1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
27#include <linux/module.h>
28#include <linux/kernel.h>
29#include <linux/delay.h>
30#include <linux/kthread.h>
31#include <linux/cpu.h>
32#include <linux/thermal.h>
33#include <linux/slab.h>
34#include <linux/tick.h>
35#include <linux/debugfs.h>
36#include <linux/seq_file.h>
37#include <linux/sched/rt.h>
38#include <uapi/linux/sched/types.h>
39
40#include <asm/nmi.h>
41#include <asm/msr.h>
42#include <asm/mwait.h>
43#include <asm/cpu_device_id.h>
44#include <asm/hardirq.h>
45
46#define MAX_TARGET_RATIO (50U)
47
48
49
50
51
52#define CONFIDENCE_OK (3)
53
54
55
56#define DEFAULT_DURATION_JIFFIES (6)
57
58static unsigned int target_mwait;
59static struct dentry *debug_dir;
60
61
62static unsigned int set_target_ratio;
63static unsigned int current_ratio;
64static bool should_skip;
65static bool reduce_irq;
66static atomic_t idle_wakeup_counter;
67static unsigned int control_cpu;
68
69
70
71static bool clamping;
72
73static const struct sched_param sparam = {
74 .sched_priority = MAX_USER_RT_PRIO / 2,
75};
76struct powerclamp_worker_data {
77 struct kthread_worker *worker;
78 struct kthread_work balancing_work;
79 struct kthread_delayed_work idle_injection_work;
80 unsigned int cpu;
81 unsigned int count;
82 unsigned int guard;
83 unsigned int window_size_now;
84 unsigned int target_ratio;
85 unsigned int duration_jiffies;
86 bool clamping;
87};
88
89static struct powerclamp_worker_data __percpu *worker_data;
90static struct thermal_cooling_device *cooling_dev;
91static unsigned long *cpu_clamping_mask;
92
93
94
95static unsigned int duration;
96static unsigned int pkg_cstate_ratio_cur;
97static unsigned int window_size;
98
99static int duration_set(const char *arg, const struct kernel_param *kp)
100{
101 int ret = 0;
102 unsigned long new_duration;
103
104 ret = kstrtoul(arg, 10, &new_duration);
105 if (ret)
106 goto exit;
107 if (new_duration > 25 || new_duration < 6) {
108 pr_err("Out of recommended range %lu, between 6-25ms\n",
109 new_duration);
110 ret = -EINVAL;
111 }
112
113 duration = clamp(new_duration, 6ul, 25ul);
114 smp_mb();
115
116exit:
117
118 return ret;
119}
120
121static const struct kernel_param_ops duration_ops = {
122 .set = duration_set,
123 .get = param_get_int,
124};
125
126
127module_param_cb(duration, &duration_ops, &duration, 0644);
128MODULE_PARM_DESC(duration, "forced idle time for each attempt in msec.");
129
130struct powerclamp_calibration_data {
131 unsigned long confidence;
132
133
134
135
136
137 unsigned long steady_comp;
138
139
140 unsigned long dynamic_comp;
141
142
143};
144
145static struct powerclamp_calibration_data cal_data[MAX_TARGET_RATIO];
146
147static int window_size_set(const char *arg, const struct kernel_param *kp)
148{
149 int ret = 0;
150 unsigned long new_window_size;
151
152 ret = kstrtoul(arg, 10, &new_window_size);
153 if (ret)
154 goto exit_win;
155 if (new_window_size > 10 || new_window_size < 2) {
156 pr_err("Out of recommended window size %lu, between 2-10\n",
157 new_window_size);
158 ret = -EINVAL;
159 }
160
161 window_size = clamp(new_window_size, 2ul, 10ul);
162 smp_mb();
163
164exit_win:
165
166 return ret;
167}
168
169static const struct kernel_param_ops window_size_ops = {
170 .set = window_size_set,
171 .get = param_get_int,
172};
173
174module_param_cb(window_size, &window_size_ops, &window_size, 0644);
175MODULE_PARM_DESC(window_size, "sliding window in number of clamping cycles\n"
176 "\tpowerclamp controls idle ratio within this window. larger\n"
177 "\twindow size results in slower response time but more smooth\n"
178 "\tclamping results. default to 2.");
179
180static void find_target_mwait(void)
181{
182 unsigned int eax, ebx, ecx, edx;
183 unsigned int highest_cstate = 0;
184 unsigned int highest_subcstate = 0;
185 int i;
186
187 if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
188 return;
189
190 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
191
192 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
193 !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
194 return;
195
196 edx >>= MWAIT_SUBSTATE_SIZE;
197 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
198 if (edx & MWAIT_SUBSTATE_MASK) {
199 highest_cstate = i;
200 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
201 }
202 }
203 target_mwait = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
204 (highest_subcstate - 1);
205
206}
207
208struct pkg_cstate_info {
209 bool skip;
210 int msr_index;
211 int cstate_id;
212};
213
214#define PKG_CSTATE_INIT(id) { \
215 .msr_index = MSR_PKG_C##id##_RESIDENCY, \
216 .cstate_id = id \
217 }
218
219static struct pkg_cstate_info pkg_cstates[] = {
220 PKG_CSTATE_INIT(2),
221 PKG_CSTATE_INIT(3),
222 PKG_CSTATE_INIT(6),
223 PKG_CSTATE_INIT(7),
224 PKG_CSTATE_INIT(8),
225 PKG_CSTATE_INIT(9),
226 PKG_CSTATE_INIT(10),
227 {NULL},
228};
229
230static bool has_pkg_state_counter(void)
231{
232 u64 val;
233 struct pkg_cstate_info *info = pkg_cstates;
234
235
236 while (info->msr_index) {
237 if (!rdmsrl_safe(info->msr_index, &val))
238 return true;
239 info++;
240 }
241
242 return false;
243}
244
245static u64 pkg_state_counter(void)
246{
247 u64 val;
248 u64 count = 0;
249 struct pkg_cstate_info *info = pkg_cstates;
250
251 while (info->msr_index) {
252 if (!info->skip) {
253 if (!rdmsrl_safe(info->msr_index, &val))
254 count += val;
255 else
256 info->skip = true;
257 }
258 info++;
259 }
260
261 return count;
262}
263
264static unsigned int get_compensation(int ratio)
265{
266 unsigned int comp = 0;
267
268
269 if (ratio == 1 &&
270 cal_data[ratio].confidence >= CONFIDENCE_OK &&
271 cal_data[ratio + 1].confidence >= CONFIDENCE_OK &&
272 cal_data[ratio + 2].confidence >= CONFIDENCE_OK) {
273 comp = (cal_data[ratio].steady_comp +
274 cal_data[ratio + 1].steady_comp +
275 cal_data[ratio + 2].steady_comp) / 3;
276 } else if (ratio == MAX_TARGET_RATIO - 1 &&
277 cal_data[ratio].confidence >= CONFIDENCE_OK &&
278 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
279 cal_data[ratio - 2].confidence >= CONFIDENCE_OK) {
280 comp = (cal_data[ratio].steady_comp +
281 cal_data[ratio - 1].steady_comp +
282 cal_data[ratio - 2].steady_comp) / 3;
283 } else if (cal_data[ratio].confidence >= CONFIDENCE_OK &&
284 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
285 cal_data[ratio + 1].confidence >= CONFIDENCE_OK) {
286 comp = (cal_data[ratio].steady_comp +
287 cal_data[ratio - 1].steady_comp +
288 cal_data[ratio + 1].steady_comp) / 3;
289 }
290
291
292 if (reduce_irq)
293 comp = ratio;
294
295 if (comp + ratio >= MAX_TARGET_RATIO)
296 comp = MAX_TARGET_RATIO - ratio - 1;
297
298 return comp;
299}
300
301static void adjust_compensation(int target_ratio, unsigned int win)
302{
303 int delta;
304 struct powerclamp_calibration_data *d = &cal_data[target_ratio];
305
306
307
308
309
310
311 if (d->confidence >= CONFIDENCE_OK ||
312 atomic_read(&idle_wakeup_counter) >
313 win * num_online_cpus())
314 return;
315
316 delta = set_target_ratio - current_ratio;
317
318 if (delta >= 0 && delta <= (1+target_ratio/10)) {
319 if (d->steady_comp)
320 d->steady_comp =
321 roundup(delta+d->steady_comp, 2)/2;
322 else
323 d->steady_comp = delta;
324 d->confidence++;
325 }
326}
327
328static bool powerclamp_adjust_controls(unsigned int target_ratio,
329 unsigned int guard, unsigned int win)
330{
331 static u64 msr_last, tsc_last;
332 u64 msr_now, tsc_now;
333 u64 val64;
334
335
336 msr_now = pkg_state_counter();
337 tsc_now = rdtsc();
338
339
340 if (!msr_last || !tsc_last)
341 current_ratio = 1;
342 else if (tsc_now-tsc_last) {
343 val64 = 100*(msr_now-msr_last);
344 do_div(val64, (tsc_now-tsc_last));
345 current_ratio = val64;
346 }
347
348
349 msr_last = msr_now;
350 tsc_last = tsc_now;
351
352 adjust_compensation(target_ratio, win);
353
354
355
356
357 reduce_irq = atomic_read(&idle_wakeup_counter) >=
358 2 * win * num_online_cpus();
359
360 atomic_set(&idle_wakeup_counter, 0);
361
362 return set_target_ratio + guard <= current_ratio;
363}
364
365static void clamp_balancing_func(struct kthread_work *work)
366{
367 struct powerclamp_worker_data *w_data;
368 int sleeptime;
369 unsigned long target_jiffies;
370 unsigned int compensated_ratio;
371 int interval;
372
373 w_data = container_of(work, struct powerclamp_worker_data,
374 balancing_work);
375
376
377
378
379
380
381 w_data->target_ratio = READ_ONCE(set_target_ratio);
382 w_data->guard = 1 + w_data->target_ratio / 20;
383 w_data->window_size_now = window_size;
384 w_data->duration_jiffies = msecs_to_jiffies(duration);
385 w_data->count++;
386
387
388
389
390
391
392 compensated_ratio = w_data->target_ratio +
393 get_compensation(w_data->target_ratio);
394 if (compensated_ratio <= 0)
395 compensated_ratio = 1;
396 interval = w_data->duration_jiffies * 100 / compensated_ratio;
397
398
399 target_jiffies = roundup(jiffies, interval);
400 sleeptime = target_jiffies - jiffies;
401 if (sleeptime <= 0)
402 sleeptime = 1;
403
404 if (clamping && w_data->clamping && cpu_online(w_data->cpu))
405 kthread_queue_delayed_work(w_data->worker,
406 &w_data->idle_injection_work,
407 sleeptime);
408}
409
410static void clamp_idle_injection_func(struct kthread_work *work)
411{
412 struct powerclamp_worker_data *w_data;
413
414 w_data = container_of(work, struct powerclamp_worker_data,
415 idle_injection_work.work);
416
417
418
419
420
421 if (w_data->cpu == control_cpu &&
422 !(w_data->count % w_data->window_size_now)) {
423 should_skip =
424 powerclamp_adjust_controls(w_data->target_ratio,
425 w_data->guard,
426 w_data->window_size_now);
427 smp_mb();
428 }
429
430 if (should_skip)
431 goto balance;
432
433 play_idle(jiffies_to_usecs(w_data->duration_jiffies));
434
435balance:
436 if (clamping && w_data->clamping && cpu_online(w_data->cpu))
437 kthread_queue_work(w_data->worker, &w_data->balancing_work);
438}
439
440
441
442
443
444static void poll_pkg_cstate(struct work_struct *dummy);
445static DECLARE_DELAYED_WORK(poll_pkg_cstate_work, poll_pkg_cstate);
446static void poll_pkg_cstate(struct work_struct *dummy)
447{
448 static u64 msr_last;
449 static u64 tsc_last;
450
451 u64 msr_now;
452 u64 tsc_now;
453 u64 val64;
454
455 msr_now = pkg_state_counter();
456 tsc_now = rdtsc();
457
458
459 if (!msr_last || !tsc_last)
460 pkg_cstate_ratio_cur = 1;
461 else {
462 if (tsc_now - tsc_last) {
463 val64 = 100 * (msr_now - msr_last);
464 do_div(val64, (tsc_now - tsc_last));
465 pkg_cstate_ratio_cur = val64;
466 }
467 }
468
469
470 msr_last = msr_now;
471 tsc_last = tsc_now;
472
473 if (true == clamping)
474 schedule_delayed_work(&poll_pkg_cstate_work, HZ);
475}
476
477static void start_power_clamp_worker(unsigned long cpu)
478{
479 struct powerclamp_worker_data *w_data = per_cpu_ptr(worker_data, cpu);
480 struct kthread_worker *worker;
481
482 worker = kthread_create_worker_on_cpu(cpu, 0, "kidle_inj/%ld", cpu);
483 if (IS_ERR(worker))
484 return;
485
486 w_data->worker = worker;
487 w_data->count = 0;
488 w_data->cpu = cpu;
489 w_data->clamping = true;
490 set_bit(cpu, cpu_clamping_mask);
491 sched_setscheduler(worker->task, SCHED_FIFO, &sparam);
492 kthread_init_work(&w_data->balancing_work, clamp_balancing_func);
493 kthread_init_delayed_work(&w_data->idle_injection_work,
494 clamp_idle_injection_func);
495 kthread_queue_work(w_data->worker, &w_data->balancing_work);
496}
497
498static void stop_power_clamp_worker(unsigned long cpu)
499{
500 struct powerclamp_worker_data *w_data = per_cpu_ptr(worker_data, cpu);
501
502 if (!w_data->worker)
503 return;
504
505 w_data->clamping = false;
506
507
508
509
510
511
512 smp_wmb();
513 kthread_cancel_work_sync(&w_data->balancing_work);
514 kthread_cancel_delayed_work_sync(&w_data->idle_injection_work);
515
516
517
518
519
520
521
522 clear_bit(w_data->cpu, cpu_clamping_mask);
523 kthread_destroy_worker(w_data->worker);
524
525 w_data->worker = NULL;
526}
527
528static int start_power_clamp(void)
529{
530 unsigned long cpu;
531
532 set_target_ratio = clamp(set_target_ratio, 0U, MAX_TARGET_RATIO - 1);
533
534 get_online_cpus();
535
536
537 control_cpu = 0;
538 if (!cpu_online(control_cpu))
539 control_cpu = smp_processor_id();
540
541 clamping = true;
542 schedule_delayed_work(&poll_pkg_cstate_work, 0);
543
544
545 for_each_online_cpu(cpu) {
546 start_power_clamp_worker(cpu);
547 }
548 put_online_cpus();
549
550 return 0;
551}
552
553static void end_power_clamp(void)
554{
555 int i;
556
557
558
559
560
561 clamping = false;
562 if (bitmap_weight(cpu_clamping_mask, num_possible_cpus())) {
563 for_each_set_bit(i, cpu_clamping_mask, num_possible_cpus()) {
564 pr_debug("clamping worker for cpu %d alive, destroy\n",
565 i);
566 stop_power_clamp_worker(i);
567 }
568 }
569}
570
571static int powerclamp_cpu_online(unsigned int cpu)
572{
573 if (clamping == false)
574 return 0;
575 start_power_clamp_worker(cpu);
576
577 if (cpu == 0) {
578 control_cpu = 0;
579 smp_mb();
580 }
581 return 0;
582}
583
584static int powerclamp_cpu_predown(unsigned int cpu)
585{
586 if (clamping == false)
587 return 0;
588
589 stop_power_clamp_worker(cpu);
590 if (cpu != control_cpu)
591 return 0;
592
593 control_cpu = cpumask_first(cpu_online_mask);
594 if (control_cpu == cpu)
595 control_cpu = cpumask_next(cpu, cpu_online_mask);
596 smp_mb();
597 return 0;
598}
599
600static int powerclamp_get_max_state(struct thermal_cooling_device *cdev,
601 unsigned long *state)
602{
603 *state = MAX_TARGET_RATIO;
604
605 return 0;
606}
607
608static int powerclamp_get_cur_state(struct thermal_cooling_device *cdev,
609 unsigned long *state)
610{
611 if (true == clamping)
612 *state = pkg_cstate_ratio_cur;
613 else
614
615 *state = -1;
616
617 return 0;
618}
619
620static int powerclamp_set_cur_state(struct thermal_cooling_device *cdev,
621 unsigned long new_target_ratio)
622{
623 int ret = 0;
624
625 new_target_ratio = clamp(new_target_ratio, 0UL,
626 (unsigned long) (MAX_TARGET_RATIO-1));
627 if (set_target_ratio == 0 && new_target_ratio > 0) {
628 pr_info("Start idle injection to reduce power\n");
629 set_target_ratio = new_target_ratio;
630 ret = start_power_clamp();
631 goto exit_set;
632 } else if (set_target_ratio > 0 && new_target_ratio == 0) {
633 pr_info("Stop forced idle injection\n");
634 end_power_clamp();
635 set_target_ratio = 0;
636 } else {
637 set_target_ratio = new_target_ratio;
638
639 smp_mb();
640 }
641
642exit_set:
643 return ret;
644}
645
646
647static struct thermal_cooling_device_ops powerclamp_cooling_ops = {
648 .get_max_state = powerclamp_get_max_state,
649 .get_cur_state = powerclamp_get_cur_state,
650 .set_cur_state = powerclamp_set_cur_state,
651};
652
653static const struct x86_cpu_id __initconst intel_powerclamp_ids[] = {
654 { X86_VENDOR_INTEL, X86_FAMILY_ANY, X86_MODEL_ANY, X86_FEATURE_MWAIT },
655 {}
656};
657MODULE_DEVICE_TABLE(x86cpu, intel_powerclamp_ids);
658
659static int __init powerclamp_probe(void)
660{
661
662 if (!x86_match_cpu(intel_powerclamp_ids)) {
663 pr_err("CPU does not support MWAIT\n");
664 return -ENODEV;
665 }
666
667
668 if (!has_pkg_state_counter()) {
669 pr_info("No package C-state available\n");
670 return -ENODEV;
671 }
672
673
674 find_target_mwait();
675
676 return 0;
677}
678
679static int powerclamp_debug_show(struct seq_file *m, void *unused)
680{
681 int i = 0;
682
683 seq_printf(m, "controlling cpu: %d\n", control_cpu);
684 seq_printf(m, "pct confidence steady dynamic (compensation)\n");
685 for (i = 0; i < MAX_TARGET_RATIO; i++) {
686 seq_printf(m, "%d\t%lu\t%lu\t%lu\n",
687 i,
688 cal_data[i].confidence,
689 cal_data[i].steady_comp,
690 cal_data[i].dynamic_comp);
691 }
692
693 return 0;
694}
695
696DEFINE_SHOW_ATTRIBUTE(powerclamp_debug);
697
698static inline void powerclamp_create_debug_files(void)
699{
700 debug_dir = debugfs_create_dir("intel_powerclamp", NULL);
701
702 debugfs_create_file("powerclamp_calib", S_IRUGO, debug_dir, cal_data,
703 &powerclamp_debug_fops);
704}
705
706static enum cpuhp_state hp_state;
707
708static int __init powerclamp_init(void)
709{
710 int retval;
711 int bitmap_size;
712
713 bitmap_size = BITS_TO_LONGS(num_possible_cpus()) * sizeof(long);
714 cpu_clamping_mask = kzalloc(bitmap_size, GFP_KERNEL);
715 if (!cpu_clamping_mask)
716 return -ENOMEM;
717
718
719 retval = powerclamp_probe();
720 if (retval)
721 goto exit_free;
722
723
724 window_size = 2;
725 retval = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
726 "thermal/intel_powerclamp:online",
727 powerclamp_cpu_online,
728 powerclamp_cpu_predown);
729 if (retval < 0)
730 goto exit_free;
731
732 hp_state = retval;
733
734 worker_data = alloc_percpu(struct powerclamp_worker_data);
735 if (!worker_data) {
736 retval = -ENOMEM;
737 goto exit_unregister;
738 }
739
740 cooling_dev = thermal_cooling_device_register("intel_powerclamp", NULL,
741 &powerclamp_cooling_ops);
742 if (IS_ERR(cooling_dev)) {
743 retval = -ENODEV;
744 goto exit_free_thread;
745 }
746
747 if (!duration)
748 duration = jiffies_to_msecs(DEFAULT_DURATION_JIFFIES);
749
750 powerclamp_create_debug_files();
751
752 return 0;
753
754exit_free_thread:
755 free_percpu(worker_data);
756exit_unregister:
757 cpuhp_remove_state_nocalls(hp_state);
758exit_free:
759 kfree(cpu_clamping_mask);
760 return retval;
761}
762module_init(powerclamp_init);
763
764static void __exit powerclamp_exit(void)
765{
766 end_power_clamp();
767 cpuhp_remove_state_nocalls(hp_state);
768 free_percpu(worker_data);
769 thermal_cooling_device_unregister(cooling_dev);
770 kfree(cpu_clamping_mask);
771
772 cancel_delayed_work_sync(&poll_pkg_cstate_work);
773 debugfs_remove_recursive(debug_dir);
774}
775module_exit(powerclamp_exit);
776
777MODULE_LICENSE("GPL");
778MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>");
779MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@linux.intel.com>");
780MODULE_DESCRIPTION("Package Level C-state Idle Injection for Intel CPUs");
781