or not to enable event generation
2279 *
2280 * If @enable is set, check device_may_wakeup() for the device before calling
2281 * __pci_enable_wake() for it.
2282 */
2283int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2284{
2285        if (enable && !device_may_wakeup(&pci_dev->dev))
2286                return -EINVAL;
2287
2288        return __pci_enable_wake(pci_dev, state, enable);
2289}
2290EXPORT_SYMBOL(pci_enable_wake);
2291
2292/**
2293 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2294 * @dev: PCI device to prepare
2295 * @enable: True to enable wake-up event generation; false to disable
2296 *
2297 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2298 * and this function allows them to set that up cleanly - pci_enable_wake()
2299 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2300 * ordering constraints.
2301 *
2302 * This function only returns error code if the device is not allowed to wake
2303 * up the system from sleep or it is not capable of generating PME# from both
2304 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2305 */
2306int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2307{
2308        return pci_pme_capable(dev, PCI_D3cold) ?
2309                        pci_enable_wake(dev, PCI_D3cold, enable) :
2310                        pci_enable_wake(dev, PCI_D3hot, enable);
2311}
2312EXPORT_SYMBOL(pci_wake_from_d3);
2313
2314/**
2315 * pci_target_state - find an appropriate low power state for a given PCI dev
2316 * @dev: PCI device
2317 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2318 *
2319 * Use underlying platform code to find a supported low power state for @dev.
2320 * If the platform can't manage @dev, return the deepest state from which it
2321 * can generate wake events, based on any available PME info.
2322 */
2323static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2324{
2325        pci_power_t target_state = PCI_D3hot;
2326
2327        if (platform_pci_power_manageable(dev)) {
2328                /*
2329                 * Call the platform to find the target state for the device.
2330                 */
2331                pci_power_t state = platform_pci_choose_state(dev);
2332
2333                switch (state) {
2334                case PCI_POWER_ERROR:
2335                case PCI_UNKNOWN:
2336                        break;
2337                case PCI_D1:
2338                case PCI_D2:
2339                        if (pci_no_d1d2(dev))
2340                                break;
2341                        /* else, fall through */
2342                default:
2343                        target_state = state;
2344                }
2345
2346                return target_state;
2347        }
2348
2349        if (!dev->pm_cap)
2350                target_state = PCI_D0;
2351
2352        /*
2353         * If the device is in D3cold even though it's not power-manageable by
2354         * the platform, it may have been powered down by non-standard means.
2355         * Best to let it slumber.
2356         */
2357        if (dev->current_state == PCI_D3cold)
2358                target_state = PCI_D3cold;
2359
2360        if (wakeup) {
2361                /*
2362                 * Find the deepest state from which the device can generate
2363                 * PME#.
2364                 */
2365                if (dev->pme_support) {
2366                        while (target_state
2367                              && !(dev->pme_support & (1 << target_state)))
2368                                target_state--;
2369                }
2370        }
2371
2372        return target_state;
2373}
2374
2375/**
2376 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2377 *                        into a sleep state
2378 * @dev: Device to handle.
2379 *
2380 * Choose the power state appropriate for the device depending on whether
2381 * it can wake up the system and/or is power manageable by the platform
2382 * (PCI_D3hot is the default) and put the device into that state.
2383 */
2384int pci_prepare_to_sleep(struct pci_dev *dev)
2385{
2386        bool wakeup = device_may_wakeup(&dev->dev);
2387        pci_power_t target_state = pci_target_state(dev, wakeup);
2388        int error;
2389
2390        if (target_state == PCI_POWER_ERROR)
2391                return -EIO;
2392
2393        pci_enable_wake(dev, target_state, wakeup);
2394
2395        error = pci_set_power_state(dev, target_state);
2396
2397        if (error)
2398                pci_enable_wake(dev, target_state, false);
2399
2400        return error;
2401}
2402EXPORT_SYMBOL(pci_prepare_to_sleep);
2403
2404/**
2405 * pci_back_from_sleep - turn PCI device on during system-wide transition
2406 *                       into working state
2407 * @dev: Device to handle.
2408 *
2409 * Disable device's system wake-up capability and put it into D0.
2410 */
2411int pci_back_from_sleep(struct pci_dev *dev)
2412{
2413        pci_enable_wake(dev, PCI_D0, false);
2414        return pci_set_power_state(dev, PCI_D0);
2415}
2416EXPORT_SYMBOL(pci_back_from_sleep);
2417
2418/**
2419 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2420 * @dev: PCI device being suspended.
2421 *
2422 * Prepare @dev to generate wake-up events at run time and put it into a low
2423 * power state.
2424 */
2425int pci_finish_runtime_suspend(struct pci_dev *dev)
2426{
2427        pci_power_t target_state;
2428        int error;
2429
2430        target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2431        if (target_state == PCI_POWER_ERROR)
2432                return -EIO;
2433
2434        dev->runtime_d3cold = target_state == PCI_D3cold;
2435
2436        __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2437
2438        error = pci_set_power_state(dev, target_state);
2439
2440        if (error) {
2441                pci_enable_wake(dev, target_state, false);
2442                dev->runtime_d3cold = false;
2443        }
2444
2445        return error;
2446}
2447
2448/**
2449 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2450 * @dev: Device to check.
2451 *
2452 * Return true if the device itself is capable of generating wake-up events
2453 * (through the platform or using the native PCIe PME) or if the device supports
2454 * PME and one of its upstream bridges can generate wake-up events.
2455 */
2456bool pci_dev_run_wake(struct pci_dev *dev)
2457{
2458        struct pci_bus *bus = dev->bus;
2459
2460        if (!dev->pme_support)
2461                return false;
2462
2463        /* PME-capable in principle, but not from the target power state */
2464        if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2465                return false;
2466
2467        if (device_can_wakeup(&dev->dev))
2468                return true;
2469
2470        while (bus->parent) {
2471                struct pci_dev *bridge = bus->self;
2472
2473                if (device_can_wakeup(&bridge->dev))
2474                        return true;
2475
2476                bus = bus->parent;
2477        }
2478
2479        /* We have reached the root bus. */
2480        if (bus->bridge)
2481                return device_can_wakeup(bus->bridge);
2482
2483        return false;
2484}
2485EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2486
2487/**
2488 * pci_dev_need_resume - Check if it is necessary to resume the device.
2489 * @pci_dev: Device to check.
2490 *
2491 * Return 'true' if the device is not runtime-suspended or it has to be
2492 * reconfigured due to wakeup settings difference between system and runtime
2493 * suspend, or the current power state of it is not suitable for the upcoming
2494 * (system-wide) transition.
2495 */
2496bool pci_dev_need_resume(struct pci_dev *pci_dev)
2497{
2498        struct device *dev = &pci_dev->dev;
2499        pci_power_t target_state;
2500
2501        if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2502                return true;
2503
2504        target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2505
2506        /*
2507         * If the earlier platform check has not triggered, D3cold is just power
2508         * removal on top of D3hot, so no need to resume the device in that
2509         * case.
2510         */
2511        return target_state != pci_dev->current_state &&
2512                target_state != PCI_D3cold &&
2513                pci_dev->current_state != PCI_D3hot;
2514}
2515
2516/**
2517 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2518 * @pci_dev: Device to check.
2519 *
2520 * If the device is suspended and it is not configured for system wakeup,
2521 * disable PME for it to prevent it from waking up the system unnecessarily.
2522 *
2523 * Note that if the device's power state is D3cold and the platform check in
2524 * pci_dev_need_resume() has not triggered, the device's configuration need not
2525 * be changed.
2526 */
2527void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2528{
2529        struct device *dev = &pci_dev->dev;
2530
2531        spin_lock_irq(&dev->power.lock);
2532
2533        if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2534            pci_dev->current_state < PCI_D3cold)
2535                __pci_pme_active(pci_dev, false);
2536
2537        spin_unlock_irq(&dev->power.lock);
2538}
2539
2540/**
2541 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2542 * @pci_dev: Device to handle.
2543 *
2544 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2545 * it might have been disabled during the prepare phase of system suspend if
2546 * the device was not configured for system wakeup.
2547 */
2548void pci_dev_complete_resume(struct pci_dev *pci_dev)
2549{
2550        struct device *dev = &pci_dev->dev;
2551
2552        if (!pci_dev_run_wake(pci_dev))
2553                return;
2554
2555        spin_lock_irq(&dev->power.lock);
2556
2557        if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2558                __pci_pme_active(pci_dev, true);
2559
2560        spin_unlock_irq(&dev->power.lock);
2561}
2562
2563void pci_config_pm_runtime_get(struct pci_dev *pdev)
2564{
2565        struct device *dev = &pdev->dev;
2566        struct device *parent = dev->parent;
2567
2568        if (parent)
2569                pm_runtime_get_sync(parent);
2570        pm_runtime_get_noresume(dev);
2571        /*
2572         * pdev->current_state is set to PCI_D3cold during suspending,
2573         * so wait until suspending completes
2574         */
2575        pm_runtime_barrier(dev);
2576        /*
2577         * Only need to resume devices in D3cold, because config
2578         * registers are still accessible for devices suspended but
2579         * not in D3cold.
2580         */
2581        if (pdev->current_state == PCI_D3cold)
2582                pm_runtime_resume(dev);
2583}
2584
2585void pci_config_pm_runtime_put(struct pci_dev *pdev)
2586{
2587        struct device *dev = &pdev->dev;
2588        struct device *parent = dev->parent;
2589
2590        pm_runtime_put(dev);
2591        if (parent)
2592                pm_runtime_put_sync(parent);
2593}
2594
2595static const struct dmi_system_id bridge_d3_blacklist[] = {
2596#ifdef CONFIG_X86
2597        {
2598                /*
2599                 * Gigabyte X299 root port is not marked as hotplug capable
2600                 * which allows Linux to power manage it.  However, this
2601                 * confuses the BIOS SMI handler so don't power manage root
2602                 * ports on that system.
2603                 */
2604                .ident = "X299 DESIGNARE EX-CF",
2605                .matches = {
2606                        DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2607                        DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2608                },
2609        },
2610#endif
2611        { }
2612};
2613
2614/**
2615 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2616 * @bridge: Bridge to check
2617 *
2618 * This function checks if it is possible to move the bridge to D3.
2619 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2620 */
2621bool pci_bridge_d3_possible(struct pci_dev *bridge)
2622{
2623        if (!pci_is_pcie(bridge))
2624                return false;
2625
2626        switch (pci_pcie_type(bridge)) {
2627        case PCI_EXP_TYPE_ROOT_PORT:
2628        case PCI_EXP_TYPE_UPSTREAM:
2629        case PCI_EXP_TYPE_DOWNSTREAM:
2630                if (pci_bridge_d3_disable)
2631                        return false;
2632
2633                /*
2634                 * Hotplug ports handled by firmware in System Management Mode
2635                 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2636                 */
2637                if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2638                        return false;
2639
2640                if (pci_bridge_d3_force)
2641                        return true;
2642
2643                /* Even the oldest 2010 Thunderbolt controller supports D3. */
2644                if (bridge->is_thunderbolt)
2645                        return true;
2646
2647                /* Platform might know better if the bridge supports D3 */
2648                if (platform_pci_bridge_d3(bridge))
2649                        return true;
2650
2651                /*
2652                 * Hotplug ports handled natively by the OS were not validated
2653                 * by vendors for runtime D3 at least until 2018 because there
2654                 * was no OS support.
2655                 */
2656                if (bridge->is_hotplug_bridge)
2657                        return false;
2658
2659                if (dmi_check_system(bridge_d3_blacklist))
2660                        return false;
2661
2662                /*
2663                 * It should be safe to put PCIe ports from 2015 or newer
2664                 * to D3.
2665                 */
2666                if (dmi_get_bios_year() >= 2015)
2667                        return true;
2668                break;
2669        }
2670
2671        return false;
2672}
2673
2674static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2675{
2676        bool *d3cold_ok = data;
2677
2678        if (/* The device needs to be allowed to go D3cold ... */
2679            dev->no_d3cold || !dev->d3cold_allowed ||
2680
2681            /* ... and if it is wakeup capable to do so from D3cold. */
2682            (device_may_wakeup(&dev->dev) &&
2683             !pci_pme_capable(dev, PCI_D3cold)) ||
2684
2685            /* If it is a bridge it must be allowed to go to D3. */
2686            !pci_power_manageable(dev))
2687
2688                *d3cold_ok = false;
2689
2690        return !*d3cold_ok;
2691}
2692
2693/*
2694 * pci_bridge_d3_update - Update bridge D3 capabilities
2695 * @dev: PCI device which is changed
2696 *
2697 * Update upstream bridge PM capabilities accordingly depending on if the
2698 * device PM configuration was changed or the device is being removed.  The
2699 * change is also propagated upstream.
2700 */
2701void pci_bridge_d3_update(struct pci_dev *dev)
2702{
2703        bool remove = !device_is_registered(&dev->dev);
2704        struct pci_dev *bridge;
2705        bool d3cold_ok = true;
2706
2707        bridge = pci_upstream_bridge(dev);
2708        if (!bridge || !pci_bridge_d3_possible(bridge))
2709                return;
2710
2711        /*
2712         * If D3 is currently allowed for the bridge, removing one of its
2713         * children won't change that.
2714         */
2715        if (remove && bridge->bridge_d3)
2716                return;
2717
2718        /*
2719         * If D3 is currently allowed for the bridge and a child is added or
2720         * changed, disallowance of D3 can only be caused by that child, so
2721         * we only need to check that single device, not any of its siblings.
2722         *
2723         * If D3 is currently not allowed for the bridge, checking the device
2724         * first may allow us to skip checking its siblings.
2725         */
2726        if (!remove)
2727                pci_dev_check_d3cold(dev, &d3cold_ok);
2728
2729        /*
2730         * If D3 is currently not allowed for the bridge, this may be caused
2731         * either by the device being changed/removed or any of its siblings,
2732         * so we need to go through all children to find out if one of them
2733         * continues to block D3.
2734         */
2735        if (d3cold_ok && !bridge->bridge_d3)
2736                pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2737                             &d3cold_ok);
2738
2739        if (bridge->bridge_d3 != d3cold_ok) {
2740                bridge->bridge_d3 = d3cold_ok;
2741                /* Propagate change to upstream bridges */
2742                pci_bridge_d3_update(bridge);
2743        }
2744}
2745
2746/**
2747 * pci_d3cold_enable - Enable D3cold for device
2748 * @dev: PCI device to handle
2749 *
2750 * This function can be used in drivers to enable D3cold from the device
2751 * they handle.  It also updates upstream PCI bridge PM capabilities
2752 * accordingly.
2753 */
2754void pci_d3cold_enable(struct pci_dev *dev)
2755{
2756        if (dev->no_d3cold) {
2757                dev->no_d3cold = false;
2758                pci_bridge_d3_update(dev);
2759        }
2760}
2761EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2762
2763/**
2764 * pci_d3cold_disable - Disable D3cold for device
2765 * @dev: PCI device to handle
2766 *
2767 * This function can be used in drivers to disable D3cold from the device
2768 * they handle.  It also updates upstream PCI bridge PM capabilities
2769 * accordingly.
2770 */
2771void pci_d3cold_disable(struct pci_dev *dev)
2772{
2773        if (!dev->no_d3cold) {
2774                dev->no_d3cold = true;
2775                pci_bridge_d3_update(dev);
2776        }
2777}
2778EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2779
2780/**
2781 * pci_pm_init - Initialize PM functions of given PCI device
2782 * @dev: PCI device to handle.
2783 */
2784void pci_pm_init(struct pci_dev *dev)
2785{
2786        int pm;
2787        u16 status;
2788        u16 pmc;
2789
2790        pm_runtime_forbid(&dev->dev);
2791        pm_runtime_set_active(&dev->dev);
2792        pm_runtime_enable(&dev->dev);
2793        device_enable_async_suspend(&dev->dev);
2794        dev->wakeup_prepared = false;
2795
2796        dev->pm_cap = 0;
2797        dev->pme_support = 0;
2798
2799        /* find PCI PM capability in list */
2800        pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2801        if (!pm)
2802                return;
2803        /* Check device's ability to generate PME# */
2804        pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2805
2806        if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2807                pci_err(dev, "unsupported PM cap regs version (%u)\n",
2808                        pmc & PCI_PM_CAP_VER_MASK);
2809                return;
2810        }
2811
2812        dev->pm_cap = pm;
2813        dev->d3_delay = PCI_PM_D3_WAIT;
2814        dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2815        dev->bridge_d3 = pci_bridge_d3_possible(dev);
2816        dev->d3cold_allowed = true;
2817
2818        dev->d1_support = false;
2819        dev->d2_support = false;
2820        if (!pci_no_d1d2(dev)) {
2821                if (pmc & PCI_PM_CAP_D1)
2822                        dev->d1_support = true;
2823                if (pmc & PCI_PM_CAP_D2)
2824                        dev->d2_support = true;
2825
2826                if (dev->d1_support || dev->d2_support)
2827                        pci_info(dev, "supports%s%s\n",
2828                                   dev->d1_support ? " D1" : "",
2829                                   dev->d2_support ? " D2" : "");
2830        }
2831
2832        pmc &= PCI_PM_CAP_PME_MASK;
2833        if (pmc) {
2834                pci_info(dev, "PME# supported from%s%s%s%s%s\n",
2835                         (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2836                         (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2837                         (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2838                         (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2839                         (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2840                dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2841                dev->pme_poll = true;
2842                /*
2843                 * Make device's PM flags reflect the wake-up capability, but
2844                 * let the user space enable it to wake up the system as needed.
2845                 */
2846                device_set_wakeup_capable(&dev->dev, true);
2847                /* Disable the PME# generation functionality */
2848                pci_pme_active(dev, false);
2849        }
2850
2851        pci_read_config_word(dev, PCI_STATUS, &status);
2852        if (status & PCI_STATUS_IMM_READY)
2853                dev->imm_ready = 1;
2854}
2855
2856static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2857{
2858        unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2859
2860        switch (prop) {
2861        case PCI_EA_P_MEM:
2862        case PCI_EA_P_VF_MEM:
2863                flags |= IORESOURCE_MEM;
2864                break;
2865        case PCI_EA_P_MEM_PREFETCH:
2866        case PCI_EA_P_VF_MEM_PREFETCH:
2867                flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2868                break;
2869        case PCI_EA_P_IO:
2870                flags |= IORESOURCE_IO;
2871                break;
2872        default:
2873                return 0;
2874        }
2875
2876        return flags;
2877}
2878
2879static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2880                                            u8 prop)
2881{
2882        if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2883                return &dev->resource[bei];
2884#ifdef CONFIG_PCI_IOV
2885        else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2886                 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2887                return &dev->resource[PCI_IOV_RESOURCES +
2888                                      bei - PCI_EA_BEI_VF_BAR0];
2889#endif
2890        else if (bei == PCI_EA_BEI_ROM)
2891                return &dev->resource[PCI_ROM_RESOURCE];
2892        else
2893                return NULL;
2894}
2895
2896/* Read an Enhanced Allocation (EA) entry */
2897static int pci_ea_read(struct pci_dev *dev, int offset)
2898{
2899        struct resource *res;
2900        int ent_size, ent_offset = offset;
2901        resource_size_t start, end;
2902        unsigned long flags;
2903        u32 dw0, bei, base, max_offset;
2904        u8 prop;
2905        bool support_64 = (sizeof(resource_size_t) >= 8);
2906
2907        pci_read_config_dword(dev, ent_offset, &dw0);
2908        ent_offset += 4;
2909
2910        /* Entry size field indicates DWORDs after 1st */
2911        ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2912
2913        if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2914                goto out;
2915
2916        bei = (dw0 & PCI_EA_BEI) >> 4;
2917        prop = (dw0 & PCI_EA_PP) >> 8;
2918
2919        /*
2920         * If the Property is in the reserved range, try the Secondary
2921         * Property instead.
2922         */
2923        if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2924                prop = (dw0 & PCI_EA_SP) >> 16;
2925        if (prop > PCI_EA_P_BRIDGE_IO)
2926                goto out;
2927
2928        res = pci_ea_get_resource(dev, bei, prop);
2929        if (!res) {
2930                pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2931                goto out;
2932        }
2933
2934        flags = pci_ea_flags(dev, prop);
2935        if (!flags) {
2936                pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2937                goto out;
2938        }
2939
2940        /* Read Base */
2941        pci_read_config_dword(dev, ent_offset, &base);
2942        start = (base & PCI_EA_FIELD_MASK);
2943        ent_offset += 4;
2944
2945        /* Read MaxOffset */
2946        pci_read_config_dword(dev, ent_offset, &max_offset);
2947        ent_offset += 4;
2948
2949        /* Read Base MSBs (if 64-bit entry) */
2950        if (base & PCI_EA_IS_64) {
2951                u32 base_upper;
2952
2953                pci_read_config_dword(dev, ent_offset, &base_upper);
2954                ent_offset += 4;
2955
2956                flags |= IORESOURCE_MEM_64;
2957
2958                /* entry starts above 32-bit boundary, can't use */
2959                if (!support_64 && base_upper)
2960                        goto out;
2961
2962                if (support_64)
2963                        start |= ((u64)base_upper << 32);
2964        }
2965
2966        end = start + (max_offset | 0x03);
2967
2968        /* Read MaxOffset MSBs (if 64-bit entry) */
2969        if (max_offset & PCI_EA_IS_64) {
2970                u32 max_offset_upper;
2971
2972                pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2973                ent_offset += 4;
2974
2975                flags |= IORESOURCE_MEM_64;
2976
2977                /* entry too big, can't use */
2978                if (!support_64 && max_offset_upper)
2979                        goto out;
2980
2981                if (support_64)
2982                        end += ((u64)max_offset_upper << 32);
2983        }
2984
2985        if (end < start) {
2986                pci_err(dev, "EA Entry crosses address boundary\n");
2987                goto out;
2988        }
2989
2990        if (ent_size != ent_offset - offset) {
2991                pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2992                        ent_size, ent_offset - offset);
2993                goto out;
2994        }
2995
2996        res->name = pci_name(dev);
2997        res->start = start;
2998        res->end = end;
2999        res->flags = flags;
3000
3001        if (bei <= PCI_EA_BEI_BAR5)
3002                pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3003                           bei, res, prop);
3004        else if (bei == PCI_EA_BEI_ROM)
3005                pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3006                           res, prop);
3007        else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3008                pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3009                           bei - PCI_EA_BEI_VF_BAR0, res, prop);
3010        else
3011                pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3012                           bei, res, prop);
3013
3014out:
3015        return offset + ent_size;
3016}
3017
3018/* Enhanced Allocation Initialization */
3019void pci_ea_init(struct pci_dev *dev)
3020{
3021        int ea;
3022        u8 num_ent;
3023        int offset;
3024        int i;
3025
3026        /* find PCI EA capability in list */
3027        ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3028        if (!ea)
3029                return;
3030
3031        /* determine the number of entries */
3032        pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3033                                        &num_ent);
3034        num_ent &= PCI_EA_NUM_ENT_MASK;
3035
3036        offset = ea + PCI_EA_FIRST_ENT;
3037
3038        /* Skip DWORD 2 for type 1 functions */
3039        if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3040                offset += 4;
3041
3042        /* parse each EA entry */
3043        for (i = 0; i < num_ent; ++i)
3044                offset = pci_ea_read(dev, offset);
3045}
3046
3047static void pci_add_saved_cap(struct pci_dev *pci_dev,
3048        struct pci_cap_saved_state *new_cap)
3049{
3050        hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3051}
3052
3053/**
3054 * _pci_add_cap_save_buffer - allocate buffer for saving given
3055 *                            capability registers
3056 * @dev: the PCI device
3057 * @cap: the capability to allocate the buffer for
3058 * @extended: Standard or Extended capability ID
3059 * @size: requested size of the buffer
3060 */
3061static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3062                                    bool extended, unsigned int size)
3063{
3064        int pos;
3065        struct pci_cap_saved_state *save_state;
3066
3067        if (extended)
3068                pos = pci_find_ext_capability(dev, cap);
3069        else
3070                pos = pci_find_capability(dev, cap);
3071
3072        if (!pos)
3073                return 0;
3074
3075        save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3076        if (!save_state)
3077                return -ENOMEM;
3078
3079        save_state->cap.cap_nr = cap;
3080        save_state->cap.cap_extended = extended;
3081        save_state->cap.size = size;
3082        pci_add_saved_cap(dev, save_state);
3083
3084        return 0;
3085}
3086
3087int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3088{
3089        return _pci_add_cap_save_buffer(dev, cap, false, size);
3090}
3091
3092int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3093{
3094        return _pci_add_cap_save_buffer(dev, cap, true, size);
3095}
3096
3097/**
3098 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3099 * @dev: the PCI device
3100 */
3101void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3102{
3103        int error;
3104
3105        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3106                                        PCI_EXP_SAVE_REGS * sizeof(u16));
3107        if (error)
3108                pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3109
3110        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3111        if (error)
3112                pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3113
3114        error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3115                                            2 * sizeof(u16));
3116        if (error)
3117                pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3118
3119        pci_allocate_vc_save_buffers(dev);
3120}
3121
3122void pci_free_cap_save_buffers(struct pci_dev *dev)
3123{
3124        struct pci_cap_saved_state *tmp;
3125        struct hlist_node *n;
3126
3127        hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3128                kfree(tmp);
3129}
3130
3131/**
3132 * pci_configure_ari - enable or disable ARI forwarding
3133 * @dev: the PCI device
3134 *
3135 * If @dev and its upstream bridge both support ARI, enable ARI in the
3136 * bridge.  Otherwise, disable ARI in the bridge.
3137 */
3138void pci_configure_ari(struct pci_dev *dev)
3139{
3140        u32 cap;
3141        struct pci_dev *bridge;
3142
3143        if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3144                return;
3145
3146        bridge = dev->bus->self;
3147        if (!bridge)
3148                return;
3149
3150        pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3151        if (!(cap & PCI_EXP_DEVCAP2_ARI))
3152                return;
3153
3154        if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3155                pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3156                                         PCI_EXP_DEVCTL2_ARI);
3157                bridge->ari_enabled = 1;
3158        } else {
3159                pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3160                                           PCI_EXP_DEVCTL2_ARI);
3161                bridge->ari_enabled = 0;
3162        }
3163}
3164
3165static int pci_acs_enable;
3166
3167/**
3168 * pci_request_acs - ask for ACS to be enabled if supported
3169 */
3170void pci_request_acs(void)
3171{
3172        pci_acs_enable = 1;
3173}
3174
3175static const char *disable_acs_redir_param;
3176
3177/**
3178 * pci_disable_acs_redir - disable ACS redirect capabilities
3179 * @dev: the PCI device
3180 *
3181 * For only devices specified in the disable_acs_redir parameter.
3182 */
3183static void pci_disable_acs_redir(struct pci_dev *dev)
3184{
3185        int ret = 0;
3186        const char *p;
3187        int pos;
3188        u16 ctrl;
3189
3190        if (!disable_acs_redir_param)
3191                return;
3192
3193        p = disable_acs_redir_param;
3194        while (*p) {
3195                ret = pci_dev_str_match(dev, p, &p);
3196                if (ret < 0) {
3197                        pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3198                                     disable_acs_redir_param);
3199
3200                        break;
3201                } else if (ret == 1) {
3202                        /* Found a match */
3203                        break;
3204                }
3205
3206                if (*p != ';' && *p != ',') {
3207                        /* End of param or invalid format */
3208                        break;
3209                }
3210                p++;
3211        }
3212
3213        if (ret != 1)
3214                return;
3215
3216        if (!pci_dev_specific_disable_acs_redir(dev))
3217                return;
3218
3219        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3220        if (!pos) {
3221                pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3222                return;
3223        }
3224
3225        pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3226
3227        /* P2P Request & Completion Redirect */
3228        ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3229
3230        pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3231
3232        pci_info(dev, "disabled ACS redirect\n");
3233}
3234
3235/**
3236 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
3237 * @dev: the PCI device
3238 */
3239static void pci_std_enable_acs(struct pci_dev *dev)
3240{
3241        int pos;
3242        u16 cap;
3243        u16 ctrl;
3244
3245        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3246        if (!pos)
3247                return;
3248
3249        pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3250        pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3251
3252        /* Source Validation */
3253        ctrl |= (cap & PCI_ACS_SV);
3254
3255        /* P2P Request Redirect */
3256        ctrl |= (cap & PCI_ACS_RR);
3257
3258        /* P2P Completion Redirect */
3259        ctrl |= (cap & PCI_ACS_CR);
3260
3261        /* Upstream Forwarding */
3262        ctrl |= (cap & PCI_ACS_UF);
3263
3264        pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3265}
3266
3267/**
3268 * pci_enable_acs - enable ACS if hardware support it
3269 * @dev: the PCI device
3270 */
3271void pci_enable_acs(struct pci_dev *dev)
3272{
3273        if (!pci_acs_enable)
3274                goto disable_acs_redir;
3275
3276        if (!pci_dev_specific_enable_acs(dev))
3277                goto disable_acs_redir;
3278
3279        pci_std_enable_acs(dev);
3280
3281disable_acs_redir:
3282        /*
3283         * Note: pci_disable_acs_redir() must be called even if ACS was not
3284         * enabled by the kernel because it may have been enabled by
3285         * platform firmware.  So if we are told to disable it, we should
3286         * always disable it after setting the kernel's default
3287         * preferences.
3288         */
3289        pci_disable_acs_redir(dev);
3290}
3291
3292static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3293{
3294        int pos;
3295        u16 cap, ctrl;
3296
3297        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3298        if (!pos)
3299                return false;
3300
3301        /*
3302         * Except for egress control, capabilities are either required
3303         * or only required if controllable.  Features missing from the
3304         * capability field can therefore be assumed as hard-wired enabled.
3305         */
3306        pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3307        acs_flags &= (cap | PCI_ACS_EC);
3308
3309        pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3310        return (ctrl & acs_flags) == acs_flags;
3311}
3312
3313/**
3314 * pci_acs_enabled - test ACS against required flags for a given device
3315 * @pdev: device to test
3316 * @acs_flags: required PCI ACS flags
3317 *
3318 * Return true if the device supports the provided flags.  Automatically
3319 * filters out flags that are not implemented on multifunction devices.
3320 *
3321 * Note that this interface checks the effective ACS capabilities of the
3322 * device rather than the actual capabilities.  For instance, most single
3323 * function endpoints are not required to support ACS because they have no
3324 * opportunity for peer-to-peer access.  We therefore return 'true'
3325 * regardless of whether the device exposes an ACS capability.  This makes
3326 * it much easier for callers of this function to ignore the actual type
3327 * or topology of the device when testing ACS support.
3328 */
3329bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3330{
3331        int ret;
3332
3333        ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3334        if (ret >= 0)
3335                return ret > 0;
3336
3337        /*
3338         * Conventional PCI and PCI-X devices never support ACS, either
3339         * effectively or actually.  The shared bus topology implies that
3340         * any device on the bus can receive or snoop DMA.
3341         */
3342        if (!pci_is_pcie(pdev))
3343                return false;
3344
3345        switch (pci_pcie_type(pdev)) {
3346        /*
3347         * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3348         * but since their primary interface is PCI/X, we conservatively
3349         * handle them as we would a non-PCIe device.
3350         */
3351        case PCI_EXP_TYPE_PCIE_BRIDGE:
3352        /*
3353         * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3354         * applicable... must never implement an ACS Extended Capability...".
3355         * This seems arbitrary, but we take a conservative interpretation
3356         * of this statement.
3357         */
3358        case PCI_EXP_TYPE_PCI_BRIDGE:
3359        case PCI_EXP_TYPE_RC_EC:
3360                return false;
3361        /*
3362         * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3363         * implement ACS in order to indicate their peer-to-peer capabilities,
3364         * regardless of whether they are single- or multi-function devices.
3365         */
3366        case PCI_EXP_TYPE_DOWNSTREAM:
3367        case PCI_EXP_TYPE_ROOT_PORT:
3368                return pci_acs_flags_enabled(pdev, acs_flags);
3369        /*
3370         * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3371         * implemented by the remaining PCIe types to indicate peer-to-peer
3372         * capabilities, but only when they are part of a multifunction
3373         * device.  The footnote for section 6.12 indicates the specific
3374         * PCIe types included here.
3375         */
3376        case PCI_EXP_TYPE_ENDPOINT:
3377        case PCI_EXP_TYPE_UPSTREAM:
3378        case PCI_EXP_TYPE_LEG_END:
3379        case PCI_EXP_TYPE_RC_END:
3380                if (!pdev->multifunction)
3381                        break;
3382
3383                return pci_acs_flags_enabled(pdev, acs_flags);
3384        }
3385
3386        /*
3387         * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3388         * to single function devices with the exception of downstream ports.
3389         */
3390        return true;
3391}
3392
3393/**
3394 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3395 * @start: starting downstream device
3396 * @end: ending upstream device or NULL to search to the root bus
3397 * @acs_flags: required flags
3398 *
3399 * Walk up a device tree from start to end testing PCI ACS support.  If
3400 * any step along the way does not support the required flags, return false.
3401 */
3402bool pci_acs_path_enabled(struct pci_dev *start,
3403                          struct pci_dev *end, u16 acs_flags)
3404{
3405        struct pci_dev *pdev, *parent = start;
3406
3407        do {
3408                pdev = parent;
3409
3410                if (!pci_acs_enabled(pdev, acs_flags))
3411                        return false;
3412
3413                if (pci_is_root_bus(pdev->bus))
3414                        return (end == NULL);
3415
3416                parent = pdev->bus->self;
3417        } while (pdev != end);
3418
3419        return true;
3420}
3421
3422/**
3423 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3424 * @pdev: PCI device
3425 * @bar: BAR to find
3426 *
3427 * Helper to find the position of the ctrl register for a BAR.
3428 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3429 * Returns -ENOENT if no ctrl register for the BAR could be found.
3430 */
3431static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3432{
3433        unsigned int pos, nbars, i;
3434        u32 ctrl;
3435
3436        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3437        if (!pos)
3438                return -ENOTSUPP;
3439
3440        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3441        nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3442                    PCI_REBAR_CTRL_NBAR_SHIFT;
3443
3444        for (i = 0; i < nbars; i++, pos += 8) {
3445                int bar_idx;
3446
3447                pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3448                bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3449                if (bar_idx == bar)
3450                        return pos;
3451        }
3452
3453        return -ENOENT;
3454}
3455
3456/**
3457 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3458 * @pdev: PCI device
3459 * @bar: BAR to query
3460 *
3461 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3462 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3463 */
3464u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3465{
3466        int pos;
3467        u32 cap;
3468
3469        pos = pci_rebar_find_pos(pdev, bar);
3470        if (pos < 0)
3471                return 0;
3472
3473        pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3474        return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3475}
3476
3477/**
3478 * pci_rebar_get_current_size - get the current size of a BAR
3479 * @pdev: PCI device
3480 * @bar: BAR to set size to
3481 *
3482 * Read the size of a BAR from the resizable BAR config.
3483 * Returns size if found or negative error code.
3484 */
3485int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3486{
3487        int pos;
3488        u32 ctrl;
3489
3490        pos = pci_rebar_find_pos(pdev, bar);
3491        if (pos < 0)
3492                return pos;
3493
3494        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3495        return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3496}
3497
3498/**
3499 * pci_rebar_set_size - set a new size for a BAR
3500 * @pdev: PCI device
3501 * @bar: BAR to set size to
3502 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3503 *
3504 * Set the new size of a BAR as defined in the spec.
3505 * Returns zero if resizing was successful, error code otherwise.
3506 */
3507int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3508{
3509        int pos;
3510        u32 ctrl;
3511
3512        pos = pci_rebar_find_pos(pdev, bar);
3513        if (pos < 0)
3514                return pos;
3515
3516        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3517        ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3518        ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3519        pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3520        return 0;
3521}
3522
3523/**
3524 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3525 * @dev: the PCI device
3526 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3527 *      PCI_EXP_DEVCAP2_ATOMIC_COMP32
3528 *      PCI_EXP_DEVCAP2_ATOMIC_COMP64
3529 *      PCI_EXP_DEVCAP2_ATOMIC_COMP128
3530 *
3531 * Return 0 if all upstream bridges support AtomicOp routing, egress
3532 * blocking is disabled on all upstream ports, and the root port supports
3533 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3534 * AtomicOp completion), or negative otherwise.
3535 */
3536int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3537{
3538        struct pci_bus *bus = dev->bus;
3539        struct pci_dev *bridge;
3540        u32 cap, ctl2;
3541
3542        if (!pci_is_pcie(dev))
3543                return -EINVAL;
3544
3545        /*
3546         * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3547         * AtomicOp requesters.  For now, we only support endpoints as
3548         * requesters and root ports as completers.  No endpoints as
3549         * completers, and no peer-to-peer.
3550         */
3551
3552        switch (pci_pcie_type(dev)) {
3553        case PCI_EXP_TYPE_ENDPOINT:
3554        case PCI_EXP_TYPE_LEG_END:
3555        case PCI_EXP_TYPE_RC_END:
3556                break;
3557        default:
3558                return -EINVAL;
3559        }
3560
3561        while (bus->parent) {
3562                bridge = bus->self;
3563
3564                pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3565
3566                switch (pci_pcie_type(bridge)) {
3567                /* Ensure switch ports support AtomicOp routing */
3568                case PCI_EXP_TYPE_UPSTREAM:
3569                case PCI_EXP_TYPE_DOWNSTREAM:
3570                        if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3571                                return -EINVAL;
3572                        break;
3573
3574                /* Ensure root port supports all the sizes we care about */
3575                case PCI_EXP_TYPE_ROOT_PORT:
3576                        if ((cap & cap_mask) != cap_mask)
3577                                return -EINVAL;
3578                        break;
3579                }
3580
3581                /* Ensure upstream ports don't block AtomicOps on egress */
3582                if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3583                        pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3584                                                   &ctl2);
3585                        if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3586                                return -EINVAL;
3587                }
3588
3589                bus = bus->parent;
3590        }
3591
3592        pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3593                                 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3594        return 0;
3595}
3596EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3597
3598/**
3599 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3600 * @dev: the PCI device
3601 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3602 *
3603 * Perform INTx swizzling for a device behind one level of bridge.  This is
3604 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3605 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3606 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3607 * the PCI Express Base Specification, Revision 2.1)
3608 */
3609u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3610{
3611        int slot;
3612
3613        if (pci_ari_enabled(dev->bus))
3614                slot = 0;
3615        else
3616                slot = PCI_SLOT(dev->devfn);
3617
3618        return (((pin - 1) + slot) % 4) + 1;
3619}
3620
3621int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3622{
3623        u8 pin;
3624
3625        pin = dev->pin;
3626        if (!pin)
3627                return -1;
3628
3629        while (!pci_is_root_bus(dev->bus)) {
3630                pin = pci_swizzle_interrupt_pin(dev, pin);
3631                dev = dev->bus->self;
3632        }
3633        *bridge = dev;
3634        return pin;
3635}
3636
3637/**
3638 * pci_common_swizzle - swizzle INTx all the way to root bridge
3639 * @dev: the PCI device
3640 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3641 *
3642 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3643 * bridges all the way up to a PCI root bus.
3644 */
3645u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3646{
3647        u8 pin = *pinp;
3648
3649        while (!pci_is_root_bus(dev->bus)) {
3650                pin = pci_swizzle_interrupt_pin(dev, pin);
3651                dev = dev->bus->self;
3652        }
3653        *pinp = pin;
3654        return PCI_SLOT(dev->devfn);
3655}
3656EXPORT_SYMBOL_GPL(pci_common_swizzle);
3657
3658/**
3659 * pci_release_region - Release a PCI bar
3660 * @pdev: PCI device whose resources were previously reserved by
3661 *        pci_request_region()
3662 * @bar: BAR to release
3663 *
3664 * Releases the PCI I/O and memory resources previously reserved by a
3665 * successful call to pci_request_region().  Call this function only
3666 * after all use of the PCI regions has ceased.
3667 */
3668void pci_release_region(struct pci_dev *pdev, int bar)
3669{
3670        struct pci_devres *dr;
3671
3672        if (pci_resource_len(pdev, bar) == 0)
3673                return;
3674        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3675                release_region(pci_resource_start(pdev, bar),
3676                                pci_resource_len(pdev, bar));
3677        else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3678                release_mem_region(pci_resource_start(pdev, bar),
3679                                pci_resource_len(pdev, bar));
3680
3681        dr = find_pci_dr(pdev);
3682        if (dr)
3683                dr->region_mask &= ~(1 << bar);
3684}
3685EXPORT_SYMBOL(pci_release_region);
3686
3687/**
3688 * __pci_request_region - Reserved PCI I/O and memory resource
3689 * @pdev: PCI device whose resources are to be reserved
3690 * @bar: BAR to be reserved
3691 * @res_name: Name to be associated with resource.
3692 * @exclusive: whether the region access is exclusive or not
3693 *
3694 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3695 * being reserved by owner @res_name.  Do not access any
3696 * address inside the PCI regions unless this call returns
3697 * successfully.
3698 *
3699 * If @exclusive is set, then the region is marked so that userspace
3700 * is explicitly not allowed to map the resource via /dev/mem or
3701 * sysfs MMIO access.
3702 *
3703 * Returns 0 on success, or %EBUSY on error.  A warning
3704 * message is also printed on failure.
3705 */
3706static int __pci_request_region(struct pci_dev *pdev, int bar,
3707                                const char *res_name, int exclusive)
3708{
3709        struct pci_devres *dr;
3710
3711        if (pci_resource_len(pdev, bar) == 0)
3712                return 0;
3713
3714        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3715                if (!request_region(pci_resource_start(pdev, bar),
3716                            pci_resource_len(pdev, bar), res_name))
3717                        goto err_out;
3718        } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3719                if (!__request_mem_region(pci_resource_start(pdev, bar),
3720                                        pci_resource_len(pdev, bar), res_name,
3721                                        exclusive))
3722                        goto err_out;
3723        }
3724
3725        dr = find_pci_dr(pdev);
3726        if (dr)
3727                dr->region_mask |= 1 << bar;
3728
3729        return 0;
3730
3731err_out:
3732        pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3733                 &pdev->resource[bar]);
3734        return -EBUSY;
3735}
3736
3737/**
3738 * pci_request_region - Reserve PCI I/O and memory resource
3739 * @pdev: PCI device whose resources are to be reserved
3740 * @bar: BAR to be reserved
3741 * @res_name: Name to be associated with resource
3742 *
3743 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3744 * being reserved by owner @res_name.  Do not access any
3745 * address inside the PCI regions unless this call returns
3746 * successfully.
3747 *
3748 * Returns 0 on success, or %EBUSY on error.  A warning
3749 * message is also printed on failure.
3750 */
3751int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3752{
3753        return __pci_request_region(pdev, bar, res_name, 0);
3754}
3755EXPORT_SYMBOL(pci_request_region);
3756
3757/**
3758 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3759 * @pdev: PCI device whose resources were previously reserved
3760 * @bars: Bitmask of BARs to be released
3761 *
3762 * Release selected PCI I/O and memory resources previously reserved.
3763 * Call this function only after all use of the PCI regions has ceased.
3764 */
3765void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3766{
3767        int i;
3768
3769        for (i = 0; i < 6; i++)
3770                if (bars & (1 << i))
3771                        pci_release_region(pdev, i);
3772}
3773EXPORT_SYMBOL(pci_release_selected_regions);
3774
3775static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3776                                          const char *res_name, int excl)
3777{
3778        int i;
3779
3780        for (i = 0; i < 6; i++)
3781                if (bars & (1 << i))
3782                        if (__pci_request_region(pdev, i, res_name, excl))
3783                                goto err_out;
3784        return 0;
3785
3786err_out:
3787        while (--i >= 0)
3788                if (bars & (1 << i))
3789                        pci_release_region(pdev, i);
3790
3791        return -EBUSY;
3792}
3793
3794
3795/**
3796 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3797 * @pdev: PCI device whose resources are to be reserved
3798 * @bars: Bitmask of BARs to be requested
3799 * @res_name: Name to be associated with resource
3800 */
3801int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3802                                 const char *res_name)
3803{
3804        return __pci_request_selected_regions(pdev, bars, res_name, 0);
3805}
3806EXPORT_SYMBOL(pci_request_selected_regions);
3807
3808int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3809                                           const char *res_name)
3810{
3811        return __pci_request_selected_regions(pdev, bars, res_name,
3812                        IORESOURCE_EXCLUSIVE);
3813}
3814EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3815
3816/**
3817 * pci_release_regions - Release reserved PCI I/O and memory resources
3818 * @pdev: PCI device whose resources were previously reserved by
3819 *        pci_request_regions()
3820 *
3821 * Releases all PCI I/O and memory resources previously reserved by a
3822 * successful call to pci_request_regions().  Call this function only
3823 * after all use of the PCI regions has ceased.
3824 */
3825
3826void pci_release_regions(struct pci_dev *pdev)
3827{
3828        pci_release_selected_regions(pdev, (1 << 6) - 1);
3829}
3830EXPORT_SYMBOL(pci_release_regions);
3831
3832/**
3833 * pci_request_regions - Reserve PCI I/O and memory resources
3834 * @pdev: PCI device whose resources are to be reserved
3835 * @res_name: Name to be associated with resource.
3836 *
3837 * Mark all PCI regions associated with PCI device @pdev as
3838 * being reserved by owner @res_name.  Do not access any
3839 * address inside the PCI regions unless this call returns
3840 * successfully.
3841 *
3842 * Returns 0 on success, or %EBUSY on error.  A warning
3843 * message is also printed on failure.
3844 */
3845int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3846{
3847        return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3848}
3849EXPORT_SYMBOL(pci_request_regions);
3850
3851/**
3852 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3853 * @pdev: PCI device whose resources are to be reserved
3854 * @res_name: Name to be associated with resource.
3855 *
3856 * Mark all PCI regions associated with PCI device @pdev as being reserved
3857 * by owner @res_name.  Do not access any address inside the PCI regions
3858 * unless this call returns successfully.
3859 *
3860 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3861 * and the sysfs MMIO access will not be allowed.
3862 *
3863 * Returns 0 on success, or %EBUSY on error.  A warning message is also
3864 * printed on failure.
3865 */
3866int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3867{
3868        return pci_request_selected_regions_exclusive(pdev,
3869                                        ((1 << 6) - 1), res_name);
3870}
3871EXPORT_SYMBOL(pci_request_regions_exclusive);
3872
3873/*
3874 * Record the PCI IO range (expressed as CPU physical address + size).
3875 * Return a negative value if an error has occurred, zero otherwise
3876 */
3877int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3878                        resource_size_t size)
3879{
3880        int ret = 0;
3881#ifdef PCI_IOBASE
3882        struct logic_pio_hwaddr *range;
3883
3884        if (!size || addr + size < addr)
3885                return -EINVAL;
3886
3887        range = kzalloc(sizeof(*range), GFP_ATOMIC);
3888        if (!range)
3889                return -ENOMEM;
3890
3891        range->fwnode = fwnode;
3892        range->size = size;
3893        range->hw_start = addr;
3894        range->flags = LOGIC_PIO_CPU_MMIO;
3895
3896        ret = logic_pio_register_range(range);
3897        if (ret)
3898                kfree(range);
3899#endif
3900
3901        return ret;
3902}
3903
3904phys_addr_t pci_pio_to_address(unsigned long pio)
3905{
3906        phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3907
3908#ifdef PCI_IOBASE
3909        if (pio >= MMIO_UPPER_LIMIT)
3910                return address;
3911
3912        address = logic_pio_to_hwaddr(pio);
3913#endif
3914
3915        return address;
3916}
3917
3918unsigned long __weak pci_address_to_pio(phys_addr_t address)
3919{
3920#ifdef PCI_IOBASE
3921        return logic_pio_trans_cpuaddr(address);
3922#else
3923        if (address > IO_SPACE_LIMIT)
3924                return (unsigned long)-1;
3925
3926        return (unsigned long) address;
3927#endif
3928}
3929
3930/**
3931 * pci_remap_iospace - Remap the memory mapped I/O space
3932 * @res: Resource describing the I/O space
3933 * @phys_addr: physical address of range to be mapped
3934 *
3935 * Remap the memory mapped I/O space described by the @res and the CPU
3936 * physical address @phys_addr into virtual address space.  Only
3937 * architectures that have memory mapped IO functions defined (and the
3938 * PCI_IOBASE value defined) should call this function.
3939 */
3940int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3941{
3942#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3943        unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3944
3945        if (!(res->flags & IORESOURCE_IO))
3946                return -EINVAL;
3947
3948        if (res->end > IO_SPACE_LIMIT)
3949                return -EINVAL;
3950
3951        return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3952                                  pgprot_device(PAGE_KERNEL));
3953#else
3954        /*
3955         * This architecture does not have memory mapped I/O space,
3956         * so this function should never be called
3957         */
3958        WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3959        return -ENODEV;
3960#endif
3961}
3962EXPORT_SYMBOL(pci_remap_iospace);
3963
3964/**
3965 * pci_unmap_iospace - Unmap the memory mapped I/O space
3966 * @res: resource to be unmapped
3967 *
3968 * Unmap the CPU virtual address @res from virtual address space.  Only
3969 * architectures that have memory mapped IO functions defined (and the
3970 * PCI_IOBASE value defined) should call this function.
3971 */
3972void pci_unmap_iospace(struct resource *res)
3973{
3974#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3975        unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3976
3977        unmap_kernel_range(vaddr, resource_size(res));
3978#endif
3979}
3980EXPORT_SYMBOL(pci_unmap_iospace);
3981
3982static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
3983{
3984        struct resource **res = ptr;
3985
3986        pci_unmap_iospace(*res);
3987}
3988
3989/**
3990 * devm_pci_remap_iospace - Managed pci_remap_iospace()
3991 * @dev: Generic device to remap IO address for
3992 * @res: Resource describing the I/O space
3993 * @phys_addr: physical address of range to be mapped
3994 *
3995 * Managed pci_remap_iospace().  Map is automatically unmapped on driver
3996 * detach.
3997 */
3998int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
3999                           phys_addr_t phys_addr)
4000{
4001        const struct resource **ptr;
4002        int error;
4003
4004        ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4005        if (!ptr)
4006                return -ENOMEM;
4007
4008        error = pci_remap_iospace(res, phys_addr);
4009        if (error) {
4010                devres_free(ptr);
4011        } else  {
4012                *ptr = res;
4013                devres_add(dev, ptr);
4014        }
4015
4016        return error;
4017}
4018EXPORT_SYMBOL(devm_pci_remap_iospace);
4019
4020/**
4021 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4022 * @dev: Generic device to remap IO address for
4023 * @offset: Resource address to map
4024 * @size: Size of map
4025 *
4026 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4027 * detach.
4028 */
4029void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4030                                      resource_size_t offset,
4031                                      resource_size_t size)
4032{
4033        void __iomem **ptr, *addr;
4034
4035        ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4036        if (!ptr)
4037                return NULL;
4038
4039        addr = pci_remap_cfgspace(offset, size);
4040        if (addr) {
4041                *ptr = addr;
4042                devres_add(dev, ptr);
4043        } else
4044                devres_free(ptr);
4045
4046        return addr;
4047}
4048EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4049
4050/**
4051 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4052 * @dev: generic device to handle the resource for
4053 * @res: configuration space resource to be handled
4054 *
4055 * Checks that a resource is a valid memory region, requests the memory
4056 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4057 * proper PCI configuration space memory attributes are guaranteed.
4058 *
4059 * All operations are managed and will be undone on driver detach.
4060 *
4061 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4062 * on failure. Usage example::
4063 *
4064 *      res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4065 *      base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4066 *      if (IS_ERR(base))
4067 *              return PTR_ERR(base);
4068 */
4069void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4070                                          struct resource *res)
4071{
4072        resource_size_t size;
4073        const char *name;
4074        void __iomem *dest_ptr;
4075
4076        BUG_ON(!dev);
4077
4078        if (!res || resource_type(res) != IORESOURCE_MEM) {
4079                dev_err(dev, "invalid resource\n");
4080                return IOMEM_ERR_PTR(-EINVAL);
4081        }
4082
4083        size = resource_size(res);
4084        name = res->name ?: dev_name(dev);
4085
4086        if (!devm_request_mem_region(dev, res->start, size, name)) {
4087                dev_err(dev, "can't request region for resource %pR\n", res);
4088                return IOMEM_ERR_PTR(-EBUSY);
4089        }
4090
4091        dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4092        if (!dest_ptr) {
4093                dev_err(dev, "ioremap failed for resource %pR\n", res);
4094                devm_release_mem_region(dev, res->start, size);
4095                dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4096        }
4097
4098        return dest_ptr;
4099}
4100EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4101
4102static void __pci_set_master(struct pci_dev *dev, bool enable)
4103{
4104        u16 old_cmd, cmd;
4105
4106        pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4107        if (enable)
4108                cmd = old_cmd | PCI_COMMAND_MASTER;
4109        else
4110                cmd = old_cmd & ~PCI_COMMAND_MASTER;
4111        if (cmd != old_cmd) {
4112                pci_dbg(dev, "%s bus mastering\n",
4113                        enable ? "enabling" : "disabling");
4114                pci_write_config_word(dev, PCI_COMMAND, cmd);
4115        }
4116        dev->is_busmaster = enable;
4117}
4118
4119/**
4120 * pcibios_setup - process "pci=" kernel boot arguments
4121 * @str: string used to pass in "pci=" kernel boot arguments
4122 *
4123 * Process kernel boot arguments.  This is the default implementation.
4124 * Architecture specific implementations can override this as necessary.
4125 */
4126char * __weak __init pcibios_setup(char *str)
4127{
4128        return str;
4129}
4130
4131/**
4132 * pcibios_set_master - enable PCI bus-mastering for device dev
4133 * @dev: the PCI device to enable
4134 *
4135 * Enables PCI bus-mastering for the device.  This is the default
4136 * implementation.  Architecture specific implementations can override
4137 * this if necessary.
4138 */
4139void __weak pcibios_set_master(struct pci_dev *dev)
4140{
4141        u8 lat;
4142
4143        /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4144        if (pci_is_pcie(dev))
4145                return;
4146
4147        pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4148        if (lat < 16)
4149                lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4150        else if (lat > pcibios_max_latency)
4151                lat = pcibios_max_latency;
4152        else
4153                return;
4154
4155        pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4156}
4157
4158/**
4159 * pci_set_master - enables bus-mastering for device dev
4160 * @dev: the PCI device to enable
4161 *
4162 * Enables bus-mastering on the device and calls pcibios_set_master()
4163 * to do the needed arch specific settings.
4164 */
4165void pci_set_master(struct pci_dev *dev)
4166{
4167        __pci_set_master(dev, true);
4168        pcibios_set_master(dev);
4169}
4170EXPORT_SYMBOL(pci_set_master);
4171
4172/**
4173 * pci_clear_master - disables bus-mastering for device dev
4174 * @dev: the PCI device to disable
4175 */
4176void pci_clear_master(struct pci_dev *dev)
4177{
4178        __pci_set_master(dev, false);
4179}
4180EXPORT_SYMBOL(pci_clear_master);
4181
4182/**
4183 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4184 * @dev: the PCI device for which MWI is to be enabled
4185 *
4186 * Helper function for pci_set_mwi.
4187 * Originally copied from drivers/net/acenic.c.
4188 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4189 *
4190 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4191 */
4192int pci_set_cacheline_size(struct pci_dev *dev)
4193{
4194        u8 cacheline_size;
4195
4196        if (!pci_cache_line_size)
4197                return -EINVAL;
4198
4199        /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4200           equal to or multiple of the right value. */
4201        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4202        if (cacheline_size >= pci_cache_line_size &&
4203            (cacheline_size % pci_cache_line_size) == 0)
4204                return 0;
4205
4206        /* Write the correct value. */
4207        pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4208        /* Read it back. */
4209        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4210        if (cacheline_size == pci_cache_line_size)
4211                return 0;
4212
4213        pci_info(dev, "cache line size of %d is not supported\n",
4214                   pci_cache_line_size << 2);
4215
4216        return -EINVAL;
4217}
4218EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4219
4220/**
4221 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4222 * @dev: the PCI device for which MWI is enabled
4223 *
4224 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4225 *
4226 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4227 */
4228int pci_set_mwi(struct pci_dev *dev)
4229{
4230#ifdef PCI_DISABLE_MWI
4231        return 0;
4232#else
4233        int rc;
4234        u16 cmd;
4235
4236        rc = pci_set_cacheline_size(dev);
4237        if (rc)
4238                return rc;
4239
4240        pci_read_config_word(dev, PCI_COMMAND, &cmd);
4241        if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4242                pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4243                cmd |= PCI_COMMAND_INVALIDATE;
4244                pci_write_config_word(dev, PCI_COMMAND, cmd);
4245        }
4246        return 0;
4247#endif
4248}
4249EXPORT_SYMBOL(pci_set_mwi);
4250
4251/**
4252 * pcim_set_mwi - a device-managed pci_set_mwi()
4253 * @dev: the PCI device for which MWI is enabled
4254 *
4255 * Managed pci_set_mwi().
4256 *
4257 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4258 */
4259int pcim_set_mwi(struct pci_dev *dev)
4260{
4261        struct pci_devres *dr;
4262
4263        dr = find_pci_dr(dev);
4264        if (!dr)
4265                return -ENOMEM;
4266
4267        dr->mwi = 1;
4268        return pci_set_mwi(dev);
4269}
4270EXPORT_SYMBOL(pcim_set_mwi);
4271
4272/**
4273 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4274 * @dev: the PCI device for which MWI is enabled
4275 *
4276 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4277 * Callers are not required to check the return value.
4278 *
4279 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4280 */
4281int pci_try_set_mwi(struct pci_dev *dev)
4282{
4283#ifdef PCI_DISABLE_MWI
4284        return 0;
4285#else
4286        return pci_set_mwi(dev);
4287#endif
4288}
4289EXPORT_SYMBOL(pci_try_set_mwi);
4290
4291/**
4292 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4293 * @dev: the PCI device to disable
4294 *
4295 * Disables PCI Memory-Write-Invalidate transaction on the device
4296 */
4297void pci_clear_mwi(struct pci_dev *dev)
4298{
4299#ifndef PCI_DISABLE_MWI
4300        u16 cmd;
4301
4302        pci_read_config_word(dev, PCI_COMMAND, &cmd);
4303        if (cmd & PCI_COMMAND_INVALIDATE) {
4304                cmd &= ~PCI_COMMAND_INVALIDATE;
4305                pci_write_config_word(dev, PCI_COMMAND, cmd);
4306        }
4307#endif
4308}
4309EXPORT_SYMBOL(pci_clear_mwi);
4310
4311/**
4312 * pci_intx - enables/disables PCI INTx for device dev
4313 * @pdev: the PCI device to operate on
4314 * @enable: boolean: whether to enable or disable PCI INTx
4315 *
4316 * Enables/disables PCI INTx for device @pdev
4317 */
4318void pci_intx(struct pci_dev *pdev, int enable)
4319{
4320        u16 pci_command, new;
4321
4322        pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4323
4324        if (enable)
4325                new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4326        else
4327                new = pci_command | PCI_COMMAND_INTX_DISABLE;
4328
4329        if (new != pci_command) {
4330                struct pci_devres *dr;
4331
4332                pci_write_config_word(pdev, PCI_COMMAND, new);
4333
4334                dr = find_pci_dr(pdev);
4335                if (dr && !dr->restore_intx) {
4336                        dr->restore_intx = 1;
4337                        dr->orig_intx = !enable;
4338                }
4339        }
4340}
4341EXPORT_SYMBOL_GPL(pci_intx);
4342
4343static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4344{
4345        struct pci_bus *bus = dev->bus;
4346        bool mask_updated = true;
4347        u32 cmd_status_dword;
4348        u16 origcmd, newcmd;
4349        unsigned long flags;
4350        bool irq_pending;
4351
4352        /*
4353         * We do a single dword read to retrieve both command and status.
4354         * Document assumptions that make this possible.
4355         */
4356        BUILD_BUG_ON(PCI_COMMAND % 4);
4357        BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4358
4359        raw_spin_lock_irqsave(&pci_lock, flags);
4360
4361        bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4362
4363        irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4364
4365        /*
4366         * Check interrupt status register to see whether our device
4367         * triggered the interrupt (when masking) or the next IRQ is
4368         * already pending (when unmasking).
4369         */
4370        if (mask != irq_pending) {
4371                mask_updated = false;
4372                goto done;
4373        }
4374
4375        origcmd = cmd_status_dword;
4376        newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4377        if (mask)
4378                newcmd |= PCI_COMMAND_INTX_DISABLE;
4379        if (newcmd != origcmd)
4380                bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4381
4382done:
4383        raw_spin_unlock_irqrestore(&pci_lock, flags);
4384
4385        return mask_updated;
4386}
4387
4388/**
4389 * pci_check_and_mask_intx - mask INTx on pending interrupt
4390 * @dev: the PCI device to operate on
4391 *
4392 * Check if the device dev has its INTx line asserted, mask it and return
4393 * true in that case. False is returned if no interrupt was pending.
4394 */
4395bool pci_check_and_mask_intx(struct pci_dev *dev)
4396{
4397        return pci_check_and_set_intx_mask(dev, true);
4398}
4399EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4400
4401/**
4402 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4403 * @dev: the PCI device to operate on
4404 *
4405 * Check if the device dev has its INTx line asserted, unmask it if not and
4406 * return true. False is returned and the mask remains active if there was
4407 * still an interrupt pending.
4408 */
4409bool pci_check_and_unmask_intx(struct pci_dev *dev)
4410{
4411        return pci_check_and_set_intx_mask(dev, false);
4412}
4413EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4414
4415/**
4416 * pci_wait_for_pending_transaction - wait for pending transaction
4417 * @dev: the PCI device to operate on
4418 *
4419 * Return 0 if transaction is pending 1 otherwise.
4420 */
4421int pci_wait_for_pending_transaction(struct pci_dev *dev)
4422{
4423        if (!pci_is_pcie(dev))
4424                return 1;
4425
4426        return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4427                                    PCI_EXP_DEVSTA_TRPND);
4428}
4429EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4430
4431static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
4432{
4433        int delay = 1;
4434        u32 id;
4435
4436        /*
4437         * After reset, the device should not silently discard config
4438         * requests, but it may still indicate that it needs more time by
4439         * responding to them with CRS completions.  The Root Port will
4440         * generally synthesize ~0 data to complete the read (except when
4441         * CRS SV is enabled and the read was for the Vendor ID; in that
4442         * case it synthesizes 0x0001 data).
4443         *
4444         * Wait for the device to return a non-CRS completion.  Read the
4445         * Command register instead of Vendor ID so we don't have to
4446         * contend with the CRS SV value.
4447         */
4448        pci_read_config_dword(dev, PCI_COMMAND, &id);
4449        while (id == ~0) {
4450                if (delay > timeout) {
4451                        pci_warn(dev, "not ready %dms after %s; giving up\n",
4452                                 delay - 1, reset_type);
4453                        return -ENOTTY;
4454                }
4455
4456                if (delay > 1000)
4457                        pci_info(dev, "not ready %dms after %s; waiting\n",
4458                                 delay - 1, reset_type);
4459
4460                msleep(delay);
4461                delay *= 2;
4462                pci_read_config_dword(dev, PCI_COMMAND, &id);
4463        }
4464
4465        if (delay > 1000)
4466                pci_info(dev, "ready %dms after %s\n", delay - 1,
4467                         reset_type);
4468
4469        return 0;
4470}
4471
4472/**
4473 * pcie_has_flr - check if a device supports function level resets
4474 * @dev: device to check
4475 *
4476 * Returns true if the device advertises support for PCIe function level
4477 * resets.
4478 */
4479bool pcie_has_flr(struct pci_dev *dev)
4480{
4481        u32 cap;
4482
4483        if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4484                return false;
4485
4486        pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4487        return cap & PCI_EXP_DEVCAP_FLR;
4488}
4489EXPORT_SYMBOL_GPL(pcie_has_flr);
4490
4491/**
4492 * pcie_flr - initiate a PCIe function level reset
4493 * @dev: device to reset
4494 *
4495 * Initiate a function level reset on @dev.  The caller should ensure the
4496 * device supports FLR before calling this function, e.g. by using the
4497 * pcie_has_flr() helper.
4498 */
4499int pcie_flr(struct pci_dev *dev)
4500{
4501        if (!pci_wait_for_pending_transaction(dev))
4502                pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4503
4504        pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4505
4506        if (dev->imm_ready)
4507                return 0;
4508
4509        /*
4510         * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4511         * 100ms, but may silently discard requests while the FLR is in
4512         * progress.  Wait 100ms before trying to access the device.
4513         */
4514        msleep(100);
4515
4516        return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4517}
4518EXPORT_SYMBOL_GPL(pcie_flr);
4519
4520static int pci_af_flr(struct pci_dev *dev, int probe)
4521{
4522        int pos;
4523        u8 cap;
4524
4525        pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4526        if (!pos)
4527                return -ENOTTY;
4528
4529        if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4530                return -ENOTTY;
4531
4532        pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4533        if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4534                return -ENOTTY;
4535
4536        if (probe)
4537                return 0;
4538
4539        /*
4540         * Wait for Transaction Pending bit to clear.  A word-aligned test
4541         * is used, so we use the control offset rather than status and shift
4542         * the test bit to match.
4543         */
4544        if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4545                                 PCI_AF_STATUS_TP << 8))
4546                pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4547
4548        pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4549
4550        if (dev->imm_ready)
4551                return 0;
4552
4553        /*
4554         * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4555         * updated 27 July 2006; a device must complete an FLR within
4556         * 100ms, but may silently discard requests while the FLR is in
4557         * progress.  Wait 100ms before trying to access the device.
4558         */
4559        msleep(100);
4560
4561        return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4562}
4563
4564/**
4565 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4566 * @dev: Device to reset.
4567 * @probe: If set, only check if the device can be reset this way.
4568 *
4569 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4570 * unset, it will be reinitialized internally when going from PCI_D3hot to
4571 * PCI_D0.  If that's the case and the device is not in a low-power state
4572 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4573 *
4574 * NOTE: This causes the caller to sleep for twice the device power transition
4575 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4576 * by default (i.e. unless the @dev's d3_delay field has a different value).
4577 * Moreover, only devices in D0 can be reset by this function.
4578 */
4579static int pci_pm_reset(struct pci_dev *dev, int probe)
4580{
4581        u16 csr;
4582
4583        if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4584                return -ENOTTY;
4585
4586        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4587        if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4588                return -ENOTTY;
4589
4590        if (probe)
4591                return 0;
4592
4593        if (dev->current_state != PCI_D0)
4594                return -EINVAL;
4595
4596        csr &= ~PCI_PM_CTRL_STATE_MASK;
4597        csr |= PCI_D3hot;
4598        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4599        pci_dev_d3_sleep(dev);
4600
4601        csr &= ~PCI_PM_CTRL_STATE_MASK;
4602        csr |= PCI_D0;
4603        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4604        pci_dev_d3_sleep(dev);
4605
4606        return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
4607}
4608/**
4609 * pcie_wait_for_link - Wait until link is active or inactive
4610 * @pdev: Bridge device
4611 * @active: waiting for active or inactive?
4612 *
4613 * Use this to wait till link becomes active or inactive.
4614 */
4615bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4616{
4617        int timeout = 1000;
4618        bool ret;
4619        u16 lnk_status;
4620
4621        /*
4622         * Some controllers might not implement link active reporting. In this
4623         * case, we wait for 1000 + 100 ms.
4624         */
4625        if (!pdev->link_active_reporting) {
4626                msleep(1100);
4627                return true;
4628        }
4629
4630        /*
4631         * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4632         * after which we should expect an link active if the reset was
4633         * successful. If so, software must wait a minimum 100ms before sending
4634         * configuration requests to devices downstream this port.
4635         *
4636         * If the link fails to activate, either the device was physically
4637         * removed or the link is permanently failed.
4638         */
4639        if (active)
4640                msleep(20);
4641        for (;;) {
4642                pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4643                ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4644                if (ret == active)
4645                        break;
4646                if (timeout <= 0)
4647                        break;
4648                msleep(10);
4649                timeout -= 10;
4650        }
4651        if (active && ret)
4652                msleep(100);
4653        else if (ret != active)
4654                pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4655                        active ? "set" : "cleared");
4656        return ret == active;
4657}
4658
4659void pci_reset_secondary_bus(struct pci_dev *dev)
4660{
4661        u16 ctrl;
4662
4663        pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4664        ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4665        pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4666
4667        /*
4668         * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4669         * this to 2ms to ensure that we meet the minimum requirement.
4670         */
4671        msleep(2);
4672
4673        ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4674        pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4675
4676        /*
4677         * Trhfa for conventional PCI is 2^25 clock cycles.
4678         * Assuming a minimum 33MHz clock this results in a 1s
4679         * delay before we can consider subordinate devices to
4680         * be re-initialized.  PCIe has some ways to shorten this,
4681         * but we don't make use of them yet.
4682         */
4683        ssleep(1);
4684}
4685
4686void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4687{
4688        pci_reset_secondary_bus(dev);
4689}
4690
4691/**
4692 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4693 * @dev: Bridge device
4694 *
4695 * Use the bridge control register to assert reset on the secondary bus.
4696 * Devices on the secondary bus are left in power-on state.
4697 */
4698int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4699{
4700        pcibios_reset_secondary_bus(dev);
4701
4702        return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4703}
4704EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4705
4706static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4707{
4708        struct pci_dev *pdev;
4709
4710        if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4711            !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4712                return -ENOTTY;
4713
4714        list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4715                if (pdev != dev)
4716                        return -ENOTTY;
4717
4718        if (probe)
4719                return 0;
4720
4721        return pci_bridge_secondary_bus_reset(dev->bus->self);
4722}
4723
4724static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4725{
4726        int rc = -ENOTTY;
4727
4728        if (!hotplug || !try_module_get(hotplug->owner))
4729                return rc;
4730
4731        if (hotplug->ops->reset_slot)
4732                rc = hotplug->ops->reset_slot(hotplug, probe);
4733
4734        module_put(hotplug->owner);
4735
4736        return rc;
4737}
4738
4739static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4740{
4741        struct pci_dev *pdev;
4742
4743        if (dev->subordinate || !dev->slot ||
4744            dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4745                return -ENOTTY;
4746
4747        list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4748                if (pdev != dev && pdev->slot == dev->slot)
4749                        return -ENOTTY;
4750
4751        return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4752}
4753
4754static void pci_dev_lock(struct pci_dev *dev)
4755{
4756        pci_cfg_access_lock(dev);
4757        /* block PM suspend, driver probe, etc. */
4758        device_lock(&dev->dev);
4759}
4760
4761/* Return 1 on successful lock, 0 on contention */
4762static int pci_dev_trylock(struct pci_dev *dev)
4763{
4764        if (pci_cfg_access_trylock(dev)) {
4765                if (device_trylock(&dev->dev))
4766                        return 1;
4767                pci_cfg_access_unlock(dev);
4768        }
4769
4770        return 0;
4771}
4772
4773static void pci_dev_unlock(struct pci_dev *dev)
4774{
4775        device_unlock(&dev->dev);
4776        pci_cfg_access_unlock(dev);
4777}
4778
4779static void pci_dev_save_and_disable(struct pci_dev *dev)
4780{
4781        const struct pci_error_handlers *err_handler =
4782                        dev->driver ? dev->driver->err_handler : NULL;
4783
4784        /*
4785         * dev->driver->err_handler->reset_prepare() is protected against
4786         * races with ->remove() by the device lock, which must be held by
4787         * the caller.
4788         */
4789        if (err_handler && err_handler->reset_prepare)
4790                err_handler->reset_prepare(dev);
4791
4792        /*
4793         * Wake-up device prior to save.  PM registers default to D0 after
4794         * reset and a simple register restore doesn't reliably return
4795         * to a non-D0 state anyway.
4796         */
4797        pci_set_power_state(dev, PCI_D0);
4798
4799        pci_save_state(dev);
4800        /*
4801         * Disable the device by clearing the Command register, except for
4802         * INTx-disable which is set.  This not only disables MMIO and I/O port
4803         * BARs, but also prevents the device from being Bus Master, preventing
4804         * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4805         * compliant devices, INTx-disable prevents legacy interrupts.
4806         */
4807        pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4808}
4809
4810static void pci_dev_restore(struct pci_dev *dev)
4811{
4812        const struct pci_error_handlers *err_handler =
4813                        dev->driver ? dev->driver->err_handler : NULL;
4814
4815        pci_restore_state(dev);
4816
4817        /*
4818         * dev->driver->err_handler->reset_done() is protected against
4819         * races with ->remove() by the device lock, which must be held by
4820         * the caller.
4821         */
4822        if (err_handler && err_handler->reset_done)
4823                err_handler->reset_done(dev);
4824}
4825
4826/**
4827 * __pci_reset_function_locked - reset a PCI device function while holding
4828 * the @dev mutex lock.
4829 * @dev: PCI device to reset
4830 *
4831 * Some devices allow an individual function to be reset without affecting
4832 * other functions in the same device.  The PCI device must be responsive
4833 * to PCI config space in order to use this function.
4834 *
4835 * The device function is presumed to be unused and the caller is holding
4836 * the device mutex lock when this function is called.
4837 *
4838 * Resetting the device will make the contents of PCI configuration space
4839 * random, so any caller of this must be prepared to reinitialise the
4840 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4841 * etc.
4842 *
4843 * Returns 0 if the device function was successfully reset or negative if the
4844 * device doesn't support resetting a single function.
4845 */
4846int __pci_reset_function_locked(struct pci_dev *dev)
4847{
4848        int rc;
4849
4850        might_sleep();
4851
4852        /*
4853         * A reset method returns -ENOTTY if it doesn't support this device
4854         * and we should try the next method.
4855         *
4856         * If it returns 0 (success), we're finished.  If it returns any
4857         * other error, we're also finished: this indicates that further
4858         * reset mechanisms might be broken on the device.
4859         */
4860        rc = pci_dev_specific_reset(dev, 0);
4861        if (rc != -ENOTTY)
4862                return rc;
4863        if (pcie_has_flr(dev)) {
4864                rc = pcie_flr(dev);
4865                if (rc != -ENOTTY)
4866                        return rc;
4867        }
4868        rc = pci_af_flr(dev, 0);
4869        if (rc != -ENOTTY)
4870                return rc;
4871        rc = pci_pm_reset(dev, 0);
4872        if (rc != -ENOTTY)
4873                return rc;
4874        rc = pci_dev_reset_slot_function(dev, 0);
4875        if (rc != -ENOTTY)
4876                return rc;
4877        return pci_parent_bus_reset(dev, 0);
4878}
4879EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4880
4881/**
4882 * pci_probe_reset_function - check whether the device can be safely reset
4883 * @dev: PCI device to reset
4884 *
4885 * Some devices allow an individual function to be reset without affecting
4886 * other functions in the same device.  The PCI device must be responsive
4887 * to PCI config space in order to use this function.
4888 *
4889 * Returns 0 if the device function can be reset or negative if the
4890 * device doesn't support resetting a single function.
4891 */
4892int pci_probe_reset_function(struct pci_dev *dev)
4893{
4894        int rc;
4895
4896        might_sleep();
4897
4898        rc = pci_dev_specific_reset(dev, 1);
4899        if (rc != -ENOTTY)
4900                return rc;
4901        if (pcie_has_flr(dev))
4902                return 0;
4903        rc = pci_af_flr(dev, 1);
4904        if (rc != -ENOTTY)
4905                return rc;
4906        rc = pci_pm_reset(dev, 1);
4907        if (rc != -ENOTTY)
4908                return rc;
4909        rc = pci_dev_reset_slot_function(dev, 1);
4910        if (rc != -ENOTTY)
4911                return rc;
4912
4913        return pci_parent_bus_reset(dev, 1);
4914}
4915
4916/**
4917 * pci_reset_function - quiesce and reset a PCI device function
4918 * @dev: PCI device to reset
4919 *
4920 * Some devices allow an individual function to be reset without affecting
4921 * other functions in the same device.  The PCI device must be responsive
4922 * to PCI config space in order to use this function.
4923 *
4924 * This function does not just reset the PCI portion of a device, but
4925 * clears all the state associated with the device.  This function differs
4926 * from __pci_reset_function_locked() in that it saves and restores device state
4927 * over the reset and takes the PCI device lock.
4928 *
4929 * Returns 0 if the device function was successfully reset or negative if the
4930 * device doesn't support resetting a single function.
4931 */
4932int pci_reset_function(struct pci_dev *dev)
4933{
4934        int rc;
4935
4936        if (!dev->reset_fn)
4937                return -ENOTTY;
4938
4939        pci_dev_lock(dev);
4940        pci_dev_save_and_disable(dev);
4941
4942        rc = __pci_reset_function_locked(dev);
4943
4944        pci_dev_restore(dev);
4945        pci_dev_unlock(dev);
4946
4947        return rc;
4948}
4949EXPORT_SYMBOL_GPL(pci_reset_function);
4950
4951/**
4952 * pci_reset_function_locked - quiesce and reset a PCI device function
4953 * @dev: PCI device to reset
4954 *
4955 * Some devices allow an individual function to be reset without affecting
4956 * other functions in the same device.  The PCI device must be responsive
4957 * to PCI config space in order to use this function.
4958 *
4959 * This function does not just reset the PCI portion of a device, but
4960 * clears all the state associated with the device.  This function differs
4961 * from __pci_reset_function_locked() in that it saves and restores device state
4962 * over the reset.  It also differs from pci_reset_function() in that it
4963 * requires the PCI device lock to be held.
4964 *
4965 * Returns 0 if the device function was successfully reset or negative if the
4966 * device doesn't support resetting a single function.
4967 */
4968int pci_reset_function_locked(struct pci_dev *dev)
4969{
4970        int rc;
4971
4972        if (!dev->reset_fn)
4973                return -ENOTTY;
4974
4975        pci_dev_save_and_disable(dev);
4976
4977        rc = __pci_reset_function_locked(dev);
4978
4979        pci_dev_restore(dev);
4980
4981        return rc;
4982}
4983EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4984
4985/**
4986 * pci_try_reset_function - quiesce and reset a PCI device function
4987 * @dev: PCI device to reset
4988 *
4989 * Same as above, except return -EAGAIN if unable to lock device.
4990 */
4991int pci_try_reset_function(struct pci_dev *dev)
4992{
4993        int rc;
4994
4995        if (!dev->reset_fn)
4996                return -ENOTTY;
4997
4998        if (!pci_dev_trylock(dev))
4999                return -EAGAIN;
5000
5001        pci_dev_save_and_disable(dev);
5002        rc = __pci_reset_function_locked(dev);
5003        pci_dev_restore(dev);
5004        pci_dev_unlock(dev);
5005
5006        return rc;
5007}
5008EXPORT_SYMBOL_GPL(pci_try_reset_function);
5009
5010/* Do any devices on or below this bus prevent a bus reset? */
5011static bool pci_bus_resetable(struct pci_bus *bus)
5012{
5013        struct pci_dev *dev;
5014
5015
5016        if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5017                return false;
5018
5019        list_for_each_entry(dev, &bus->devices, bus_list) {
5020                if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5021                    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5022                        return false;
5023        }
5024
5025        return true;
5026}
5027
5028/* Lock devices from the top of the tree down */
5029static void pci_bus_lock(struct pci_bus *bus)
5030{
5031        struct pci_dev *dev;
5032
5033        list_for_each_entry(dev, &bus->devices, bus_list) {
5034                pci_dev_lock(dev);
5035                if (dev->subordinate)
5036                        pci_bus_lock(dev->subordinate);
5037        }
5038}
5039
5040/* Unlock devices from the bottom of the tree up */
5041static void pci_bus_unlock(struct pci_bus *bus)
5042{
5043        struct pci_dev *dev;
5044
5045        list_for_each_entry(dev, &bus->devices, bus_list) {
5046                if (dev->subordinate)
5047                        pci_bus_unlock(dev->subordinate);
5048                pci_dev_unlock(dev);
5049        }
5050}
5051
5052/* Return 1 on successful lock, 0 on contention */
5053static int pci_bus_trylock(struct pci_bus *bus)
5054{
5055        struct pci_dev *dev;
5056
5057        list_for_each_entry(dev, &bus->devices, bus_list) {
5058                if (!pci_dev_trylock(dev))
5059                        goto unlock;
5060                if (dev->subordinate) {
5061                        if (!pci_bus_trylock(dev->subordinate)) {
5062                                pci_dev_unlock(dev);
5063                                goto unlock;
5064                        }
5065                }
5066        }
5067        return 1;
5068
5069unlock:
5070        list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5071                if (dev->subordinate)
5072                        pci_bus_unlock(dev->subordinate);
5073                pci_dev_unlock(dev);
5074        }
5075        return 0;
5076}
5077
5078/* Do any devices on or below this slot prevent a bus reset? */
5079static bool pci_slot_resetable(struct pci_slot *slot)
5080{
5081        struct pci_dev *dev;
5082
5083        if (slot->bus->self &&
5084            (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5085                return false;
5086
5087        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5088                if (!dev->slot || dev->slot != slot)
5089                        continue;
5090                if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5091                    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5092                        return false;
5093        }
5094
5095        return true;
5096}
5097
5098/* Lock devices from the top of the tree down */
5099static void pci_slot_lock(struct pci_slot *slot)
5100{
5101        struct pci_dev *dev;
5102
5103        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5104                if (!dev->slot || dev->slot != slot)
5105                        continue;
5106                pci_dev_lock(dev);
5107                if (dev->subordinate)
5108                        pci_bus_lock(dev->subordinate);
5109        }
5110}
5111
5112/* Unlock devices from the bottom of the tree up */
5113static void pci_slot_unlock(struct pci_slot *slot)
5114{
5115        struct pci_dev *dev;
5116
5117        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5118                if (!dev->slot || dev->slot != slot)
5119                        continue;
5120                if (dev->subordinate)
5121                        pci_bus_unlock(dev->subordinate);
5122                pci_dev_unlock(dev);
5123        }
5124}
5125
5126/* Return 1 on successful lock, 0 on contention */
5127static int pci_slot_trylock(struct pci_slot *slot)
5128{
5129        struct pci_dev *dev;
5130
5131        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5132                if (!dev->slot || dev->slot != slot)
5133                        continue;
5134                if (!pci_dev_trylock(dev))
5135                        goto unlock;
5136                if (dev->subordinate) {
5137                        if (!pci_bus_trylock(dev->subordinate)) {
5138                                pci_dev_unlock(dev);
5139                                goto unlock;
5140                        }
5141                }
5142        }
5143        return 1;
5144
5145unlock:
5146        list_for_each_entry_continue_reverse(dev,
5147                                             &slot->bus->devices, bus_list) {
5148                if (!dev->slot || dev->slot != slot)
5149                        continue;
5150                if (dev->subordinate)
5151                        pci_bus_unlock(dev->subordinate);
5152                pci_dev_unlock(dev);
5153        }
5154        return 0;
5155}
5156
5157/*
5158 * Save and disable devices from the top of the tree down while holding
5159 * the @dev mutex lock for the entire tree.
5160 */
5161static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5162{
5163        struct pci_dev *dev;
5164
5165        list_for_each_entry(dev, &bus->devices, bus_list) {
5166                pci_dev_save_and_disable(dev);
5167                if (dev->subordinate)
5168                        pci_bus_save_and_disable_locked(dev->subordinate);
5169        }
5170}
5171
5172/*
5173 * Restore devices from top of the tree down while holding @dev mutex lock
5174 * for the entire tree.  Parent bridges need to be restored before we can
5175 * get to subordinate devices.
5176 */
5177static void pci_bus_restore_locked(struct pci_bus *bus)
5178{
5179        struct pci_dev *dev;
5180
5181        list_for_each_entry(dev, &bus->devices, bus_list) {
5182                pci_dev_restore(dev);
5183                if (dev->subordinate)
5184                        pci_bus_restore_locked(dev->subordinate);
5185        }
5186}
5187
5188/*
5189 * Save and disable devices from the top of the tree down while holding
5190 * the @dev mutex lock for the entire tree.
5191 */
5192static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5193{
5194        struct pci_dev *dev;
5195
5196        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5197                if (!dev->slot || dev->slot != slot)
5198                        continue;
5199                pci_dev_save_and_disable(dev);
5200                if (dev->subordinate)
5201                        pci_bus_save_and_disable_locked(dev->subordinate);
5202        }
5203}
5204
5205/*
5206 * Restore devices from top of the tree down while holding @dev mutex lock
5207 * for the entire tree.  Parent bridges need to be restored before we can
5208 * get to subordinate devices.
5209 */
5210static void pci_slot_restore_locked(struct pci_slot *slot)
5211{
5212        struct pci_dev *dev;
5213
5214        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5215                if (!dev->slot || dev->slot != slot)
5216                        continue;
5217                pci_dev_restore(dev);
5218                if (dev->subordinate)
5219                        pci_bus_restore_locked(dev->subordinate);
5220        }
5221}
5222
5223static int pci_slot_reset(struct pci_slot *slot, int probe)
5224{
5225        int rc;
5226
5227        if (!slot || !pci_slot_resetable(slot))
5228                return -ENOTTY;
5229
5230        if (!probe)
5231                pci_slot_lock(slot);
5232
5233        might_sleep();
5234
5235        rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5236
5237        if (!probe)
5238                pci_slot_unlock(slot);
5239
5240        return rc;
5241}
5242
5243/**
5244 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5245 * @slot: PCI slot to probe
5246 *
5247 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5248 */
5249int pci_probe_reset_slot(struct pci_slot *slot)
5250{
5251        return pci_slot_reset(slot, 1);
5252}
5253EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5254
5255/**
5256 * __pci_reset_slot - Try to reset a PCI slot
5257 * @slot: PCI slot to reset
5258 *
5259 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5260 * independent of other slots.  For instance, some slots may support slot power
5261 * control.  In the case of a 1:1 bus to slot architecture, this function may
5262 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5263 * Generally a slot reset should be attempted before a bus reset.  All of the
5264 * function of the slot and any subordinate buses behind the slot are reset
5265 * through this function.  PCI config space of all devices in the slot and
5266 * behind the slot is saved before and restored after reset.
5267 *
5268 * Same as above except return -EAGAIN if the slot cannot be locked
5269 */
5270static int __pci_reset_slot(struct pci_slot *slot)
5271{
5272        int rc;
5273
5274        rc = pci_slot_reset(slot, 1);
5275        if (rc)
5276                return rc;
5277
5278        if (pci_slot_trylock(slot)) {
5279                pci_slot_save_and_disable_locked(slot);
5280                might_sleep();
5281                rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5282                pci_slot_restore_locked(slot);
5283                pci_slot_unlock(slot);
5284        } else
5285                rc = -EAGAIN;
5286
5287        return rc;
5288}
5289
5290static int pci_bus_reset(struct pci_bus *bus, int probe)
5291{
5292        int ret;
5293
5294        if (!bus->self || !pci_bus_resetable(bus))
5295                return -ENOTTY;
5296
5297        if (probe)
5298                return 0;
5299
5300        pci_bus_lock(bus);
5301
5302        might_sleep();
5303
5304        ret = pci_bridge_secondary_bus_reset(bus->self);
5305
5306        pci_bus_unlock(bus);
5307
5308        return ret;
5309}
5310
5311/**
5312 * pci_bus_error_reset - reset the bridge's subordinate bus
5313 * @bridge: The parent device that connects to the bus to reset
5314 *
5315 * This function will first try to reset the slots on this bus if the method is
5316 * available. If slot reset fails or is not available, this will fall back to a
5317 * secondary bus reset.
5318 */
5319int pci_bus_error_reset(struct pci_dev *bridge)
5320{
5321        struct pci_bus *bus = bridge->subordinate;
5322        struct pci_slot *slot;
5323
5324        if (!bus)
5325                return -ENOTTY;
5326
5327        mutex_lock(&pci_slot_mutex);
5328        if (list_empty(&bus->slots))
5329                goto bus_reset;
5330
5331        list_for_each_entry(slot, &bus->slots, list)
5332                if (pci_probe_reset_slot(slot))
5333                        goto bus_reset;
5334
5335        list_for_each_entry(slot, &bus->slots, list)
5336                if (pci_slot_reset(slot, 0))
5337                        goto bus_reset;
5338
5339        mutex_unlock(&pci_slot_mutex);
5340        return 0;
5341bus_reset:
5342        mutex_unlock(&pci_slot_mutex);
5343        return pci_bus_reset(bridge->subordinate, 0);
5344}
5345
5346/**
5347 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5348 * @bus: PCI bus to probe
5349 *
5350 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5351 */
5352int pci_probe_reset_bus(struct pci_bus *bus)
5353{
5354        return pci_bus_reset(bus, 1);
5355}
5356EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5357
5358/**
5359 * __pci_reset_bus - Try to reset a PCI bus
5360 * @bus: top level PCI bus to reset
5361 *
5362 * Same as above except return -EAGAIN if the bus cannot be locked
5363 */
5364static int __pci_reset_bus(struct pci_bus *bus)
5365{
5366        int rc;
5367
5368        rc = pci_bus_reset(bus, 1);
5369        if (rc)
5370                return rc;
5371
5372        if (pci_bus_trylock(bus)) {
5373                pci_bus_save_and_disable_locked(bus);
5374                might_sleep();
5375                rc = pci_bridge_secondary_bus_reset(bus->self);
5376                pci_bus_restore_locked(bus);
5377                pci_bus_unlock(bus);
5378        } else
5379                rc = -EAGAIN;
5380
5381        return rc;
5382}
5383
5384/**
5385 * pci_reset_bus - Try to reset a PCI bus
5386 * @pdev: top level PCI device to reset via slot/bus
5387 *
5388 * Same as above except return -EAGAIN if the bus cannot be locked
5389 */
5390int pci_reset_bus(struct pci_dev *pdev)
5391{
5392        return (!pci_probe_reset_slot(pdev->slot)) ?
5393            __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5394}
5395EXPORT_SYMBOL_GPL(pci_reset_bus);
5396
5397/**
5398 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5399 * @dev: PCI device to query
5400 *
5401 * Returns mmrbc: maximum designed memory read count in bytes or
5402 * appropriate error value.
5403 */
5404int pcix_get_max_mmrbc(struct pci_dev *dev)
5405{
5406        int cap;
5407        u32 stat;
5408
5409        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5410        if (!cap)
5411                return -EINVAL;
5412
5413        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5414                return -EINVAL;
5415
5416        return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5417}
5418EXPORT_SYMBOL(pcix_get_max_mmrbc);
5419
5420/**
5421 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5422 * @dev: PCI device to query
5423 *
5424 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5425 * value.
5426 */
5427int pcix_get_mmrbc(struct pci_dev *dev)
5428{
5429        int cap;
5430        u16 cmd;
5431
5432        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5433        if (!cap)
5434                return -EINVAL;
5435
5436        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5437                return -EINVAL;
5438
5439        return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5440}
5441EXPORT_SYMBOL(pcix_get_mmrbc);
5442
5443/**
5444 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5445 * @dev: PCI device to query
5446 * @mmrbc: maximum memory read count in bytes
5447 *    valid values are 512, 1024, 2048, 4096
5448 *
5449 * If possible sets maximum memory read byte count, some bridges have errata
5450 * that prevent this.
5451 */
5452int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5453{
5454        int cap;
5455        u32 stat, v, o;
5456        u16 cmd;
5457
5458        if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5459                return -EINVAL;
5460
5461        v = ffs(mmrbc) - 10;
5462
5463        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5464        if (!cap)
5465                return -EINVAL;
5466
5467        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5468                return -EINVAL;
5469
5470        if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5471                return -E2BIG;
5472
5473        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5474                return -EINVAL;
5475
5476        o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5477        if (o != v) {
5478                if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5479                        return -EIO;
5480
5481                cmd &= ~PCI_X_CMD_MAX_READ;
5482                cmd |= v << 2;
5483                if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5484                        return -EIO;
5485        }
5486        return 0;
5487}
5488EXPORT_SYMBOL(pcix_set_mmrbc);
5489
5490/**
5491 * pcie_get_readrq - get PCI Express read request size
5492 * @dev: PCI device to query
5493 *
5494 * Returns maximum memory read request in bytes or appropriate error value.
5495 */
5496int pcie_get_readrq(struct pci_dev *dev)
5497{
5498        u16 ctl;
5499
5500        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5501
5502        return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5503}
5504EXPORT_SYMBOL(pcie_get_readrq);
5505
5506/**
5507 * pcie_set_readrq - set PCI Express maximum memory read request
5508 * @dev: PCI device to query
5509 * @rq: maximum memory read count in bytes
5510 *    valid values are 128, 256, 512, 1024, 2048, 4096
5511 *
5512 * If possible sets maximum memory read request in bytes
5513 */
5514int pcie_set_readrq(struct pci_dev *dev, int rq)
5515{
5516        u16 v;
5517
5518        if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5519                return -EINVAL;
5520
5521        /*
5522         * If using the "performance" PCIe config, we clamp the read rq
5523         * size to the max packet size to keep the host bridge from
5524         * generating requests larger than we can cope with.
5525         */
5526        if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5527                int mps = pcie_get_mps(dev);
5528
5529                if (mps < rq)
5530                        rq = mps;
5531        }
5532
5533        v = (ffs(rq) - 8) << 12;
5534
5535        return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5536                                                  PCI_EXP_DEVCTL_READRQ, v);
5537}
5538EXPORT_SYMBOL(pcie_set_readrq);
5539
5540/**
5541 * pcie_get_mps - get PCI Express maximum payload size
5542 * @dev: PCI device to query
5543 *
5544 * Returns maximum payload size in bytes
5545 */
5546int pcie_get_mps(struct pci_dev *dev)
5547{
5548        u16 ctl;
5549
5550        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5551
5552        return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5553}
5554EXPORT_SYMBOL(pcie_get_mps);
5555
5556/**
5557 * pcie_set_mps - set PCI Express maximum payload size
5558 * @dev: PCI device to query
5559 * @mps: maximum payload size in bytes
5560 *    valid values are 128, 256, 512, 1024, 2048, 4096
5561 *
5562 * If possible sets maximum payload size
5563 */
5564int pcie_set_mps(struct pci_dev *dev, int mps)
5565{
5566        u16 v;
5567
5568        if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5569                return -EINVAL;
5570
5571        v = ffs(mps) - 8;
5572        if (v > dev->pcie_mpss)
5573                return -EINVAL;
5574        v <<= 5;
5575
5576        return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5577                                                  PCI_EXP_DEVCTL_PAYLOAD, v);
5578}
5579EXPORT_SYMBOL(pcie_set_mps);
5580
5581/**
5582 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5583 *                            device and its bandwidth limitation
5584 * @dev: PCI device to query
5585 * @limiting_dev: storage for device causing the bandwidth limitation
5586 * @speed: storage for speed of limiting device
5587 * @width: storage for width of limiting device
5588 *
5589 * Walk up the PCI device chain and find the point where the minimum
5590 * bandwidth is available.  Return the bandwidth available there and (if
5591 * limiting_dev, speed, and width pointers are supplied) information about
5592 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5593 * raw bandwidth.
5594 */
5595u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5596                             enum pci_bus_speed *speed,
5597                             enum pcie_link_width *width)
5598{
5599        u16 lnksta;
5600        enum pci_bus_speed next_speed;
5601        enum pcie_link_width next_width;
5602        u32 bw, next_bw;
5603
5604        if (speed)
5605                *speed = PCI_SPEED_UNKNOWN;
5606        if (width)
5607                *width = PCIE_LNK_WIDTH_UNKNOWN;
5608
5609        bw = 0;
5610
5611        while (dev) {
5612                pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5613
5614                next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5615                next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5616                        PCI_EXP_LNKSTA_NLW_SHIFT;
5617
5618                next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5619
5620                /* Check if current device limits the total bandwidth */
5621                if (!bw || next_bw <= bw) {
5622                        bw = next_bw;
5623
5624                        if (limiting_dev)
5625                                *limiting_dev = dev;
5626                        if (speed)
5627                                *speed = next_speed;
5628                        if (width)
5629                                *width = next_width;
5630                }
5631
5632                dev = pci_upstream_bridge(dev);
5633        }
5634
5635        return bw;
5636}
5637EXPORT_SYMBOL(pcie_bandwidth_available);
5638
5639/**
5640 * pcie_get_speed_cap - query for the PCI device's link speed capability
5641 * @dev: PCI device to query
5642 *
5643 * Query the PCI device speed capability.  Return the maximum link speed
5644 * supported by the device.
5645 */
5646enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5647{
5648        u32 lnkcap2, lnkcap;
5649
5650        /*
5651         * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5652         * implementation note there recommends using the Supported Link
5653         * Speeds Vector in Link Capabilities 2 when supported.
5654         *
5655         * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5656         * should use the Supported Link Speeds field in Link Capabilities,
5657         * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5658         */
5659        pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5660        if (lnkcap2) { /* PCIe r3.0-compliant */
5661                if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_32_0GB)
5662                        return PCIE_SPEED_32_0GT;
5663                else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5664                        return PCIE_SPEED_16_0GT;
5665                else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5666                        return PCIE_SPEED_8_0GT;
5667                else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5668                        return PCIE_SPEED_5_0GT;
5669                else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5670                        return PCIE_SPEED_2_5GT;
5671                return PCI_SPEED_UNKNOWN;
5672        }
5673
5674        pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5675        if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5676                return PCIE_SPEED_5_0GT;
5677        else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5678                return PCIE_SPEED_2_5GT;
5679
5680        return PCI_SPEED_UNKNOWN;
5681}
5682EXPORT_SYMBOL(pcie_get_speed_cap);
5683
5684/**
5685 * pcie_get_width_cap - query for the PCI device's link width capability
5686 * @dev: PCI device to query
5687 *
5688 * Query the PCI device width capability.  Return the maximum link width
5689 * supported by the device.
5690 */
5691enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5692{
5693        u32 lnkcap;
5694
5695        pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5696        if (lnkcap)
5697                return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5698
5699        return PCIE_LNK_WIDTH_UNKNOWN;
5700}
5701EXPORT_SYMBOL(pcie_get_width_cap);
5702
5703/**
5704 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5705 * @dev: PCI device
5706 * @speed: storage for link speed
5707 * @width: storage for link width
5708 *
5709 * Calculate a PCI device's link bandwidth by querying for its link speed
5710 * and width, multiplying them, and applying encoding overhead.  The result
5711 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5712 */
5713u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5714                           enum pcie_link_width *width)
5715{
5716        *speed = pcie_get_speed_cap(dev);
5717        *width = pcie_get_width_cap(dev);
5718
5719        if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5720                return 0;
5721
5722        return *width * PCIE_SPEED2MBS_ENC(*speed);
5723}
5724
5725/**
5726 * __pcie_print_link_status - Report the PCI device's link speed and width
5727 * @dev: PCI device to query
5728 * @verbose: Print info even when enough bandwidth is available
5729 *
5730 * If the available bandwidth at the device is less than the device is
5731 * capable of, report the device's maximum possible bandwidth and the
5732 * upstream link that limits its performance.  If @verbose, always print
5733 * the available bandwidth, even if the device isn't constrained.
5734 */
5735void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5736{
5737        enum pcie_link_width width, width_cap;
5738        enum pci_bus_speed speed, speed_cap;
5739        struct pci_dev *limiting_dev = NULL;
5740        u32 bw_avail, bw_cap;
5741
5742        bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5743        bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5744
5745        if (bw_avail >= bw_cap && verbose)
5746                pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5747                         bw_cap / 1000, bw_cap % 1000,
5748                         PCIE_SPEED2STR(speed_cap), width_cap);
5749        else if (bw_avail < bw_cap)
5750                pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5751                         bw_avail / 1000, bw_avail % 1000,
5752                         PCIE_SPEED2STR(speed), width,
5753                         limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5754                         bw_cap / 1000, bw_cap % 1000,
5755                         PCIE_SPEED2STR(speed_cap), width_cap);
5756}
5757
5758/**
5759 * pcie_print_link_status - Report the PCI device's link speed and width
5760 * @dev: PCI device to query
5761 *
5762 * Report the available bandwidth at the device.
5763 */
5764void pcie_print_link_status(struct pci_dev *dev)
5765{
5766        __pcie_print_link_status(dev, true);
5767}
5768EXPORT_SYMBOL(pcie_print_link_status);
5769
5770/**
5771 * pci_select_bars - Make BAR mask from the type of resource
5772 * @dev: the PCI device for which BAR mask is made
5773 * @flags: resource type mask to be selected
5774 *
5775 * This helper routine makes bar mask from the type of resource.
5776 */
5777int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5778{
5779        int i, bars = 0;
5780        for (i = 0; i < PCI_NUM_RESOURCES; i++)
5781                if (pci_resource_flags(dev, i) & flags)
5782                        bars |= (1 << i);
5783        return bars;
5784}
5785EXPORT_SYMBOL(pci_select_bars);
5786
5787/* Some architectures require additional programming to enable VGA */
5788static arch_set_vga_state_t arch_set_vga_state;
5789
5790void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5791{
5792        arch_set_vga_state = func;      /* NULL disables */
5793}
5794
5795static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5796                                  unsigned int command_bits, u32 flags)
5797{
5798        if (arch_set_vga_state)
5799                return arch_set_vga_state(dev, decode, command_bits,
5800                                                flags);
5801        return 0;
5802}
5803
5804/**
5805 * pci_set_vga_state - set VGA decode state on device and parents if requested
5806 * @dev: the PCI device
5807 * @decode: true = enable decoding, false = disable decoding
5808 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5809 * @flags: traverse ancestors and change bridges
5810 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5811 */
5812int pci_set_vga_state(struct pci_dev *dev, bool decode,
5813                      unsigned int command_bits, u32 flags)
5814{
5815        struct pci_bus *bus;
5816        struct pci_dev *bridge;
5817        u16 cmd;
5818        int rc;
5819
5820        WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5821
5822        /* ARCH specific VGA enables */
5823        rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5824        if (rc)
5825                return rc;
5826
5827        if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5828                pci_read_config_word(dev, PCI_COMMAND, &cmd);
5829                if (decode == true)
5830                        cmd |= command_bits;
5831                else
5832                        cmd &= ~command_bits;
5833                pci_write_config_word(dev, PCI_COMMAND, cmd);
5834        }
5835
5836        if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5837                return 0;
5838
5839        bus = dev->bus;
5840        while (bus) {
5841                bridge = bus->self;
5842                if (bridge) {
5843                        pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5844                                             &cmd);
5845                        if (decode == true)
5846                                cmd |= PCI_BRIDGE_CTL_VGA;
5847                        else
5848                                cmd &= ~PCI_BRIDGE_CTL_VGA;
5849                        pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5850                                              cmd);
5851                }
5852                bus = bus->parent;
5853        }
5854        return 0;
5855}
5856
5857/**
5858 * pci_add_dma_alias - Add a DMA devfn alias for a device
5859 * @dev: the PCI device for which alias is added
5860 * @devfn: alias slot and function
5861 *
5862 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
5863 * which is used to program permissible bus-devfn source addresses for DMA
5864 * requests in an IOMMU.  These aliases factor into IOMMU group creation
5865 * and are useful for devices generating DMA requests beyond or different
5866 * from their logical bus-devfn.  Examples include device quirks where the
5867 * device simply uses the wrong devfn, as well as non-transparent bridges
5868 * where the alias may be a proxy for devices in another domain.
5869 *
5870 * IOMMU group creation is performed during device discovery or addition,
5871 * prior to any potential DMA mapping and therefore prior to driver probing
5872 * (especially for userspace assigned devices where IOMMU group definition
5873 * cannot be left as a userspace activity).  DMA aliases should therefore
5874 * be configured via quirks, such as the PCI fixup header quirk.
5875 */
5876void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5877{
5878        if (!dev->dma_alias_mask)
5879                dev->dma_alias_mask = bitmap_zalloc(U8_MAX, GFP_KERNEL);
5880        if (!dev->dma_alias_mask) {
5881                pci_warn(dev, "Unable to allocate DMA alias mask\n");
5882                return;
5883        }
5884
5885        set_bit(devfn, dev->dma_alias_mask);
5886        pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5887                 PCI_SLOT(devfn), PCI_FUNC(devfn));
5888}
5889
5890bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5891{
5892        return (dev1->dma_alias_mask &&
5893                test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5894               (dev2->dma_alias_mask &&
5895                test_bit(dev1->devfn, dev2->dma_alias_mask));
5896}
5897
5898bool pci_device_is_present(struct pci_dev *pdev)
5899{
5900        u32 v;
5901
5902        if (pci_dev_is_disconnected(pdev))
5903                return false;
5904        return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5905}
5906EXPORT_SYMBOL_GPL(pci_device_is_present);
5907
5908void pci_ignore_hotplug(struct pci_dev *dev)
5909{
5910        struct pci_dev *bridge = dev->bus->self;
5911
5912        dev->ignore_hotplug = 1;
5913        /* Propagate the "ignore hotplug" setting to the parent bridge. */
5914        if (bridge)
5915                bridge->ignore_hotplug = 1;
5916}
5917EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5918
5919resource_size_t __weak pcibios_default_alignment(void)
5920{
5921        return 0;
5922}
5923
5924/*
5925 * Arches that don't want to expose struct resource to userland as-is in
5926 * sysfs and /proc can implement their own pci_resource_to_user().
5927 */
5928void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
5929                                 const struct resource *rsrc,
5930                                 resource_size_t *start, resource_size_t *end)
5931{
5932        *start = rsrc->start;
5933        *end = rsrc->end;
5934}
5935
5936static char *resource_alignment_param;
5937static DEFINE_SPINLOCK(resource_alignment_lock);
5938
5939/**
5940 * pci_specified_resource_alignment - get resource alignment specified by user.
5941 * @dev: the PCI device to get
5942 * @resize: whether or not to change resources' size when reassigning alignment
5943 *
5944 * RETURNS: Resource alignment if it is specified.
5945 *          Zero if it is not specified.
5946 */
5947static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5948                                                        bool *resize)
5949{
5950        int align_order, count;
5951        resource_size_t align = pcibios_default_alignment();
5952        const char *p;
5953        int ret;
5954
5955        spin_lock(&resource_alignment_lock);
5956        p = resource_alignment_param;
5957        if (!p || !*p)
5958                goto out;
5959        if (pci_has_flag(PCI_PROBE_ONLY)) {
5960                align = 0;
5961                pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5962                goto out;
5963        }
5964
5965        while (*p) {
5966                count = 0;
5967                if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5968                                                        p[count] == '@') {
5969                        p += count + 1;
5970                } else {
5971                        align_order = -1;
5972                }
5973
5974                ret = pci_dev_str_match(dev, p, &p);
5975                if (ret == 1) {
5976                        *resize = true;
5977                        if (align_order == -1)
5978                                align = PAGE_SIZE;
5979                        else
5980                                align = 1 << align_order;
5981                        break;
5982                } else if (ret < 0) {
5983                        pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
5984                               p);
5985                        break;
5986                }
5987
5988                if (*p != ';' && *p != ',') {
5989                        /* End of param or invalid format */
5990                        break;
5991                }
5992                p++;
5993        }
5994out:
5995        spin_unlock(&resource_alignment_lock);
5996        return align;
5997}
5998
5999static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6000                                           resource_size_t align, bool resize)
6001{
6002        struct resource *r = &dev->resource[bar];
6003        resource_size_t size;
6004
6005        if (!(r->flags & IORESOURCE_MEM))
6006                return;
6007
6008        if (r->flags & IORESOURCE_PCI_FIXED) {
6009                pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6010                         bar, r, (unsigned long long)align);
6011                return;
6012        }
6013
6014        size = resource_size(r);
6015        if (size >= align)
6016                return;
6017
6018        /*
6019         * Increase the alignment of the resource.  There are two ways we
6020         * can do this:
6021         *
6022         * 1) Increase the size of the resource.  BARs are aligned on their
6023         *    size, so when we reallocate space for this resource, we'll
6024         *    allocate it with the larger alignment.  This also prevents
6025         *    assignment of any other BARs inside the alignment region, so
6026         *    if we're requesting page alignment, this means no other BARs
6027         *    will share the page.
6028         *
6029         *    The disadvantage is that this makes the resource larger than
6030         *    the hardware BAR, which may break drivers that compute things
6031         *    based on the resource size, e.g., to find registers at a
6032         *    fixed offset before the end of the BAR.
6033         *
6034         * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6035         *    set r->start to the desired alignment.  By itself this
6036         *    doesn't prevent other BARs being put inside the alignment
6037         *    region, but if we realign *every* resource of every device in
6038         *    the system, none of them will share an alignment region.
6039         *
6040         * When the user has requested alignment for only some devices via
6041         * the "pci=resource_alignment" argument, "resize" is true and we
6042         * use the first method.  Otherwise we assume we're aligning all
6043         * devices and we use the second.
6044         */
6045
6046        pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6047                 bar, r, (unsigned long long)align);
6048
6049        if (resize) {
6050                r->start = 0;
6051                r->end = align - 1;
6052        } else {
6053                r->flags &= ~IORESOURCE_SIZEALIGN;
6054                r->flags |= IORESOURCE_STARTALIGN;
6055                r->start = align;
6056                r->end = r->start + size - 1;
6057        }
6058        r->flags |= IORESOURCE_UNSET;
6059}
6060
6061/*
6062 * This function disables memory decoding and releases memory resources
6063 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6064 * It also rounds up size to specified alignment.
6065 * Later on, the kernel will assign page-aligned memory resource back
6066 * to the device.
6067 */
6068void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6069{
6070        int i;
6071        struct resource *r;
6072        resource_size_t align;
6073        u16 command;
6074        bool resize = false;
6075
6076        /*
6077         * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6078         * 3.4.1.11.  Their resources are allocated from the space
6079         * described by the VF BARx register in the PF's SR-IOV capability.
6080         * We can't influence their alignment here.
6081         */
6082        if (dev->is_virtfn)
6083                return;
6084
6085        /* check if specified PCI is target device to reassign */
6086        align = pci_specified_resource_alignment(dev, &resize);
6087        if (!align)
6088                return;
6089
6090        if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6091            (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6092                pci_warn(dev, "Can't reassign resources to host bridge\n");
6093                return;
6094        }
6095
6096        pci_read_config_word(dev, PCI_COMMAND, &command);
6097        command &= ~PCI_COMMAND_MEMORY;
6098        pci_write_config_word(dev, PCI_COMMAND, command);
6099
6100        for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6101                pci_request_resource_alignment(dev, i, align, resize);
6102
6103        /*
6104         * Need to disable bridge's resource window,
6105         * to enable the kernel to reassign new resource
6106         * window later on.
6107         */
6108        if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6109                for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6110                        r = &dev->resource[i];
6111                        if (!(r->flags & IORESOURCE_MEM))
6112                                continue;
6113                        r->flags |= IORESOURCE_UNSET;
6114                        r->end = resource_size(r) - 1;
6115                        r->start = 0;
6116                }
6117                pci_disable_bridge_window(dev);
6118        }
6119}
6120
6121static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6122{
6123        size_t count = 0;
6124
6125        spin_lock(&resource_alignment_lock);
6126        if (resource_alignment_param)
6127                count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6128        spin_unlock(&resource_alignment_lock);
6129
6130        /*
6131         * When set by the command line, resource_alignment_param will not
6132         * have a trailing line feed, which is ugly. So conditionally add
6133         * it here.
6134         */
6135        if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6136                buf[count - 1] = '\n';
6137                buf[count++] = 0;
6138        }
6139
6140        return count;
6141}
6142
6143static ssize_t resource_alignment_store(struct bus_type *bus,
6144                                        const char *buf, size_t count)
6145{
6146        char *param = kstrndup(buf, count, GFP_KERNEL);
6147
6148        if (!param)
6149                return -ENOMEM;
6150
6151        spin_lock(&resource_alignment_lock);
6152        kfree(resource_alignment_param);
6153        resource_alignment_param = param;
6154        spin_unlock(&resource_alignment_lock);
6155        return count;
6156}
6157
6158static BUS_ATTR_RW(resource_alignment);
6159
6160static int __init pci_resource_alignment_sysfs_init(void)
6161{
6162        return bus_create_file(&pci_bus_type,
6163                                        &bus_attr_resource_alignment);
6164}
6165late_initcall(pci_resource_alignment_sysfs_init);
6166
6167static void pci_no_domains(void)
6168{
6169#ifdef CONFIG_PCI_DOMAINS
6170        pci_domains_supported = 0;
6171#endif
6172}
6173
6174#ifdef CONFIG_PCI_DOMAINS_GENERIC
6175static atomic_t __domain_nr = ATOMIC_INIT(-1);
6176
6177static int pci_get_new_domain_nr(void)
6178{
6179        return atomic_inc_return(&__domain_nr);
6180}
6181
6182static int of_pci_bus_find_domain_nr(struct device *parent)
6183{
6184        static int use_dt_domains = -1;
6185        int domain = -1;
6186
6187        if (parent)
6188                domain = of_get_pci_domain_nr(parent->of_node);
6189
6190        /*
6191         * Check DT domain and use_dt_domains values.
6192         *
6193         * If DT domain property is valid (domain >= 0) and
6194         * use_dt_domains != 0, the DT assignment is valid since this means
6195         * we have not previously allocated a domain number by using
6196         * pci_get_new_domain_nr(); we should also update use_dt_domains to
6197         * 1, to indicate that we have just assigned a domain number from
6198         * DT.
6199         *
6200         * If DT domain property value is not valid (ie domain < 0), and we
6201         * have not previously assigned a domain number from DT
6202         * (use_dt_domains != 1) we should assign a domain number by
6203         * using the:
6204         *
6205         * pci_get_new_domain_nr()
6206         *
6207         * API and update the use_dt_domains value to keep track of method we
6208         * are using to assign domain numbers (use_dt_domains = 0).
6209         *
6210         * All other combinations imply we have a platform that is trying
6211         * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6212         * which is a recipe for domain mishandling and it is prevented by
6213         * invalidating the domain value (domain = -1) and printing a
6214         * corresponding error.
6215         */
6216        if (domain >= 0 && use_dt_domains) {
6217                use_dt_domains = 1;
6218        } else if (domain < 0 && use_dt_domains != 1) {
6219                use_dt_domains = 0;
6220                domain = pci_get_new_domain_nr();
6221        } else {
6222                if (parent)
6223                        pr_err("Node %pOF has ", parent->of_node);
6224                pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6225                domain = -1;
6226        }
6227
6228        return domain;
6229}
6230
6231int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6232{
6233        return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6234                               acpi_pci_bus_find_domain_nr(bus);
6235}
6236#endif
6237
6238/**
6239 * pci_ext_cfg_avail - can we access extended PCI config space?
6240 *
6241 * Returns 1 if we can access PCI extended config space (offsets
6242 * greater than 0xff). This is the default implementation. Architecture
6243 * implementations can override this.
6244 */
6245int __weak pci_ext_cfg_avail(void)
6246{
6247        return 1;
6248}
6249
6250void __weak pci_fixup_cardbus(struct pci_bus *bus)
6251{
6252}
6253EXPORT_SYMBOL(pci_fixup_cardbus);
6254
6255static int __init pci_setup(char *str)
6256{
6257        while (str) {
6258                char *k = strchr(str, ',');
6259                if (k)
6260                        *k++ = 0;
6261                if (*str && (str = pcibios_setup(str)) && *str) {
6262                        if (!strcmp(str, "nomsi")) {
6263                                pci_no_msi();
6264                        } else if (!strncmp(str, "noats", 5)) {
6265                                pr_info("PCIe: ATS is disabled\n");
6266                                pcie_ats_disabled = true;
6267                        } else if (!strcmp(str, "noaer")) {
6268                                pci_no_aer();
6269                        } else if (!strcmp(str, "earlydump")) {
6270                                pci_early_dump = true;
6271                        } else if (!strncmp(str, "realloc=", 8)) {
6272                                pci_realloc_get_opt(str + 8);
6273                        } else if (!strncmp(str, "realloc", 7)) {
6274                                pci_realloc_get_opt("on");
6275                        } else if (!strcmp(str, "nodomains")) {
6276                                pci_no_domains();
6277                        } else if (!strncmp(str, "noari", 5)) {
6278                                pcie_ari_disabled = true;
6279                        } else if (!strncmp(str, "cbiosize=", 9)) {
6280                                pci_cardbus_io_size = memparse(str + 9, &str);
6281                        } else if (!strncmp(str, "cbmemsize=", 10)) {
6282                                pci_cardbus_mem_size = memparse(str + 10, &str);
6283                        } else if (!strncmp(str, "resource_alignment=", 19)) {
6284                                resource_alignment_param = str + 19;
6285                        } else if (!strncmp(str, "ecrc=", 5)) {
6286                                pcie_ecrc_get_policy(str + 5);
6287                        } else if (!strncmp(str, "hpiosize=", 9)) {
6288                                pci_hotplug_io_size = memparse(str + 9, &str);
6289                        } else if (!strncmp(str, "hpmemsize=", 10)) {
6290                                pci_hotplug_mem_size = memparse(str + 10, &str);
6291                        } else if (!strncmp(str, "hpbussize=", 10)) {
6292                                pci_hotplug_bus_size =
6293                                        simple_strtoul(str + 10, &str, 0);
6294                                if (pci_hotplug_bus_size > 0xff)
6295                                        pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6296                        } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6297                                pcie_bus_config = PCIE_BUS_TUNE_OFF;
6298                        } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6299                                pcie_bus_config = PCIE_BUS_SAFE;
6300                        } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6301                                pcie_bus_config = PCIE_BUS_PERFORMANCE;
6302                        } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6303                                pcie_bus_config = PCIE_BUS_PEER2PEER;
6304                        } else if (!strncmp(str, "pcie_scan_all", 13)) {
6305                                pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6306                        } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6307                                disable_acs_redir_param = str + 18;
6308                        } else {
6309                                pr_err("PCI: Unknown option `%s'\n", str);
6310                        }
6311                }
6312                str = k;
6313        }
6314        return 0;
6315}
6316early_param("pci", pci_setup);
6317
6318/*
6319 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6320 * in pci_setup(), above, to point to data in the __initdata section which
6321 * will be freed after the init sequence is complete. We can't allocate memory
6322 * in pci_setup() because some architectures do not have any memory allocation
6323 * service available during an early_param() call. So we allocate memory and
6324 * copy the variable here before the init section is freed.
6325 *
6326 */
6327static int __init pci_realloc_setup_params(void)
6328{
6329        resource_alignment_param = kstrdup(resource_alignment_param,
6330                                           GFP_KERNEL);
6331        disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6332
6333        return 0;
6334}
6335pure_initcall(pci_realloc_setup_params);
6336