linux/fs/btrfs/ctree.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/rbtree.h>
   9#include <linux/mm.h>
  10#include "ctree.h"
  11#include "disk-io.h"
  12#include "transaction.h"
  13#include "print-tree.h"
  14#include "locking.h"
  15#include "volumes.h"
  16#include "qgroup.h"
  17
  18static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  19                      *root, struct btrfs_path *path, int level);
  20static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  21                      const struct btrfs_key *ins_key, struct btrfs_path *path,
  22                      int data_size, int extend);
  23static int push_node_left(struct btrfs_trans_handle *trans,
  24                          struct extent_buffer *dst,
  25                          struct extent_buffer *src, int empty);
  26static int balance_node_right(struct btrfs_trans_handle *trans,
  27                              struct extent_buffer *dst_buf,
  28                              struct extent_buffer *src_buf);
  29static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  30                    int level, int slot);
  31
  32static const struct btrfs_csums {
  33        u16             size;
  34        const char      *name;
  35} btrfs_csums[] = {
  36        [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
  37};
  38
  39int btrfs_super_csum_size(const struct btrfs_super_block *s)
  40{
  41        u16 t = btrfs_super_csum_type(s);
  42        /*
  43         * csum type is validated at mount time
  44         */
  45        return btrfs_csums[t].size;
  46}
  47
  48const char *btrfs_super_csum_name(u16 csum_type)
  49{
  50        /* csum type is validated at mount time */
  51        return btrfs_csums[csum_type].name;
  52}
  53
  54struct btrfs_path *btrfs_alloc_path(void)
  55{
  56        return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  57}
  58
  59/*
  60 * set all locked nodes in the path to blocking locks.  This should
  61 * be done before scheduling
  62 */
  63noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  64{
  65        int i;
  66        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  67                if (!p->nodes[i] || !p->locks[i])
  68                        continue;
  69                /*
  70                 * If we currently have a spinning reader or writer lock this
  71                 * will bump the count of blocking holders and drop the
  72                 * spinlock.
  73                 */
  74                if (p->locks[i] == BTRFS_READ_LOCK) {
  75                        btrfs_set_lock_blocking_read(p->nodes[i]);
  76                        p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  77                } else if (p->locks[i] == BTRFS_WRITE_LOCK) {
  78                        btrfs_set_lock_blocking_write(p->nodes[i]);
  79                        p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  80                }
  81        }
  82}
  83
  84/* this also releases the path */
  85void btrfs_free_path(struct btrfs_path *p)
  86{
  87        if (!p)
  88                return;
  89        btrfs_release_path(p);
  90        kmem_cache_free(btrfs_path_cachep, p);
  91}
  92
  93/*
  94 * path release drops references on the extent buffers in the path
  95 * and it drops any locks held by this path
  96 *
  97 * It is safe to call this on paths that no locks or extent buffers held.
  98 */
  99noinline void btrfs_release_path(struct btrfs_path *p)
 100{
 101        int i;
 102
 103        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 104                p->slots[i] = 0;
 105                if (!p->nodes[i])
 106                        continue;
 107                if (p->locks[i]) {
 108                        btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 109                        p->locks[i] = 0;
 110                }
 111                free_extent_buffer(p->nodes[i]);
 112                p->nodes[i] = NULL;
 113        }
 114}
 115
 116/*
 117 * safely gets a reference on the root node of a tree.  A lock
 118 * is not taken, so a concurrent writer may put a different node
 119 * at the root of the tree.  See btrfs_lock_root_node for the
 120 * looping required.
 121 *
 122 * The extent buffer returned by this has a reference taken, so
 123 * it won't disappear.  It may stop being the root of the tree
 124 * at any time because there are no locks held.
 125 */
 126struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 127{
 128        struct extent_buffer *eb;
 129
 130        while (1) {
 131                rcu_read_lock();
 132                eb = rcu_dereference(root->node);
 133
 134                /*
 135                 * RCU really hurts here, we could free up the root node because
 136                 * it was COWed but we may not get the new root node yet so do
 137                 * the inc_not_zero dance and if it doesn't work then
 138                 * synchronize_rcu and try again.
 139                 */
 140                if (atomic_inc_not_zero(&eb->refs)) {
 141                        rcu_read_unlock();
 142                        break;
 143                }
 144                rcu_read_unlock();
 145                synchronize_rcu();
 146        }
 147        return eb;
 148}
 149
 150/* loop around taking references on and locking the root node of the
 151 * tree until you end up with a lock on the root.  A locked buffer
 152 * is returned, with a reference held.
 153 */
 154struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 155{
 156        struct extent_buffer *eb;
 157
 158        while (1) {
 159                eb = btrfs_root_node(root);
 160                btrfs_tree_lock(eb);
 161                if (eb == root->node)
 162                        break;
 163                btrfs_tree_unlock(eb);
 164                free_extent_buffer(eb);
 165        }
 166        return eb;
 167}
 168
 169/* loop around taking references on and locking the root node of the
 170 * tree until you end up with a lock on the root.  A locked buffer
 171 * is returned, with a reference held.
 172 */
 173struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
 174{
 175        struct extent_buffer *eb;
 176
 177        while (1) {
 178                eb = btrfs_root_node(root);
 179                btrfs_tree_read_lock(eb);
 180                if (eb == root->node)
 181                        break;
 182                btrfs_tree_read_unlock(eb);
 183                free_extent_buffer(eb);
 184        }
 185        return eb;
 186}
 187
 188/* cowonly root (everything not a reference counted cow subvolume), just get
 189 * put onto a simple dirty list.  transaction.c walks this to make sure they
 190 * get properly updated on disk.
 191 */
 192static void add_root_to_dirty_list(struct btrfs_root *root)
 193{
 194        struct btrfs_fs_info *fs_info = root->fs_info;
 195
 196        if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 197            !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 198                return;
 199
 200        spin_lock(&fs_info->trans_lock);
 201        if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 202                /* Want the extent tree to be the last on the list */
 203                if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
 204                        list_move_tail(&root->dirty_list,
 205                                       &fs_info->dirty_cowonly_roots);
 206                else
 207                        list_move(&root->dirty_list,
 208                                  &fs_info->dirty_cowonly_roots);
 209        }
 210        spin_unlock(&fs_info->trans_lock);
 211}
 212
 213/*
 214 * used by snapshot creation to make a copy of a root for a tree with
 215 * a given objectid.  The buffer with the new root node is returned in
 216 * cow_ret, and this func returns zero on success or a negative error code.
 217 */
 218int btrfs_copy_root(struct btrfs_trans_handle *trans,
 219                      struct btrfs_root *root,
 220                      struct extent_buffer *buf,
 221                      struct extent_buffer **cow_ret, u64 new_root_objectid)
 222{
 223        struct btrfs_fs_info *fs_info = root->fs_info;
 224        struct extent_buffer *cow;
 225        int ret = 0;
 226        int level;
 227        struct btrfs_disk_key disk_key;
 228
 229        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 230                trans->transid != fs_info->running_transaction->transid);
 231        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 232                trans->transid != root->last_trans);
 233
 234        level = btrfs_header_level(buf);
 235        if (level == 0)
 236                btrfs_item_key(buf, &disk_key, 0);
 237        else
 238                btrfs_node_key(buf, &disk_key, 0);
 239
 240        cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 241                        &disk_key, level, buf->start, 0);
 242        if (IS_ERR(cow))
 243                return PTR_ERR(cow);
 244
 245        copy_extent_buffer_full(cow, buf);
 246        btrfs_set_header_bytenr(cow, cow->start);
 247        btrfs_set_header_generation(cow, trans->transid);
 248        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 249        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 250                                     BTRFS_HEADER_FLAG_RELOC);
 251        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 252                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 253        else
 254                btrfs_set_header_owner(cow, new_root_objectid);
 255
 256        write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 257
 258        WARN_ON(btrfs_header_generation(buf) > trans->transid);
 259        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 260                ret = btrfs_inc_ref(trans, root, cow, 1);
 261        else
 262                ret = btrfs_inc_ref(trans, root, cow, 0);
 263
 264        if (ret)
 265                return ret;
 266
 267        btrfs_mark_buffer_dirty(cow);
 268        *cow_ret = cow;
 269        return 0;
 270}
 271
 272enum mod_log_op {
 273        MOD_LOG_KEY_REPLACE,
 274        MOD_LOG_KEY_ADD,
 275        MOD_LOG_KEY_REMOVE,
 276        MOD_LOG_KEY_REMOVE_WHILE_FREEING,
 277        MOD_LOG_KEY_REMOVE_WHILE_MOVING,
 278        MOD_LOG_MOVE_KEYS,
 279        MOD_LOG_ROOT_REPLACE,
 280};
 281
 282struct tree_mod_root {
 283        u64 logical;
 284        u8 level;
 285};
 286
 287struct tree_mod_elem {
 288        struct rb_node node;
 289        u64 logical;
 290        u64 seq;
 291        enum mod_log_op op;
 292
 293        /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
 294        int slot;
 295
 296        /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
 297        u64 generation;
 298
 299        /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
 300        struct btrfs_disk_key key;
 301        u64 blockptr;
 302
 303        /* this is used for op == MOD_LOG_MOVE_KEYS */
 304        struct {
 305                int dst_slot;
 306                int nr_items;
 307        } move;
 308
 309        /* this is used for op == MOD_LOG_ROOT_REPLACE */
 310        struct tree_mod_root old_root;
 311};
 312
 313/*
 314 * Pull a new tree mod seq number for our operation.
 315 */
 316static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
 317{
 318        return atomic64_inc_return(&fs_info->tree_mod_seq);
 319}
 320
 321/*
 322 * This adds a new blocker to the tree mod log's blocker list if the @elem
 323 * passed does not already have a sequence number set. So when a caller expects
 324 * to record tree modifications, it should ensure to set elem->seq to zero
 325 * before calling btrfs_get_tree_mod_seq.
 326 * Returns a fresh, unused tree log modification sequence number, even if no new
 327 * blocker was added.
 328 */
 329u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 330                           struct seq_list *elem)
 331{
 332        write_lock(&fs_info->tree_mod_log_lock);
 333        spin_lock(&fs_info->tree_mod_seq_lock);
 334        if (!elem->seq) {
 335                elem->seq = btrfs_inc_tree_mod_seq(fs_info);
 336                list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 337        }
 338        spin_unlock(&fs_info->tree_mod_seq_lock);
 339        write_unlock(&fs_info->tree_mod_log_lock);
 340
 341        return elem->seq;
 342}
 343
 344void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 345                            struct seq_list *elem)
 346{
 347        struct rb_root *tm_root;
 348        struct rb_node *node;
 349        struct rb_node *next;
 350        struct seq_list *cur_elem;
 351        struct tree_mod_elem *tm;
 352        u64 min_seq = (u64)-1;
 353        u64 seq_putting = elem->seq;
 354
 355        if (!seq_putting)
 356                return;
 357
 358        spin_lock(&fs_info->tree_mod_seq_lock);
 359        list_del(&elem->list);
 360        elem->seq = 0;
 361
 362        list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
 363                if (cur_elem->seq < min_seq) {
 364                        if (seq_putting > cur_elem->seq) {
 365                                /*
 366                                 * blocker with lower sequence number exists, we
 367                                 * cannot remove anything from the log
 368                                 */
 369                                spin_unlock(&fs_info->tree_mod_seq_lock);
 370                                return;
 371                        }
 372                        min_seq = cur_elem->seq;
 373                }
 374        }
 375        spin_unlock(&fs_info->tree_mod_seq_lock);
 376
 377        /*
 378         * anything that's lower than the lowest existing (read: blocked)
 379         * sequence number can be removed from the tree.
 380         */
 381        write_lock(&fs_info->tree_mod_log_lock);
 382        tm_root = &fs_info->tree_mod_log;
 383        for (node = rb_first(tm_root); node; node = next) {
 384                next = rb_next(node);
 385                tm = rb_entry(node, struct tree_mod_elem, node);
 386                if (tm->seq > min_seq)
 387                        continue;
 388                rb_erase(node, tm_root);
 389                kfree(tm);
 390        }
 391        write_unlock(&fs_info->tree_mod_log_lock);
 392}
 393
 394/*
 395 * key order of the log:
 396 *       node/leaf start address -> sequence
 397 *
 398 * The 'start address' is the logical address of the *new* root node
 399 * for root replace operations, or the logical address of the affected
 400 * block for all other operations.
 401 */
 402static noinline int
 403__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
 404{
 405        struct rb_root *tm_root;
 406        struct rb_node **new;
 407        struct rb_node *parent = NULL;
 408        struct tree_mod_elem *cur;
 409
 410        lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
 411
 412        tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 413
 414        tm_root = &fs_info->tree_mod_log;
 415        new = &tm_root->rb_node;
 416        while (*new) {
 417                cur = rb_entry(*new, struct tree_mod_elem, node);
 418                parent = *new;
 419                if (cur->logical < tm->logical)
 420                        new = &((*new)->rb_left);
 421                else if (cur->logical > tm->logical)
 422                        new = &((*new)->rb_right);
 423                else if (cur->seq < tm->seq)
 424                        new = &((*new)->rb_left);
 425                else if (cur->seq > tm->seq)
 426                        new = &((*new)->rb_right);
 427                else
 428                        return -EEXIST;
 429        }
 430
 431        rb_link_node(&tm->node, parent, new);
 432        rb_insert_color(&tm->node, tm_root);
 433        return 0;
 434}
 435
 436/*
 437 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 438 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 439 * this until all tree mod log insertions are recorded in the rb tree and then
 440 * write unlock fs_info::tree_mod_log_lock.
 441 */
 442static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 443                                    struct extent_buffer *eb) {
 444        smp_mb();
 445        if (list_empty(&(fs_info)->tree_mod_seq_list))
 446                return 1;
 447        if (eb && btrfs_header_level(eb) == 0)
 448                return 1;
 449
 450        write_lock(&fs_info->tree_mod_log_lock);
 451        if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 452                write_unlock(&fs_info->tree_mod_log_lock);
 453                return 1;
 454        }
 455
 456        return 0;
 457}
 458
 459/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 460static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 461                                    struct extent_buffer *eb)
 462{
 463        smp_mb();
 464        if (list_empty(&(fs_info)->tree_mod_seq_list))
 465                return 0;
 466        if (eb && btrfs_header_level(eb) == 0)
 467                return 0;
 468
 469        return 1;
 470}
 471
 472static struct tree_mod_elem *
 473alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
 474                    enum mod_log_op op, gfp_t flags)
 475{
 476        struct tree_mod_elem *tm;
 477
 478        tm = kzalloc(sizeof(*tm), flags);
 479        if (!tm)
 480                return NULL;
 481
 482        tm->logical = eb->start;
 483        if (op != MOD_LOG_KEY_ADD) {
 484                btrfs_node_key(eb, &tm->key, slot);
 485                tm->blockptr = btrfs_node_blockptr(eb, slot);
 486        }
 487        tm->op = op;
 488        tm->slot = slot;
 489        tm->generation = btrfs_node_ptr_generation(eb, slot);
 490        RB_CLEAR_NODE(&tm->node);
 491
 492        return tm;
 493}
 494
 495static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
 496                enum mod_log_op op, gfp_t flags)
 497{
 498        struct tree_mod_elem *tm;
 499        int ret;
 500
 501        if (!tree_mod_need_log(eb->fs_info, eb))
 502                return 0;
 503
 504        tm = alloc_tree_mod_elem(eb, slot, op, flags);
 505        if (!tm)
 506                return -ENOMEM;
 507
 508        if (tree_mod_dont_log(eb->fs_info, eb)) {
 509                kfree(tm);
 510                return 0;
 511        }
 512
 513        ret = __tree_mod_log_insert(eb->fs_info, tm);
 514        write_unlock(&eb->fs_info->tree_mod_log_lock);
 515        if (ret)
 516                kfree(tm);
 517
 518        return ret;
 519}
 520
 521static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
 522                int dst_slot, int src_slot, int nr_items)
 523{
 524        struct tree_mod_elem *tm = NULL;
 525        struct tree_mod_elem **tm_list = NULL;
 526        int ret = 0;
 527        int i;
 528        int locked = 0;
 529
 530        if (!tree_mod_need_log(eb->fs_info, eb))
 531                return 0;
 532
 533        tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
 534        if (!tm_list)
 535                return -ENOMEM;
 536
 537        tm = kzalloc(sizeof(*tm), GFP_NOFS);
 538        if (!tm) {
 539                ret = -ENOMEM;
 540                goto free_tms;
 541        }
 542
 543        tm->logical = eb->start;
 544        tm->slot = src_slot;
 545        tm->move.dst_slot = dst_slot;
 546        tm->move.nr_items = nr_items;
 547        tm->op = MOD_LOG_MOVE_KEYS;
 548
 549        for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 550                tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 551                    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
 552                if (!tm_list[i]) {
 553                        ret = -ENOMEM;
 554                        goto free_tms;
 555                }
 556        }
 557
 558        if (tree_mod_dont_log(eb->fs_info, eb))
 559                goto free_tms;
 560        locked = 1;
 561
 562        /*
 563         * When we override something during the move, we log these removals.
 564         * This can only happen when we move towards the beginning of the
 565         * buffer, i.e. dst_slot < src_slot.
 566         */
 567        for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 568                ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
 569                if (ret)
 570                        goto free_tms;
 571        }
 572
 573        ret = __tree_mod_log_insert(eb->fs_info, tm);
 574        if (ret)
 575                goto free_tms;
 576        write_unlock(&eb->fs_info->tree_mod_log_lock);
 577        kfree(tm_list);
 578
 579        return 0;
 580free_tms:
 581        for (i = 0; i < nr_items; i++) {
 582                if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 583                        rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
 584                kfree(tm_list[i]);
 585        }
 586        if (locked)
 587                write_unlock(&eb->fs_info->tree_mod_log_lock);
 588        kfree(tm_list);
 589        kfree(tm);
 590
 591        return ret;
 592}
 593
 594static inline int
 595__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 596                       struct tree_mod_elem **tm_list,
 597                       int nritems)
 598{
 599        int i, j;
 600        int ret;
 601
 602        for (i = nritems - 1; i >= 0; i--) {
 603                ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 604                if (ret) {
 605                        for (j = nritems - 1; j > i; j--)
 606                                rb_erase(&tm_list[j]->node,
 607                                         &fs_info->tree_mod_log);
 608                        return ret;
 609                }
 610        }
 611
 612        return 0;
 613}
 614
 615static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
 616                         struct extent_buffer *new_root, int log_removal)
 617{
 618        struct btrfs_fs_info *fs_info = old_root->fs_info;
 619        struct tree_mod_elem *tm = NULL;
 620        struct tree_mod_elem **tm_list = NULL;
 621        int nritems = 0;
 622        int ret = 0;
 623        int i;
 624
 625        if (!tree_mod_need_log(fs_info, NULL))
 626                return 0;
 627
 628        if (log_removal && btrfs_header_level(old_root) > 0) {
 629                nritems = btrfs_header_nritems(old_root);
 630                tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
 631                                  GFP_NOFS);
 632                if (!tm_list) {
 633                        ret = -ENOMEM;
 634                        goto free_tms;
 635                }
 636                for (i = 0; i < nritems; i++) {
 637                        tm_list[i] = alloc_tree_mod_elem(old_root, i,
 638                            MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 639                        if (!tm_list[i]) {
 640                                ret = -ENOMEM;
 641                                goto free_tms;
 642                        }
 643                }
 644        }
 645
 646        tm = kzalloc(sizeof(*tm), GFP_NOFS);
 647        if (!tm) {
 648                ret = -ENOMEM;
 649                goto free_tms;
 650        }
 651
 652        tm->logical = new_root->start;
 653        tm->old_root.logical = old_root->start;
 654        tm->old_root.level = btrfs_header_level(old_root);
 655        tm->generation = btrfs_header_generation(old_root);
 656        tm->op = MOD_LOG_ROOT_REPLACE;
 657
 658        if (tree_mod_dont_log(fs_info, NULL))
 659                goto free_tms;
 660
 661        if (tm_list)
 662                ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 663        if (!ret)
 664                ret = __tree_mod_log_insert(fs_info, tm);
 665
 666        write_unlock(&fs_info->tree_mod_log_lock);
 667        if (ret)
 668                goto free_tms;
 669        kfree(tm_list);
 670
 671        return ret;
 672
 673free_tms:
 674        if (tm_list) {
 675                for (i = 0; i < nritems; i++)
 676                        kfree(tm_list[i]);
 677                kfree(tm_list);
 678        }
 679        kfree(tm);
 680
 681        return ret;
 682}
 683
 684static struct tree_mod_elem *
 685__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
 686                      int smallest)
 687{
 688        struct rb_root *tm_root;
 689        struct rb_node *node;
 690        struct tree_mod_elem *cur = NULL;
 691        struct tree_mod_elem *found = NULL;
 692
 693        read_lock(&fs_info->tree_mod_log_lock);
 694        tm_root = &fs_info->tree_mod_log;
 695        node = tm_root->rb_node;
 696        while (node) {
 697                cur = rb_entry(node, struct tree_mod_elem, node);
 698                if (cur->logical < start) {
 699                        node = node->rb_left;
 700                } else if (cur->logical > start) {
 701                        node = node->rb_right;
 702                } else if (cur->seq < min_seq) {
 703                        node = node->rb_left;
 704                } else if (!smallest) {
 705                        /* we want the node with the highest seq */
 706                        if (found)
 707                                BUG_ON(found->seq > cur->seq);
 708                        found = cur;
 709                        node = node->rb_left;
 710                } else if (cur->seq > min_seq) {
 711                        /* we want the node with the smallest seq */
 712                        if (found)
 713                                BUG_ON(found->seq < cur->seq);
 714                        found = cur;
 715                        node = node->rb_right;
 716                } else {
 717                        found = cur;
 718                        break;
 719                }
 720        }
 721        read_unlock(&fs_info->tree_mod_log_lock);
 722
 723        return found;
 724}
 725
 726/*
 727 * this returns the element from the log with the smallest time sequence
 728 * value that's in the log (the oldest log item). any element with a time
 729 * sequence lower than min_seq will be ignored.
 730 */
 731static struct tree_mod_elem *
 732tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
 733                           u64 min_seq)
 734{
 735        return __tree_mod_log_search(fs_info, start, min_seq, 1);
 736}
 737
 738/*
 739 * this returns the element from the log with the largest time sequence
 740 * value that's in the log (the most recent log item). any element with
 741 * a time sequence lower than min_seq will be ignored.
 742 */
 743static struct tree_mod_elem *
 744tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
 745{
 746        return __tree_mod_log_search(fs_info, start, min_seq, 0);
 747}
 748
 749static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
 750                     struct extent_buffer *src, unsigned long dst_offset,
 751                     unsigned long src_offset, int nr_items)
 752{
 753        struct btrfs_fs_info *fs_info = dst->fs_info;
 754        int ret = 0;
 755        struct tree_mod_elem **tm_list = NULL;
 756        struct tree_mod_elem **tm_list_add, **tm_list_rem;
 757        int i;
 758        int locked = 0;
 759
 760        if (!tree_mod_need_log(fs_info, NULL))
 761                return 0;
 762
 763        if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 764                return 0;
 765
 766        tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
 767                          GFP_NOFS);
 768        if (!tm_list)
 769                return -ENOMEM;
 770
 771        tm_list_add = tm_list;
 772        tm_list_rem = tm_list + nr_items;
 773        for (i = 0; i < nr_items; i++) {
 774                tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 775                    MOD_LOG_KEY_REMOVE, GFP_NOFS);
 776                if (!tm_list_rem[i]) {
 777                        ret = -ENOMEM;
 778                        goto free_tms;
 779                }
 780
 781                tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 782                    MOD_LOG_KEY_ADD, GFP_NOFS);
 783                if (!tm_list_add[i]) {
 784                        ret = -ENOMEM;
 785                        goto free_tms;
 786                }
 787        }
 788
 789        if (tree_mod_dont_log(fs_info, NULL))
 790                goto free_tms;
 791        locked = 1;
 792
 793        for (i = 0; i < nr_items; i++) {
 794                ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
 795                if (ret)
 796                        goto free_tms;
 797                ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
 798                if (ret)
 799                        goto free_tms;
 800        }
 801
 802        write_unlock(&fs_info->tree_mod_log_lock);
 803        kfree(tm_list);
 804
 805        return 0;
 806
 807free_tms:
 808        for (i = 0; i < nr_items * 2; i++) {
 809                if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 810                        rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 811                kfree(tm_list[i]);
 812        }
 813        if (locked)
 814                write_unlock(&fs_info->tree_mod_log_lock);
 815        kfree(tm_list);
 816
 817        return ret;
 818}
 819
 820static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
 821{
 822        struct tree_mod_elem **tm_list = NULL;
 823        int nritems = 0;
 824        int i;
 825        int ret = 0;
 826
 827        if (btrfs_header_level(eb) == 0)
 828                return 0;
 829
 830        if (!tree_mod_need_log(eb->fs_info, NULL))
 831                return 0;
 832
 833        nritems = btrfs_header_nritems(eb);
 834        tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
 835        if (!tm_list)
 836                return -ENOMEM;
 837
 838        for (i = 0; i < nritems; i++) {
 839                tm_list[i] = alloc_tree_mod_elem(eb, i,
 840                    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 841                if (!tm_list[i]) {
 842                        ret = -ENOMEM;
 843                        goto free_tms;
 844                }
 845        }
 846
 847        if (tree_mod_dont_log(eb->fs_info, eb))
 848                goto free_tms;
 849
 850        ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
 851        write_unlock(&eb->fs_info->tree_mod_log_lock);
 852        if (ret)
 853                goto free_tms;
 854        kfree(tm_list);
 855
 856        return 0;
 857
 858free_tms:
 859        for (i = 0; i < nritems; i++)
 860                kfree(tm_list[i]);
 861        kfree(tm_list);
 862
 863        return ret;
 864}
 865
 866/*
 867 * check if the tree block can be shared by multiple trees
 868 */
 869int btrfs_block_can_be_shared(struct btrfs_root *root,
 870                              struct extent_buffer *buf)
 871{
 872        /*
 873         * Tree blocks not in reference counted trees and tree roots
 874         * are never shared. If a block was allocated after the last
 875         * snapshot and the block was not allocated by tree relocation,
 876         * we know the block is not shared.
 877         */
 878        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 879            buf != root->node && buf != root->commit_root &&
 880            (btrfs_header_generation(buf) <=
 881             btrfs_root_last_snapshot(&root->root_item) ||
 882             btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 883                return 1;
 884
 885        return 0;
 886}
 887
 888static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 889                                       struct btrfs_root *root,
 890                                       struct extent_buffer *buf,
 891                                       struct extent_buffer *cow,
 892                                       int *last_ref)
 893{
 894        struct btrfs_fs_info *fs_info = root->fs_info;
 895        u64 refs;
 896        u64 owner;
 897        u64 flags;
 898        u64 new_flags = 0;
 899        int ret;
 900
 901        /*
 902         * Backrefs update rules:
 903         *
 904         * Always use full backrefs for extent pointers in tree block
 905         * allocated by tree relocation.
 906         *
 907         * If a shared tree block is no longer referenced by its owner
 908         * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 909         * use full backrefs for extent pointers in tree block.
 910         *
 911         * If a tree block is been relocating
 912         * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 913         * use full backrefs for extent pointers in tree block.
 914         * The reason for this is some operations (such as drop tree)
 915         * are only allowed for blocks use full backrefs.
 916         */
 917
 918        if (btrfs_block_can_be_shared(root, buf)) {
 919                ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
 920                                               btrfs_header_level(buf), 1,
 921                                               &refs, &flags);
 922                if (ret)
 923                        return ret;
 924                if (refs == 0) {
 925                        ret = -EROFS;
 926                        btrfs_handle_fs_error(fs_info, ret, NULL);
 927                        return ret;
 928                }
 929        } else {
 930                refs = 1;
 931                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 932                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 933                        flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 934                else
 935                        flags = 0;
 936        }
 937
 938        owner = btrfs_header_owner(buf);
 939        BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 940               !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 941
 942        if (refs > 1) {
 943                if ((owner == root->root_key.objectid ||
 944                     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 945                    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 946                        ret = btrfs_inc_ref(trans, root, buf, 1);
 947                        if (ret)
 948                                return ret;
 949
 950                        if (root->root_key.objectid ==
 951                            BTRFS_TREE_RELOC_OBJECTID) {
 952                                ret = btrfs_dec_ref(trans, root, buf, 0);
 953                                if (ret)
 954                                        return ret;
 955                                ret = btrfs_inc_ref(trans, root, cow, 1);
 956                                if (ret)
 957                                        return ret;
 958                        }
 959                        new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 960                } else {
 961
 962                        if (root->root_key.objectid ==
 963                            BTRFS_TREE_RELOC_OBJECTID)
 964                                ret = btrfs_inc_ref(trans, root, cow, 1);
 965                        else
 966                                ret = btrfs_inc_ref(trans, root, cow, 0);
 967                        if (ret)
 968                                return ret;
 969                }
 970                if (new_flags != 0) {
 971                        int level = btrfs_header_level(buf);
 972
 973                        ret = btrfs_set_disk_extent_flags(trans,
 974                                                          buf->start,
 975                                                          buf->len,
 976                                                          new_flags, level, 0);
 977                        if (ret)
 978                                return ret;
 979                }
 980        } else {
 981                if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 982                        if (root->root_key.objectid ==
 983                            BTRFS_TREE_RELOC_OBJECTID)
 984                                ret = btrfs_inc_ref(trans, root, cow, 1);
 985                        else
 986                                ret = btrfs_inc_ref(trans, root, cow, 0);
 987                        if (ret)
 988                                return ret;
 989                        ret = btrfs_dec_ref(trans, root, buf, 1);
 990                        if (ret)
 991                                return ret;
 992                }
 993                btrfs_clean_tree_block(buf);
 994                *last_ref = 1;
 995        }
 996        return 0;
 997}
 998
 999static struct extent_buffer *alloc_tree_block_no_bg_flush(
1000                                          struct btrfs_trans_handle *trans,
1001                                          struct btrfs_root *root,
1002                                          u64 parent_start,
1003                                          const struct btrfs_disk_key *disk_key,
1004                                          int level,
1005                                          u64 hint,
1006                                          u64 empty_size)
1007{
1008        struct btrfs_fs_info *fs_info = root->fs_info;
1009        struct extent_buffer *ret;
1010
1011        /*
1012         * If we are COWing a node/leaf from the extent, chunk, device or free
1013         * space trees, make sure that we do not finish block group creation of
1014         * pending block groups. We do this to avoid a deadlock.
1015         * COWing can result in allocation of a new chunk, and flushing pending
1016         * block groups (btrfs_create_pending_block_groups()) can be triggered
1017         * when finishing allocation of a new chunk. Creation of a pending block
1018         * group modifies the extent, chunk, device and free space trees,
1019         * therefore we could deadlock with ourselves since we are holding a
1020         * lock on an extent buffer that btrfs_create_pending_block_groups() may
1021         * try to COW later.
1022         * For similar reasons, we also need to delay flushing pending block
1023         * groups when splitting a leaf or node, from one of those trees, since
1024         * we are holding a write lock on it and its parent or when inserting a
1025         * new root node for one of those trees.
1026         */
1027        if (root == fs_info->extent_root ||
1028            root == fs_info->chunk_root ||
1029            root == fs_info->dev_root ||
1030            root == fs_info->free_space_root)
1031                trans->can_flush_pending_bgs = false;
1032
1033        ret = btrfs_alloc_tree_block(trans, root, parent_start,
1034                                     root->root_key.objectid, disk_key, level,
1035                                     hint, empty_size);
1036        trans->can_flush_pending_bgs = true;
1037
1038        return ret;
1039}
1040
1041/*
1042 * does the dirty work in cow of a single block.  The parent block (if
1043 * supplied) is updated to point to the new cow copy.  The new buffer is marked
1044 * dirty and returned locked.  If you modify the block it needs to be marked
1045 * dirty again.
1046 *
1047 * search_start -- an allocation hint for the new block
1048 *
1049 * empty_size -- a hint that you plan on doing more cow.  This is the size in
1050 * bytes the allocator should try to find free next to the block it returns.
1051 * This is just a hint and may be ignored by the allocator.
1052 */
1053static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1054                             struct btrfs_root *root,
1055                             struct extent_buffer *buf,
1056                             struct extent_buffer *parent, int parent_slot,
1057                             struct extent_buffer **cow_ret,
1058                             u64 search_start, u64 empty_size)
1059{
1060        struct btrfs_fs_info *fs_info = root->fs_info;
1061        struct btrfs_disk_key disk_key;
1062        struct extent_buffer *cow;
1063        int level, ret;
1064        int last_ref = 0;
1065        int unlock_orig = 0;
1066        u64 parent_start = 0;
1067
1068        if (*cow_ret == buf)
1069                unlock_orig = 1;
1070
1071        btrfs_assert_tree_locked(buf);
1072
1073        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1074                trans->transid != fs_info->running_transaction->transid);
1075        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1076                trans->transid != root->last_trans);
1077
1078        level = btrfs_header_level(buf);
1079
1080        if (level == 0)
1081                btrfs_item_key(buf, &disk_key, 0);
1082        else
1083                btrfs_node_key(buf, &disk_key, 0);
1084
1085        if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1086                parent_start = parent->start;
1087
1088        cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1089                                           level, search_start, empty_size);
1090        if (IS_ERR(cow))
1091                return PTR_ERR(cow);
1092
1093        /* cow is set to blocking by btrfs_init_new_buffer */
1094
1095        copy_extent_buffer_full(cow, buf);
1096        btrfs_set_header_bytenr(cow, cow->start);
1097        btrfs_set_header_generation(cow, trans->transid);
1098        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1099        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1100                                     BTRFS_HEADER_FLAG_RELOC);
1101        if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1102                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1103        else
1104                btrfs_set_header_owner(cow, root->root_key.objectid);
1105
1106        write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1107
1108        ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1109        if (ret) {
1110                btrfs_abort_transaction(trans, ret);
1111                return ret;
1112        }
1113
1114        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1115                ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1116                if (ret) {
1117                        btrfs_abort_transaction(trans, ret);
1118                        return ret;
1119                }
1120        }
1121
1122        if (buf == root->node) {
1123                WARN_ON(parent && parent != buf);
1124                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1125                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1126                        parent_start = buf->start;
1127
1128                extent_buffer_get(cow);
1129                ret = tree_mod_log_insert_root(root->node, cow, 1);
1130                BUG_ON(ret < 0);
1131                rcu_assign_pointer(root->node, cow);
1132
1133                btrfs_free_tree_block(trans, root, buf, parent_start,
1134                                      last_ref);
1135                free_extent_buffer(buf);
1136                add_root_to_dirty_list(root);
1137        } else {
1138                WARN_ON(trans->transid != btrfs_header_generation(parent));
1139                tree_mod_log_insert_key(parent, parent_slot,
1140                                        MOD_LOG_KEY_REPLACE, GFP_NOFS);
1141                btrfs_set_node_blockptr(parent, parent_slot,
1142                                        cow->start);
1143                btrfs_set_node_ptr_generation(parent, parent_slot,
1144                                              trans->transid);
1145                btrfs_mark_buffer_dirty(parent);
1146                if (last_ref) {
1147                        ret = tree_mod_log_free_eb(buf);
1148                        if (ret) {
1149                                btrfs_abort_transaction(trans, ret);
1150                                return ret;
1151                        }
1152                }
1153                btrfs_free_tree_block(trans, root, buf, parent_start,
1154                                      last_ref);
1155        }
1156        if (unlock_orig)
1157                btrfs_tree_unlock(buf);
1158        free_extent_buffer_stale(buf);
1159        btrfs_mark_buffer_dirty(cow);
1160        *cow_ret = cow;
1161        return 0;
1162}
1163
1164/*
1165 * returns the logical address of the oldest predecessor of the given root.
1166 * entries older than time_seq are ignored.
1167 */
1168static struct tree_mod_elem *__tree_mod_log_oldest_root(
1169                struct extent_buffer *eb_root, u64 time_seq)
1170{
1171        struct tree_mod_elem *tm;
1172        struct tree_mod_elem *found = NULL;
1173        u64 root_logical = eb_root->start;
1174        int looped = 0;
1175
1176        if (!time_seq)
1177                return NULL;
1178
1179        /*
1180         * the very last operation that's logged for a root is the
1181         * replacement operation (if it is replaced at all). this has
1182         * the logical address of the *new* root, making it the very
1183         * first operation that's logged for this root.
1184         */
1185        while (1) {
1186                tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1187                                                time_seq);
1188                if (!looped && !tm)
1189                        return NULL;
1190                /*
1191                 * if there are no tree operation for the oldest root, we simply
1192                 * return it. this should only happen if that (old) root is at
1193                 * level 0.
1194                 */
1195                if (!tm)
1196                        break;
1197
1198                /*
1199                 * if there's an operation that's not a root replacement, we
1200                 * found the oldest version of our root. normally, we'll find a
1201                 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1202                 */
1203                if (tm->op != MOD_LOG_ROOT_REPLACE)
1204                        break;
1205
1206                found = tm;
1207                root_logical = tm->old_root.logical;
1208                looped = 1;
1209        }
1210
1211        /* if there's no old root to return, return what we found instead */
1212        if (!found)
1213                found = tm;
1214
1215        return found;
1216}
1217
1218/*
1219 * tm is a pointer to the first operation to rewind within eb. then, all
1220 * previous operations will be rewound (until we reach something older than
1221 * time_seq).
1222 */
1223static void
1224__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1225                      u64 time_seq, struct tree_mod_elem *first_tm)
1226{
1227        u32 n;
1228        struct rb_node *next;
1229        struct tree_mod_elem *tm = first_tm;
1230        unsigned long o_dst;
1231        unsigned long o_src;
1232        unsigned long p_size = sizeof(struct btrfs_key_ptr);
1233
1234        n = btrfs_header_nritems(eb);
1235        read_lock(&fs_info->tree_mod_log_lock);
1236        while (tm && tm->seq >= time_seq) {
1237                /*
1238                 * all the operations are recorded with the operator used for
1239                 * the modification. as we're going backwards, we do the
1240                 * opposite of each operation here.
1241                 */
1242                switch (tm->op) {
1243                case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1244                        BUG_ON(tm->slot < n);
1245                        /* Fallthrough */
1246                case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1247                case MOD_LOG_KEY_REMOVE:
1248                        btrfs_set_node_key(eb, &tm->key, tm->slot);
1249                        btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1250                        btrfs_set_node_ptr_generation(eb, tm->slot,
1251                                                      tm->generation);
1252                        n++;
1253                        break;
1254                case MOD_LOG_KEY_REPLACE:
1255                        BUG_ON(tm->slot >= n);
1256                        btrfs_set_node_key(eb, &tm->key, tm->slot);
1257                        btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1258                        btrfs_set_node_ptr_generation(eb, tm->slot,
1259                                                      tm->generation);
1260                        break;
1261                case MOD_LOG_KEY_ADD:
1262                        /* if a move operation is needed it's in the log */
1263                        n--;
1264                        break;
1265                case MOD_LOG_MOVE_KEYS:
1266                        o_dst = btrfs_node_key_ptr_offset(tm->slot);
1267                        o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1268                        memmove_extent_buffer(eb, o_dst, o_src,
1269                                              tm->move.nr_items * p_size);
1270                        break;
1271                case MOD_LOG_ROOT_REPLACE:
1272                        /*
1273                         * this operation is special. for roots, this must be
1274                         * handled explicitly before rewinding.
1275                         * for non-roots, this operation may exist if the node
1276                         * was a root: root A -> child B; then A gets empty and
1277                         * B is promoted to the new root. in the mod log, we'll
1278                         * have a root-replace operation for B, a tree block
1279                         * that is no root. we simply ignore that operation.
1280                         */
1281                        break;
1282                }
1283                next = rb_next(&tm->node);
1284                if (!next)
1285                        break;
1286                tm = rb_entry(next, struct tree_mod_elem, node);
1287                if (tm->logical != first_tm->logical)
1288                        break;
1289        }
1290        read_unlock(&fs_info->tree_mod_log_lock);
1291        btrfs_set_header_nritems(eb, n);
1292}
1293
1294/*
1295 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1296 * is returned. If rewind operations happen, a fresh buffer is returned. The
1297 * returned buffer is always read-locked. If the returned buffer is not the
1298 * input buffer, the lock on the input buffer is released and the input buffer
1299 * is freed (its refcount is decremented).
1300 */
1301static struct extent_buffer *
1302tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1303                    struct extent_buffer *eb, u64 time_seq)
1304{
1305        struct extent_buffer *eb_rewin;
1306        struct tree_mod_elem *tm;
1307
1308        if (!time_seq)
1309                return eb;
1310
1311        if (btrfs_header_level(eb) == 0)
1312                return eb;
1313
1314        tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1315        if (!tm)
1316                return eb;
1317
1318        btrfs_set_path_blocking(path);
1319        btrfs_set_lock_blocking_read(eb);
1320
1321        if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1322                BUG_ON(tm->slot != 0);
1323                eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1324                if (!eb_rewin) {
1325                        btrfs_tree_read_unlock_blocking(eb);
1326                        free_extent_buffer(eb);
1327                        return NULL;
1328                }
1329                btrfs_set_header_bytenr(eb_rewin, eb->start);
1330                btrfs_set_header_backref_rev(eb_rewin,
1331                                             btrfs_header_backref_rev(eb));
1332                btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1333                btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1334        } else {
1335                eb_rewin = btrfs_clone_extent_buffer(eb);
1336                if (!eb_rewin) {
1337                        btrfs_tree_read_unlock_blocking(eb);
1338                        free_extent_buffer(eb);
1339                        return NULL;
1340                }
1341        }
1342
1343        btrfs_tree_read_unlock_blocking(eb);
1344        free_extent_buffer(eb);
1345
1346        btrfs_tree_read_lock(eb_rewin);
1347        __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1348        WARN_ON(btrfs_header_nritems(eb_rewin) >
1349                BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1350
1351        return eb_rewin;
1352}
1353
1354/*
1355 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1356 * value. If there are no changes, the current root->root_node is returned. If
1357 * anything changed in between, there's a fresh buffer allocated on which the
1358 * rewind operations are done. In any case, the returned buffer is read locked.
1359 * Returns NULL on error (with no locks held).
1360 */
1361static inline struct extent_buffer *
1362get_old_root(struct btrfs_root *root, u64 time_seq)
1363{
1364        struct btrfs_fs_info *fs_info = root->fs_info;
1365        struct tree_mod_elem *tm;
1366        struct extent_buffer *eb = NULL;
1367        struct extent_buffer *eb_root;
1368        u64 eb_root_owner = 0;
1369        struct extent_buffer *old;
1370        struct tree_mod_root *old_root = NULL;
1371        u64 old_generation = 0;
1372        u64 logical;
1373        int level;
1374
1375        eb_root = btrfs_read_lock_root_node(root);
1376        tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1377        if (!tm)
1378                return eb_root;
1379
1380        if (tm->op == MOD_LOG_ROOT_REPLACE) {
1381                old_root = &tm->old_root;
1382                old_generation = tm->generation;
1383                logical = old_root->logical;
1384                level = old_root->level;
1385        } else {
1386                logical = eb_root->start;
1387                level = btrfs_header_level(eb_root);
1388        }
1389
1390        tm = tree_mod_log_search(fs_info, logical, time_seq);
1391        if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1392                btrfs_tree_read_unlock(eb_root);
1393                free_extent_buffer(eb_root);
1394                old = read_tree_block(fs_info, logical, 0, level, NULL);
1395                if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1396                        if (!IS_ERR(old))
1397                                free_extent_buffer(old);
1398                        btrfs_warn(fs_info,
1399                                   "failed to read tree block %llu from get_old_root",
1400                                   logical);
1401                } else {
1402                        eb = btrfs_clone_extent_buffer(old);
1403                        free_extent_buffer(old);
1404                }
1405        } else if (old_root) {
1406                eb_root_owner = btrfs_header_owner(eb_root);
1407                btrfs_tree_read_unlock(eb_root);
1408                free_extent_buffer(eb_root);
1409                eb = alloc_dummy_extent_buffer(fs_info, logical);
1410        } else {
1411                btrfs_set_lock_blocking_read(eb_root);
1412                eb = btrfs_clone_extent_buffer(eb_root);
1413                btrfs_tree_read_unlock_blocking(eb_root);
1414                free_extent_buffer(eb_root);
1415        }
1416
1417        if (!eb)
1418                return NULL;
1419        btrfs_tree_read_lock(eb);
1420        if (old_root) {
1421                btrfs_set_header_bytenr(eb, eb->start);
1422                btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1423                btrfs_set_header_owner(eb, eb_root_owner);
1424                btrfs_set_header_level(eb, old_root->level);
1425                btrfs_set_header_generation(eb, old_generation);
1426        }
1427        if (tm)
1428                __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1429        else
1430                WARN_ON(btrfs_header_level(eb) != 0);
1431        WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1432
1433        return eb;
1434}
1435
1436int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1437{
1438        struct tree_mod_elem *tm;
1439        int level;
1440        struct extent_buffer *eb_root = btrfs_root_node(root);
1441
1442        tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1443        if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1444                level = tm->old_root.level;
1445        } else {
1446                level = btrfs_header_level(eb_root);
1447        }
1448        free_extent_buffer(eb_root);
1449
1450        return level;
1451}
1452
1453static inline int should_cow_block(struct btrfs_trans_handle *trans,
1454                                   struct btrfs_root *root,
1455                                   struct extent_buffer *buf)
1456{
1457        if (btrfs_is_testing(root->fs_info))
1458                return 0;
1459
1460        /* Ensure we can see the FORCE_COW bit */
1461        smp_mb__before_atomic();
1462
1463        /*
1464         * We do not need to cow a block if
1465         * 1) this block is not created or changed in this transaction;
1466         * 2) this block does not belong to TREE_RELOC tree;
1467         * 3) the root is not forced COW.
1468         *
1469         * What is forced COW:
1470         *    when we create snapshot during committing the transaction,
1471         *    after we've finished copying src root, we must COW the shared
1472         *    block to ensure the metadata consistency.
1473         */
1474        if (btrfs_header_generation(buf) == trans->transid &&
1475            !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1476            !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1477              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1478            !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1479                return 0;
1480        return 1;
1481}
1482
1483/*
1484 * cows a single block, see __btrfs_cow_block for the real work.
1485 * This version of it has extra checks so that a block isn't COWed more than
1486 * once per transaction, as long as it hasn't been written yet
1487 */
1488noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1489                    struct btrfs_root *root, struct extent_buffer *buf,
1490                    struct extent_buffer *parent, int parent_slot,
1491                    struct extent_buffer **cow_ret)
1492{
1493        struct btrfs_fs_info *fs_info = root->fs_info;
1494        u64 search_start;
1495        int ret;
1496
1497        if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1498                btrfs_err(fs_info,
1499                        "COW'ing blocks on a fs root that's being dropped");
1500
1501        if (trans->transaction != fs_info->running_transaction)
1502                WARN(1, KERN_CRIT "trans %llu running %llu\n",
1503                       trans->transid,
1504                       fs_info->running_transaction->transid);
1505
1506        if (trans->transid != fs_info->generation)
1507                WARN(1, KERN_CRIT "trans %llu running %llu\n",
1508                       trans->transid, fs_info->generation);
1509
1510        if (!should_cow_block(trans, root, buf)) {
1511                trans->dirty = true;
1512                *cow_ret = buf;
1513                return 0;
1514        }
1515
1516        search_start = buf->start & ~((u64)SZ_1G - 1);
1517
1518        if (parent)
1519                btrfs_set_lock_blocking_write(parent);
1520        btrfs_set_lock_blocking_write(buf);
1521
1522        /*
1523         * Before CoWing this block for later modification, check if it's
1524         * the subtree root and do the delayed subtree trace if needed.
1525         *
1526         * Also We don't care about the error, as it's handled internally.
1527         */
1528        btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1529        ret = __btrfs_cow_block(trans, root, buf, parent,
1530                                 parent_slot, cow_ret, search_start, 0);
1531
1532        trace_btrfs_cow_block(root, buf, *cow_ret);
1533
1534        return ret;
1535}
1536
1537/*
1538 * helper function for defrag to decide if two blocks pointed to by a
1539 * node are actually close by
1540 */
1541static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1542{
1543        if (blocknr < other && other - (blocknr + blocksize) < 32768)
1544                return 1;
1545        if (blocknr > other && blocknr - (other + blocksize) < 32768)
1546                return 1;
1547        return 0;
1548}
1549
1550/*
1551 * compare two keys in a memcmp fashion
1552 */
1553static int comp_keys(const struct btrfs_disk_key *disk,
1554                     const struct btrfs_key *k2)
1555{
1556        struct btrfs_key k1;
1557
1558        btrfs_disk_key_to_cpu(&k1, disk);
1559
1560        return btrfs_comp_cpu_keys(&k1, k2);
1561}
1562
1563/*
1564 * same as comp_keys only with two btrfs_key's
1565 */
1566int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1567{
1568        if (k1->objectid > k2->objectid)
1569                return 1;
1570        if (k1->objectid < k2->objectid)
1571                return -1;
1572        if (k1->type > k2->type)
1573                return 1;
1574        if (k1->type < k2->type)
1575                return -1;
1576        if (k1->offset > k2->offset)
1577                return 1;
1578        if (k1->offset < k2->offset)
1579                return -1;
1580        return 0;
1581}
1582
1583/*
1584 * this is used by the defrag code to go through all the
1585 * leaves pointed to by a node and reallocate them so that
1586 * disk order is close to key order
1587 */
1588int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1589                       struct btrfs_root *root, struct extent_buffer *parent,
1590                       int start_slot, u64 *last_ret,
1591                       struct btrfs_key *progress)
1592{
1593        struct btrfs_fs_info *fs_info = root->fs_info;
1594        struct extent_buffer *cur;
1595        u64 blocknr;
1596        u64 gen;
1597        u64 search_start = *last_ret;
1598        u64 last_block = 0;
1599        u64 other;
1600        u32 parent_nritems;
1601        int end_slot;
1602        int i;
1603        int err = 0;
1604        int parent_level;
1605        int uptodate;
1606        u32 blocksize;
1607        int progress_passed = 0;
1608        struct btrfs_disk_key disk_key;
1609
1610        parent_level = btrfs_header_level(parent);
1611
1612        WARN_ON(trans->transaction != fs_info->running_transaction);
1613        WARN_ON(trans->transid != fs_info->generation);
1614
1615        parent_nritems = btrfs_header_nritems(parent);
1616        blocksize = fs_info->nodesize;
1617        end_slot = parent_nritems - 1;
1618
1619        if (parent_nritems <= 1)
1620                return 0;
1621
1622        btrfs_set_lock_blocking_write(parent);
1623
1624        for (i = start_slot; i <= end_slot; i++) {
1625                struct btrfs_key first_key;
1626                int close = 1;
1627
1628                btrfs_node_key(parent, &disk_key, i);
1629                if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1630                        continue;
1631
1632                progress_passed = 1;
1633                blocknr = btrfs_node_blockptr(parent, i);
1634                gen = btrfs_node_ptr_generation(parent, i);
1635                btrfs_node_key_to_cpu(parent, &first_key, i);
1636                if (last_block == 0)
1637                        last_block = blocknr;
1638
1639                if (i > 0) {
1640                        other = btrfs_node_blockptr(parent, i - 1);
1641                        close = close_blocks(blocknr, other, blocksize);
1642                }
1643                if (!close && i < end_slot) {
1644                        other = btrfs_node_blockptr(parent, i + 1);
1645                        close = close_blocks(blocknr, other, blocksize);
1646                }
1647                if (close) {
1648                        last_block = blocknr;
1649                        continue;
1650                }
1651
1652                cur = find_extent_buffer(fs_info, blocknr);
1653                if (cur)
1654                        uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1655                else
1656                        uptodate = 0;
1657                if (!cur || !uptodate) {
1658                        if (!cur) {
1659                                cur = read_tree_block(fs_info, blocknr, gen,
1660                                                      parent_level - 1,
1661                                                      &first_key);
1662                                if (IS_ERR(cur)) {
1663                                        return PTR_ERR(cur);
1664                                } else if (!extent_buffer_uptodate(cur)) {
1665                                        free_extent_buffer(cur);
1666                                        return -EIO;
1667                                }
1668                        } else if (!uptodate) {
1669                                err = btrfs_read_buffer(cur, gen,
1670                                                parent_level - 1,&first_key);
1671                                if (err) {
1672                                        free_extent_buffer(cur);
1673                                        return err;
1674                                }
1675                        }
1676                }
1677                if (search_start == 0)
1678                        search_start = last_block;
1679
1680                btrfs_tree_lock(cur);
1681                btrfs_set_lock_blocking_write(cur);
1682                err = __btrfs_cow_block(trans, root, cur, parent, i,
1683                                        &cur, search_start,
1684                                        min(16 * blocksize,
1685                                            (end_slot - i) * blocksize));
1686                if (err) {
1687                        btrfs_tree_unlock(cur);
1688                        free_extent_buffer(cur);
1689                        break;
1690                }
1691                search_start = cur->start;
1692                last_block = cur->start;
1693                *last_ret = search_start;
1694                btrfs_tree_unlock(cur);
1695                free_extent_buffer(cur);
1696        }
1697        return err;
1698}
1699
1700/*
1701 * search for key in the extent_buffer.  The items start at offset p,
1702 * and they are item_size apart.  There are 'max' items in p.
1703 *
1704 * the slot in the array is returned via slot, and it points to
1705 * the place where you would insert key if it is not found in
1706 * the array.
1707 *
1708 * slot may point to max if the key is bigger than all of the keys
1709 */
1710static noinline int generic_bin_search(struct extent_buffer *eb,
1711                                       unsigned long p, int item_size,
1712                                       const struct btrfs_key *key,
1713                                       int max, int *slot)
1714{
1715        int low = 0;
1716        int high = max;
1717        int mid;
1718        int ret;
1719        struct btrfs_disk_key *tmp = NULL;
1720        struct btrfs_disk_key unaligned;
1721        unsigned long offset;
1722        char *kaddr = NULL;
1723        unsigned long map_start = 0;
1724        unsigned long map_len = 0;
1725        int err;
1726
1727        if (low > high) {
1728                btrfs_err(eb->fs_info,
1729                 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1730                          __func__, low, high, eb->start,
1731                          btrfs_header_owner(eb), btrfs_header_level(eb));
1732                return -EINVAL;
1733        }
1734
1735        while (low < high) {
1736                mid = (low + high) / 2;
1737                offset = p + mid * item_size;
1738
1739                if (!kaddr || offset < map_start ||
1740                    (offset + sizeof(struct btrfs_disk_key)) >
1741                    map_start + map_len) {
1742
1743                        err = map_private_extent_buffer(eb, offset,
1744                                                sizeof(struct btrfs_disk_key),
1745                                                &kaddr, &map_start, &map_len);
1746
1747                        if (!err) {
1748                                tmp = (struct btrfs_disk_key *)(kaddr + offset -
1749                                                        map_start);
1750                        } else if (err == 1) {
1751                                read_extent_buffer(eb, &unaligned,
1752                                                   offset, sizeof(unaligned));
1753                                tmp = &unaligned;
1754                        } else {
1755                                return err;
1756                        }
1757
1758                } else {
1759                        tmp = (struct btrfs_disk_key *)(kaddr + offset -
1760                                                        map_start);
1761                }
1762                ret = comp_keys(tmp, key);
1763
1764                if (ret < 0)
1765                        low = mid + 1;
1766                else if (ret > 0)
1767                        high = mid;
1768                else {
1769                        *slot = mid;
1770                        return 0;
1771                }
1772        }
1773        *slot = low;
1774        return 1;
1775}
1776
1777/*
1778 * simple bin_search frontend that does the right thing for
1779 * leaves vs nodes
1780 */
1781int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1782                     int level, int *slot)
1783{
1784        if (level == 0)
1785                return generic_bin_search(eb,
1786                                          offsetof(struct btrfs_leaf, items),
1787                                          sizeof(struct btrfs_item),
1788                                          key, btrfs_header_nritems(eb),
1789                                          slot);
1790        else
1791                return generic_bin_search(eb,
1792                                          offsetof(struct btrfs_node, ptrs),
1793                                          sizeof(struct btrfs_key_ptr),
1794                                          key, btrfs_header_nritems(eb),
1795                                          slot);
1796}
1797
1798static void root_add_used(struct btrfs_root *root, u32 size)
1799{
1800        spin_lock(&root->accounting_lock);
1801        btrfs_set_root_used(&root->root_item,
1802                            btrfs_root_used(&root->root_item) + size);
1803        spin_unlock(&root->accounting_lock);
1804}
1805
1806static void root_sub_used(struct btrfs_root *root, u32 size)
1807{
1808        spin_lock(&root->accounting_lock);
1809        btrfs_set_root_used(&root->root_item,
1810                            btrfs_root_used(&root->root_item) - size);
1811        spin_unlock(&root->accounting_lock);
1812}
1813
1814/* given a node and slot number, this reads the blocks it points to.  The
1815 * extent buffer is returned with a reference taken (but unlocked).
1816 */
1817struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1818                                           int slot)
1819{
1820        int level = btrfs_header_level(parent);
1821        struct extent_buffer *eb;
1822        struct btrfs_key first_key;
1823
1824        if (slot < 0 || slot >= btrfs_header_nritems(parent))
1825                return ERR_PTR(-ENOENT);
1826
1827        BUG_ON(level == 0);
1828
1829        btrfs_node_key_to_cpu(parent, &first_key, slot);
1830        eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1831                             btrfs_node_ptr_generation(parent, slot),
1832                             level - 1, &first_key);
1833        if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1834                free_extent_buffer(eb);
1835                eb = ERR_PTR(-EIO);
1836        }
1837
1838        return eb;
1839}
1840
1841/*
1842 * node level balancing, used to make sure nodes are in proper order for
1843 * item deletion.  We balance from the top down, so we have to make sure
1844 * that a deletion won't leave an node completely empty later on.
1845 */
1846static noinline int balance_level(struct btrfs_trans_handle *trans,
1847                         struct btrfs_root *root,
1848                         struct btrfs_path *path, int level)
1849{
1850        struct btrfs_fs_info *fs_info = root->fs_info;
1851        struct extent_buffer *right = NULL;
1852        struct extent_buffer *mid;
1853        struct extent_buffer *left = NULL;
1854        struct extent_buffer *parent = NULL;
1855        int ret = 0;
1856        int wret;
1857        int pslot;
1858        int orig_slot = path->slots[level];
1859        u64 orig_ptr;
1860
1861        ASSERT(level > 0);
1862
1863        mid = path->nodes[level];
1864
1865        WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1866                path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1867        WARN_ON(btrfs_header_generation(mid) != trans->transid);
1868
1869        orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1870
1871        if (level < BTRFS_MAX_LEVEL - 1) {
1872                parent = path->nodes[level + 1];
1873                pslot = path->slots[level + 1];
1874        }
1875
1876        /*
1877         * deal with the case where there is only one pointer in the root
1878         * by promoting the node below to a root
1879         */
1880        if (!parent) {
1881                struct extent_buffer *child;
1882
1883                if (btrfs_header_nritems(mid) != 1)
1884                        return 0;
1885
1886                /* promote the child to a root */
1887                child = btrfs_read_node_slot(mid, 0);
1888                if (IS_ERR(child)) {
1889                        ret = PTR_ERR(child);
1890                        btrfs_handle_fs_error(fs_info, ret, NULL);
1891                        goto enospc;
1892                }
1893
1894                btrfs_tree_lock(child);
1895                btrfs_set_lock_blocking_write(child);
1896                ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1897                if (ret) {
1898                        btrfs_tree_unlock(child);
1899                        free_extent_buffer(child);
1900                        goto enospc;
1901                }
1902
1903                ret = tree_mod_log_insert_root(root->node, child, 1);
1904                BUG_ON(ret < 0);
1905                rcu_assign_pointer(root->node, child);
1906
1907                add_root_to_dirty_list(root);
1908                btrfs_tree_unlock(child);
1909
1910                path->locks[level] = 0;
1911                path->nodes[level] = NULL;
1912                btrfs_clean_tree_block(mid);
1913                btrfs_tree_unlock(mid);
1914                /* once for the path */
1915                free_extent_buffer(mid);
1916
1917                root_sub_used(root, mid->len);
1918                btrfs_free_tree_block(trans, root, mid, 0, 1);
1919                /* once for the root ptr */
1920                free_extent_buffer_stale(mid);
1921                return 0;
1922        }
1923        if (btrfs_header_nritems(mid) >
1924            BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1925                return 0;
1926
1927        left = btrfs_read_node_slot(parent, pslot - 1);
1928        if (IS_ERR(left))
1929                left = NULL;
1930
1931        if (left) {
1932                btrfs_tree_lock(left);
1933                btrfs_set_lock_blocking_write(left);
1934                wret = btrfs_cow_block(trans, root, left,
1935                                       parent, pslot - 1, &left);
1936                if (wret) {
1937                        ret = wret;
1938                        goto enospc;
1939                }
1940        }
1941
1942        right = btrfs_read_node_slot(parent, pslot + 1);
1943        if (IS_ERR(right))
1944                right = NULL;
1945
1946        if (right) {
1947                btrfs_tree_lock(right);
1948                btrfs_set_lock_blocking_write(right);
1949                wret = btrfs_cow_block(trans, root, right,
1950                                       parent, pslot + 1, &right);
1951                if (wret) {
1952                        ret = wret;
1953                        goto enospc;
1954                }
1955        }
1956
1957        /* first, try to make some room in the middle buffer */
1958        if (left) {
1959                orig_slot += btrfs_header_nritems(left);
1960                wret = push_node_left(trans, left, mid, 1);
1961                if (wret < 0)
1962                        ret = wret;
1963        }
1964
1965        /*
1966         * then try to empty the right most buffer into the middle
1967         */
1968        if (right) {
1969                wret = push_node_left(trans, mid, right, 1);
1970                if (wret < 0 && wret != -ENOSPC)
1971                        ret = wret;
1972                if (btrfs_header_nritems(right) == 0) {
1973                        btrfs_clean_tree_block(right);
1974                        btrfs_tree_unlock(right);
1975                        del_ptr(root, path, level + 1, pslot + 1);
1976                        root_sub_used(root, right->len);
1977                        btrfs_free_tree_block(trans, root, right, 0, 1);
1978                        free_extent_buffer_stale(right);
1979                        right = NULL;
1980                } else {
1981                        struct btrfs_disk_key right_key;
1982                        btrfs_node_key(right, &right_key, 0);
1983                        ret = tree_mod_log_insert_key(parent, pslot + 1,
1984                                        MOD_LOG_KEY_REPLACE, GFP_NOFS);
1985                        BUG_ON(ret < 0);
1986                        btrfs_set_node_key(parent, &right_key, pslot + 1);
1987                        btrfs_mark_buffer_dirty(parent);
1988                }
1989        }
1990        if (btrfs_header_nritems(mid) == 1) {
1991                /*
1992                 * we're not allowed to leave a node with one item in the
1993                 * tree during a delete.  A deletion from lower in the tree
1994                 * could try to delete the only pointer in this node.
1995                 * So, pull some keys from the left.
1996                 * There has to be a left pointer at this point because
1997                 * otherwise we would have pulled some pointers from the
1998                 * right
1999                 */
2000                if (!left) {
2001                        ret = -EROFS;
2002                        btrfs_handle_fs_error(fs_info, ret, NULL);
2003                        goto enospc;
2004                }
2005                wret = balance_node_right(trans, mid, left);
2006                if (wret < 0) {
2007                        ret = wret;
2008                        goto enospc;
2009                }
2010                if (wret == 1) {
2011                        wret = push_node_left(trans, left, mid, 1);
2012                        if (wret < 0)
2013                                ret = wret;
2014                }
2015                BUG_ON(wret == 1);
2016        }
2017        if (btrfs_header_nritems(mid) == 0) {
2018                btrfs_clean_tree_block(mid);
2019                btrfs_tree_unlock(mid);
2020                del_ptr(root, path, level + 1, pslot);
2021                root_sub_used(root, mid->len);
2022                btrfs_free_tree_block(trans, root, mid, 0, 1);
2023                free_extent_buffer_stale(mid);
2024                mid = NULL;
2025        } else {
2026                /* update the parent key to reflect our changes */
2027                struct btrfs_disk_key mid_key;
2028                btrfs_node_key(mid, &mid_key, 0);
2029                ret = tree_mod_log_insert_key(parent, pslot,
2030                                MOD_LOG_KEY_REPLACE, GFP_NOFS);
2031                BUG_ON(ret < 0);
2032                btrfs_set_node_key(parent, &mid_key, pslot);
2033                btrfs_mark_buffer_dirty(parent);
2034        }
2035
2036        /* update the path */
2037        if (left) {
2038                if (btrfs_header_nritems(left) > orig_slot) {
2039                        extent_buffer_get(left);
2040                        /* left was locked after cow */
2041                        path->nodes[level] = left;
2042                        path->slots[level + 1] -= 1;
2043                        path->slots[level] = orig_slot;
2044                        if (mid) {
2045                                btrfs_tree_unlock(mid);
2046                                free_extent_buffer(mid);
2047                        }
2048                } else {
2049                        orig_slot -= btrfs_header_nritems(left);
2050                        path->slots[level] = orig_slot;
2051                }
2052        }
2053        /* double check we haven't messed things up */
2054        if (orig_ptr !=
2055            btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2056                BUG();
2057enospc:
2058        if (right) {
2059                btrfs_tree_unlock(right);
2060                free_extent_buffer(right);
2061        }
2062        if (left) {
2063                if (path->nodes[level] != left)
2064                        btrfs_tree_unlock(left);
2065                free_extent_buffer(left);
2066        }
2067        return ret;
2068}
2069
2070/* Node balancing for insertion.  Here we only split or push nodes around
2071 * when they are completely full.  This is also done top down, so we
2072 * have to be pessimistic.
2073 */
2074static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2075                                          struct btrfs_root *root,
2076                                          struct btrfs_path *path, int level)
2077{
2078        struct btrfs_fs_info *fs_info = root->fs_info;
2079        struct extent_buffer *right = NULL;
2080        struct extent_buffer *mid;
2081        struct extent_buffer *left = NULL;
2082        struct extent_buffer *parent = NULL;
2083        int ret = 0;
2084        int wret;
2085        int pslot;
2086        int orig_slot = path->slots[level];
2087
2088        if (level == 0)
2089                return 1;
2090
2091        mid = path->nodes[level];
2092        WARN_ON(btrfs_header_generation(mid) != trans->transid);
2093
2094        if (level < BTRFS_MAX_LEVEL - 1) {
2095                parent = path->nodes[level + 1];
2096                pslot = path->slots[level + 1];
2097        }
2098
2099        if (!parent)
2100                return 1;
2101
2102        left = btrfs_read_node_slot(parent, pslot - 1);
2103        if (IS_ERR(left))
2104                left = NULL;
2105
2106        /* first, try to make some room in the middle buffer */
2107        if (left) {
2108                u32 left_nr;
2109
2110                btrfs_tree_lock(left);
2111                btrfs_set_lock_blocking_write(left);
2112
2113                left_nr = btrfs_header_nritems(left);
2114                if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2115                        wret = 1;
2116                } else {
2117                        ret = btrfs_cow_block(trans, root, left, parent,
2118                                              pslot - 1, &left);
2119                        if (ret)
2120                                wret = 1;
2121                        else {
2122                                wret = push_node_left(trans, left, mid, 0);
2123                        }
2124                }
2125                if (wret < 0)
2126                        ret = wret;
2127                if (wret == 0) {
2128                        struct btrfs_disk_key disk_key;
2129                        orig_slot += left_nr;
2130                        btrfs_node_key(mid, &disk_key, 0);
2131                        ret = tree_mod_log_insert_key(parent, pslot,
2132                                        MOD_LOG_KEY_REPLACE, GFP_NOFS);
2133                        BUG_ON(ret < 0);
2134                        btrfs_set_node_key(parent, &disk_key, pslot);
2135                        btrfs_mark_buffer_dirty(parent);
2136                        if (btrfs_header_nritems(left) > orig_slot) {
2137                                path->nodes[level] = left;
2138                                path->slots[level + 1] -= 1;
2139                                path->slots[level] = orig_slot;
2140                                btrfs_tree_unlock(mid);
2141                                free_extent_buffer(mid);
2142                        } else {
2143                                orig_slot -=
2144                                        btrfs_header_nritems(left);
2145                                path->slots[level] = orig_slot;
2146                                btrfs_tree_unlock(left);
2147                                free_extent_buffer(left);
2148                        }
2149                        return 0;
2150                }
2151                btrfs_tree_unlock(left);
2152                free_extent_buffer(left);
2153        }
2154        right = btrfs_read_node_slot(parent, pslot + 1);
2155        if (IS_ERR(right))
2156                right = NULL;
2157
2158        /*
2159         * then try to empty the right most buffer into the middle
2160         */
2161        if (right) {
2162                u32 right_nr;
2163
2164                btrfs_tree_lock(right);
2165                btrfs_set_lock_blocking_write(right);
2166
2167                right_nr = btrfs_header_nritems(right);
2168                if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2169                        wret = 1;
2170                } else {
2171                        ret = btrfs_cow_block(trans, root, right,
2172                                              parent, pslot + 1,
2173                                              &right);
2174                        if (ret)
2175                                wret = 1;
2176                        else {
2177                                wret = balance_node_right(trans, right, mid);
2178                        }
2179                }
2180                if (wret < 0)
2181                        ret = wret;
2182                if (wret == 0) {
2183                        struct btrfs_disk_key disk_key;
2184
2185                        btrfs_node_key(right, &disk_key, 0);
2186                        ret = tree_mod_log_insert_key(parent, pslot + 1,
2187                                        MOD_LOG_KEY_REPLACE, GFP_NOFS);
2188                        BUG_ON(ret < 0);
2189                        btrfs_set_node_key(parent, &disk_key, pslot + 1);
2190                        btrfs_mark_buffer_dirty(parent);
2191
2192                        if (btrfs_header_nritems(mid) <= orig_slot) {
2193                                path->nodes[level] = right;
2194                                path->slots[level + 1] += 1;
2195                                path->slots[level] = orig_slot -
2196                                        btrfs_header_nritems(mid);
2197                                btrfs_tree_unlock(mid);
2198                                free_extent_buffer(mid);
2199                        } else {
2200                                btrfs_tree_unlock(right);
2201                                free_extent_buffer(right);
2202                        }
2203                        return 0;
2204                }
2205                btrfs_tree_unlock(right);
2206                free_extent_buffer(right);
2207        }
2208        return 1;
2209}
2210
2211/*
2212 * readahead one full node of leaves, finding things that are close
2213 * to the block in 'slot', and triggering ra on them.
2214 */
2215static void reada_for_search(struct btrfs_fs_info *fs_info,
2216                             struct btrfs_path *path,
2217                             int level, int slot, u64 objectid)
2218{
2219        struct extent_buffer *node;
2220        struct btrfs_disk_key disk_key;
2221        u32 nritems;
2222        u64 search;
2223        u64 target;
2224        u64 nread = 0;
2225        struct extent_buffer *eb;
2226        u32 nr;
2227        u32 blocksize;
2228        u32 nscan = 0;
2229
2230        if (level != 1)
2231                return;
2232
2233        if (!path->nodes[level])
2234                return;
2235
2236        node = path->nodes[level];
2237
2238        search = btrfs_node_blockptr(node, slot);
2239        blocksize = fs_info->nodesize;
2240        eb = find_extent_buffer(fs_info, search);
2241        if (eb) {
2242                free_extent_buffer(eb);
2243                return;
2244        }
2245
2246        target = search;
2247
2248        nritems = btrfs_header_nritems(node);
2249        nr = slot;
2250
2251        while (1) {
2252                if (path->reada == READA_BACK) {
2253                        if (nr == 0)
2254                                break;
2255                        nr--;
2256                } else if (path->reada == READA_FORWARD) {
2257                        nr++;
2258                        if (nr >= nritems)
2259                                break;
2260                }
2261                if (path->reada == READA_BACK && objectid) {
2262                        btrfs_node_key(node, &disk_key, nr);
2263                        if (btrfs_disk_key_objectid(&disk_key) != objectid)
2264                                break;
2265                }
2266                search = btrfs_node_blockptr(node, nr);
2267                if ((search <= target && target - search <= 65536) ||
2268                    (search > target && search - target <= 65536)) {
2269                        readahead_tree_block(fs_info, search);
2270                        nread += blocksize;
2271                }
2272                nscan++;
2273                if ((nread > 65536 || nscan > 32))
2274                        break;
2275        }
2276}
2277
2278static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2279                                       struct btrfs_path *path, int level)
2280{
2281        int slot;
2282        int nritems;
2283        struct extent_buffer *parent;
2284        struct extent_buffer *eb;
2285        u64 gen;
2286        u64 block1 = 0;
2287        u64 block2 = 0;
2288
2289        parent = path->nodes[level + 1];
2290        if (!parent)
2291                return;
2292
2293        nritems = btrfs_header_nritems(parent);
2294        slot = path->slots[level + 1];
2295
2296        if (slot > 0) {
2297                block1 = btrfs_node_blockptr(parent, slot - 1);
2298                gen = btrfs_node_ptr_generation(parent, slot - 1);
2299                eb = find_extent_buffer(fs_info, block1);
2300                /*
2301                 * if we get -eagain from btrfs_buffer_uptodate, we
2302                 * don't want to return eagain here.  That will loop
2303                 * forever
2304                 */
2305                if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2306                        block1 = 0;
2307                free_extent_buffer(eb);
2308        }
2309        if (slot + 1 < nritems) {
2310                block2 = btrfs_node_blockptr(parent, slot + 1);
2311                gen = btrfs_node_ptr_generation(parent, slot + 1);
2312                eb = find_extent_buffer(fs_info, block2);
2313                if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2314                        block2 = 0;
2315                free_extent_buffer(eb);
2316        }
2317
2318        if (block1)
2319                readahead_tree_block(fs_info, block1);
2320        if (block2)
2321                readahead_tree_block(fs_info, block2);
2322}
2323
2324
2325/*
2326 * when we walk down the tree, it is usually safe to unlock the higher layers
2327 * in the tree.  The exceptions are when our path goes through slot 0, because
2328 * operations on the tree might require changing key pointers higher up in the
2329 * tree.
2330 *
2331 * callers might also have set path->keep_locks, which tells this code to keep
2332 * the lock if the path points to the last slot in the block.  This is part of
2333 * walking through the tree, and selecting the next slot in the higher block.
2334 *
2335 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2336 * if lowest_unlock is 1, level 0 won't be unlocked
2337 */
2338static noinline void unlock_up(struct btrfs_path *path, int level,
2339                               int lowest_unlock, int min_write_lock_level,
2340                               int *write_lock_level)
2341{
2342        int i;
2343        int skip_level = level;
2344        int no_skips = 0;
2345        struct extent_buffer *t;
2346
2347        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2348                if (!path->nodes[i])
2349                        break;
2350                if (!path->locks[i])
2351                        break;
2352                if (!no_skips && path->slots[i] == 0) {
2353                        skip_level = i + 1;
2354                        continue;
2355                }
2356                if (!no_skips && path->keep_locks) {
2357                        u32 nritems;
2358                        t = path->nodes[i];
2359                        nritems = btrfs_header_nritems(t);
2360                        if (nritems < 1 || path->slots[i] >= nritems - 1) {
2361                                skip_level = i + 1;
2362                                continue;
2363                        }
2364                }
2365                if (skip_level < i && i >= lowest_unlock)
2366                        no_skips = 1;
2367
2368                t = path->nodes[i];
2369                if (i >= lowest_unlock && i > skip_level) {
2370                        btrfs_tree_unlock_rw(t, path->locks[i]);
2371                        path->locks[i] = 0;
2372                        if (write_lock_level &&
2373                            i > min_write_lock_level &&
2374                            i <= *write_lock_level) {
2375                                *write_lock_level = i - 1;
2376                        }
2377                }
2378        }
2379}
2380
2381/*
2382 * This releases any locks held in the path starting at level and
2383 * going all the way up to the root.
2384 *
2385 * btrfs_search_slot will keep the lock held on higher nodes in a few
2386 * corner cases, such as COW of the block at slot zero in the node.  This
2387 * ignores those rules, and it should only be called when there are no
2388 * more updates to be done higher up in the tree.
2389 */
2390noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2391{
2392        int i;
2393
2394        if (path->keep_locks)
2395                return;
2396
2397        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2398                if (!path->nodes[i])
2399                        continue;
2400                if (!path->locks[i])
2401                        continue;
2402                btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2403                path->locks[i] = 0;
2404        }
2405}
2406
2407/*
2408 * helper function for btrfs_search_slot.  The goal is to find a block
2409 * in cache without setting the path to blocking.  If we find the block
2410 * we return zero and the path is unchanged.
2411 *
2412 * If we can't find the block, we set the path blocking and do some
2413 * reada.  -EAGAIN is returned and the search must be repeated.
2414 */
2415static int
2416read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2417                      struct extent_buffer **eb_ret, int level, int slot,
2418                      const struct btrfs_key *key)
2419{
2420        struct btrfs_fs_info *fs_info = root->fs_info;
2421        u64 blocknr;
2422        u64 gen;
2423        struct extent_buffer *b = *eb_ret;
2424        struct extent_buffer *tmp;
2425        struct btrfs_key first_key;
2426        int ret;
2427        int parent_level;
2428
2429        blocknr = btrfs_node_blockptr(b, slot);
2430        gen = btrfs_node_ptr_generation(b, slot);
2431        parent_level = btrfs_header_level(b);
2432        btrfs_node_key_to_cpu(b, &first_key, slot);
2433
2434        tmp = find_extent_buffer(fs_info, blocknr);
2435        if (tmp) {
2436                /* first we do an atomic uptodate check */
2437                if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2438                        /*
2439                         * Do extra check for first_key, eb can be stale due to
2440                         * being cached, read from scrub, or have multiple
2441                         * parents (shared tree blocks).
2442                         */
2443                        if (btrfs_verify_level_key(tmp,
2444                                        parent_level - 1, &first_key, gen)) {
2445                                free_extent_buffer(tmp);
2446                                return -EUCLEAN;
2447                        }
2448                        *eb_ret = tmp;
2449                        return 0;
2450                }
2451
2452                /* the pages were up to date, but we failed
2453                 * the generation number check.  Do a full
2454                 * read for the generation number that is correct.
2455                 * We must do this without dropping locks so
2456                 * we can trust our generation number
2457                 */
2458                btrfs_set_path_blocking(p);
2459
2460                /* now we're allowed to do a blocking uptodate check */
2461                ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2462                if (!ret) {
2463                        *eb_ret = tmp;
2464                        return 0;
2465                }
2466                free_extent_buffer(tmp);
2467                btrfs_release_path(p);
2468                return -EIO;
2469        }
2470
2471        /*
2472         * reduce lock contention at high levels
2473         * of the btree by dropping locks before
2474         * we read.  Don't release the lock on the current
2475         * level because we need to walk this node to figure
2476         * out which blocks to read.
2477         */
2478        btrfs_unlock_up_safe(p, level + 1);
2479        btrfs_set_path_blocking(p);
2480
2481        if (p->reada != READA_NONE)
2482                reada_for_search(fs_info, p, level, slot, key->objectid);
2483
2484        ret = -EAGAIN;
2485        tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2486                              &first_key);
2487        if (!IS_ERR(tmp)) {
2488                /*
2489                 * If the read above didn't mark this buffer up to date,
2490                 * it will never end up being up to date.  Set ret to EIO now
2491                 * and give up so that our caller doesn't loop forever
2492                 * on our EAGAINs.
2493                 */
2494                if (!extent_buffer_uptodate(tmp))
2495                        ret = -EIO;
2496                free_extent_buffer(tmp);
2497        } else {
2498                ret = PTR_ERR(tmp);
2499        }
2500
2501        btrfs_release_path(p);
2502        return ret;
2503}
2504
2505/*
2506 * helper function for btrfs_search_slot.  This does all of the checks
2507 * for node-level blocks and does any balancing required based on
2508 * the ins_len.
2509 *
2510 * If no extra work was required, zero is returned.  If we had to
2511 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2512 * start over
2513 */
2514static int
2515setup_nodes_for_search(struct btrfs_trans_handle *trans,
2516                       struct btrfs_root *root, struct btrfs_path *p,
2517                       struct extent_buffer *b, int level, int ins_len,
2518                       int *write_lock_level)
2519{
2520        struct btrfs_fs_info *fs_info = root->fs_info;
2521        int ret;
2522
2523        if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2524            BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2525                int sret;
2526
2527                if (*write_lock_level < level + 1) {
2528                        *write_lock_level = level + 1;
2529                        btrfs_release_path(p);
2530                        goto again;
2531                }
2532
2533                btrfs_set_path_blocking(p);
2534                reada_for_balance(fs_info, p, level);
2535                sret = split_node(trans, root, p, level);
2536
2537                BUG_ON(sret > 0);
2538                if (sret) {
2539                        ret = sret;
2540                        goto done;
2541                }
2542                b = p->nodes[level];
2543        } else if (ins_len < 0 && btrfs_header_nritems(b) <
2544                   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2545                int sret;
2546
2547                if (*write_lock_level < level + 1) {
2548                        *write_lock_level = level + 1;
2549                        btrfs_release_path(p);
2550                        goto again;
2551                }
2552
2553                btrfs_set_path_blocking(p);
2554                reada_for_balance(fs_info, p, level);
2555                sret = balance_level(trans, root, p, level);
2556
2557                if (sret) {
2558                        ret = sret;
2559                        goto done;
2560                }
2561                b = p->nodes[level];
2562                if (!b) {
2563                        btrfs_release_path(p);
2564                        goto again;
2565                }
2566                BUG_ON(btrfs_header_nritems(b) == 1);
2567        }
2568        return 0;
2569
2570again:
2571        ret = -EAGAIN;
2572done:
2573        return ret;
2574}
2575
2576static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2577                      int level, int *prev_cmp, int *slot)
2578{
2579        if (*prev_cmp != 0) {
2580                *prev_cmp = btrfs_bin_search(b, key, level, slot);
2581                return *prev_cmp;
2582        }
2583
2584        *slot = 0;
2585
2586        return 0;
2587}
2588
2589int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2590                u64 iobjectid, u64 ioff, u8 key_type,
2591                struct btrfs_key *found_key)
2592{
2593        int ret;
2594        struct btrfs_key key;
2595        struct extent_buffer *eb;
2596
2597        ASSERT(path);
2598        ASSERT(found_key);
2599
2600        key.type = key_type;
2601        key.objectid = iobjectid;
2602        key.offset = ioff;
2603
2604        ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2605        if (ret < 0)
2606                return ret;
2607
2608        eb = path->nodes[0];
2609        if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2610                ret = btrfs_next_leaf(fs_root, path);
2611                if (ret)
2612                        return ret;
2613                eb = path->nodes[0];
2614        }
2615
2616        btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2617        if (found_key->type != key.type ||
2618                        found_key->objectid != key.objectid)
2619                return 1;
2620
2621        return 0;
2622}
2623
2624static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2625                                                        struct btrfs_path *p,
2626                                                        int write_lock_level)
2627{
2628        struct btrfs_fs_info *fs_info = root->fs_info;
2629        struct extent_buffer *b;
2630        int root_lock;
2631        int level = 0;
2632
2633        /* We try very hard to do read locks on the root */
2634        root_lock = BTRFS_READ_LOCK;
2635
2636        if (p->search_commit_root) {
2637                /*
2638                 * The commit roots are read only so we always do read locks,
2639                 * and we always must hold the commit_root_sem when doing
2640                 * searches on them, the only exception is send where we don't
2641                 * want to block transaction commits for a long time, so
2642                 * we need to clone the commit root in order to avoid races
2643                 * with transaction commits that create a snapshot of one of
2644                 * the roots used by a send operation.
2645                 */
2646                if (p->need_commit_sem) {
2647                        down_read(&fs_info->commit_root_sem);
2648                        b = btrfs_clone_extent_buffer(root->commit_root);
2649                        up_read(&fs_info->commit_root_sem);
2650                        if (!b)
2651                                return ERR_PTR(-ENOMEM);
2652
2653                } else {
2654                        b = root->commit_root;
2655                        extent_buffer_get(b);
2656                }
2657                level = btrfs_header_level(b);
2658                /*
2659                 * Ensure that all callers have set skip_locking when
2660                 * p->search_commit_root = 1.
2661                 */
2662                ASSERT(p->skip_locking == 1);
2663
2664                goto out;
2665        }
2666
2667        if (p->skip_locking) {
2668                b = btrfs_root_node(root);
2669                level = btrfs_header_level(b);
2670                goto out;
2671        }
2672
2673        /*
2674         * If the level is set to maximum, we can skip trying to get the read
2675         * lock.
2676         */
2677        if (write_lock_level < BTRFS_MAX_LEVEL) {
2678                /*
2679                 * We don't know the level of the root node until we actually
2680                 * have it read locked
2681                 */
2682                b = btrfs_read_lock_root_node(root);
2683                level = btrfs_header_level(b);
2684                if (level > write_lock_level)
2685                        goto out;
2686
2687                /* Whoops, must trade for write lock */
2688                btrfs_tree_read_unlock(b);
2689                free_extent_buffer(b);
2690        }
2691
2692        b = btrfs_lock_root_node(root);
2693        root_lock = BTRFS_WRITE_LOCK;
2694
2695        /* The level might have changed, check again */
2696        level = btrfs_header_level(b);
2697
2698out:
2699        p->nodes[level] = b;
2700        if (!p->skip_locking)
2701                p->locks[level] = root_lock;
2702        /*
2703         * Callers are responsible for dropping b's references.
2704         */
2705        return b;
2706}
2707
2708
2709/*
2710 * btrfs_search_slot - look for a key in a tree and perform necessary
2711 * modifications to preserve tree invariants.
2712 *
2713 * @trans:      Handle of transaction, used when modifying the tree
2714 * @p:          Holds all btree nodes along the search path
2715 * @root:       The root node of the tree
2716 * @key:        The key we are looking for
2717 * @ins_len:    Indicates purpose of search, for inserts it is 1, for
2718 *              deletions it's -1. 0 for plain searches
2719 * @cow:        boolean should CoW operations be performed. Must always be 1
2720 *              when modifying the tree.
2721 *
2722 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2723 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2724 *
2725 * If @key is found, 0 is returned and you can find the item in the leaf level
2726 * of the path (level 0)
2727 *
2728 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2729 * points to the slot where it should be inserted
2730 *
2731 * If an error is encountered while searching the tree a negative error number
2732 * is returned
2733 */
2734int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2735                      const struct btrfs_key *key, struct btrfs_path *p,
2736                      int ins_len, int cow)
2737{
2738        struct extent_buffer *b;
2739        int slot;
2740        int ret;
2741        int err;
2742        int level;
2743        int lowest_unlock = 1;
2744        /* everything at write_lock_level or lower must be write locked */
2745        int write_lock_level = 0;
2746        u8 lowest_level = 0;
2747        int min_write_lock_level;
2748        int prev_cmp;
2749
2750        lowest_level = p->lowest_level;
2751        WARN_ON(lowest_level && ins_len > 0);
2752        WARN_ON(p->nodes[0] != NULL);
2753        BUG_ON(!cow && ins_len);
2754
2755        if (ins_len < 0) {
2756                lowest_unlock = 2;
2757
2758                /* when we are removing items, we might have to go up to level
2759                 * two as we update tree pointers  Make sure we keep write
2760                 * for those levels as well
2761                 */
2762                write_lock_level = 2;
2763        } else if (ins_len > 0) {
2764                /*
2765                 * for inserting items, make sure we have a write lock on
2766                 * level 1 so we can update keys
2767                 */
2768                write_lock_level = 1;
2769        }
2770
2771        if (!cow)
2772                write_lock_level = -1;
2773
2774        if (cow && (p->keep_locks || p->lowest_level))
2775                write_lock_level = BTRFS_MAX_LEVEL;
2776
2777        min_write_lock_level = write_lock_level;
2778
2779again:
2780        prev_cmp = -1;
2781        b = btrfs_search_slot_get_root(root, p, write_lock_level);
2782        if (IS_ERR(b)) {
2783                ret = PTR_ERR(b);
2784                goto done;
2785        }
2786
2787        while (b) {
2788                level = btrfs_header_level(b);
2789
2790                /*
2791                 * setup the path here so we can release it under lock
2792                 * contention with the cow code
2793                 */
2794                if (cow) {
2795                        bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2796
2797                        /*
2798                         * if we don't really need to cow this block
2799                         * then we don't want to set the path blocking,
2800                         * so we test it here
2801                         */
2802                        if (!should_cow_block(trans, root, b)) {
2803                                trans->dirty = true;
2804                                goto cow_done;
2805                        }
2806
2807                        /*
2808                         * must have write locks on this node and the
2809                         * parent
2810                         */
2811                        if (level > write_lock_level ||
2812                            (level + 1 > write_lock_level &&
2813                            level + 1 < BTRFS_MAX_LEVEL &&
2814                            p->nodes[level + 1])) {
2815                                write_lock_level = level + 1;
2816                                btrfs_release_path(p);
2817                                goto again;
2818                        }
2819
2820                        btrfs_set_path_blocking(p);
2821                        if (last_level)
2822                                err = btrfs_cow_block(trans, root, b, NULL, 0,
2823                                                      &b);
2824                        else
2825                                err = btrfs_cow_block(trans, root, b,
2826                                                      p->nodes[level + 1],
2827                                                      p->slots[level + 1], &b);
2828                        if (err) {
2829                                ret = err;
2830                                goto done;
2831                        }
2832                }
2833cow_done:
2834                p->nodes[level] = b;
2835                /*
2836                 * Leave path with blocking locks to avoid massive
2837                 * lock context switch, this is made on purpose.
2838                 */
2839
2840                /*
2841                 * we have a lock on b and as long as we aren't changing
2842                 * the tree, there is no way to for the items in b to change.
2843                 * It is safe to drop the lock on our parent before we
2844                 * go through the expensive btree search on b.
2845                 *
2846                 * If we're inserting or deleting (ins_len != 0), then we might
2847                 * be changing slot zero, which may require changing the parent.
2848                 * So, we can't drop the lock until after we know which slot
2849                 * we're operating on.
2850                 */
2851                if (!ins_len && !p->keep_locks) {
2852                        int u = level + 1;
2853
2854                        if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2855                                btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2856                                p->locks[u] = 0;
2857                        }
2858                }
2859
2860                ret = key_search(b, key, level, &prev_cmp, &slot);
2861                if (ret < 0)
2862                        goto done;
2863
2864                if (level != 0) {
2865                        int dec = 0;
2866                        if (ret && slot > 0) {
2867                                dec = 1;
2868                                slot -= 1;
2869                        }
2870                        p->slots[level] = slot;
2871                        err = setup_nodes_for_search(trans, root, p, b, level,
2872                                             ins_len, &write_lock_level);
2873                        if (err == -EAGAIN)
2874                                goto again;
2875                        if (err) {
2876                                ret = err;
2877                                goto done;
2878                        }
2879                        b = p->nodes[level];
2880                        slot = p->slots[level];
2881
2882                        /*
2883                         * slot 0 is special, if we change the key
2884                         * we have to update the parent pointer
2885                         * which means we must have a write lock
2886                         * on the parent
2887                         */
2888                        if (slot == 0 && ins_len &&
2889                            write_lock_level < level + 1) {
2890                                write_lock_level = level + 1;
2891                                btrfs_release_path(p);
2892                                goto again;
2893                        }
2894
2895                        unlock_up(p, level, lowest_unlock,
2896                                  min_write_lock_level, &write_lock_level);
2897
2898                        if (level == lowest_level) {
2899                                if (dec)
2900                                        p->slots[level]++;
2901                                goto done;
2902                        }
2903
2904                        err = read_block_for_search(root, p, &b, level,
2905                                                    slot, key);
2906                        if (err == -EAGAIN)
2907                                goto again;
2908                        if (err) {
2909                                ret = err;
2910                                goto done;
2911                        }
2912
2913                        if (!p->skip_locking) {
2914                                level = btrfs_header_level(b);
2915                                if (level <= write_lock_level) {
2916                                        if (!btrfs_try_tree_write_lock(b)) {
2917                                                btrfs_set_path_blocking(p);
2918                                                btrfs_tree_lock(b);
2919                                        }
2920                                        p->locks[level] = BTRFS_WRITE_LOCK;
2921                                } else {
2922                                        if (!btrfs_tree_read_lock_atomic(b)) {
2923                                                btrfs_set_path_blocking(p);
2924                                                btrfs_tree_read_lock(b);
2925                                        }
2926                                        p->locks[level] = BTRFS_READ_LOCK;
2927                                }
2928                                p->nodes[level] = b;
2929                        }
2930                } else {
2931                        p->slots[level] = slot;
2932                        if (ins_len > 0 &&
2933                            btrfs_leaf_free_space(b) < ins_len) {
2934                                if (write_lock_level < 1) {
2935                                        write_lock_level = 1;
2936                                        btrfs_release_path(p);
2937                                        goto again;
2938                                }
2939
2940                                btrfs_set_path_blocking(p);
2941                                err = split_leaf(trans, root, key,
2942                                                 p, ins_len, ret == 0);
2943
2944                                BUG_ON(err > 0);
2945                                if (err) {
2946                                        ret = err;
2947                                        goto done;
2948                                }
2949                        }
2950                        if (!p->search_for_split)
2951                                unlock_up(p, level, lowest_unlock,
2952                                          min_write_lock_level, NULL);
2953                        goto done;
2954                }
2955        }
2956        ret = 1;
2957done:
2958        /*
2959         * we don't really know what they plan on doing with the path
2960         * from here on, so for now just mark it as blocking
2961         */
2962        if (!p->leave_spinning)
2963                btrfs_set_path_blocking(p);
2964        if (ret < 0 && !p->skip_release_on_error)
2965                btrfs_release_path(p);
2966        return ret;
2967}
2968
2969/*
2970 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2971 * current state of the tree together with the operations recorded in the tree
2972 * modification log to search for the key in a previous version of this tree, as
2973 * denoted by the time_seq parameter.
2974 *
2975 * Naturally, there is no support for insert, delete or cow operations.
2976 *
2977 * The resulting path and return value will be set up as if we called
2978 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2979 */
2980int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2981                          struct btrfs_path *p, u64 time_seq)
2982{
2983        struct btrfs_fs_info *fs_info = root->fs_info;
2984        struct extent_buffer *b;
2985        int slot;
2986        int ret;
2987        int err;
2988        int level;
2989        int lowest_unlock = 1;
2990        u8 lowest_level = 0;
2991        int prev_cmp = -1;
2992
2993        lowest_level = p->lowest_level;
2994        WARN_ON(p->nodes[0] != NULL);
2995
2996        if (p->search_commit_root) {
2997                BUG_ON(time_seq);
2998                return btrfs_search_slot(NULL, root, key, p, 0, 0);
2999        }
3000
3001again:
3002        b = get_old_root(root, time_seq);
3003        if (!b) {
3004                ret = -EIO;
3005                goto done;
3006        }
3007        level = btrfs_header_level(b);
3008        p->locks[level] = BTRFS_READ_LOCK;
3009
3010        while (b) {
3011                level = btrfs_header_level(b);
3012                p->nodes[level] = b;
3013
3014                /*
3015                 * we have a lock on b and as long as we aren't changing
3016                 * the tree, there is no way to for the items in b to change.
3017                 * It is safe to drop the lock on our parent before we
3018                 * go through the expensive btree search on b.
3019                 */
3020                btrfs_unlock_up_safe(p, level + 1);
3021
3022                /*
3023                 * Since we can unwind ebs we want to do a real search every
3024                 * time.
3025                 */
3026                prev_cmp = -1;
3027                ret = key_search(b, key, level, &prev_cmp, &slot);
3028                if (ret < 0)
3029                        goto done;
3030
3031                if (level != 0) {
3032                        int dec = 0;
3033                        if (ret && slot > 0) {
3034                                dec = 1;
3035                                slot -= 1;
3036                        }
3037                        p->slots[level] = slot;
3038                        unlock_up(p, level, lowest_unlock, 0, NULL);
3039
3040                        if (level == lowest_level) {
3041                                if (dec)
3042                                        p->slots[level]++;
3043                                goto done;
3044                        }
3045
3046                        err = read_block_for_search(root, p, &b, level,
3047                                                    slot, key);
3048                        if (err == -EAGAIN)
3049                                goto again;
3050                        if (err) {
3051                                ret = err;
3052                                goto done;
3053                        }
3054
3055                        level = btrfs_header_level(b);
3056                        if (!btrfs_tree_read_lock_atomic(b)) {
3057                                btrfs_set_path_blocking(p);
3058                                btrfs_tree_read_lock(b);
3059                        }
3060                        b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3061                        if (!b) {
3062                                ret = -ENOMEM;
3063                                goto done;
3064                        }
3065                        p->locks[level] = BTRFS_READ_LOCK;
3066                        p->nodes[level] = b;
3067                } else {
3068                        p->slots[level] = slot;
3069                        unlock_up(p, level, lowest_unlock, 0, NULL);
3070                        goto done;
3071                }
3072        }
3073        ret = 1;
3074done:
3075        if (!p->leave_spinning)
3076                btrfs_set_path_blocking(p);
3077        if (ret < 0)
3078                btrfs_release_path(p);
3079
3080        return ret;
3081}
3082
3083/*
3084 * helper to use instead of search slot if no exact match is needed but
3085 * instead the next or previous item should be returned.
3086 * When find_higher is true, the next higher item is returned, the next lower
3087 * otherwise.
3088 * When return_any and find_higher are both true, and no higher item is found,
3089 * return the next lower instead.
3090 * When return_any is true and find_higher is false, and no lower item is found,
3091 * return the next higher instead.
3092 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3093 * < 0 on error
3094 */
3095int btrfs_search_slot_for_read(struct btrfs_root *root,
3096                               const struct btrfs_key *key,
3097                               struct btrfs_path *p, int find_higher,
3098                               int return_any)
3099{
3100        int ret;
3101        struct extent_buffer *leaf;
3102
3103again:
3104        ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3105        if (ret <= 0)
3106                return ret;
3107        /*
3108         * a return value of 1 means the path is at the position where the
3109         * item should be inserted. Normally this is the next bigger item,
3110         * but in case the previous item is the last in a leaf, path points
3111         * to the first free slot in the previous leaf, i.e. at an invalid
3112         * item.
3113         */
3114        leaf = p->nodes[0];
3115
3116        if (find_higher) {
3117                if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3118                        ret = btrfs_next_leaf(root, p);
3119                        if (ret <= 0)
3120                                return ret;
3121                        if (!return_any)
3122                                return 1;
3123                        /*
3124                         * no higher item found, return the next
3125                         * lower instead
3126                         */
3127                        return_any = 0;
3128                        find_higher = 0;
3129                        btrfs_release_path(p);
3130                        goto again;
3131                }
3132        } else {
3133                if (p->slots[0] == 0) {
3134                        ret = btrfs_prev_leaf(root, p);
3135                        if (ret < 0)
3136                                return ret;
3137                        if (!ret) {
3138                                leaf = p->nodes[0];
3139                                if (p->slots[0] == btrfs_header_nritems(leaf))
3140                                        p->slots[0]--;
3141                                return 0;
3142                        }
3143                        if (!return_any)
3144                                return 1;
3145                        /*
3146                         * no lower item found, return the next
3147                         * higher instead
3148                         */
3149                        return_any = 0;
3150                        find_higher = 1;
3151                        btrfs_release_path(p);
3152                        goto again;
3153                } else {
3154                        --p->slots[0];
3155                }
3156        }
3157        return 0;
3158}
3159
3160/*
3161 * adjust the pointers going up the tree, starting at level
3162 * making sure the right key of each node is points to 'key'.
3163 * This is used after shifting pointers to the left, so it stops
3164 * fixing up pointers when a given leaf/node is not in slot 0 of the
3165 * higher levels
3166 *
3167 */
3168static void fixup_low_keys(struct btrfs_path *path,
3169                           struct btrfs_disk_key *key, int level)
3170{
3171        int i;
3172        struct extent_buffer *t;
3173        int ret;
3174
3175        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3176                int tslot = path->slots[i];
3177
3178                if (!path->nodes[i])
3179                        break;
3180                t = path->nodes[i];
3181                ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3182                                GFP_ATOMIC);
3183                BUG_ON(ret < 0);
3184                btrfs_set_node_key(t, key, tslot);
3185                btrfs_mark_buffer_dirty(path->nodes[i]);
3186                if (tslot != 0)
3187                        break;
3188        }
3189}
3190
3191/*
3192 * update item key.
3193 *
3194 * This function isn't completely safe. It's the caller's responsibility
3195 * that the new key won't break the order
3196 */
3197void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3198                             struct btrfs_path *path,
3199                             const struct btrfs_key *new_key)
3200{
3201        struct btrfs_disk_key disk_key;
3202        struct extent_buffer *eb;
3203        int slot;
3204
3205        eb = path->nodes[0];
3206        slot = path->slots[0];
3207        if (slot > 0) {
3208                btrfs_item_key(eb, &disk_key, slot - 1);
3209                if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
3210                        btrfs_crit(fs_info,
3211                "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3212                                   slot, btrfs_disk_key_objectid(&disk_key),
3213                                   btrfs_disk_key_type(&disk_key),
3214                                   btrfs_disk_key_offset(&disk_key),
3215                                   new_key->objectid, new_key->type,
3216                                   new_key->offset);
3217                        btrfs_print_leaf(eb);
3218                        BUG();
3219                }
3220        }
3221        if (slot < btrfs_header_nritems(eb) - 1) {
3222                btrfs_item_key(eb, &disk_key, slot + 1);
3223                if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
3224                        btrfs_crit(fs_info,
3225                "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3226                                   slot, btrfs_disk_key_objectid(&disk_key),
3227                                   btrfs_disk_key_type(&disk_key),
3228                                   btrfs_disk_key_offset(&disk_key),
3229                                   new_key->objectid, new_key->type,
3230                                   new_key->offset);
3231                        btrfs_print_leaf(eb);
3232                        BUG();
3233                }
3234        }
3235
3236        btrfs_cpu_key_to_disk(&disk_key, new_key);
3237        btrfs_set_item_key(eb, &disk_key, slot);
3238        btrfs_mark_buffer_dirty(eb);
3239        if (slot == 0)
3240                fixup_low_keys(path, &disk_key, 1);
3241}
3242
3243/*
3244 * try to push data from one node into the next node left in the
3245 * tree.
3246 *
3247 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3248 * error, and > 0 if there was no room in the left hand block.
3249 */
3250static int push_node_left(struct btrfs_trans_handle *trans,
3251                          struct extent_buffer *dst,
3252                          struct extent_buffer *src, int empty)
3253{
3254        struct btrfs_fs_info *fs_info = trans->fs_info;
3255        int push_items = 0;
3256        int src_nritems;
3257        int dst_nritems;
3258        int ret = 0;
3259
3260        src_nritems = btrfs_header_nritems(src);
3261        dst_nritems = btrfs_header_nritems(dst);
3262        push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3263        WARN_ON(btrfs_header_generation(src) != trans->transid);
3264        WARN_ON(btrfs_header_generation(dst) != trans->transid);
3265
3266        if (!empty && src_nritems <= 8)
3267                return 1;
3268
3269        if (push_items <= 0)
3270                return 1;
3271
3272        if (empty) {
3273                push_items = min(src_nritems, push_items);
3274                if (push_items < src_nritems) {
3275                        /* leave at least 8 pointers in the node if
3276                         * we aren't going to empty it
3277                         */
3278                        if (src_nritems - push_items < 8) {
3279                                if (push_items <= 8)
3280                                        return 1;
3281                                push_items -= 8;
3282                        }
3283                }
3284        } else
3285                push_items = min(src_nritems - 8, push_items);
3286
3287        ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3288        if (ret) {
3289                btrfs_abort_transaction(trans, ret);
3290                return ret;
3291        }
3292        copy_extent_buffer(dst, src,
3293                           btrfs_node_key_ptr_offset(dst_nritems),
3294                           btrfs_node_key_ptr_offset(0),
3295                           push_items * sizeof(struct btrfs_key_ptr));
3296
3297        if (push_items < src_nritems) {
3298                /*
3299                 * Don't call tree_mod_log_insert_move here, key removal was
3300                 * already fully logged by tree_mod_log_eb_copy above.
3301                 */
3302                memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3303                                      btrfs_node_key_ptr_offset(push_items),
3304                                      (src_nritems - push_items) *
3305                                      sizeof(struct btrfs_key_ptr));
3306        }
3307        btrfs_set_header_nritems(src, src_nritems - push_items);
3308        btrfs_set_header_nritems(dst, dst_nritems + push_items);
3309        btrfs_mark_buffer_dirty(src);
3310        btrfs_mark_buffer_dirty(dst);
3311
3312        return ret;
3313}
3314
3315/*
3316 * try to push data from one node into the next node right in the
3317 * tree.
3318 *
3319 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3320 * error, and > 0 if there was no room in the right hand block.
3321 *
3322 * this will  only push up to 1/2 the contents of the left node over
3323 */
3324static int balance_node_right(struct btrfs_trans_handle *trans,
3325                              struct extent_buffer *dst,
3326                              struct extent_buffer *src)
3327{
3328        struct btrfs_fs_info *fs_info = trans->fs_info;
3329        int push_items = 0;
3330        int max_push;
3331        int src_nritems;
3332        int dst_nritems;
3333        int ret = 0;
3334
3335        WARN_ON(btrfs_header_generation(src) != trans->transid);
3336        WARN_ON(btrfs_header_generation(dst) != trans->transid);
3337
3338        src_nritems = btrfs_header_nritems(src);
3339        dst_nritems = btrfs_header_nritems(dst);
3340        push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3341        if (push_items <= 0)
3342                return 1;
3343
3344        if (src_nritems < 4)
3345                return 1;
3346
3347        max_push = src_nritems / 2 + 1;
3348        /* don't try to empty the node */
3349        if (max_push >= src_nritems)
3350                return 1;
3351
3352        if (max_push < push_items)
3353                push_items = max_push;
3354
3355        ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3356        BUG_ON(ret < 0);
3357        memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3358                                      btrfs_node_key_ptr_offset(0),
3359                                      (dst_nritems) *
3360                                      sizeof(struct btrfs_key_ptr));
3361
3362        ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3363                                   push_items);
3364        if (ret) {
3365                btrfs_abort_transaction(trans, ret);
3366                return ret;
3367        }
3368        copy_extent_buffer(dst, src,
3369                           btrfs_node_key_ptr_offset(0),
3370                           btrfs_node_key_ptr_offset(src_nritems - push_items),
3371                           push_items * sizeof(struct btrfs_key_ptr));
3372
3373        btrfs_set_header_nritems(src, src_nritems - push_items);
3374        btrfs_set_header_nritems(dst, dst_nritems + push_items);
3375
3376        btrfs_mark_buffer_dirty(src);
3377        btrfs_mark_buffer_dirty(dst);
3378
3379        return ret;
3380}
3381
3382/*
3383 * helper function to insert a new root level in the tree.
3384 * A new node is allocated, and a single item is inserted to
3385 * point to the existing root
3386 *
3387 * returns zero on success or < 0 on failure.
3388 */
3389static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3390                           struct btrfs_root *root,
3391                           struct btrfs_path *path, int level)
3392{
3393        struct btrfs_fs_info *fs_info = root->fs_info;
3394        u64 lower_gen;
3395        struct extent_buffer *lower;
3396        struct extent_buffer *c;
3397        struct extent_buffer *old;
3398        struct btrfs_disk_key lower_key;
3399        int ret;
3400
3401        BUG_ON(path->nodes[level]);
3402        BUG_ON(path->nodes[level-1] != root->node);
3403
3404        lower = path->nodes[level-1];
3405        if (level == 1)
3406                btrfs_item_key(lower, &lower_key, 0);
3407        else
3408                btrfs_node_key(lower, &lower_key, 0);
3409
3410        c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3411                                         root->node->start, 0);
3412        if (IS_ERR(c))
3413                return PTR_ERR(c);
3414
3415        root_add_used(root, fs_info->nodesize);
3416
3417        btrfs_set_header_nritems(c, 1);
3418        btrfs_set_node_key(c, &lower_key, 0);
3419        btrfs_set_node_blockptr(c, 0, lower->start);
3420        lower_gen = btrfs_header_generation(lower);
3421        WARN_ON(lower_gen != trans->transid);
3422
3423        btrfs_set_node_ptr_generation(c, 0, lower_gen);
3424
3425        btrfs_mark_buffer_dirty(c);
3426
3427        old = root->node;
3428        ret = tree_mod_log_insert_root(root->node, c, 0);
3429        BUG_ON(ret < 0);
3430        rcu_assign_pointer(root->node, c);
3431
3432        /* the super has an extra ref to root->node */
3433        free_extent_buffer(old);
3434
3435        add_root_to_dirty_list(root);
3436        extent_buffer_get(c);
3437        path->nodes[level] = c;
3438        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3439        path->slots[level] = 0;
3440        return 0;
3441}
3442
3443/*
3444 * worker function to insert a single pointer in a node.
3445 * the node should have enough room for the pointer already
3446 *
3447 * slot and level indicate where you want the key to go, and
3448 * blocknr is the block the key points to.
3449 */
3450static void insert_ptr(struct btrfs_trans_handle *trans,
3451                       struct btrfs_path *path,
3452                       struct btrfs_disk_key *key, u64 bytenr,
3453                       int slot, int level)
3454{
3455        struct extent_buffer *lower;
3456        int nritems;
3457        int ret;
3458
3459        BUG_ON(!path->nodes[level]);
3460        btrfs_assert_tree_locked(path->nodes[level]);
3461        lower = path->nodes[level];
3462        nritems = btrfs_header_nritems(lower);
3463        BUG_ON(slot > nritems);
3464        BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3465        if (slot != nritems) {
3466                if (level) {
3467                        ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3468                                        nritems - slot);
3469                        BUG_ON(ret < 0);
3470                }
3471                memmove_extent_buffer(lower,
3472                              btrfs_node_key_ptr_offset(slot + 1),
3473                              btrfs_node_key_ptr_offset(slot),
3474                              (nritems - slot) * sizeof(struct btrfs_key_ptr));
3475        }
3476        if (level) {
3477                ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3478                                GFP_NOFS);
3479                BUG_ON(ret < 0);
3480        }
3481        btrfs_set_node_key(lower, key, slot);
3482        btrfs_set_node_blockptr(lower, slot, bytenr);
3483        WARN_ON(trans->transid == 0);
3484        btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3485        btrfs_set_header_nritems(lower, nritems + 1);
3486        btrfs_mark_buffer_dirty(lower);
3487}
3488
3489/*
3490 * split the node at the specified level in path in two.
3491 * The path is corrected to point to the appropriate node after the split
3492 *
3493 * Before splitting this tries to make some room in the node by pushing
3494 * left and right, if either one works, it returns right away.
3495 *
3496 * returns 0 on success and < 0 on failure
3497 */
3498static noinline int split_node(struct btrfs_trans_handle *trans,
3499                               struct btrfs_root *root,
3500                               struct btrfs_path *path, int level)
3501{
3502        struct btrfs_fs_info *fs_info = root->fs_info;
3503        struct extent_buffer *c;
3504        struct extent_buffer *split;
3505        struct btrfs_disk_key disk_key;
3506        int mid;
3507        int ret;
3508        u32 c_nritems;
3509
3510        c = path->nodes[level];
3511        WARN_ON(btrfs_header_generation(c) != trans->transid);
3512        if (c == root->node) {
3513                /*
3514                 * trying to split the root, lets make a new one
3515                 *
3516                 * tree mod log: We don't log_removal old root in
3517                 * insert_new_root, because that root buffer will be kept as a
3518                 * normal node. We are going to log removal of half of the
3519                 * elements below with tree_mod_log_eb_copy. We're holding a
3520                 * tree lock on the buffer, which is why we cannot race with
3521                 * other tree_mod_log users.
3522                 */
3523                ret = insert_new_root(trans, root, path, level + 1);
3524                if (ret)
3525                        return ret;
3526        } else {
3527                ret = push_nodes_for_insert(trans, root, path, level);
3528                c = path->nodes[level];
3529                if (!ret && btrfs_header_nritems(c) <
3530                    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3531                        return 0;
3532                if (ret < 0)
3533                        return ret;
3534        }
3535
3536        c_nritems = btrfs_header_nritems(c);
3537        mid = (c_nritems + 1) / 2;
3538        btrfs_node_key(c, &disk_key, mid);
3539
3540        split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3541                                             c->start, 0);
3542        if (IS_ERR(split))
3543                return PTR_ERR(split);
3544
3545        root_add_used(root, fs_info->nodesize);
3546        ASSERT(btrfs_header_level(c) == level);
3547
3548        ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3549        if (ret) {
3550                btrfs_abort_transaction(trans, ret);
3551                return ret;
3552        }
3553        copy_extent_buffer(split, c,
3554                           btrfs_node_key_ptr_offset(0),
3555                           btrfs_node_key_ptr_offset(mid),
3556                           (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3557        btrfs_set_header_nritems(split, c_nritems - mid);
3558        btrfs_set_header_nritems(c, mid);
3559        ret = 0;
3560
3561        btrfs_mark_buffer_dirty(c);
3562        btrfs_mark_buffer_dirty(split);
3563
3564        insert_ptr(trans, path, &disk_key, split->start,
3565                   path->slots[level + 1] + 1, level + 1);
3566
3567        if (path->slots[level] >= mid) {
3568                path->slots[level] -= mid;
3569                btrfs_tree_unlock(c);
3570                free_extent_buffer(c);
3571                path->nodes[level] = split;
3572                path->slots[level + 1] += 1;
3573        } else {
3574                btrfs_tree_unlock(split);
3575                free_extent_buffer(split);
3576        }
3577        return ret;
3578}
3579
3580/*
3581 * how many bytes are required to store the items in a leaf.  start
3582 * and nr indicate which items in the leaf to check.  This totals up the
3583 * space used both by the item structs and the item data
3584 */
3585static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3586{
3587        struct btrfs_item *start_item;
3588        struct btrfs_item *end_item;
3589        struct btrfs_map_token token;
3590        int data_len;
3591        int nritems = btrfs_header_nritems(l);
3592        int end = min(nritems, start + nr) - 1;
3593
3594        if (!nr)
3595                return 0;
3596        btrfs_init_map_token(&token, l);
3597        start_item = btrfs_item_nr(start);
3598        end_item = btrfs_item_nr(end);
3599        data_len = btrfs_token_item_offset(l, start_item, &token) +
3600                btrfs_token_item_size(l, start_item, &token);
3601        data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3602        data_len += sizeof(struct btrfs_item) * nr;
3603        WARN_ON(data_len < 0);
3604        return data_len;
3605}
3606
3607/*
3608 * The space between the end of the leaf items and
3609 * the start of the leaf data.  IOW, how much room
3610 * the leaf has left for both items and data
3611 */
3612noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3613{
3614        struct btrfs_fs_info *fs_info = leaf->fs_info;
3615        int nritems = btrfs_header_nritems(leaf);
3616        int ret;
3617
3618        ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3619        if (ret < 0) {
3620                btrfs_crit(fs_info,
3621                           "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3622                           ret,
3623                           (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3624                           leaf_space_used(leaf, 0, nritems), nritems);
3625        }
3626        return ret;
3627}
3628
3629/*
3630 * min slot controls the lowest index we're willing to push to the
3631 * right.  We'll push up to and including min_slot, but no lower
3632 */
3633static noinline int __push_leaf_right(struct btrfs_path *path,
3634                                      int data_size, int empty,
3635                                      struct extent_buffer *right,
3636                                      int free_space, u32 left_nritems,
3637                                      u32 min_slot)
3638{
3639        struct btrfs_fs_info *fs_info = right->fs_info;
3640        struct extent_buffer *left = path->nodes[0];
3641        struct extent_buffer *upper = path->nodes[1];
3642        struct btrfs_map_token token;
3643        struct btrfs_disk_key disk_key;
3644        int slot;
3645        u32 i;
3646        int push_space = 0;
3647        int push_items = 0;
3648        struct btrfs_item *item;
3649        u32 nr;
3650        u32 right_nritems;
3651        u32 data_end;
3652        u32 this_item_size;
3653
3654        if (empty)
3655                nr = 0;
3656        else
3657                nr = max_t(u32, 1, min_slot);
3658
3659        if (path->slots[0] >= left_nritems)
3660                push_space += data_size;
3661
3662        slot = path->slots[1];
3663        i = left_nritems - 1;
3664        while (i >= nr) {
3665                item = btrfs_item_nr(i);
3666
3667                if (!empty && push_items > 0) {
3668                        if (path->slots[0] > i)
3669                                break;
3670                        if (path->slots[0] == i) {
3671                                int space = btrfs_leaf_free_space(left);
3672
3673                                if (space + push_space * 2 > free_space)
3674                                        break;
3675                        }
3676                }
3677
3678                if (path->slots[0] == i)
3679                        push_space += data_size;
3680
3681                this_item_size = btrfs_item_size(left, item);
3682                if (this_item_size + sizeof(*item) + push_space > free_space)
3683                        break;
3684
3685                push_items++;
3686                push_space += this_item_size + sizeof(*item);
3687                if (i == 0)
3688                        break;
3689                i--;
3690        }
3691
3692        if (push_items == 0)
3693                goto out_unlock;
3694
3695        WARN_ON(!empty && push_items == left_nritems);
3696
3697        /* push left to right */
3698        right_nritems = btrfs_header_nritems(right);
3699
3700        push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3701        push_space -= leaf_data_end(left);
3702
3703        /* make room in the right data area */
3704        data_end = leaf_data_end(right);
3705        memmove_extent_buffer(right,
3706                              BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3707                              BTRFS_LEAF_DATA_OFFSET + data_end,
3708                              BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3709
3710        /* copy from the left data area */
3711        copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3712                     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3713                     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
3714                     push_space);
3715
3716        memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3717                              btrfs_item_nr_offset(0),
3718                              right_nritems * sizeof(struct btrfs_item));
3719
3720        /* copy the items from left to right */
3721        copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3722                   btrfs_item_nr_offset(left_nritems - push_items),
3723                   push_items * sizeof(struct btrfs_item));
3724
3725        /* update the item pointers */
3726        btrfs_init_map_token(&token, right);
3727        right_nritems += push_items;
3728        btrfs_set_header_nritems(right, right_nritems);
3729        push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3730        for (i = 0; i < right_nritems; i++) {
3731                item = btrfs_item_nr(i);
3732                push_space -= btrfs_token_item_size(right, item, &token);
3733                btrfs_set_token_item_offset(right, item, push_space, &token);
3734        }
3735
3736        left_nritems -= push_items;
3737        btrfs_set_header_nritems(left, left_nritems);
3738
3739        if (left_nritems)
3740                btrfs_mark_buffer_dirty(left);
3741        else
3742                btrfs_clean_tree_block(left);
3743
3744        btrfs_mark_buffer_dirty(right);
3745
3746        btrfs_item_key(right, &disk_key, 0);
3747        btrfs_set_node_key(upper, &disk_key, slot + 1);
3748        btrfs_mark_buffer_dirty(upper);
3749
3750        /* then fixup the leaf pointer in the path */
3751        if (path->slots[0] >= left_nritems) {
3752                path->slots[0] -= left_nritems;
3753                if (btrfs_header_nritems(path->nodes[0]) == 0)
3754                        btrfs_clean_tree_block(path->nodes[0]);
3755                btrfs_tree_unlock(path->nodes[0]);
3756                free_extent_buffer(path->nodes[0]);
3757                path->nodes[0] = right;
3758                path->slots[1] += 1;
3759        } else {
3760                btrfs_tree_unlock(right);
3761                free_extent_buffer(right);
3762        }
3763        return 0;
3764
3765out_unlock:
3766        btrfs_tree_unlock(right);
3767        free_extent_buffer(right);
3768        return 1;
3769}
3770
3771/*
3772 * push some data in the path leaf to the right, trying to free up at
3773 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3774 *
3775 * returns 1 if the push failed because the other node didn't have enough
3776 * room, 0 if everything worked out and < 0 if there were major errors.
3777 *
3778 * this will push starting from min_slot to the end of the leaf.  It won't
3779 * push any slot lower than min_slot
3780 */
3781static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3782                           *root, struct btrfs_path *path,
3783                           int min_data_size, int data_size,
3784                           int empty, u32 min_slot)
3785{
3786        struct extent_buffer *left = path->nodes[0];
3787        struct extent_buffer *right;
3788        struct extent_buffer *upper;
3789        int slot;
3790        int free_space;
3791        u32 left_nritems;
3792        int ret;
3793
3794        if (!path->nodes[1])
3795                return 1;
3796
3797        slot = path->slots[1];
3798        upper = path->nodes[1];
3799        if (slot >= btrfs_header_nritems(upper) - 1)
3800                return 1;
3801
3802        btrfs_assert_tree_locked(path->nodes[1]);
3803
3804        right = btrfs_read_node_slot(upper, slot + 1);
3805        /*
3806         * slot + 1 is not valid or we fail to read the right node,
3807         * no big deal, just return.
3808         */
3809        if (IS_ERR(right))
3810                return 1;
3811
3812        btrfs_tree_lock(right);
3813        btrfs_set_lock_blocking_write(right);
3814
3815        free_space = btrfs_leaf_free_space(right);
3816        if (free_space < data_size)
3817                goto out_unlock;
3818
3819        /* cow and double check */
3820        ret = btrfs_cow_block(trans, root, right, upper,
3821                              slot + 1, &right);
3822        if (ret)
3823                goto out_unlock;
3824
3825        free_space = btrfs_leaf_free_space(right);
3826        if (free_space < data_size)
3827                goto out_unlock;
3828
3829        left_nritems = btrfs_header_nritems(left);
3830        if (left_nritems == 0)
3831                goto out_unlock;
3832
3833        if (path->slots[0] == left_nritems && !empty) {
3834                /* Key greater than all keys in the leaf, right neighbor has
3835                 * enough room for it and we're not emptying our leaf to delete
3836                 * it, therefore use right neighbor to insert the new item and
3837                 * no need to touch/dirty our left leaf. */
3838                btrfs_tree_unlock(left);
3839                free_extent_buffer(left);
3840                path->nodes[0] = right;
3841                path->slots[0] = 0;
3842                path->slots[1]++;
3843                return 0;
3844        }
3845
3846        return __push_leaf_right(path, min_data_size, empty,
3847                                right, free_space, left_nritems, min_slot);
3848out_unlock:
3849        btrfs_tree_unlock(right);
3850        free_extent_buffer(right);
3851        return 1;
3852}
3853
3854/*
3855 * push some data in the path leaf to the left, trying to free up at
3856 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3857 *
3858 * max_slot can put a limit on how far into the leaf we'll push items.  The
3859 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3860 * items
3861 */
3862static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3863                                     int empty, struct extent_buffer *left,
3864                                     int free_space, u32 right_nritems,
3865                                     u32 max_slot)
3866{
3867        struct btrfs_fs_info *fs_info = left->fs_info;
3868        struct btrfs_disk_key disk_key;
3869        struct extent_buffer *right = path->nodes[0];
3870        int i;
3871        int push_space = 0;
3872        int push_items = 0;
3873        struct btrfs_item *item;
3874        u32 old_left_nritems;
3875        u32 nr;
3876        int ret = 0;
3877        u32 this_item_size;
3878        u32 old_left_item_size;
3879        struct btrfs_map_token token;
3880
3881        if (empty)
3882                nr = min(right_nritems, max_slot);
3883        else
3884                nr = min(right_nritems - 1, max_slot);
3885
3886        for (i = 0; i < nr; i++) {
3887                item = btrfs_item_nr(i);
3888
3889                if (!empty && push_items > 0) {
3890                        if (path->slots[0] < i)
3891                                break;
3892                        if (path->slots[0] == i) {
3893                                int space = btrfs_leaf_free_space(right);
3894
3895                                if (space + push_space * 2 > free_space)
3896                                        break;
3897                        }
3898                }
3899
3900                if (path->slots[0] == i)
3901                        push_space += data_size;
3902
3903                this_item_size = btrfs_item_size(right, item);
3904                if (this_item_size + sizeof(*item) + push_space > free_space)
3905                        break;
3906
3907                push_items++;
3908                push_space += this_item_size + sizeof(*item);
3909        }
3910
3911        if (push_items == 0) {
3912                ret = 1;
3913                goto out;
3914        }
3915        WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3916
3917        /* push data from right to left */
3918        copy_extent_buffer(left, right,
3919                           btrfs_item_nr_offset(btrfs_header_nritems(left)),
3920                           btrfs_item_nr_offset(0),
3921                           push_items * sizeof(struct btrfs_item));
3922
3923        push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3924                     btrfs_item_offset_nr(right, push_items - 1);
3925
3926        copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3927                     leaf_data_end(left) - push_space,
3928                     BTRFS_LEAF_DATA_OFFSET +
3929                     btrfs_item_offset_nr(right, push_items - 1),
3930                     push_space);
3931        old_left_nritems = btrfs_header_nritems(left);
3932        BUG_ON(old_left_nritems <= 0);
3933
3934        btrfs_init_map_token(&token, left);
3935        old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3936        for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3937                u32 ioff;
3938
3939                item = btrfs_item_nr(i);
3940
3941                ioff = btrfs_token_item_offset(left, item, &token);
3942                btrfs_set_token_item_offset(left, item,
3943                      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3944                      &token);
3945        }
3946        btrfs_set_header_nritems(left, old_left_nritems + push_items);
3947
3948        /* fixup right node */
3949        if (push_items > right_nritems)
3950                WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3951                       right_nritems);
3952
3953        if (push_items < right_nritems) {
3954                push_space = btrfs_item_offset_nr(right, push_items - 1) -
3955                                                  leaf_data_end(right);
3956                memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3957                                      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3958                                      BTRFS_LEAF_DATA_OFFSET +
3959                                      leaf_data_end(right), push_space);
3960
3961                memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3962                              btrfs_item_nr_offset(push_items),
3963                             (btrfs_header_nritems(right) - push_items) *
3964                             sizeof(struct btrfs_item));
3965        }
3966
3967        btrfs_init_map_token(&token, right);
3968        right_nritems -= push_items;
3969        btrfs_set_header_nritems(right, right_nritems);
3970        push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3971        for (i = 0; i < right_nritems; i++) {
3972                item = btrfs_item_nr(i);
3973
3974                push_space = push_space - btrfs_token_item_size(right,
3975                                                                item, &token);
3976                btrfs_set_token_item_offset(right, item, push_space, &token);
3977        }
3978
3979        btrfs_mark_buffer_dirty(left);
3980        if (right_nritems)
3981                btrfs_mark_buffer_dirty(right);
3982        else
3983                btrfs_clean_tree_block(right);
3984
3985        btrfs_item_key(right, &disk_key, 0);
3986        fixup_low_keys(path, &disk_key, 1);
3987
3988        /* then fixup the leaf pointer in the path */
3989        if (path->slots[0] < push_items) {
3990                path->slots[0] += old_left_nritems;
3991                btrfs_tree_unlock(path->nodes[0]);
3992                free_extent_buffer(path->nodes[0]);
3993                path->nodes[0] = left;
3994                path->slots[1] -= 1;
3995        } else {
3996                btrfs_tree_unlock(left);
3997                free_extent_buffer(left);
3998                path->slots[0] -= push_items;
3999        }
4000        BUG_ON(path->slots[0] < 0);
4001        return ret;
4002out:
4003        btrfs_tree_unlock(left);
4004        free_extent_buffer(left);
4005        return ret;
4006}
4007
4008/*
4009 * push some data in the path leaf to the left, trying to free up at
4010 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
4011 *
4012 * max_slot can put a limit on how far into the leaf we'll push items.  The
4013 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
4014 * items
4015 */
4016static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
4017                          *root, struct btrfs_path *path, int min_data_size,
4018                          int data_size, int empty, u32 max_slot)
4019{
4020        struct extent_buffer *right = path->nodes[0];
4021        struct extent_buffer *left;
4022        int slot;
4023        int free_space;
4024        u32 right_nritems;
4025        int ret = 0;
4026
4027        slot = path->slots[1];
4028        if (slot == 0)
4029                return 1;
4030        if (!path->nodes[1])
4031                return 1;
4032
4033        right_nritems = btrfs_header_nritems(right);
4034        if (right_nritems == 0)
4035                return 1;
4036
4037        btrfs_assert_tree_locked(path->nodes[1]);
4038
4039        left = btrfs_read_node_slot(path->nodes[1], slot - 1);
4040        /*
4041         * slot - 1 is not valid or we fail to read the left node,
4042         * no big deal, just return.
4043         */
4044        if (IS_ERR(left))
4045                return 1;
4046
4047        btrfs_tree_lock(left);
4048        btrfs_set_lock_blocking_write(left);
4049
4050        free_space = btrfs_leaf_free_space(left);
4051        if (free_space < data_size) {
4052                ret = 1;
4053                goto out;
4054        }
4055
4056        /* cow and double check */
4057        ret = btrfs_cow_block(trans, root, left,
4058                              path->nodes[1], slot - 1, &left);
4059        if (ret) {
4060                /* we hit -ENOSPC, but it isn't fatal here */
4061                if (ret == -ENOSPC)
4062                        ret = 1;
4063                goto out;
4064        }
4065
4066        free_space = btrfs_leaf_free_space(left);
4067        if (free_space < data_size) {
4068                ret = 1;
4069                goto out;
4070        }
4071
4072        return __push_leaf_left(path, min_data_size,
4073                               empty, left, free_space, right_nritems,
4074                               max_slot);
4075out:
4076        btrfs_tree_unlock(left);
4077        free_extent_buffer(left);
4078        return ret;
4079}
4080
4081/*
4082 * split the path's leaf in two, making sure there is at least data_size
4083 * available for the resulting leaf level of the path.
4084 */
4085static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4086                                    struct btrfs_path *path,
4087                                    struct extent_buffer *l,
4088                                    struct extent_buffer *right,
4089                                    int slot, int mid, int nritems)
4090{
4091        struct btrfs_fs_info *fs_info = trans->fs_info;
4092        int data_copy_size;
4093        int rt_data_off;
4094        int i;
4095        struct btrfs_disk_key disk_key;
4096        struct btrfs_map_token token;
4097
4098        nritems = nritems - mid;
4099        btrfs_set_header_nritems(right, nritems);
4100        data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4101
4102        copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4103                           btrfs_item_nr_offset(mid),
4104                           nritems * sizeof(struct btrfs_item));
4105
4106        copy_extent_buffer(right, l,
4107                     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4108                     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4109                     leaf_data_end(l), data_copy_size);
4110
4111        rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4112
4113        btrfs_init_map_token(&token, right);
4114        for (i = 0; i < nritems; i++) {
4115                struct btrfs_item *item = btrfs_item_nr(i);
4116                u32 ioff;
4117
4118                ioff = btrfs_token_item_offset(right, item, &token);
4119                btrfs_set_token_item_offset(right, item,
4120                                            ioff + rt_data_off, &token);
4121        }
4122
4123        btrfs_set_header_nritems(l, mid);
4124        btrfs_item_key(right, &disk_key, 0);
4125        insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4126
4127        btrfs_mark_buffer_dirty(right);
4128        btrfs_mark_buffer_dirty(l);
4129        BUG_ON(path->slots[0] != slot);
4130
4131        if (mid <= slot) {
4132                btrfs_tree_unlock(path->nodes[0]);
4133                free_extent_buffer(path->nodes[0]);
4134                path->nodes[0] = right;
4135                path->slots[0] -= mid;
4136                path->slots[1] += 1;
4137        } else {
4138                btrfs_tree_unlock(right);
4139                free_extent_buffer(right);
4140        }
4141
4142        BUG_ON(path->slots[0] < 0);
4143}
4144
4145/*
4146 * double splits happen when we need to insert a big item in the middle
4147 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4148 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4149 *          A                 B                 C
4150 *
4151 * We avoid this by trying to push the items on either side of our target
4152 * into the adjacent leaves.  If all goes well we can avoid the double split
4153 * completely.
4154 */
4155static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4156                                          struct btrfs_root *root,
4157                                          struct btrfs_path *path,
4158                                          int data_size)
4159{
4160        int ret;
4161        int progress = 0;
4162        int slot;
4163        u32 nritems;
4164        int space_needed = data_size;
4165
4166        slot = path->slots[0];
4167        if (slot < btrfs_header_nritems(path->nodes[0]))
4168                space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4169
4170        /*
4171         * try to push all the items after our slot into the
4172         * right leaf
4173         */
4174        ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4175        if (ret < 0)
4176                return ret;
4177
4178        if (ret == 0)
4179                progress++;
4180
4181        nritems = btrfs_header_nritems(path->nodes[0]);
4182        /*
4183         * our goal is to get our slot at the start or end of a leaf.  If
4184         * we've done so we're done
4185         */
4186        if (path->slots[0] == 0 || path->slots[0] == nritems)
4187                return 0;
4188
4189        if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4190                return 0;
4191
4192        /* try to push all the items before our slot into the next leaf */
4193        slot = path->slots[0];
4194        space_needed = data_size;
4195        if (slot > 0)
4196                space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4197        ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4198        if (ret < 0)
4199                return ret;
4200
4201        if (ret == 0)
4202                progress++;
4203
4204        if (progress)
4205                return 0;
4206        return 1;
4207}
4208
4209/*
4210 * split the path's leaf in two, making sure there is at least data_size
4211 * available for the resulting leaf level of the path.
4212 *
4213 * returns 0 if all went well and < 0 on failure.
4214 */
4215static noinline int split_leaf(struct btrfs_trans_handle *trans,
4216                               struct btrfs_root *root,
4217                               const struct btrfs_key *ins_key,
4218                               struct btrfs_path *path, int data_size,
4219                               int extend)
4220{
4221        struct btrfs_disk_key disk_key;
4222        struct extent_buffer *l;
4223        u32 nritems;
4224        int mid;
4225        int slot;
4226        struct extent_buffer *right;
4227        struct btrfs_fs_info *fs_info = root->fs_info;
4228        int ret = 0;
4229        int wret;
4230        int split;
4231        int num_doubles = 0;
4232        int tried_avoid_double = 0;
4233
4234        l = path->nodes[0];
4235        slot = path->slots[0];
4236        if (extend && data_size + btrfs_item_size_nr(l, slot) +
4237            sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4238                return -EOVERFLOW;
4239
4240        /* first try to make some room by pushing left and right */
4241        if (data_size && path->nodes[1]) {
4242                int space_needed = data_size;
4243
4244                if (slot < btrfs_header_nritems(l))
4245                        space_needed -= btrfs_leaf_free_space(l);
4246
4247                wret = push_leaf_right(trans, root, path, space_needed,
4248                                       space_needed, 0, 0);
4249                if (wret < 0)
4250                        return wret;
4251                if (wret) {
4252                        space_needed = data_size;
4253                        if (slot > 0)
4254                                space_needed -= btrfs_leaf_free_space(l);
4255                        wret = push_leaf_left(trans, root, path, space_needed,
4256                                              space_needed, 0, (u32)-1);
4257                        if (wret < 0)
4258                                return wret;
4259                }
4260                l = path->nodes[0];
4261
4262                /* did the pushes work? */
4263                if (btrfs_leaf_free_space(l) >= data_size)
4264                        return 0;
4265        }
4266
4267        if (!path->nodes[1]) {
4268                ret = insert_new_root(trans, root, path, 1);
4269                if (ret)
4270                        return ret;
4271        }
4272again:
4273        split = 1;
4274        l = path->nodes[0];
4275        slot = path->slots[0];
4276        nritems = btrfs_header_nritems(l);
4277        mid = (nritems + 1) / 2;
4278
4279        if (mid <= slot) {
4280                if (nritems == 1 ||
4281                    leaf_space_used(l, mid, nritems - mid) + data_size >
4282                        BTRFS_LEAF_DATA_SIZE(fs_info)) {
4283                        if (slot >= nritems) {
4284                                split = 0;
4285                        } else {
4286                                mid = slot;
4287                                if (mid != nritems &&
4288                                    leaf_space_used(l, mid, nritems - mid) +
4289                                    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4290                                        if (data_size && !tried_avoid_double)
4291                                                goto push_for_double;
4292                                        split = 2;
4293                                }
4294                        }
4295                }
4296        } else {
4297                if (leaf_space_used(l, 0, mid) + data_size >
4298                        BTRFS_LEAF_DATA_SIZE(fs_info)) {
4299                        if (!extend && data_size && slot == 0) {
4300                                split = 0;
4301                        } else if ((extend || !data_size) && slot == 0) {
4302                                mid = 1;
4303                        } else {
4304                                mid = slot;
4305                                if (mid != nritems &&
4306                                    leaf_space_used(l, mid, nritems - mid) +
4307                                    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4308                                        if (data_size && !tried_avoid_double)
4309                                                goto push_for_double;
4310                                        split = 2;
4311                                }
4312                        }
4313                }
4314        }
4315
4316        if (split == 0)
4317                btrfs_cpu_key_to_disk(&disk_key, ins_key);
4318        else
4319                btrfs_item_key(l, &disk_key, mid);
4320
4321        right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4322                                             l->start, 0);
4323        if (IS_ERR(right))
4324                return PTR_ERR(right);
4325
4326        root_add_used(root, fs_info->nodesize);
4327
4328        if (split == 0) {
4329                if (mid <= slot) {
4330                        btrfs_set_header_nritems(right, 0);
4331                        insert_ptr(trans, path, &disk_key,
4332                                   right->start, path->slots[1] + 1, 1);
4333                        btrfs_tree_unlock(path->nodes[0]);
4334                        free_extent_buffer(path->nodes[0]);
4335                        path->nodes[0] = right;
4336                        path->slots[0] = 0;
4337                        path->slots[1] += 1;
4338                } else {
4339                        btrfs_set_header_nritems(right, 0);
4340                        insert_ptr(trans, path, &disk_key,
4341                                   right->start, path->slots[1], 1);
4342                        btrfs_tree_unlock(path->nodes[0]);
4343                        free_extent_buffer(path->nodes[0]);
4344                        path->nodes[0] = right;
4345                        path->slots[0] = 0;
4346                        if (path->slots[1] == 0)
4347                                fixup_low_keys(path, &disk_key, 1);
4348                }
4349                /*
4350                 * We create a new leaf 'right' for the required ins_len and
4351                 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4352                 * the content of ins_len to 'right'.
4353                 */
4354                return ret;
4355        }
4356
4357        copy_for_split(trans, path, l, right, slot, mid, nritems);
4358
4359        if (split == 2) {
4360                BUG_ON(num_doubles != 0);
4361                num_doubles++;
4362                goto again;
4363        }
4364
4365        return 0;
4366
4367push_for_double:
4368        push_for_double_split(trans, root, path, data_size);
4369        tried_avoid_double = 1;
4370        if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4371                return 0;
4372        goto again;
4373}
4374
4375static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4376                                         struct btrfs_root *root,
4377                                         struct btrfs_path *path, int ins_len)
4378{
4379        struct btrfs_key key;
4380        struct extent_buffer *leaf;
4381        struct btrfs_file_extent_item *fi;
4382        u64 extent_len = 0;
4383        u32 item_size;
4384        int ret;
4385
4386        leaf = path->nodes[0];
4387        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4388
4389        BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4390               key.type != BTRFS_EXTENT_CSUM_KEY);
4391
4392        if (btrfs_leaf_free_space(leaf) >= ins_len)
4393                return 0;
4394
4395        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4396        if (key.type == BTRFS_EXTENT_DATA_KEY) {
4397                fi = btrfs_item_ptr(leaf, path->slots[0],
4398                                    struct btrfs_file_extent_item);
4399                extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4400        }
4401        btrfs_release_path(path);
4402
4403        path->keep_locks = 1;
4404        path->search_for_split = 1;
4405        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4406        path->search_for_split = 0;
4407        if (ret > 0)
4408                ret = -EAGAIN;
4409        if (ret < 0)
4410                goto err;
4411
4412        ret = -EAGAIN;
4413        leaf = path->nodes[0];
4414        /* if our item isn't there, return now */
4415        if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4416                goto err;
4417
4418        /* the leaf has  changed, it now has room.  return now */
4419        if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4420                goto err;
4421
4422        if (key.type == BTRFS_EXTENT_DATA_KEY) {
4423                fi = btrfs_item_ptr(leaf, path->slots[0],
4424                                    struct btrfs_file_extent_item);
4425                if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4426                        goto err;
4427        }
4428
4429        btrfs_set_path_blocking(path);
4430        ret = split_leaf(trans, root, &key, path, ins_len, 1);
4431        if (ret)
4432                goto err;
4433
4434        path->keep_locks = 0;
4435        btrfs_unlock_up_safe(path, 1);
4436        return 0;
4437err:
4438        path->keep_locks = 0;
4439        return ret;
4440}
4441
4442static noinline int split_item(struct btrfs_path *path,
4443                               const struct btrfs_key *new_key,
4444                               unsigned long split_offset)
4445{
4446        struct extent_buffer *leaf;
4447        struct btrfs_item *item;
4448        struct btrfs_item *new_item;
4449        int slot;
4450        char *buf;
4451        u32 nritems;
4452        u32 item_size;
4453        u32 orig_offset;
4454        struct btrfs_disk_key disk_key;
4455
4456        leaf = path->nodes[0];
4457        BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4458
4459        btrfs_set_path_blocking(path);
4460
4461        item = btrfs_item_nr(path->slots[0]);
4462        orig_offset = btrfs_item_offset(leaf, item);
4463        item_size = btrfs_item_size(leaf, item);
4464
4465        buf = kmalloc(item_size, GFP_NOFS);
4466        if (!buf)
4467                return -ENOMEM;
4468
4469        read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4470                            path->slots[0]), item_size);
4471
4472        slot = path->slots[0] + 1;
4473        nritems = btrfs_header_nritems(leaf);
4474        if (slot != nritems) {
4475                /* shift the items */
4476                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4477                                btrfs_item_nr_offset(slot),
4478                                (nritems - slot) * sizeof(struct btrfs_item));
4479        }
4480
4481        btrfs_cpu_key_to_disk(&disk_key, new_key);
4482        btrfs_set_item_key(leaf, &disk_key, slot);
4483
4484        new_item = btrfs_item_nr(slot);
4485
4486        btrfs_set_item_offset(leaf, new_item, orig_offset);
4487        btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4488
4489        btrfs_set_item_offset(leaf, item,
4490                              orig_offset + item_size - split_offset);
4491        btrfs_set_item_size(leaf, item, split_offset);
4492
4493        btrfs_set_header_nritems(leaf, nritems + 1);
4494
4495        /* write the data for the start of the original item */
4496        write_extent_buffer(leaf, buf,
4497                            btrfs_item_ptr_offset(leaf, path->slots[0]),
4498                            split_offset);
4499
4500        /* write the data for the new item */
4501        write_extent_buffer(leaf, buf + split_offset,
4502                            btrfs_item_ptr_offset(leaf, slot),
4503                            item_size - split_offset);
4504        btrfs_mark_buffer_dirty(leaf);
4505
4506        BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4507        kfree(buf);
4508        return 0;
4509}
4510
4511/*
4512 * This function splits a single item into two items,
4513 * giving 'new_key' to the new item and splitting the
4514 * old one at split_offset (from the start of the item).
4515 *
4516 * The path may be released by this operation.  After
4517 * the split, the path is pointing to the old item.  The
4518 * new item is going to be in the same node as the old one.
4519 *
4520 * Note, the item being split must be smaller enough to live alone on
4521 * a tree block with room for one extra struct btrfs_item
4522 *
4523 * This allows us to split the item in place, keeping a lock on the
4524 * leaf the entire time.
4525 */
4526int btrfs_split_item(struct btrfs_trans_handle *trans,
4527                     struct btrfs_root *root,
4528                     struct btrfs_path *path,
4529                     const struct btrfs_key *new_key,
4530                     unsigned long split_offset)
4531{
4532        int ret;
4533        ret = setup_leaf_for_split(trans, root, path,
4534                                   sizeof(struct btrfs_item));
4535        if (ret)
4536                return ret;
4537
4538        ret = split_item(path, new_key, split_offset);
4539        return ret;
4540}
4541
4542/*
4543 * This function duplicate a item, giving 'new_key' to the new item.
4544 * It guarantees both items live in the same tree leaf and the new item
4545 * is contiguous with the original item.
4546 *
4547 * This allows us to split file extent in place, keeping a lock on the
4548 * leaf the entire time.
4549 */
4550int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4551                         struct btrfs_root *root,
4552                         struct btrfs_path *path,
4553                         const struct btrfs_key *new_key)
4554{
4555        struct extent_buffer *leaf;
4556        int ret;
4557        u32 item_size;
4558
4559        leaf = path->nodes[0];
4560        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4561        ret = setup_leaf_for_split(trans, root, path,
4562                                   item_size + sizeof(struct btrfs_item));
4563        if (ret)
4564                return ret;
4565
4566        path->slots[0]++;
4567        setup_items_for_insert(root, path, new_key, &item_size,
4568                               item_size, item_size +
4569                               sizeof(struct btrfs_item), 1);
4570        leaf = path->nodes[0];
4571        memcpy_extent_buffer(leaf,
4572                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4573                             btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4574                             item_size);
4575        return 0;
4576}
4577
4578/*
4579 * make the item pointed to by the path smaller.  new_size indicates
4580 * how small to make it, and from_end tells us if we just chop bytes
4581 * off the end of the item or if we shift the item to chop bytes off
4582 * the front.
4583 */
4584void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
4585{
4586        int slot;
4587        struct extent_buffer *leaf;
4588        struct btrfs_item *item;
4589        u32 nritems;
4590        unsigned int data_end;
4591        unsigned int old_data_start;
4592        unsigned int old_size;
4593        unsigned int size_diff;
4594        int i;
4595        struct btrfs_map_token token;
4596
4597        leaf = path->nodes[0];
4598        slot = path->slots[0];
4599
4600        old_size = btrfs_item_size_nr(leaf, slot);
4601        if (old_size == new_size)
4602                return;
4603
4604        nritems = btrfs_header_nritems(leaf);
4605        data_end = leaf_data_end(leaf);
4606
4607        old_data_start = btrfs_item_offset_nr(leaf, slot);
4608
4609        size_diff = old_size - new_size;
4610
4611        BUG_ON(slot < 0);
4612        BUG_ON(slot >= nritems);
4613
4614        /*
4615         * item0..itemN ... dataN.offset..dataN.size .. data0.size
4616         */
4617        /* first correct the data pointers */
4618        btrfs_init_map_token(&token, leaf);
4619        for (i = slot; i < nritems; i++) {
4620                u32 ioff;
4621                item = btrfs_item_nr(i);
4622
4623                ioff = btrfs_token_item_offset(leaf, item, &token);
4624                btrfs_set_token_item_offset(leaf, item,
4625                                            ioff + size_diff, &token);
4626        }
4627
4628        /* shift the data */
4629        if (from_end) {
4630                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4631                              data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4632                              data_end, old_data_start + new_size - data_end);
4633        } else {
4634                struct btrfs_disk_key disk_key;
4635                u64 offset;
4636
4637                btrfs_item_key(leaf, &disk_key, slot);
4638
4639                if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4640                        unsigned long ptr;
4641                        struct btrfs_file_extent_item *fi;
4642
4643                        fi = btrfs_item_ptr(leaf, slot,
4644                                            struct btrfs_file_extent_item);
4645                        fi = (struct btrfs_file_extent_item *)(
4646                             (unsigned long)fi - size_diff);
4647
4648                        if (btrfs_file_extent_type(leaf, fi) ==
4649                            BTRFS_FILE_EXTENT_INLINE) {
4650                                ptr = btrfs_item_ptr_offset(leaf, slot);
4651                                memmove_extent_buffer(leaf, ptr,
4652                                      (unsigned long)fi,
4653                                      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4654                        }
4655                }
4656
4657                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4658                              data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4659                              data_end, old_data_start - data_end);
4660
4661                offset = btrfs_disk_key_offset(&disk_key);
4662                btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4663                btrfs_set_item_key(leaf, &disk_key, slot);
4664                if (slot == 0)
4665                        fixup_low_keys(path, &disk_key, 1);
4666        }
4667
4668        item = btrfs_item_nr(slot);
4669        btrfs_set_item_size(leaf, item, new_size);
4670        btrfs_mark_buffer_dirty(leaf);
4671
4672        if (btrfs_leaf_free_space(leaf) < 0) {
4673                btrfs_print_leaf(leaf);
4674                BUG();
4675        }
4676}
4677
4678/*
4679 * make the item pointed to by the path bigger, data_size is the added size.
4680 */
4681void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4682{
4683        int slot;
4684        struct extent_buffer *leaf;
4685        struct btrfs_item *item;
4686        u32 nritems;
4687        unsigned int data_end;
4688        unsigned int old_data;
4689        unsigned int old_size;
4690        int i;
4691        struct btrfs_map_token token;
4692
4693        leaf = path->nodes[0];
4694
4695        nritems = btrfs_header_nritems(leaf);
4696        data_end = leaf_data_end(leaf);
4697
4698        if (btrfs_leaf_free_space(leaf) < data_size) {
4699                btrfs_print_leaf(leaf);
4700                BUG();
4701        }
4702        slot = path->slots[0];
4703        old_data = btrfs_item_end_nr(leaf, slot);
4704
4705        BUG_ON(slot < 0);
4706        if (slot >= nritems) {
4707                btrfs_print_leaf(leaf);
4708                btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4709                           slot, nritems);
4710                BUG();
4711        }
4712
4713        /*
4714         * item0..itemN ... dataN.offset..dataN.size .. data0.size
4715         */
4716        /* first correct the data pointers */
4717        btrfs_init_map_token(&token, leaf);
4718        for (i = slot; i < nritems; i++) {
4719                u32 ioff;
4720                item = btrfs_item_nr(i);
4721
4722                ioff = btrfs_token_item_offset(leaf, item, &token);
4723                btrfs_set_token_item_offset(leaf, item,
4724                                            ioff - data_size, &token);
4725        }
4726
4727        /* shift the data */
4728        memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4729                      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4730                      data_end, old_data - data_end);
4731
4732        data_end = old_data;
4733        old_size = btrfs_item_size_nr(leaf, slot);
4734        item = btrfs_item_nr(slot);
4735        btrfs_set_item_size(leaf, item, old_size + data_size);
4736        btrfs_mark_buffer_dirty(leaf);
4737
4738        if (btrfs_leaf_free_space(leaf) < 0) {
4739                btrfs_print_leaf(leaf);
4740                BUG();
4741        }
4742}
4743
4744/*
4745 * this is a helper for btrfs_insert_empty_items, the main goal here is
4746 * to save stack depth by doing the bulk of the work in a function
4747 * that doesn't call btrfs_search_slot
4748 */
4749void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4750                            const struct btrfs_key *cpu_key, u32 *data_size,
4751                            u32 total_data, u32 total_size, int nr)
4752{
4753        struct btrfs_fs_info *fs_info = root->fs_info;
4754        struct btrfs_item *item;
4755        int i;
4756        u32 nritems;
4757        unsigned int data_end;
4758        struct btrfs_disk_key disk_key;
4759        struct extent_buffer *leaf;
4760        int slot;
4761        struct btrfs_map_token token;
4762
4763        if (path->slots[0] == 0) {
4764                btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4765                fixup_low_keys(path, &disk_key, 1);
4766        }
4767        btrfs_unlock_up_safe(path, 1);
4768
4769        leaf = path->nodes[0];
4770        slot = path->slots[0];
4771
4772        nritems = btrfs_header_nritems(leaf);
4773        data_end = leaf_data_end(leaf);
4774
4775        if (btrfs_leaf_free_space(leaf) < total_size) {
4776                btrfs_print_leaf(leaf);
4777                btrfs_crit(fs_info, "not enough freespace need %u have %d",
4778                           total_size, btrfs_leaf_free_space(leaf));
4779                BUG();
4780        }
4781
4782        btrfs_init_map_token(&token, leaf);
4783        if (slot != nritems) {
4784                unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4785
4786                if (old_data < data_end) {
4787                        btrfs_print_leaf(leaf);
4788                        btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4789                                   slot, old_data, data_end);
4790                        BUG();
4791                }
4792                /*
4793                 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4794                 */
4795                /* first correct the data pointers */
4796                for (i = slot; i < nritems; i++) {
4797                        u32 ioff;
4798
4799                        item = btrfs_item_nr(i);
4800                        ioff = btrfs_token_item_offset(leaf, item, &token);
4801                        btrfs_set_token_item_offset(leaf, item,
4802                                                    ioff - total_data, &token);
4803                }
4804                /* shift the items */
4805                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4806                              btrfs_item_nr_offset(slot),
4807                              (nritems - slot) * sizeof(struct btrfs_item));
4808
4809                /* shift the data */
4810                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4811                              data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4812                              data_end, old_data - data_end);
4813                data_end = old_data;
4814        }
4815
4816        /* setup the item for the new data */
4817        for (i = 0; i < nr; i++) {
4818                btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4819                btrfs_set_item_key(leaf, &disk_key, slot + i);
4820                item = btrfs_item_nr(slot + i);
4821                btrfs_set_token_item_offset(leaf, item,
4822                                            data_end - data_size[i], &token);
4823                data_end -= data_size[i];
4824                btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4825        }
4826
4827        btrfs_set_header_nritems(leaf, nritems + nr);
4828        btrfs_mark_buffer_dirty(leaf);
4829
4830        if (btrfs_leaf_free_space(leaf) < 0) {
4831                btrfs_print_leaf(leaf);
4832                BUG();
4833        }
4834}
4835
4836/*
4837 * Given a key and some data, insert items into the tree.
4838 * This does all the path init required, making room in the tree if needed.
4839 */
4840int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4841                            struct btrfs_root *root,
4842                            struct btrfs_path *path,
4843                            const struct btrfs_key *cpu_key, u32 *data_size,
4844                            int nr)
4845{
4846        int ret = 0;
4847        int slot;
4848        int i;
4849        u32 total_size = 0;
4850        u32 total_data = 0;
4851
4852        for (i = 0; i < nr; i++)
4853                total_data += data_size[i];
4854
4855        total_size = total_data + (nr * sizeof(struct btrfs_item));
4856        ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4857        if (ret == 0)
4858                return -EEXIST;
4859        if (ret < 0)
4860                return ret;
4861
4862        slot = path->slots[0];
4863        BUG_ON(slot < 0);
4864
4865        setup_items_for_insert(root, path, cpu_key, data_size,
4866                               total_data, total_size, nr);
4867        return 0;
4868}
4869
4870/*
4871 * Given a key and some data, insert an item into the tree.
4872 * This does all the path init required, making room in the tree if needed.
4873 */
4874int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4875                      const struct btrfs_key *cpu_key, void *data,
4876                      u32 data_size)
4877{
4878        int ret = 0;
4879        struct btrfs_path *path;
4880        struct extent_buffer *leaf;
4881        unsigned long ptr;
4882
4883        path = btrfs_alloc_path();
4884        if (!path)
4885                return -ENOMEM;
4886        ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4887        if (!ret) {
4888                leaf = path->nodes[0];
4889                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4890                write_extent_buffer(leaf, data, ptr, data_size);
4891                btrfs_mark_buffer_dirty(leaf);
4892        }
4893        btrfs_free_path(path);
4894        return ret;
4895}
4896
4897/*
4898 * delete the pointer from a given node.
4899 *
4900 * the tree should have been previously balanced so the deletion does not
4901 * empty a node.
4902 */
4903static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4904                    int level, int slot)
4905{
4906        struct extent_buffer *parent = path->nodes[level];
4907        u32 nritems;
4908        int ret;
4909
4910        nritems = btrfs_header_nritems(parent);
4911        if (slot != nritems - 1) {
4912                if (level) {
4913                        ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4914                                        nritems - slot - 1);
4915                        BUG_ON(ret < 0);
4916                }
4917                memmove_extent_buffer(parent,
4918                              btrfs_node_key_ptr_offset(slot),
4919                              btrfs_node_key_ptr_offset(slot + 1),
4920                              sizeof(struct btrfs_key_ptr) *
4921                              (nritems - slot - 1));
4922        } else if (level) {
4923                ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4924                                GFP_NOFS);
4925                BUG_ON(ret < 0);
4926        }
4927
4928        nritems--;
4929        btrfs_set_header_nritems(parent, nritems);
4930        if (nritems == 0 && parent == root->node) {
4931                BUG_ON(btrfs_header_level(root->node) != 1);
4932                /* just turn the root into a leaf and break */
4933                btrfs_set_header_level(root->node, 0);
4934        } else if (slot == 0) {
4935                struct btrfs_disk_key disk_key;
4936
4937                btrfs_node_key(parent, &disk_key, 0);
4938                fixup_low_keys(path, &disk_key, level + 1);
4939        }
4940        btrfs_mark_buffer_dirty(parent);
4941}
4942
4943/*
4944 * a helper function to delete the leaf pointed to by path->slots[1] and
4945 * path->nodes[1].
4946 *
4947 * This deletes the pointer in path->nodes[1] and frees the leaf
4948 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4949 *
4950 * The path must have already been setup for deleting the leaf, including
4951 * all the proper balancing.  path->nodes[1] must be locked.
4952 */
4953static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4954                                    struct btrfs_root *root,
4955                                    struct btrfs_path *path,
4956                                    struct extent_buffer *leaf)
4957{
4958        WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4959        del_ptr(root, path, 1, path->slots[1]);
4960
4961        /*
4962         * btrfs_free_extent is expensive, we want to make sure we
4963         * aren't holding any locks when we call it
4964         */
4965        btrfs_unlock_up_safe(path, 0);
4966
4967        root_sub_used(root, leaf->len);
4968
4969        extent_buffer_get(leaf);
4970        btrfs_free_tree_block(trans, root, leaf, 0, 1);
4971        free_extent_buffer_stale(leaf);
4972}
4973/*
4974 * delete the item at the leaf level in path.  If that empties
4975 * the leaf, remove it from the tree
4976 */
4977int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4978                    struct btrfs_path *path, int slot, int nr)
4979{
4980        struct btrfs_fs_info *fs_info = root->fs_info;
4981        struct extent_buffer *leaf;
4982        struct btrfs_item *item;
4983        u32 last_off;
4984        u32 dsize = 0;
4985        int ret = 0;
4986        int wret;
4987        int i;
4988        u32 nritems;
4989
4990        leaf = path->nodes[0];
4991        last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4992
4993        for (i = 0; i < nr; i++)
4994                dsize += btrfs_item_size_nr(leaf, slot + i);
4995
4996        nritems = btrfs_header_nritems(leaf);
4997
4998        if (slot + nr != nritems) {
4999                int data_end = leaf_data_end(leaf);
5000                struct btrfs_map_token token;
5001
5002                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
5003                              data_end + dsize,
5004                              BTRFS_LEAF_DATA_OFFSET + data_end,
5005                              last_off - data_end);
5006
5007                btrfs_init_map_token(&token, leaf);
5008                for (i = slot + nr; i < nritems; i++) {
5009                        u32 ioff;
5010
5011                        item = btrfs_item_nr(i);
5012                        ioff = btrfs_token_item_offset(leaf, item, &token);
5013                        btrfs_set_token_item_offset(leaf, item,
5014                                                    ioff + dsize, &token);
5015                }
5016
5017                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5018                              btrfs_item_nr_offset(slot + nr),
5019                              sizeof(struct btrfs_item) *
5020                              (nritems - slot - nr));
5021        }
5022        btrfs_set_header_nritems(leaf, nritems - nr);
5023        nritems -= nr;
5024
5025        /* delete the leaf if we've emptied it */
5026        if (nritems == 0) {
5027                if (leaf == root->node) {
5028                        btrfs_set_header_level(leaf, 0);
5029                } else {
5030                        btrfs_set_path_blocking(path);
5031                        btrfs_clean_tree_block(leaf);
5032                        btrfs_del_leaf(trans, root, path, leaf);
5033                }
5034        } else {
5035                int used = leaf_space_used(leaf, 0, nritems);
5036                if (slot == 0) {
5037                        struct btrfs_disk_key disk_key;
5038
5039                        btrfs_item_key(leaf, &disk_key, 0);
5040                        fixup_low_keys(path, &disk_key, 1);
5041                }
5042
5043                /* delete the leaf if it is mostly empty */
5044                if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5045                        /* push_leaf_left fixes the path.
5046                         * make sure the path still points to our leaf
5047                         * for possible call to del_ptr below
5048                         */
5049                        slot = path->slots[1];
5050                        extent_buffer_get(leaf);
5051
5052                        btrfs_set_path_blocking(path);
5053                        wret = push_leaf_left(trans, root, path, 1, 1,
5054                                              1, (u32)-1);
5055                        if (wret < 0 && wret != -ENOSPC)
5056                                ret = wret;
5057
5058                        if (path->nodes[0] == leaf &&
5059                            btrfs_header_nritems(leaf)) {
5060                                wret = push_leaf_right(trans, root, path, 1,
5061                                                       1, 1, 0);
5062                                if (wret < 0 && wret != -ENOSPC)
5063                                        ret = wret;
5064                        }
5065
5066                        if (btrfs_header_nritems(leaf) == 0) {
5067                                path->slots[1] = slot;
5068                                btrfs_del_leaf(trans, root, path, leaf);
5069                                free_extent_buffer(leaf);
5070                                ret = 0;
5071                        } else {
5072                                /* if we're still in the path, make sure
5073                                 * we're dirty.  Otherwise, one of the
5074                                 * push_leaf functions must have already
5075                                 * dirtied this buffer
5076                                 */
5077                                if (path->nodes[0] == leaf)
5078                                        btrfs_mark_buffer_dirty(leaf);
5079                                free_extent_buffer(leaf);
5080                        }
5081                } else {
5082                        btrfs_mark_buffer_dirty(leaf);
5083                }
5084        }
5085        return ret;
5086}
5087
5088/*
5089 * search the tree again to find a leaf with lesser keys
5090 * returns 0 if it found something or 1 if there are no lesser leaves.
5091 * returns < 0 on io errors.
5092 *
5093 * This may release the path, and so you may lose any locks held at the
5094 * time you call it.
5095 */
5096int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5097{
5098        struct btrfs_key key;
5099        struct btrfs_disk_key found_key;
5100        int ret;
5101
5102        btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5103
5104        if (key.offset > 0) {
5105                key.offset--;
5106        } else if (key.type > 0) {
5107                key.type--;
5108                key.offset = (u64)-1;
5109        } else if (key.objectid > 0) {
5110                key.objectid--;
5111                key.type = (u8)-1;
5112                key.offset = (u64)-1;
5113        } else {
5114                return 1;
5115        }
5116
5117        btrfs_release_path(path);
5118        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5119        if (ret < 0)
5120                return ret;
5121        btrfs_item_key(path->nodes[0], &found_key, 0);
5122        ret = comp_keys(&found_key, &key);
5123        /*
5124         * We might have had an item with the previous key in the tree right
5125         * before we released our path. And after we released our path, that
5126         * item might have been pushed to the first slot (0) of the leaf we
5127         * were holding due to a tree balance. Alternatively, an item with the
5128         * previous key can exist as the only element of a leaf (big fat item).
5129         * Therefore account for these 2 cases, so that our callers (like
5130         * btrfs_previous_item) don't miss an existing item with a key matching
5131         * the previous key we computed above.
5132         */
5133        if (ret <= 0)
5134                return 0;
5135        return 1;
5136}
5137
5138/*
5139 * A helper function to walk down the tree starting at min_key, and looking
5140 * for nodes or leaves that are have a minimum transaction id.
5141 * This is used by the btree defrag code, and tree logging
5142 *
5143 * This does not cow, but it does stuff the starting key it finds back
5144 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5145 * key and get a writable path.
5146 *
5147 * This honors path->lowest_level to prevent descent past a given level
5148 * of the tree.
5149 *
5150 * min_trans indicates the oldest transaction that you are interested
5151 * in walking through.  Any nodes or leaves older than min_trans are
5152 * skipped over (without reading them).
5153 *
5154 * returns zero if something useful was found, < 0 on error and 1 if there
5155 * was nothing in the tree that matched the search criteria.
5156 */
5157int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5158                         struct btrfs_path *path,
5159                         u64 min_trans)
5160{
5161        struct extent_buffer *cur;
5162        struct btrfs_key found_key;
5163        int slot;
5164        int sret;
5165        u32 nritems;
5166        int level;
5167        int ret = 1;
5168        int keep_locks = path->keep_locks;
5169
5170        path->keep_locks = 1;
5171again:
5172        cur = btrfs_read_lock_root_node(root);
5173        level = btrfs_header_level(cur);
5174        WARN_ON(path->nodes[level]);
5175        path->nodes[level] = cur;
5176        path->locks[level] = BTRFS_READ_LOCK;
5177
5178        if (btrfs_header_generation(cur) < min_trans) {
5179                ret = 1;
5180                goto out;
5181        }
5182        while (1) {
5183                nritems = btrfs_header_nritems(cur);
5184                level = btrfs_header_level(cur);
5185                sret = btrfs_bin_search(cur, min_key, level, &slot);
5186                if (sret < 0) {
5187                        ret = sret;
5188                        goto out;
5189                }
5190
5191                /* at the lowest level, we're done, setup the path and exit */
5192                if (level == path->lowest_level) {
5193                        if (slot >= nritems)
5194                                goto find_next_key;
5195                        ret = 0;
5196                        path->slots[level] = slot;
5197                        btrfs_item_key_to_cpu(cur, &found_key, slot);
5198                        goto out;
5199                }
5200                if (sret && slot > 0)
5201                        slot--;
5202                /*
5203                 * check this node pointer against the min_trans parameters.
5204                 * If it is too old, old, skip to the next one.
5205                 */
5206                while (slot < nritems) {
5207                        u64 gen;
5208
5209                        gen = btrfs_node_ptr_generation(cur, slot);
5210                        if (gen < min_trans) {
5211                                slot++;
5212                                continue;
5213                        }
5214                        break;
5215                }
5216find_next_key:
5217                /*
5218                 * we didn't find a candidate key in this node, walk forward
5219                 * and find another one
5220                 */
5221                if (slot >= nritems) {
5222                        path->slots[level] = slot;
5223                        btrfs_set_path_blocking(path);
5224                        sret = btrfs_find_next_key(root, path, min_key, level,
5225                                                  min_trans);
5226                        if (sret == 0) {
5227                                btrfs_release_path(path);
5228                                goto again;
5229                        } else {
5230                                goto out;
5231                        }
5232                }
5233                /* save our key for returning back */
5234                btrfs_node_key_to_cpu(cur, &found_key, slot);
5235                path->slots[level] = slot;
5236                if (level == path->lowest_level) {
5237                        ret = 0;
5238                        goto out;
5239                }
5240                btrfs_set_path_blocking(path);
5241                cur = btrfs_read_node_slot(cur, slot);
5242                if (IS_ERR(cur)) {
5243                        ret = PTR_ERR(cur);
5244                        goto out;
5245                }
5246
5247                btrfs_tree_read_lock(cur);
5248
5249                path->locks[level - 1] = BTRFS_READ_LOCK;
5250                path->nodes[level - 1] = cur;
5251                unlock_up(path, level, 1, 0, NULL);
5252        }
5253out:
5254        path->keep_locks = keep_locks;
5255        if (ret == 0) {
5256                btrfs_unlock_up_safe(path, path->lowest_level + 1);
5257                btrfs_set_path_blocking(path);
5258                memcpy(min_key, &found_key, sizeof(found_key));
5259        }
5260        return ret;
5261}
5262
5263/*
5264 * this is similar to btrfs_next_leaf, but does not try to preserve
5265 * and fixup the path.  It looks for and returns the next key in the
5266 * tree based on the current path and the min_trans parameters.
5267 *
5268 * 0 is returned if another key is found, < 0 if there are any errors
5269 * and 1 is returned if there are no higher keys in the tree
5270 *
5271 * path->keep_locks should be set to 1 on the search made before
5272 * calling this function.
5273 */
5274int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5275                        struct btrfs_key *key, int level, u64 min_trans)
5276{
5277        int slot;
5278        struct extent_buffer *c;
5279
5280        WARN_ON(!path->keep_locks && !path->skip_locking);
5281        while (level < BTRFS_MAX_LEVEL) {
5282                if (!path->nodes[level])
5283                        return 1;
5284
5285                slot = path->slots[level] + 1;
5286                c = path->nodes[level];
5287next:
5288                if (slot >= btrfs_header_nritems(c)) {
5289                        int ret;
5290                        int orig_lowest;
5291                        struct btrfs_key cur_key;
5292                        if (level + 1 >= BTRFS_MAX_LEVEL ||
5293                            !path->nodes[level + 1])
5294                                return 1;
5295
5296                        if (path->locks[level + 1] || path->skip_locking) {
5297                                level++;
5298                                continue;
5299                        }
5300
5301                        slot = btrfs_header_nritems(c) - 1;
5302                        if (level == 0)
5303                                btrfs_item_key_to_cpu(c, &cur_key, slot);
5304                        else
5305                                btrfs_node_key_to_cpu(c, &cur_key, slot);
5306
5307                        orig_lowest = path->lowest_level;
5308                        btrfs_release_path(path);
5309                        path->lowest_level = level;
5310                        ret = btrfs_search_slot(NULL, root, &cur_key, path,
5311                                                0, 0);
5312                        path->lowest_level = orig_lowest;
5313                        if (ret < 0)
5314                                return ret;
5315
5316                        c = path->nodes[level];
5317                        slot = path->slots[level];
5318                        if (ret == 0)
5319                                slot++;
5320                        goto next;
5321                }
5322
5323                if (level == 0)
5324                        btrfs_item_key_to_cpu(c, key, slot);
5325                else {
5326                        u64 gen = btrfs_node_ptr_generation(c, slot);
5327
5328                        if (gen < min_trans) {
5329                                slot++;
5330                                goto next;
5331                        }
5332                        btrfs_node_key_to_cpu(c, key, slot);
5333                }
5334                return 0;
5335        }
5336        return 1;
5337}
5338
5339/*
5340 * search the tree again to find a leaf with greater keys
5341 * returns 0 if it found something or 1 if there are no greater leaves.
5342 * returns < 0 on io errors.
5343 */
5344int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5345{
5346        return btrfs_next_old_leaf(root, path, 0);
5347}
5348
5349int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5350                        u64 time_seq)
5351{
5352        int slot;
5353        int level;
5354        struct extent_buffer *c;
5355        struct extent_buffer *next;
5356        struct btrfs_key key;
5357        u32 nritems;
5358        int ret;
5359        int old_spinning = path->leave_spinning;
5360        int next_rw_lock = 0;
5361
5362        nritems = btrfs_header_nritems(path->nodes[0]);
5363        if (nritems == 0)
5364                return 1;
5365
5366        btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5367again:
5368        level = 1;
5369        next = NULL;
5370        next_rw_lock = 0;
5371        btrfs_release_path(path);
5372
5373        path->keep_locks = 1;
5374        path->leave_spinning = 1;
5375
5376        if (time_seq)
5377                ret = btrfs_search_old_slot(root, &key, path, time_seq);
5378        else
5379                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5380        path->keep_locks = 0;
5381
5382        if (ret < 0)
5383                return ret;
5384
5385        nritems = btrfs_header_nritems(path->nodes[0]);
5386        /*
5387         * by releasing the path above we dropped all our locks.  A balance
5388         * could have added more items next to the key that used to be
5389         * at the very end of the block.  So, check again here and
5390         * advance the path if there are now more items available.
5391         */
5392        if (nritems > 0 && path->slots[0] < nritems - 1) {
5393                if (ret == 0)
5394                        path->slots[0]++;
5395                ret = 0;
5396                goto done;
5397        }
5398        /*
5399         * So the above check misses one case:
5400         * - after releasing the path above, someone has removed the item that
5401         *   used to be at the very end of the block, and balance between leafs
5402         *   gets another one with bigger key.offset to replace it.
5403         *
5404         * This one should be returned as well, or we can get leaf corruption
5405         * later(esp. in __btrfs_drop_extents()).
5406         *
5407         * And a bit more explanation about this check,
5408         * with ret > 0, the key isn't found, the path points to the slot
5409         * where it should be inserted, so the path->slots[0] item must be the
5410         * bigger one.
5411         */
5412        if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5413                ret = 0;
5414                goto done;
5415        }
5416
5417        while (level < BTRFS_MAX_LEVEL) {
5418                if (!path->nodes[level]) {
5419                        ret = 1;
5420                        goto done;
5421                }
5422
5423                slot = path->slots[level] + 1;
5424                c = path->nodes[level];
5425                if (slot >= btrfs_header_nritems(c)) {
5426                        level++;
5427                        if (level == BTRFS_MAX_LEVEL) {
5428                                ret = 1;
5429                                goto done;
5430                        }
5431                        continue;
5432                }
5433
5434                if (next) {
5435                        btrfs_tree_unlock_rw(next, next_rw_lock);
5436                        free_extent_buffer(next);
5437                }
5438
5439                next = c;
5440                next_rw_lock = path->locks[level];
5441                ret = read_block_for_search(root, path, &next, level,
5442                                            slot, &key);
5443                if (ret == -EAGAIN)
5444                        goto again;
5445
5446                if (ret < 0) {
5447                        btrfs_release_path(path);
5448                        goto done;
5449                }
5450
5451                if (!path->skip_locking) {
5452                        ret = btrfs_try_tree_read_lock(next);
5453                        if (!ret && time_seq) {
5454                                /*
5455                                 * If we don't get the lock, we may be racing
5456                                 * with push_leaf_left, holding that lock while
5457                                 * itself waiting for the leaf we've currently
5458                                 * locked. To solve this situation, we give up
5459                                 * on our lock and cycle.
5460                                 */
5461                                free_extent_buffer(next);
5462                                btrfs_release_path(path);
5463                                cond_resched();
5464                                goto again;
5465                        }
5466                        if (!ret) {
5467                                btrfs_set_path_blocking(path);
5468                                btrfs_tree_read_lock(next);
5469                        }
5470                        next_rw_lock = BTRFS_READ_LOCK;
5471                }
5472                break;
5473        }
5474        path->slots[level] = slot;
5475        while (1) {
5476                level--;
5477                c = path->nodes[level];
5478                if (path->locks[level])
5479                        btrfs_tree_unlock_rw(c, path->locks[level]);
5480
5481                free_extent_buffer(c);
5482                path->nodes[level] = next;
5483                path->slots[level] = 0;
5484                if (!path->skip_locking)
5485                        path->locks[level] = next_rw_lock;
5486                if (!level)
5487                        break;
5488
5489                ret = read_block_for_search(root, path, &next, level,
5490                                            0, &key);
5491                if (ret == -EAGAIN)
5492                        goto again;
5493
5494                if (ret < 0) {
5495                        btrfs_release_path(path);
5496                        goto done;
5497                }
5498
5499                if (!path->skip_locking) {
5500                        ret = btrfs_try_tree_read_lock(next);
5501                        if (!ret) {
5502                                btrfs_set_path_blocking(path);
5503                                btrfs_tree_read_lock(next);
5504                        }
5505                        next_rw_lock = BTRFS_READ_LOCK;
5506                }
5507        }
5508        ret = 0;
5509done:
5510        unlock_up(path, 0, 1, 0, NULL);
5511        path->leave_spinning = old_spinning;
5512        if (!old_spinning)
5513                btrfs_set_path_blocking(path);
5514
5515        return ret;
5516}
5517
5518/*
5519 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5520 * searching until it gets past min_objectid or finds an item of 'type'
5521 *
5522 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5523 */
5524int btrfs_previous_item(struct btrfs_root *root,
5525                        struct btrfs_path *path, u64 min_objectid,
5526                        int type)
5527{
5528        struct btrfs_key found_key;
5529        struct extent_buffer *leaf;
5530        u32 nritems;
5531        int ret;
5532
5533        while (1) {
5534                if (path->slots[0] == 0) {
5535                        btrfs_set_path_blocking(path);
5536                        ret = btrfs_prev_leaf(root, path);
5537                        if (ret != 0)
5538                                return ret;
5539                } else {
5540                        path->slots[0]--;
5541                }
5542                leaf = path->nodes[0];
5543                nritems = btrfs_header_nritems(leaf);
5544                if (nritems == 0)
5545                        return 1;
5546                if (path->slots[0] == nritems)
5547                        path->slots[0]--;
5548
5549                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5550                if (found_key.objectid < min_objectid)
5551                        break;
5552                if (found_key.type == type)
5553                        return 0;
5554                if (found_key.objectid == min_objectid &&
5555                    found_key.type < type)
5556                        break;
5557        }
5558        return 1;
5559}
5560
5561/*
5562 * search in extent tree to find a previous Metadata/Data extent item with
5563 * min objecitd.
5564 *
5565 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5566 */
5567int btrfs_previous_extent_item(struct btrfs_root *root,
5568                        struct btrfs_path *path, u64 min_objectid)
5569{
5570        struct btrfs_key found_key;
5571        struct extent_buffer *leaf;
5572        u32 nritems;
5573        int ret;
5574
5575        while (1) {
5576                if (path->slots[0] == 0) {
5577                        btrfs_set_path_blocking(path);
5578                        ret = btrfs_prev_leaf(root, path);
5579                        if (ret != 0)
5580                                return ret;
5581                } else {
5582                        path->slots[0]--;
5583                }
5584                leaf = path->nodes[0];
5585                nritems = btrfs_header_nritems(leaf);
5586                if (nritems == 0)
5587                        return 1;
5588                if (path->slots[0] == nritems)
5589                        path->slots[0]--;
5590
5591                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5592                if (found_key.objectid < min_objectid)
5593                        break;
5594                if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5595                    found_key.type == BTRFS_METADATA_ITEM_KEY)
5596                        return 0;
5597                if (found_key.objectid == min_objectid &&
5598                    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5599                        break;
5600        }
5601        return 1;
5602}
5603