linux/drivers/usb/storage/alauda.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Driver for Alauda-based card readers
   4 *
   5 * Current development and maintenance by:
   6 *   (c) 2005 Daniel Drake <dsd@gentoo.org>
   7 *
   8 * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
   9 *
  10 * Alauda implements a vendor-specific command set to access two media reader
  11 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
  12 * which are accepted by these devices.
  13 *
  14 * The driver was developed through reverse-engineering, with the help of the
  15 * sddr09 driver which has many similarities, and with some help from the
  16 * (very old) vendor-supplied GPL sma03 driver.
  17 *
  18 * For protocol info, see http://alauda.sourceforge.net
  19 */
  20
  21#include <linux/module.h>
  22#include <linux/slab.h>
  23
  24#include <scsi/scsi.h>
  25#include <scsi/scsi_cmnd.h>
  26#include <scsi/scsi_device.h>
  27
  28#include "usb.h"
  29#include "transport.h"
  30#include "protocol.h"
  31#include "debug.h"
  32#include "scsiglue.h"
  33
  34#define DRV_NAME "ums-alauda"
  35
  36MODULE_DESCRIPTION("Driver for Alauda-based card readers");
  37MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
  38MODULE_LICENSE("GPL");
  39MODULE_IMPORT_NS(USB_STORAGE);
  40
  41/*
  42 * Status bytes
  43 */
  44#define ALAUDA_STATUS_ERROR             0x01
  45#define ALAUDA_STATUS_READY             0x40
  46
  47/*
  48 * Control opcodes (for request field)
  49 */
  50#define ALAUDA_GET_XD_MEDIA_STATUS      0x08
  51#define ALAUDA_GET_SM_MEDIA_STATUS      0x98
  52#define ALAUDA_ACK_XD_MEDIA_CHANGE      0x0a
  53#define ALAUDA_ACK_SM_MEDIA_CHANGE      0x9a
  54#define ALAUDA_GET_XD_MEDIA_SIG         0x86
  55#define ALAUDA_GET_SM_MEDIA_SIG         0x96
  56
  57/*
  58 * Bulk command identity (byte 0)
  59 */
  60#define ALAUDA_BULK_CMD                 0x40
  61
  62/*
  63 * Bulk opcodes (byte 1)
  64 */
  65#define ALAUDA_BULK_GET_REDU_DATA       0x85
  66#define ALAUDA_BULK_READ_BLOCK          0x94
  67#define ALAUDA_BULK_ERASE_BLOCK         0xa3
  68#define ALAUDA_BULK_WRITE_BLOCK         0xb4
  69#define ALAUDA_BULK_GET_STATUS2         0xb7
  70#define ALAUDA_BULK_RESET_MEDIA         0xe0
  71
  72/*
  73 * Port to operate on (byte 8)
  74 */
  75#define ALAUDA_PORT_XD                  0x00
  76#define ALAUDA_PORT_SM                  0x01
  77
  78/*
  79 * LBA and PBA are unsigned ints. Special values.
  80 */
  81#define UNDEF    0xffff
  82#define SPARE    0xfffe
  83#define UNUSABLE 0xfffd
  84
  85struct alauda_media_info {
  86        unsigned long capacity;         /* total media size in bytes */
  87        unsigned int pagesize;          /* page size in bytes */
  88        unsigned int blocksize;         /* number of pages per block */
  89        unsigned int uzonesize;         /* number of usable blocks per zone */
  90        unsigned int zonesize;          /* number of blocks per zone */
  91        unsigned int blockmask;         /* mask to get page from address */
  92
  93        unsigned char pageshift;
  94        unsigned char blockshift;
  95        unsigned char zoneshift;
  96
  97        u16 **lba_to_pba;               /* logical to physical block map */
  98        u16 **pba_to_lba;               /* physical to logical block map */
  99};
 100
 101struct alauda_info {
 102        struct alauda_media_info port[2];
 103        int wr_ep;                      /* endpoint to write data out of */
 104
 105        unsigned char sense_key;
 106        unsigned long sense_asc;        /* additional sense code */
 107        unsigned long sense_ascq;       /* additional sense code qualifier */
 108};
 109
 110#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
 111#define LSB_of(s) ((s)&0xFF)
 112#define MSB_of(s) ((s)>>8)
 113
 114#define MEDIA_PORT(us) us->srb->device->lun
 115#define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
 116
 117#define PBA_LO(pba) ((pba & 0xF) << 5)
 118#define PBA_HI(pba) (pba >> 3)
 119#define PBA_ZONE(pba) (pba >> 11)
 120
 121static int init_alauda(struct us_data *us);
 122
 123
 124/*
 125 * The table of devices
 126 */
 127#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
 128                    vendorName, productName, useProtocol, useTransport, \
 129                    initFunction, flags) \
 130{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
 131  .driver_info = (flags) }
 132
 133static struct usb_device_id alauda_usb_ids[] = {
 134#       include "unusual_alauda.h"
 135        { }             /* Terminating entry */
 136};
 137MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
 138
 139#undef UNUSUAL_DEV
 140
 141/*
 142 * The flags table
 143 */
 144#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
 145                    vendor_name, product_name, use_protocol, use_transport, \
 146                    init_function, Flags) \
 147{ \
 148        .vendorName = vendor_name,      \
 149        .productName = product_name,    \
 150        .useProtocol = use_protocol,    \
 151        .useTransport = use_transport,  \
 152        .initFunction = init_function,  \
 153}
 154
 155static struct us_unusual_dev alauda_unusual_dev_list[] = {
 156#       include "unusual_alauda.h"
 157        { }             /* Terminating entry */
 158};
 159
 160#undef UNUSUAL_DEV
 161
 162
 163/*
 164 * Media handling
 165 */
 166
 167struct alauda_card_info {
 168        unsigned char id;               /* id byte */
 169        unsigned char chipshift;        /* 1<<cs bytes total capacity */
 170        unsigned char pageshift;        /* 1<<ps bytes in a page */
 171        unsigned char blockshift;       /* 1<<bs pages per block */
 172        unsigned char zoneshift;        /* 1<<zs blocks per zone */
 173};
 174
 175static struct alauda_card_info alauda_card_ids[] = {
 176        /* NAND flash */
 177        { 0x6e, 20, 8, 4, 8},   /* 1 MB */
 178        { 0xe8, 20, 8, 4, 8},   /* 1 MB */
 179        { 0xec, 20, 8, 4, 8},   /* 1 MB */
 180        { 0x64, 21, 8, 4, 9},   /* 2 MB */
 181        { 0xea, 21, 8, 4, 9},   /* 2 MB */
 182        { 0x6b, 22, 9, 4, 9},   /* 4 MB */
 183        { 0xe3, 22, 9, 4, 9},   /* 4 MB */
 184        { 0xe5, 22, 9, 4, 9},   /* 4 MB */
 185        { 0xe6, 23, 9, 4, 10},  /* 8 MB */
 186        { 0x73, 24, 9, 5, 10},  /* 16 MB */
 187        { 0x75, 25, 9, 5, 10},  /* 32 MB */
 188        { 0x76, 26, 9, 5, 10},  /* 64 MB */
 189        { 0x79, 27, 9, 5, 10},  /* 128 MB */
 190        { 0x71, 28, 9, 5, 10},  /* 256 MB */
 191
 192        /* MASK ROM */
 193        { 0x5d, 21, 9, 4, 8},   /* 2 MB */
 194        { 0xd5, 22, 9, 4, 9},   /* 4 MB */
 195        { 0xd6, 23, 9, 4, 10},  /* 8 MB */
 196        { 0x57, 24, 9, 4, 11},  /* 16 MB */
 197        { 0x58, 25, 9, 4, 12},  /* 32 MB */
 198        { 0,}
 199};
 200
 201static struct alauda_card_info *alauda_card_find_id(unsigned char id)
 202{
 203        int i;
 204
 205        for (i = 0; alauda_card_ids[i].id != 0; i++)
 206                if (alauda_card_ids[i].id == id)
 207                        return &(alauda_card_ids[i]);
 208        return NULL;
 209}
 210
 211/*
 212 * ECC computation.
 213 */
 214
 215static unsigned char parity[256];
 216static unsigned char ecc2[256];
 217
 218static void nand_init_ecc(void)
 219{
 220        int i, j, a;
 221
 222        parity[0] = 0;
 223        for (i = 1; i < 256; i++)
 224                parity[i] = (parity[i&(i-1)] ^ 1);
 225
 226        for (i = 0; i < 256; i++) {
 227                a = 0;
 228                for (j = 0; j < 8; j++) {
 229                        if (i & (1<<j)) {
 230                                if ((j & 1) == 0)
 231                                        a ^= 0x04;
 232                                if ((j & 2) == 0)
 233                                        a ^= 0x10;
 234                                if ((j & 4) == 0)
 235                                        a ^= 0x40;
 236                        }
 237                }
 238                ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
 239        }
 240}
 241
 242/* compute 3-byte ecc on 256 bytes */
 243static void nand_compute_ecc(unsigned char *data, unsigned char *ecc)
 244{
 245        int i, j, a;
 246        unsigned char par = 0, bit, bits[8] = {0};
 247
 248        /* collect 16 checksum bits */
 249        for (i = 0; i < 256; i++) {
 250                par ^= data[i];
 251                bit = parity[data[i]];
 252                for (j = 0; j < 8; j++)
 253                        if ((i & (1<<j)) == 0)
 254                                bits[j] ^= bit;
 255        }
 256
 257        /* put 4+4+4 = 12 bits in the ecc */
 258        a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
 259        ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 260
 261        a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
 262        ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 263
 264        ecc[2] = ecc2[par];
 265}
 266
 267static int nand_compare_ecc(unsigned char *data, unsigned char *ecc)
 268{
 269        return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
 270}
 271
 272static void nand_store_ecc(unsigned char *data, unsigned char *ecc)
 273{
 274        memcpy(data, ecc, 3);
 275}
 276
 277/*
 278 * Alauda driver
 279 */
 280
 281/*
 282 * Forget our PBA <---> LBA mappings for a particular port
 283 */
 284static void alauda_free_maps (struct alauda_media_info *media_info)
 285{
 286        unsigned int shift = media_info->zoneshift
 287                + media_info->blockshift + media_info->pageshift;
 288        unsigned int num_zones = media_info->capacity >> shift;
 289        unsigned int i;
 290
 291        if (media_info->lba_to_pba != NULL)
 292                for (i = 0; i < num_zones; i++) {
 293                        kfree(media_info->lba_to_pba[i]);
 294                        media_info->lba_to_pba[i] = NULL;
 295                }
 296
 297        if (media_info->pba_to_lba != NULL)
 298                for (i = 0; i < num_zones; i++) {
 299                        kfree(media_info->pba_to_lba[i]);
 300                        media_info->pba_to_lba[i] = NULL;
 301                }
 302}
 303
 304/*
 305 * Returns 2 bytes of status data
 306 * The first byte describes media status, and second byte describes door status
 307 */
 308static int alauda_get_media_status(struct us_data *us, unsigned char *data)
 309{
 310        int rc;
 311        unsigned char command;
 312
 313        if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
 314                command = ALAUDA_GET_XD_MEDIA_STATUS;
 315        else
 316                command = ALAUDA_GET_SM_MEDIA_STATUS;
 317
 318        rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
 319                command, 0xc0, 0, 1, data, 2);
 320
 321        usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]);
 322
 323        return rc;
 324}
 325
 326/*
 327 * Clears the "media was changed" bit so that we know when it changes again
 328 * in the future.
 329 */
 330static int alauda_ack_media(struct us_data *us)
 331{
 332        unsigned char command;
 333
 334        if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
 335                command = ALAUDA_ACK_XD_MEDIA_CHANGE;
 336        else
 337                command = ALAUDA_ACK_SM_MEDIA_CHANGE;
 338
 339        return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
 340                command, 0x40, 0, 1, NULL, 0);
 341}
 342
 343/*
 344 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
 345 * and some other details.
 346 */
 347static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
 348{
 349        unsigned char command;
 350
 351        if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
 352                command = ALAUDA_GET_XD_MEDIA_SIG;
 353        else
 354                command = ALAUDA_GET_SM_MEDIA_SIG;
 355
 356        return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
 357                command, 0xc0, 0, 0, data, 4);
 358}
 359
 360/*
 361 * Resets the media status (but not the whole device?)
 362 */
 363static int alauda_reset_media(struct us_data *us)
 364{
 365        unsigned char *command = us->iobuf;
 366
 367        memset(command, 0, 9);
 368        command[0] = ALAUDA_BULK_CMD;
 369        command[1] = ALAUDA_BULK_RESET_MEDIA;
 370        command[8] = MEDIA_PORT(us);
 371
 372        return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 373                command, 9, NULL);
 374}
 375
 376/*
 377 * Examines the media and deduces capacity, etc.
 378 */
 379static int alauda_init_media(struct us_data *us)
 380{
 381        unsigned char *data = us->iobuf;
 382        int ready = 0;
 383        struct alauda_card_info *media_info;
 384        unsigned int num_zones;
 385
 386        while (ready == 0) {
 387                msleep(20);
 388
 389                if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
 390                        return USB_STOR_TRANSPORT_ERROR;
 391
 392                if (data[0] & 0x10)
 393                        ready = 1;
 394        }
 395
 396        usb_stor_dbg(us, "We are ready for action!\n");
 397
 398        if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
 399                return USB_STOR_TRANSPORT_ERROR;
 400
 401        msleep(10);
 402
 403        if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
 404                return USB_STOR_TRANSPORT_ERROR;
 405
 406        if (data[0] != 0x14) {
 407                usb_stor_dbg(us, "Media not ready after ack\n");
 408                return USB_STOR_TRANSPORT_ERROR;
 409        }
 410
 411        if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
 412                return USB_STOR_TRANSPORT_ERROR;
 413
 414        usb_stor_dbg(us, "Media signature: %4ph\n", data);
 415        media_info = alauda_card_find_id(data[1]);
 416        if (media_info == NULL) {
 417                pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n",
 418                        data);
 419                return USB_STOR_TRANSPORT_ERROR;
 420        }
 421
 422        MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
 423        usb_stor_dbg(us, "Found media with capacity: %ldMB\n",
 424                     MEDIA_INFO(us).capacity >> 20);
 425
 426        MEDIA_INFO(us).pageshift = media_info->pageshift;
 427        MEDIA_INFO(us).blockshift = media_info->blockshift;
 428        MEDIA_INFO(us).zoneshift = media_info->zoneshift;
 429
 430        MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
 431        MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
 432        MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
 433
 434        MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
 435        MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
 436
 437        num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
 438                + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
 439        MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
 440        MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
 441
 442        if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
 443                return USB_STOR_TRANSPORT_ERROR;
 444
 445        return USB_STOR_TRANSPORT_GOOD;
 446}
 447
 448/*
 449 * Examines the media status and does the right thing when the media has gone,
 450 * appeared, or changed.
 451 */
 452static int alauda_check_media(struct us_data *us)
 453{
 454        struct alauda_info *info = (struct alauda_info *) us->extra;
 455        unsigned char status[2];
 456        int rc;
 457
 458        rc = alauda_get_media_status(us, status);
 459
 460        /* Check for no media or door open */
 461        if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
 462                || ((status[1] & 0x01) == 0)) {
 463                usb_stor_dbg(us, "No media, or door open\n");
 464                alauda_free_maps(&MEDIA_INFO(us));
 465                info->sense_key = 0x02;
 466                info->sense_asc = 0x3A;
 467                info->sense_ascq = 0x00;
 468                return USB_STOR_TRANSPORT_FAILED;
 469        }
 470
 471        /* Check for media change */
 472        if (status[0] & 0x08) {
 473                usb_stor_dbg(us, "Media change detected\n");
 474                alauda_free_maps(&MEDIA_INFO(us));
 475                alauda_init_media(us);
 476
 477                info->sense_key = UNIT_ATTENTION;
 478                info->sense_asc = 0x28;
 479                info->sense_ascq = 0x00;
 480                return USB_STOR_TRANSPORT_FAILED;
 481        }
 482
 483        return USB_STOR_TRANSPORT_GOOD;
 484}
 485
 486/*
 487 * Checks the status from the 2nd status register
 488 * Returns 3 bytes of status data, only the first is known
 489 */
 490static int alauda_check_status2(struct us_data *us)
 491{
 492        int rc;
 493        unsigned char command[] = {
 494                ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
 495                0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
 496        };
 497        unsigned char data[3];
 498
 499        rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 500                command, 9, NULL);
 501        if (rc != USB_STOR_XFER_GOOD)
 502                return rc;
 503
 504        rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 505                data, 3, NULL);
 506        if (rc != USB_STOR_XFER_GOOD)
 507                return rc;
 508
 509        usb_stor_dbg(us, "%3ph\n", data);
 510        if (data[0] & ALAUDA_STATUS_ERROR)
 511                return USB_STOR_XFER_ERROR;
 512
 513        return USB_STOR_XFER_GOOD;
 514}
 515
 516/*
 517 * Gets the redundancy data for the first page of a PBA
 518 * Returns 16 bytes.
 519 */
 520static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
 521{
 522        int rc;
 523        unsigned char command[] = {
 524                ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
 525                PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
 526        };
 527
 528        rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 529                command, 9, NULL);
 530        if (rc != USB_STOR_XFER_GOOD)
 531                return rc;
 532
 533        return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 534                data, 16, NULL);
 535}
 536
 537/*
 538 * Finds the first unused PBA in a zone
 539 * Returns the absolute PBA of an unused PBA, or 0 if none found.
 540 */
 541static u16 alauda_find_unused_pba(struct alauda_media_info *info,
 542        unsigned int zone)
 543{
 544        u16 *pba_to_lba = info->pba_to_lba[zone];
 545        unsigned int i;
 546
 547        for (i = 0; i < info->zonesize; i++)
 548                if (pba_to_lba[i] == UNDEF)
 549                        return (zone << info->zoneshift) + i;
 550
 551        return 0;
 552}
 553
 554/*
 555 * Reads the redundancy data for all PBA's in a zone
 556 * Produces lba <--> pba mappings
 557 */
 558static int alauda_read_map(struct us_data *us, unsigned int zone)
 559{
 560        unsigned char *data = us->iobuf;
 561        int result;
 562        int i, j;
 563        unsigned int zonesize = MEDIA_INFO(us).zonesize;
 564        unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
 565        unsigned int lba_offset, lba_real, blocknum;
 566        unsigned int zone_base_lba = zone * uzonesize;
 567        unsigned int zone_base_pba = zone * zonesize;
 568        u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
 569        u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
 570        if (lba_to_pba == NULL || pba_to_lba == NULL) {
 571                result = USB_STOR_TRANSPORT_ERROR;
 572                goto error;
 573        }
 574
 575        usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone);
 576
 577        /* 1024 PBA's per zone */
 578        for (i = 0; i < zonesize; i++)
 579                lba_to_pba[i] = pba_to_lba[i] = UNDEF;
 580
 581        for (i = 0; i < zonesize; i++) {
 582                blocknum = zone_base_pba + i;
 583
 584                result = alauda_get_redu_data(us, blocknum, data);
 585                if (result != USB_STOR_XFER_GOOD) {
 586                        result = USB_STOR_TRANSPORT_ERROR;
 587                        goto error;
 588                }
 589
 590                /* special PBAs have control field 0^16 */
 591                for (j = 0; j < 16; j++)
 592                        if (data[j] != 0)
 593                                goto nonz;
 594                pba_to_lba[i] = UNUSABLE;
 595                usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum);
 596                continue;
 597
 598        nonz:
 599                /* unwritten PBAs have control field FF^16 */
 600                for (j = 0; j < 16; j++)
 601                        if (data[j] != 0xff)
 602                                goto nonff;
 603                continue;
 604
 605        nonff:
 606                /* normal PBAs start with six FFs */
 607                if (j < 6) {
 608                        usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n",
 609                                     blocknum,
 610                                     data[0], data[1], data[2], data[3],
 611                                     data[4], data[5]);
 612                        pba_to_lba[i] = UNUSABLE;
 613                        continue;
 614                }
 615
 616                if ((data[6] >> 4) != 0x01) {
 617                        usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n",
 618                                     blocknum, data[6], data[7],
 619                                     data[11], data[12]);
 620                        pba_to_lba[i] = UNUSABLE;
 621                        continue;
 622                }
 623
 624                /* check even parity */
 625                if (parity[data[6] ^ data[7]]) {
 626                        printk(KERN_WARNING
 627                               "alauda_read_map: Bad parity in LBA for block %d"
 628                               " (%02X %02X)\n", i, data[6], data[7]);
 629                        pba_to_lba[i] = UNUSABLE;
 630                        continue;
 631                }
 632
 633                lba_offset = short_pack(data[7], data[6]);
 634                lba_offset = (lba_offset & 0x07FF) >> 1;
 635                lba_real = lba_offset + zone_base_lba;
 636
 637                /*
 638                 * Every 1024 physical blocks ("zone"), the LBA numbers
 639                 * go back to zero, but are within a higher block of LBA's.
 640                 * Also, there is a maximum of 1000 LBA's per zone.
 641                 * In other words, in PBA 1024-2047 you will find LBA 0-999
 642                 * which are really LBA 1000-1999. This allows for 24 bad
 643                 * or special physical blocks per zone.
 644                 */
 645
 646                if (lba_offset >= uzonesize) {
 647                        printk(KERN_WARNING
 648                               "alauda_read_map: Bad low LBA %d for block %d\n",
 649                               lba_real, blocknum);
 650                        continue;
 651                }
 652
 653                if (lba_to_pba[lba_offset] != UNDEF) {
 654                        printk(KERN_WARNING
 655                               "alauda_read_map: "
 656                               "LBA %d seen for PBA %d and %d\n",
 657                               lba_real, lba_to_pba[lba_offset], blocknum);
 658                        continue;
 659                }
 660
 661                pba_to_lba[i] = lba_real;
 662                lba_to_pba[lba_offset] = blocknum;
 663                continue;
 664        }
 665
 666        MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
 667        MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
 668        result = 0;
 669        goto out;
 670
 671error:
 672        kfree(lba_to_pba);
 673        kfree(pba_to_lba);
 674out:
 675        return result;
 676}
 677
 678/*
 679 * Checks to see whether we have already mapped a certain zone
 680 * If we haven't, the map is generated
 681 */
 682static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
 683{
 684        if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
 685                || MEDIA_INFO(us).pba_to_lba[zone] == NULL)
 686                alauda_read_map(us, zone);
 687}
 688
 689/*
 690 * Erases an entire block
 691 */
 692static int alauda_erase_block(struct us_data *us, u16 pba)
 693{
 694        int rc;
 695        unsigned char command[] = {
 696                ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
 697                PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
 698        };
 699        unsigned char buf[2];
 700
 701        usb_stor_dbg(us, "Erasing PBA %d\n", pba);
 702
 703        rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 704                command, 9, NULL);
 705        if (rc != USB_STOR_XFER_GOOD)
 706                return rc;
 707
 708        rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 709                buf, 2, NULL);
 710        if (rc != USB_STOR_XFER_GOOD)
 711                return rc;
 712
 713        usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]);
 714        return rc;
 715}
 716
 717/*
 718 * Reads data from a certain offset page inside a PBA, including interleaved
 719 * redundancy data. Returns (pagesize+64)*pages bytes in data.
 720 */
 721static int alauda_read_block_raw(struct us_data *us, u16 pba,
 722                unsigned int page, unsigned int pages, unsigned char *data)
 723{
 724        int rc;
 725        unsigned char command[] = {
 726                ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
 727                PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
 728        };
 729
 730        usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages);
 731
 732        rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 733                command, 9, NULL);
 734        if (rc != USB_STOR_XFER_GOOD)
 735                return rc;
 736
 737        return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 738                data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
 739}
 740
 741/*
 742 * Reads data from a certain offset page inside a PBA, excluding redundancy
 743 * data. Returns pagesize*pages bytes in data. Note that data must be big enough
 744 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
 745 * trailing bytes outside this function.
 746 */
 747static int alauda_read_block(struct us_data *us, u16 pba,
 748                unsigned int page, unsigned int pages, unsigned char *data)
 749{
 750        int i, rc;
 751        unsigned int pagesize = MEDIA_INFO(us).pagesize;
 752
 753        rc = alauda_read_block_raw(us, pba, page, pages, data);
 754        if (rc != USB_STOR_XFER_GOOD)
 755                return rc;
 756
 757        /* Cut out the redundancy data */
 758        for (i = 0; i < pages; i++) {
 759                int dest_offset = i * pagesize;
 760                int src_offset = i * (pagesize + 64);
 761                memmove(data + dest_offset, data + src_offset, pagesize);
 762        }
 763
 764        return rc;
 765}
 766
 767/*
 768 * Writes an entire block of data and checks status after write.
 769 * Redundancy data must be already included in data. Data should be
 770 * (pagesize+64)*blocksize bytes in length.
 771 */
 772static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
 773{
 774        int rc;
 775        struct alauda_info *info = (struct alauda_info *) us->extra;
 776        unsigned char command[] = {
 777                ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
 778                PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
 779        };
 780
 781        usb_stor_dbg(us, "pba %d\n", pba);
 782
 783        rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 784                command, 9, NULL);
 785        if (rc != USB_STOR_XFER_GOOD)
 786                return rc;
 787
 788        rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
 789                (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
 790                NULL);
 791        if (rc != USB_STOR_XFER_GOOD)
 792                return rc;
 793
 794        return alauda_check_status2(us);
 795}
 796
 797/*
 798 * Write some data to a specific LBA.
 799 */
 800static int alauda_write_lba(struct us_data *us, u16 lba,
 801                 unsigned int page, unsigned int pages,
 802                 unsigned char *ptr, unsigned char *blockbuffer)
 803{
 804        u16 pba, lbap, new_pba;
 805        unsigned char *bptr, *cptr, *xptr;
 806        unsigned char ecc[3];
 807        int i, result;
 808        unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
 809        unsigned int zonesize = MEDIA_INFO(us).zonesize;
 810        unsigned int pagesize = MEDIA_INFO(us).pagesize;
 811        unsigned int blocksize = MEDIA_INFO(us).blocksize;
 812        unsigned int lba_offset = lba % uzonesize;
 813        unsigned int new_pba_offset;
 814        unsigned int zone = lba / uzonesize;
 815
 816        alauda_ensure_map_for_zone(us, zone);
 817
 818        pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
 819        if (pba == 1) {
 820                /*
 821                 * Maybe it is impossible to write to PBA 1.
 822                 * Fake success, but don't do anything.
 823                 */
 824                printk(KERN_WARNING
 825                       "alauda_write_lba: avoid writing to pba 1\n");
 826                return USB_STOR_TRANSPORT_GOOD;
 827        }
 828
 829        new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
 830        if (!new_pba) {
 831                printk(KERN_WARNING
 832                       "alauda_write_lba: Out of unused blocks\n");
 833                return USB_STOR_TRANSPORT_ERROR;
 834        }
 835
 836        /* read old contents */
 837        if (pba != UNDEF) {
 838                result = alauda_read_block_raw(us, pba, 0,
 839                        blocksize, blockbuffer);
 840                if (result != USB_STOR_XFER_GOOD)
 841                        return result;
 842        } else {
 843                memset(blockbuffer, 0, blocksize * (pagesize + 64));
 844        }
 845
 846        lbap = (lba_offset << 1) | 0x1000;
 847        if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
 848                lbap ^= 1;
 849
 850        /* check old contents and fill lba */
 851        for (i = 0; i < blocksize; i++) {
 852                bptr = blockbuffer + (i * (pagesize + 64));
 853                cptr = bptr + pagesize;
 854                nand_compute_ecc(bptr, ecc);
 855                if (!nand_compare_ecc(cptr+13, ecc)) {
 856                        usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
 857                                     i, pba);
 858                        nand_store_ecc(cptr+13, ecc);
 859                }
 860                nand_compute_ecc(bptr + (pagesize / 2), ecc);
 861                if (!nand_compare_ecc(cptr+8, ecc)) {
 862                        usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
 863                                     i, pba);
 864                        nand_store_ecc(cptr+8, ecc);
 865                }
 866                cptr[6] = cptr[11] = MSB_of(lbap);
 867                cptr[7] = cptr[12] = LSB_of(lbap);
 868        }
 869
 870        /* copy in new stuff and compute ECC */
 871        xptr = ptr;
 872        for (i = page; i < page+pages; i++) {
 873                bptr = blockbuffer + (i * (pagesize + 64));
 874                cptr = bptr + pagesize;
 875                memcpy(bptr, xptr, pagesize);
 876                xptr += pagesize;
 877                nand_compute_ecc(bptr, ecc);
 878                nand_store_ecc(cptr+13, ecc);
 879                nand_compute_ecc(bptr + (pagesize / 2), ecc);
 880                nand_store_ecc(cptr+8, ecc);
 881        }
 882
 883        result = alauda_write_block(us, new_pba, blockbuffer);
 884        if (result != USB_STOR_XFER_GOOD)
 885                return result;
 886
 887        new_pba_offset = new_pba - (zone * zonesize);
 888        MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
 889        MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
 890        usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba);
 891
 892        if (pba != UNDEF) {
 893                unsigned int pba_offset = pba - (zone * zonesize);
 894                result = alauda_erase_block(us, pba);
 895                if (result != USB_STOR_XFER_GOOD)
 896                        return result;
 897                MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
 898        }
 899
 900        return USB_STOR_TRANSPORT_GOOD;
 901}
 902
 903/*
 904 * Read data from a specific sector address
 905 */
 906static int alauda_read_data(struct us_data *us, unsigned long address,
 907                unsigned int sectors)
 908{
 909        unsigned char *buffer;
 910        u16 lba, max_lba;
 911        unsigned int page, len, offset;
 912        unsigned int blockshift = MEDIA_INFO(us).blockshift;
 913        unsigned int pageshift = MEDIA_INFO(us).pageshift;
 914        unsigned int blocksize = MEDIA_INFO(us).blocksize;
 915        unsigned int pagesize = MEDIA_INFO(us).pagesize;
 916        unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
 917        struct scatterlist *sg;
 918        int result;
 919
 920        /*
 921         * Since we only read in one block at a time, we have to create
 922         * a bounce buffer and move the data a piece at a time between the
 923         * bounce buffer and the actual transfer buffer.
 924         * We make this buffer big enough to hold temporary redundancy data,
 925         * which we use when reading the data blocks.
 926         */
 927
 928        len = min(sectors, blocksize) * (pagesize + 64);
 929        buffer = kmalloc(len, GFP_NOIO);
 930        if (!buffer)
 931                return USB_STOR_TRANSPORT_ERROR;
 932
 933        /* Figure out the initial LBA and page */
 934        lba = address >> blockshift;
 935        page = (address & MEDIA_INFO(us).blockmask);
 936        max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
 937
 938        result = USB_STOR_TRANSPORT_GOOD;
 939        offset = 0;
 940        sg = NULL;
 941
 942        while (sectors > 0) {
 943                unsigned int zone = lba / uzonesize; /* integer division */
 944                unsigned int lba_offset = lba - (zone * uzonesize);
 945                unsigned int pages;
 946                u16 pba;
 947                alauda_ensure_map_for_zone(us, zone);
 948
 949                /* Not overflowing capacity? */
 950                if (lba >= max_lba) {
 951                        usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
 952                                     lba, max_lba);
 953                        result = USB_STOR_TRANSPORT_ERROR;
 954                        break;
 955                }
 956
 957                /* Find number of pages we can read in this block */
 958                pages = min(sectors, blocksize - page);
 959                len = pages << pageshift;
 960
 961                /* Find where this lba lives on disk */
 962                pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
 963
 964                if (pba == UNDEF) {     /* this lba was never written */
 965                        usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
 966                                     pages, lba, page);
 967
 968                        /*
 969                         * This is not really an error. It just means
 970                         * that the block has never been written.
 971                         * Instead of returning USB_STOR_TRANSPORT_ERROR
 972                         * it is better to return all zero data.
 973                         */
 974
 975                        memset(buffer, 0, len);
 976                } else {
 977                        usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
 978                                     pages, pba, lba, page);
 979
 980                        result = alauda_read_block(us, pba, page, pages, buffer);
 981                        if (result != USB_STOR_TRANSPORT_GOOD)
 982                                break;
 983                }
 984
 985                /* Store the data in the transfer buffer */
 986                usb_stor_access_xfer_buf(buffer, len, us->srb,
 987                                &sg, &offset, TO_XFER_BUF);
 988
 989                page = 0;
 990                lba++;
 991                sectors -= pages;
 992        }
 993
 994        kfree(buffer);
 995        return result;
 996}
 997
 998/*
 999 * Write data to a specific sector address
1000 */
1001static int alauda_write_data(struct us_data *us, unsigned long address,
1002                unsigned int sectors)
1003{
1004        unsigned char *buffer, *blockbuffer;
1005        unsigned int page, len, offset;
1006        unsigned int blockshift = MEDIA_INFO(us).blockshift;
1007        unsigned int pageshift = MEDIA_INFO(us).pageshift;
1008        unsigned int blocksize = MEDIA_INFO(us).blocksize;
1009        unsigned int pagesize = MEDIA_INFO(us).pagesize;
1010        struct scatterlist *sg;
1011        u16 lba, max_lba;
1012        int result;
1013
1014        /*
1015         * Since we don't write the user data directly to the device,
1016         * we have to create a bounce buffer and move the data a piece
1017         * at a time between the bounce buffer and the actual transfer buffer.
1018         */
1019
1020        len = min(sectors, blocksize) * pagesize;
1021        buffer = kmalloc(len, GFP_NOIO);
1022        if (!buffer)
1023                return USB_STOR_TRANSPORT_ERROR;
1024
1025        /*
1026         * We also need a temporary block buffer, where we read in the old data,
1027         * overwrite parts with the new data, and manipulate the redundancy data
1028         */
1029        blockbuffer = kmalloc_array(pagesize + 64, blocksize, GFP_NOIO);
1030        if (!blockbuffer) {
1031                kfree(buffer);
1032                return USB_STOR_TRANSPORT_ERROR;
1033        }
1034
1035        /* Figure out the initial LBA and page */
1036        lba = address >> blockshift;
1037        page = (address & MEDIA_INFO(us).blockmask);
1038        max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1039
1040        result = USB_STOR_TRANSPORT_GOOD;
1041        offset = 0;
1042        sg = NULL;
1043
1044        while (sectors > 0) {
1045                /* Write as many sectors as possible in this block */
1046                unsigned int pages = min(sectors, blocksize - page);
1047                len = pages << pageshift;
1048
1049                /* Not overflowing capacity? */
1050                if (lba >= max_lba) {
1051                        usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n",
1052                                     lba, max_lba);
1053                        result = USB_STOR_TRANSPORT_ERROR;
1054                        break;
1055                }
1056
1057                /* Get the data from the transfer buffer */
1058                usb_stor_access_xfer_buf(buffer, len, us->srb,
1059                                &sg, &offset, FROM_XFER_BUF);
1060
1061                result = alauda_write_lba(us, lba, page, pages, buffer,
1062                        blockbuffer);
1063                if (result != USB_STOR_TRANSPORT_GOOD)
1064                        break;
1065
1066                page = 0;
1067                lba++;
1068                sectors -= pages;
1069        }
1070
1071        kfree(buffer);
1072        kfree(blockbuffer);
1073        return result;
1074}
1075
1076/*
1077 * Our interface with the rest of the world
1078 */
1079
1080static void alauda_info_destructor(void *extra)
1081{
1082        struct alauda_info *info = (struct alauda_info *) extra;
1083        int port;
1084
1085        if (!info)
1086                return;
1087
1088        for (port = 0; port < 2; port++) {
1089                struct alauda_media_info *media_info = &info->port[port];
1090
1091                alauda_free_maps(media_info);
1092                kfree(media_info->lba_to_pba);
1093                kfree(media_info->pba_to_lba);
1094        }
1095}
1096
1097/*
1098 * Initialize alauda_info struct and find the data-write endpoint
1099 */
1100static int init_alauda(struct us_data *us)
1101{
1102        struct alauda_info *info;
1103        struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1104        nand_init_ecc();
1105
1106        us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
1107        if (!us->extra)
1108                return USB_STOR_TRANSPORT_ERROR;
1109
1110        info = (struct alauda_info *) us->extra;
1111        us->extra_destructor = alauda_info_destructor;
1112
1113        info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1114                altsetting->endpoint[0].desc.bEndpointAddress
1115                & USB_ENDPOINT_NUMBER_MASK);
1116
1117        return USB_STOR_TRANSPORT_GOOD;
1118}
1119
1120static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1121{
1122        int rc;
1123        struct alauda_info *info = (struct alauda_info *) us->extra;
1124        unsigned char *ptr = us->iobuf;
1125        static unsigned char inquiry_response[36] = {
1126                0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1127        };
1128
1129        if (srb->cmnd[0] == INQUIRY) {
1130                usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
1131                memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1132                fill_inquiry_response(us, ptr, 36);
1133                return USB_STOR_TRANSPORT_GOOD;
1134        }
1135
1136        if (srb->cmnd[0] == TEST_UNIT_READY) {
1137                usb_stor_dbg(us, "TEST_UNIT_READY\n");
1138                return alauda_check_media(us);
1139        }
1140
1141        if (srb->cmnd[0] == READ_CAPACITY) {
1142                unsigned int num_zones;
1143                unsigned long capacity;
1144
1145                rc = alauda_check_media(us);
1146                if (rc != USB_STOR_TRANSPORT_GOOD)
1147                        return rc;
1148
1149                num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1150                        + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1151
1152                capacity = num_zones * MEDIA_INFO(us).uzonesize
1153                        * MEDIA_INFO(us).blocksize;
1154
1155                /* Report capacity and page size */
1156                ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1157                ((__be32 *) ptr)[1] = cpu_to_be32(512);
1158
1159                usb_stor_set_xfer_buf(ptr, 8, srb);
1160                return USB_STOR_TRANSPORT_GOOD;
1161        }
1162
1163        if (srb->cmnd[0] == READ_10) {
1164                unsigned int page, pages;
1165
1166                rc = alauda_check_media(us);
1167                if (rc != USB_STOR_TRANSPORT_GOOD)
1168                        return rc;
1169
1170                page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1171                page <<= 16;
1172                page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1173                pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1174
1175                usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages);
1176
1177                return alauda_read_data(us, page, pages);
1178        }
1179
1180        if (srb->cmnd[0] == WRITE_10) {
1181                unsigned int page, pages;
1182
1183                rc = alauda_check_media(us);
1184                if (rc != USB_STOR_TRANSPORT_GOOD)
1185                        return rc;
1186
1187                page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1188                page <<= 16;
1189                page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1190                pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1191
1192                usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages);
1193
1194                return alauda_write_data(us, page, pages);
1195        }
1196
1197        if (srb->cmnd[0] == REQUEST_SENSE) {
1198                usb_stor_dbg(us, "REQUEST_SENSE\n");
1199
1200                memset(ptr, 0, 18);
1201                ptr[0] = 0xF0;
1202                ptr[2] = info->sense_key;
1203                ptr[7] = 11;
1204                ptr[12] = info->sense_asc;
1205                ptr[13] = info->sense_ascq;
1206                usb_stor_set_xfer_buf(ptr, 18, srb);
1207
1208                return USB_STOR_TRANSPORT_GOOD;
1209        }
1210
1211        if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1212                /*
1213                 * sure.  whatever.  not like we can stop the user from popping
1214                 * the media out of the device (no locking doors, etc)
1215                 */
1216                return USB_STOR_TRANSPORT_GOOD;
1217        }
1218
1219        usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
1220                     srb->cmnd[0], srb->cmnd[0]);
1221        info->sense_key = 0x05;
1222        info->sense_asc = 0x20;
1223        info->sense_ascq = 0x00;
1224        return USB_STOR_TRANSPORT_FAILED;
1225}
1226
1227static struct scsi_host_template alauda_host_template;
1228
1229static int alauda_probe(struct usb_interface *intf,
1230                         const struct usb_device_id *id)
1231{
1232        struct us_data *us;
1233        int result;
1234
1235        result = usb_stor_probe1(&us, intf, id,
1236                        (id - alauda_usb_ids) + alauda_unusual_dev_list,
1237                        &alauda_host_template);
1238        if (result)
1239                return result;
1240
1241        us->transport_name  = "Alauda Control/Bulk";
1242        us->transport = alauda_transport;
1243        us->transport_reset = usb_stor_Bulk_reset;
1244        us->max_lun = 1;
1245
1246        result = usb_stor_probe2(us);
1247        return result;
1248}
1249
1250static struct usb_driver alauda_driver = {
1251        .name =         DRV_NAME,
1252        .probe =        alauda_probe,
1253        .disconnect =   usb_stor_disconnect,
1254        .suspend =      usb_stor_suspend,
1255        .resume =       usb_stor_resume,
1256        .reset_resume = usb_stor_reset_resume,
1257        .pre_reset =    usb_stor_pre_reset,
1258        .post_reset =   usb_stor_post_reset,
1259        .id_table =     alauda_usb_ids,
1260        .soft_unbind =  1,
1261        .no_dynamic_id = 1,
1262};
1263
1264module_usb_stor_driver(alauda_driver, alauda_host_template, DRV_NAME);
1265