linux/fs/btrfs/scrub.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/ratelimit.h>
   8#include <linux/sched/mm.h>
   9#include <crypto/hash.h>
  10#include "ctree.h"
  11#include "volumes.h"
  12#include "disk-io.h"
  13#include "ordered-data.h"
  14#include "transaction.h"
  15#include "backref.h"
  16#include "extent_io.h"
  17#include "dev-replace.h"
  18#include "check-integrity.h"
  19#include "rcu-string.h"
  20#include "raid56.h"
  21#include "block-group.h"
  22
  23/*
  24 * This is only the first step towards a full-features scrub. It reads all
  25 * extent and super block and verifies the checksums. In case a bad checksum
  26 * is found or the extent cannot be read, good data will be written back if
  27 * any can be found.
  28 *
  29 * Future enhancements:
  30 *  - In case an unrepairable extent is encountered, track which files are
  31 *    affected and report them
  32 *  - track and record media errors, throw out bad devices
  33 *  - add a mode to also read unallocated space
  34 */
  35
  36struct scrub_block;
  37struct scrub_ctx;
  38
  39/*
  40 * the following three values only influence the performance.
  41 * The last one configures the number of parallel and outstanding I/O
  42 * operations. The first two values configure an upper limit for the number
  43 * of (dynamically allocated) pages that are added to a bio.
  44 */
  45#define SCRUB_PAGES_PER_RD_BIO  32      /* 128k per bio */
  46#define SCRUB_PAGES_PER_WR_BIO  32      /* 128k per bio */
  47#define SCRUB_BIOS_PER_SCTX     64      /* 8MB per device in flight */
  48
  49/*
  50 * the following value times PAGE_SIZE needs to be large enough to match the
  51 * largest node/leaf/sector size that shall be supported.
  52 * Values larger than BTRFS_STRIPE_LEN are not supported.
  53 */
  54#define SCRUB_MAX_PAGES_PER_BLOCK       16      /* 64k per node/leaf/sector */
  55
  56struct scrub_recover {
  57        refcount_t              refs;
  58        struct btrfs_bio        *bbio;
  59        u64                     map_length;
  60};
  61
  62struct scrub_page {
  63        struct scrub_block      *sblock;
  64        struct page             *page;
  65        struct btrfs_device     *dev;
  66        struct list_head        list;
  67        u64                     flags;  /* extent flags */
  68        u64                     generation;
  69        u64                     logical;
  70        u64                     physical;
  71        u64                     physical_for_dev_replace;
  72        atomic_t                refs;
  73        struct {
  74                unsigned int    mirror_num:8;
  75                unsigned int    have_csum:1;
  76                unsigned int    io_error:1;
  77        };
  78        u8                      csum[BTRFS_CSUM_SIZE];
  79
  80        struct scrub_recover    *recover;
  81};
  82
  83struct scrub_bio {
  84        int                     index;
  85        struct scrub_ctx        *sctx;
  86        struct btrfs_device     *dev;
  87        struct bio              *bio;
  88        blk_status_t            status;
  89        u64                     logical;
  90        u64                     physical;
  91#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
  92        struct scrub_page       *pagev[SCRUB_PAGES_PER_WR_BIO];
  93#else
  94        struct scrub_page       *pagev[SCRUB_PAGES_PER_RD_BIO];
  95#endif
  96        int                     page_count;
  97        int                     next_free;
  98        struct btrfs_work       work;
  99};
 100
 101struct scrub_block {
 102        struct scrub_page       *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
 103        int                     page_count;
 104        atomic_t                outstanding_pages;
 105        refcount_t              refs; /* free mem on transition to zero */
 106        struct scrub_ctx        *sctx;
 107        struct scrub_parity     *sparity;
 108        struct {
 109                unsigned int    header_error:1;
 110                unsigned int    checksum_error:1;
 111                unsigned int    no_io_error_seen:1;
 112                unsigned int    generation_error:1; /* also sets header_error */
 113
 114                /* The following is for the data used to check parity */
 115                /* It is for the data with checksum */
 116                unsigned int    data_corrected:1;
 117        };
 118        struct btrfs_work       work;
 119};
 120
 121/* Used for the chunks with parity stripe such RAID5/6 */
 122struct scrub_parity {
 123        struct scrub_ctx        *sctx;
 124
 125        struct btrfs_device     *scrub_dev;
 126
 127        u64                     logic_start;
 128
 129        u64                     logic_end;
 130
 131        int                     nsectors;
 132
 133        u64                     stripe_len;
 134
 135        refcount_t              refs;
 136
 137        struct list_head        spages;
 138
 139        /* Work of parity check and repair */
 140        struct btrfs_work       work;
 141
 142        /* Mark the parity blocks which have data */
 143        unsigned long           *dbitmap;
 144
 145        /*
 146         * Mark the parity blocks which have data, but errors happen when
 147         * read data or check data
 148         */
 149        unsigned long           *ebitmap;
 150
 151        unsigned long           bitmap[0];
 152};
 153
 154struct scrub_ctx {
 155        struct scrub_bio        *bios[SCRUB_BIOS_PER_SCTX];
 156        struct btrfs_fs_info    *fs_info;
 157        int                     first_free;
 158        int                     curr;
 159        atomic_t                bios_in_flight;
 160        atomic_t                workers_pending;
 161        spinlock_t              list_lock;
 162        wait_queue_head_t       list_wait;
 163        u16                     csum_size;
 164        struct list_head        csum_list;
 165        atomic_t                cancel_req;
 166        int                     readonly;
 167        int                     pages_per_rd_bio;
 168
 169        int                     is_dev_replace;
 170
 171        struct scrub_bio        *wr_curr_bio;
 172        struct mutex            wr_lock;
 173        int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
 174        struct btrfs_device     *wr_tgtdev;
 175        bool                    flush_all_writes;
 176
 177        /*
 178         * statistics
 179         */
 180        struct btrfs_scrub_progress stat;
 181        spinlock_t              stat_lock;
 182
 183        /*
 184         * Use a ref counter to avoid use-after-free issues. Scrub workers
 185         * decrement bios_in_flight and workers_pending and then do a wakeup
 186         * on the list_wait wait queue. We must ensure the main scrub task
 187         * doesn't free the scrub context before or while the workers are
 188         * doing the wakeup() call.
 189         */
 190        refcount_t              refs;
 191};
 192
 193struct scrub_warning {
 194        struct btrfs_path       *path;
 195        u64                     extent_item_size;
 196        const char              *errstr;
 197        u64                     physical;
 198        u64                     logical;
 199        struct btrfs_device     *dev;
 200};
 201
 202struct full_stripe_lock {
 203        struct rb_node node;
 204        u64 logical;
 205        u64 refs;
 206        struct mutex mutex;
 207};
 208
 209static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
 210static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
 211static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 212static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
 213                                     struct scrub_block *sblocks_for_recheck);
 214static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 215                                struct scrub_block *sblock,
 216                                int retry_failed_mirror);
 217static void scrub_recheck_block_checksum(struct scrub_block *sblock);
 218static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 219                                             struct scrub_block *sblock_good);
 220static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 221                                            struct scrub_block *sblock_good,
 222                                            int page_num, int force_write);
 223static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 224static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 225                                           int page_num);
 226static int scrub_checksum_data(struct scrub_block *sblock);
 227static int scrub_checksum_tree_block(struct scrub_block *sblock);
 228static int scrub_checksum_super(struct scrub_block *sblock);
 229static void scrub_block_get(struct scrub_block *sblock);
 230static void scrub_block_put(struct scrub_block *sblock);
 231static void scrub_page_get(struct scrub_page *spage);
 232static void scrub_page_put(struct scrub_page *spage);
 233static void scrub_parity_get(struct scrub_parity *sparity);
 234static void scrub_parity_put(struct scrub_parity *sparity);
 235static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
 236                                    struct scrub_page *spage);
 237static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 238                       u64 physical, struct btrfs_device *dev, u64 flags,
 239                       u64 gen, int mirror_num, u8 *csum, int force,
 240                       u64 physical_for_dev_replace);
 241static void scrub_bio_end_io(struct bio *bio);
 242static void scrub_bio_end_io_worker(struct btrfs_work *work);
 243static void scrub_block_complete(struct scrub_block *sblock);
 244static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 245                               u64 extent_logical, u64 extent_len,
 246                               u64 *extent_physical,
 247                               struct btrfs_device **extent_dev,
 248                               int *extent_mirror_num);
 249static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 250                                    struct scrub_page *spage);
 251static void scrub_wr_submit(struct scrub_ctx *sctx);
 252static void scrub_wr_bio_end_io(struct bio *bio);
 253static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
 254static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 255static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 256static void scrub_put_ctx(struct scrub_ctx *sctx);
 257
 258static inline int scrub_is_page_on_raid56(struct scrub_page *page)
 259{
 260        return page->recover &&
 261               (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
 262}
 263
 264static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 265{
 266        refcount_inc(&sctx->refs);
 267        atomic_inc(&sctx->bios_in_flight);
 268}
 269
 270static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 271{
 272        atomic_dec(&sctx->bios_in_flight);
 273        wake_up(&sctx->list_wait);
 274        scrub_put_ctx(sctx);
 275}
 276
 277static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 278{
 279        while (atomic_read(&fs_info->scrub_pause_req)) {
 280                mutex_unlock(&fs_info->scrub_lock);
 281                wait_event(fs_info->scrub_pause_wait,
 282                   atomic_read(&fs_info->scrub_pause_req) == 0);
 283                mutex_lock(&fs_info->scrub_lock);
 284        }
 285}
 286
 287static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 288{
 289        atomic_inc(&fs_info->scrubs_paused);
 290        wake_up(&fs_info->scrub_pause_wait);
 291}
 292
 293static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 294{
 295        mutex_lock(&fs_info->scrub_lock);
 296        __scrub_blocked_if_needed(fs_info);
 297        atomic_dec(&fs_info->scrubs_paused);
 298        mutex_unlock(&fs_info->scrub_lock);
 299
 300        wake_up(&fs_info->scrub_pause_wait);
 301}
 302
 303static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 304{
 305        scrub_pause_on(fs_info);
 306        scrub_pause_off(fs_info);
 307}
 308
 309/*
 310 * Insert new full stripe lock into full stripe locks tree
 311 *
 312 * Return pointer to existing or newly inserted full_stripe_lock structure if
 313 * everything works well.
 314 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 315 *
 316 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 317 * function
 318 */
 319static struct full_stripe_lock *insert_full_stripe_lock(
 320                struct btrfs_full_stripe_locks_tree *locks_root,
 321                u64 fstripe_logical)
 322{
 323        struct rb_node **p;
 324        struct rb_node *parent = NULL;
 325        struct full_stripe_lock *entry;
 326        struct full_stripe_lock *ret;
 327
 328        lockdep_assert_held(&locks_root->lock);
 329
 330        p = &locks_root->root.rb_node;
 331        while (*p) {
 332                parent = *p;
 333                entry = rb_entry(parent, struct full_stripe_lock, node);
 334                if (fstripe_logical < entry->logical) {
 335                        p = &(*p)->rb_left;
 336                } else if (fstripe_logical > entry->logical) {
 337                        p = &(*p)->rb_right;
 338                } else {
 339                        entry->refs++;
 340                        return entry;
 341                }
 342        }
 343
 344        /*
 345         * Insert new lock.
 346         */
 347        ret = kmalloc(sizeof(*ret), GFP_KERNEL);
 348        if (!ret)
 349                return ERR_PTR(-ENOMEM);
 350        ret->logical = fstripe_logical;
 351        ret->refs = 1;
 352        mutex_init(&ret->mutex);
 353
 354        rb_link_node(&ret->node, parent, p);
 355        rb_insert_color(&ret->node, &locks_root->root);
 356        return ret;
 357}
 358
 359/*
 360 * Search for a full stripe lock of a block group
 361 *
 362 * Return pointer to existing full stripe lock if found
 363 * Return NULL if not found
 364 */
 365static struct full_stripe_lock *search_full_stripe_lock(
 366                struct btrfs_full_stripe_locks_tree *locks_root,
 367                u64 fstripe_logical)
 368{
 369        struct rb_node *node;
 370        struct full_stripe_lock *entry;
 371
 372        lockdep_assert_held(&locks_root->lock);
 373
 374        node = locks_root->root.rb_node;
 375        while (node) {
 376                entry = rb_entry(node, struct full_stripe_lock, node);
 377                if (fstripe_logical < entry->logical)
 378                        node = node->rb_left;
 379                else if (fstripe_logical > entry->logical)
 380                        node = node->rb_right;
 381                else
 382                        return entry;
 383        }
 384        return NULL;
 385}
 386
 387/*
 388 * Helper to get full stripe logical from a normal bytenr.
 389 *
 390 * Caller must ensure @cache is a RAID56 block group.
 391 */
 392static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
 393                                   u64 bytenr)
 394{
 395        u64 ret;
 396
 397        /*
 398         * Due to chunk item size limit, full stripe length should not be
 399         * larger than U32_MAX. Just a sanity check here.
 400         */
 401        WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
 402
 403        /*
 404         * round_down() can only handle power of 2, while RAID56 full
 405         * stripe length can be 64KiB * n, so we need to manually round down.
 406         */
 407        ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
 408                cache->full_stripe_len + cache->key.objectid;
 409        return ret;
 410}
 411
 412/*
 413 * Lock a full stripe to avoid concurrency of recovery and read
 414 *
 415 * It's only used for profiles with parities (RAID5/6), for other profiles it
 416 * does nothing.
 417 *
 418 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 419 * So caller must call unlock_full_stripe() at the same context.
 420 *
 421 * Return <0 if encounters error.
 422 */
 423static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 424                            bool *locked_ret)
 425{
 426        struct btrfs_block_group_cache *bg_cache;
 427        struct btrfs_full_stripe_locks_tree *locks_root;
 428        struct full_stripe_lock *existing;
 429        u64 fstripe_start;
 430        int ret = 0;
 431
 432        *locked_ret = false;
 433        bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 434        if (!bg_cache) {
 435                ASSERT(0);
 436                return -ENOENT;
 437        }
 438
 439        /* Profiles not based on parity don't need full stripe lock */
 440        if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 441                goto out;
 442        locks_root = &bg_cache->full_stripe_locks_root;
 443
 444        fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 445
 446        /* Now insert the full stripe lock */
 447        mutex_lock(&locks_root->lock);
 448        existing = insert_full_stripe_lock(locks_root, fstripe_start);
 449        mutex_unlock(&locks_root->lock);
 450        if (IS_ERR(existing)) {
 451                ret = PTR_ERR(existing);
 452                goto out;
 453        }
 454        mutex_lock(&existing->mutex);
 455        *locked_ret = true;
 456out:
 457        btrfs_put_block_group(bg_cache);
 458        return ret;
 459}
 460
 461/*
 462 * Unlock a full stripe.
 463 *
 464 * NOTE: Caller must ensure it's the same context calling corresponding
 465 * lock_full_stripe().
 466 *
 467 * Return 0 if we unlock full stripe without problem.
 468 * Return <0 for error
 469 */
 470static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 471                              bool locked)
 472{
 473        struct btrfs_block_group_cache *bg_cache;
 474        struct btrfs_full_stripe_locks_tree *locks_root;
 475        struct full_stripe_lock *fstripe_lock;
 476        u64 fstripe_start;
 477        bool freeit = false;
 478        int ret = 0;
 479
 480        /* If we didn't acquire full stripe lock, no need to continue */
 481        if (!locked)
 482                return 0;
 483
 484        bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 485        if (!bg_cache) {
 486                ASSERT(0);
 487                return -ENOENT;
 488        }
 489        if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 490                goto out;
 491
 492        locks_root = &bg_cache->full_stripe_locks_root;
 493        fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 494
 495        mutex_lock(&locks_root->lock);
 496        fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
 497        /* Unpaired unlock_full_stripe() detected */
 498        if (!fstripe_lock) {
 499                WARN_ON(1);
 500                ret = -ENOENT;
 501                mutex_unlock(&locks_root->lock);
 502                goto out;
 503        }
 504
 505        if (fstripe_lock->refs == 0) {
 506                WARN_ON(1);
 507                btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
 508                        fstripe_lock->logical);
 509        } else {
 510                fstripe_lock->refs--;
 511        }
 512
 513        if (fstripe_lock->refs == 0) {
 514                rb_erase(&fstripe_lock->node, &locks_root->root);
 515                freeit = true;
 516        }
 517        mutex_unlock(&locks_root->lock);
 518
 519        mutex_unlock(&fstripe_lock->mutex);
 520        if (freeit)
 521                kfree(fstripe_lock);
 522out:
 523        btrfs_put_block_group(bg_cache);
 524        return ret;
 525}
 526
 527static void scrub_free_csums(struct scrub_ctx *sctx)
 528{
 529        while (!list_empty(&sctx->csum_list)) {
 530                struct btrfs_ordered_sum *sum;
 531                sum = list_first_entry(&sctx->csum_list,
 532                                       struct btrfs_ordered_sum, list);
 533                list_del(&sum->list);
 534                kfree(sum);
 535        }
 536}
 537
 538static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 539{
 540        int i;
 541
 542        if (!sctx)
 543                return;
 544
 545        /* this can happen when scrub is cancelled */
 546        if (sctx->curr != -1) {
 547                struct scrub_bio *sbio = sctx->bios[sctx->curr];
 548
 549                for (i = 0; i < sbio->page_count; i++) {
 550                        WARN_ON(!sbio->pagev[i]->page);
 551                        scrub_block_put(sbio->pagev[i]->sblock);
 552                }
 553                bio_put(sbio->bio);
 554        }
 555
 556        for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 557                struct scrub_bio *sbio = sctx->bios[i];
 558
 559                if (!sbio)
 560                        break;
 561                kfree(sbio);
 562        }
 563
 564        kfree(sctx->wr_curr_bio);
 565        scrub_free_csums(sctx);
 566        kfree(sctx);
 567}
 568
 569static void scrub_put_ctx(struct scrub_ctx *sctx)
 570{
 571        if (refcount_dec_and_test(&sctx->refs))
 572                scrub_free_ctx(sctx);
 573}
 574
 575static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
 576                struct btrfs_fs_info *fs_info, int is_dev_replace)
 577{
 578        struct scrub_ctx *sctx;
 579        int             i;
 580
 581        sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
 582        if (!sctx)
 583                goto nomem;
 584        refcount_set(&sctx->refs, 1);
 585        sctx->is_dev_replace = is_dev_replace;
 586        sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
 587        sctx->curr = -1;
 588        sctx->fs_info = fs_info;
 589        INIT_LIST_HEAD(&sctx->csum_list);
 590        for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 591                struct scrub_bio *sbio;
 592
 593                sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
 594                if (!sbio)
 595                        goto nomem;
 596                sctx->bios[i] = sbio;
 597
 598                sbio->index = i;
 599                sbio->sctx = sctx;
 600                sbio->page_count = 0;
 601                btrfs_init_work(&sbio->work, btrfs_scrub_helper,
 602                                scrub_bio_end_io_worker, NULL, NULL);
 603
 604                if (i != SCRUB_BIOS_PER_SCTX - 1)
 605                        sctx->bios[i]->next_free = i + 1;
 606                else
 607                        sctx->bios[i]->next_free = -1;
 608        }
 609        sctx->first_free = 0;
 610        atomic_set(&sctx->bios_in_flight, 0);
 611        atomic_set(&sctx->workers_pending, 0);
 612        atomic_set(&sctx->cancel_req, 0);
 613        sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 614
 615        spin_lock_init(&sctx->list_lock);
 616        spin_lock_init(&sctx->stat_lock);
 617        init_waitqueue_head(&sctx->list_wait);
 618
 619        WARN_ON(sctx->wr_curr_bio != NULL);
 620        mutex_init(&sctx->wr_lock);
 621        sctx->wr_curr_bio = NULL;
 622        if (is_dev_replace) {
 623                WARN_ON(!fs_info->dev_replace.tgtdev);
 624                sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
 625                sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
 626                sctx->flush_all_writes = false;
 627        }
 628
 629        return sctx;
 630
 631nomem:
 632        scrub_free_ctx(sctx);
 633        return ERR_PTR(-ENOMEM);
 634}
 635
 636static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 637                                     void *warn_ctx)
 638{
 639        u64 isize;
 640        u32 nlink;
 641        int ret;
 642        int i;
 643        unsigned nofs_flag;
 644        struct extent_buffer *eb;
 645        struct btrfs_inode_item *inode_item;
 646        struct scrub_warning *swarn = warn_ctx;
 647        struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 648        struct inode_fs_paths *ipath = NULL;
 649        struct btrfs_root *local_root;
 650        struct btrfs_key root_key;
 651        struct btrfs_key key;
 652
 653        root_key.objectid = root;
 654        root_key.type = BTRFS_ROOT_ITEM_KEY;
 655        root_key.offset = (u64)-1;
 656        local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 657        if (IS_ERR(local_root)) {
 658                ret = PTR_ERR(local_root);
 659                goto err;
 660        }
 661
 662        /*
 663         * this makes the path point to (inum INODE_ITEM ioff)
 664         */
 665        key.objectid = inum;
 666        key.type = BTRFS_INODE_ITEM_KEY;
 667        key.offset = 0;
 668
 669        ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 670        if (ret) {
 671                btrfs_release_path(swarn->path);
 672                goto err;
 673        }
 674
 675        eb = swarn->path->nodes[0];
 676        inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 677                                        struct btrfs_inode_item);
 678        isize = btrfs_inode_size(eb, inode_item);
 679        nlink = btrfs_inode_nlink(eb, inode_item);
 680        btrfs_release_path(swarn->path);
 681
 682        /*
 683         * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
 684         * uses GFP_NOFS in this context, so we keep it consistent but it does
 685         * not seem to be strictly necessary.
 686         */
 687        nofs_flag = memalloc_nofs_save();
 688        ipath = init_ipath(4096, local_root, swarn->path);
 689        memalloc_nofs_restore(nofs_flag);
 690        if (IS_ERR(ipath)) {
 691                ret = PTR_ERR(ipath);
 692                ipath = NULL;
 693                goto err;
 694        }
 695        ret = paths_from_inode(inum, ipath);
 696
 697        if (ret < 0)
 698                goto err;
 699
 700        /*
 701         * we deliberately ignore the bit ipath might have been too small to
 702         * hold all of the paths here
 703         */
 704        for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 705                btrfs_warn_in_rcu(fs_info,
 706"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
 707                                  swarn->errstr, swarn->logical,
 708                                  rcu_str_deref(swarn->dev->name),
 709                                  swarn->physical,
 710                                  root, inum, offset,
 711                                  min(isize - offset, (u64)PAGE_SIZE), nlink,
 712                                  (char *)(unsigned long)ipath->fspath->val[i]);
 713
 714        free_ipath(ipath);
 715        return 0;
 716
 717err:
 718        btrfs_warn_in_rcu(fs_info,
 719                          "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 720                          swarn->errstr, swarn->logical,
 721                          rcu_str_deref(swarn->dev->name),
 722                          swarn->physical,
 723                          root, inum, offset, ret);
 724
 725        free_ipath(ipath);
 726        return 0;
 727}
 728
 729static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 730{
 731        struct btrfs_device *dev;
 732        struct btrfs_fs_info *fs_info;
 733        struct btrfs_path *path;
 734        struct btrfs_key found_key;
 735        struct extent_buffer *eb;
 736        struct btrfs_extent_item *ei;
 737        struct scrub_warning swarn;
 738        unsigned long ptr = 0;
 739        u64 extent_item_pos;
 740        u64 flags = 0;
 741        u64 ref_root;
 742        u32 item_size;
 743        u8 ref_level = 0;
 744        int ret;
 745
 746        WARN_ON(sblock->page_count < 1);
 747        dev = sblock->pagev[0]->dev;
 748        fs_info = sblock->sctx->fs_info;
 749
 750        path = btrfs_alloc_path();
 751        if (!path)
 752                return;
 753
 754        swarn.physical = sblock->pagev[0]->physical;
 755        swarn.logical = sblock->pagev[0]->logical;
 756        swarn.errstr = errstr;
 757        swarn.dev = NULL;
 758
 759        ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 760                                  &flags);
 761        if (ret < 0)
 762                goto out;
 763
 764        extent_item_pos = swarn.logical - found_key.objectid;
 765        swarn.extent_item_size = found_key.offset;
 766
 767        eb = path->nodes[0];
 768        ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 769        item_size = btrfs_item_size_nr(eb, path->slots[0]);
 770
 771        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 772                do {
 773                        ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 774                                                      item_size, &ref_root,
 775                                                      &ref_level);
 776                        btrfs_warn_in_rcu(fs_info,
 777"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
 778                                errstr, swarn.logical,
 779                                rcu_str_deref(dev->name),
 780                                swarn.physical,
 781                                ref_level ? "node" : "leaf",
 782                                ret < 0 ? -1 : ref_level,
 783                                ret < 0 ? -1 : ref_root);
 784                } while (ret != 1);
 785                btrfs_release_path(path);
 786        } else {
 787                btrfs_release_path(path);
 788                swarn.path = path;
 789                swarn.dev = dev;
 790                iterate_extent_inodes(fs_info, found_key.objectid,
 791                                        extent_item_pos, 1,
 792                                        scrub_print_warning_inode, &swarn, false);
 793        }
 794
 795out:
 796        btrfs_free_path(path);
 797}
 798
 799static inline void scrub_get_recover(struct scrub_recover *recover)
 800{
 801        refcount_inc(&recover->refs);
 802}
 803
 804static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
 805                                     struct scrub_recover *recover)
 806{
 807        if (refcount_dec_and_test(&recover->refs)) {
 808                btrfs_bio_counter_dec(fs_info);
 809                btrfs_put_bbio(recover->bbio);
 810                kfree(recover);
 811        }
 812}
 813
 814/*
 815 * scrub_handle_errored_block gets called when either verification of the
 816 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 817 * case, this function handles all pages in the bio, even though only one
 818 * may be bad.
 819 * The goal of this function is to repair the errored block by using the
 820 * contents of one of the mirrors.
 821 */
 822static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 823{
 824        struct scrub_ctx *sctx = sblock_to_check->sctx;
 825        struct btrfs_device *dev;
 826        struct btrfs_fs_info *fs_info;
 827        u64 logical;
 828        unsigned int failed_mirror_index;
 829        unsigned int is_metadata;
 830        unsigned int have_csum;
 831        struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 832        struct scrub_block *sblock_bad;
 833        int ret;
 834        int mirror_index;
 835        int page_num;
 836        int success;
 837        bool full_stripe_locked;
 838        unsigned int nofs_flag;
 839        static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
 840                                      DEFAULT_RATELIMIT_BURST);
 841
 842        BUG_ON(sblock_to_check->page_count < 1);
 843        fs_info = sctx->fs_info;
 844        if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
 845                /*
 846                 * if we find an error in a super block, we just report it.
 847                 * They will get written with the next transaction commit
 848                 * anyway
 849                 */
 850                spin_lock(&sctx->stat_lock);
 851                ++sctx->stat.super_errors;
 852                spin_unlock(&sctx->stat_lock);
 853                return 0;
 854        }
 855        logical = sblock_to_check->pagev[0]->logical;
 856        BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
 857        failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
 858        is_metadata = !(sblock_to_check->pagev[0]->flags &
 859                        BTRFS_EXTENT_FLAG_DATA);
 860        have_csum = sblock_to_check->pagev[0]->have_csum;
 861        dev = sblock_to_check->pagev[0]->dev;
 862
 863        /*
 864         * We must use GFP_NOFS because the scrub task might be waiting for a
 865         * worker task executing this function and in turn a transaction commit
 866         * might be waiting the scrub task to pause (which needs to wait for all
 867         * the worker tasks to complete before pausing).
 868         * We do allocations in the workers through insert_full_stripe_lock()
 869         * and scrub_add_page_to_wr_bio(), which happens down the call chain of
 870         * this function.
 871         */
 872        nofs_flag = memalloc_nofs_save();
 873        /*
 874         * For RAID5/6, race can happen for a different device scrub thread.
 875         * For data corruption, Parity and Data threads will both try
 876         * to recovery the data.
 877         * Race can lead to doubly added csum error, or even unrecoverable
 878         * error.
 879         */
 880        ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
 881        if (ret < 0) {
 882                memalloc_nofs_restore(nofs_flag);
 883                spin_lock(&sctx->stat_lock);
 884                if (ret == -ENOMEM)
 885                        sctx->stat.malloc_errors++;
 886                sctx->stat.read_errors++;
 887                sctx->stat.uncorrectable_errors++;
 888                spin_unlock(&sctx->stat_lock);
 889                return ret;
 890        }
 891
 892        /*
 893         * read all mirrors one after the other. This includes to
 894         * re-read the extent or metadata block that failed (that was
 895         * the cause that this fixup code is called) another time,
 896         * page by page this time in order to know which pages
 897         * caused I/O errors and which ones are good (for all mirrors).
 898         * It is the goal to handle the situation when more than one
 899         * mirror contains I/O errors, but the errors do not
 900         * overlap, i.e. the data can be repaired by selecting the
 901         * pages from those mirrors without I/O error on the
 902         * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
 903         * would be that mirror #1 has an I/O error on the first page,
 904         * the second page is good, and mirror #2 has an I/O error on
 905         * the second page, but the first page is good.
 906         * Then the first page of the first mirror can be repaired by
 907         * taking the first page of the second mirror, and the
 908         * second page of the second mirror can be repaired by
 909         * copying the contents of the 2nd page of the 1st mirror.
 910         * One more note: if the pages of one mirror contain I/O
 911         * errors, the checksum cannot be verified. In order to get
 912         * the best data for repairing, the first attempt is to find
 913         * a mirror without I/O errors and with a validated checksum.
 914         * Only if this is not possible, the pages are picked from
 915         * mirrors with I/O errors without considering the checksum.
 916         * If the latter is the case, at the end, the checksum of the
 917         * repaired area is verified in order to correctly maintain
 918         * the statistics.
 919         */
 920
 921        sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
 922                                      sizeof(*sblocks_for_recheck), GFP_KERNEL);
 923        if (!sblocks_for_recheck) {
 924                spin_lock(&sctx->stat_lock);
 925                sctx->stat.malloc_errors++;
 926                sctx->stat.read_errors++;
 927                sctx->stat.uncorrectable_errors++;
 928                spin_unlock(&sctx->stat_lock);
 929                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 930                goto out;
 931        }
 932
 933        /* setup the context, map the logical blocks and alloc the pages */
 934        ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
 935        if (ret) {
 936                spin_lock(&sctx->stat_lock);
 937                sctx->stat.read_errors++;
 938                sctx->stat.uncorrectable_errors++;
 939                spin_unlock(&sctx->stat_lock);
 940                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 941                goto out;
 942        }
 943        BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 944        sblock_bad = sblocks_for_recheck + failed_mirror_index;
 945
 946        /* build and submit the bios for the failed mirror, check checksums */
 947        scrub_recheck_block(fs_info, sblock_bad, 1);
 948
 949        if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 950            sblock_bad->no_io_error_seen) {
 951                /*
 952                 * the error disappeared after reading page by page, or
 953                 * the area was part of a huge bio and other parts of the
 954                 * bio caused I/O errors, or the block layer merged several
 955                 * read requests into one and the error is caused by a
 956                 * different bio (usually one of the two latter cases is
 957                 * the cause)
 958                 */
 959                spin_lock(&sctx->stat_lock);
 960                sctx->stat.unverified_errors++;
 961                sblock_to_check->data_corrected = 1;
 962                spin_unlock(&sctx->stat_lock);
 963
 964                if (sctx->is_dev_replace)
 965                        scrub_write_block_to_dev_replace(sblock_bad);
 966                goto out;
 967        }
 968
 969        if (!sblock_bad->no_io_error_seen) {
 970                spin_lock(&sctx->stat_lock);
 971                sctx->stat.read_errors++;
 972                spin_unlock(&sctx->stat_lock);
 973                if (__ratelimit(&_rs))
 974                        scrub_print_warning("i/o error", sblock_to_check);
 975                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 976        } else if (sblock_bad->checksum_error) {
 977                spin_lock(&sctx->stat_lock);
 978                sctx->stat.csum_errors++;
 979                spin_unlock(&sctx->stat_lock);
 980                if (__ratelimit(&_rs))
 981                        scrub_print_warning("checksum error", sblock_to_check);
 982                btrfs_dev_stat_inc_and_print(dev,
 983                                             BTRFS_DEV_STAT_CORRUPTION_ERRS);
 984        } else if (sblock_bad->header_error) {
 985                spin_lock(&sctx->stat_lock);
 986                sctx->stat.verify_errors++;
 987                spin_unlock(&sctx->stat_lock);
 988                if (__ratelimit(&_rs))
 989                        scrub_print_warning("checksum/header error",
 990                                            sblock_to_check);
 991                if (sblock_bad->generation_error)
 992                        btrfs_dev_stat_inc_and_print(dev,
 993                                BTRFS_DEV_STAT_GENERATION_ERRS);
 994                else
 995                        btrfs_dev_stat_inc_and_print(dev,
 996                                BTRFS_DEV_STAT_CORRUPTION_ERRS);
 997        }
 998
 999        if (sctx->readonly) {
1000                ASSERT(!sctx->is_dev_replace);
1001                goto out;
1002        }
1003
1004        /*
1005         * now build and submit the bios for the other mirrors, check
1006         * checksums.
1007         * First try to pick the mirror which is completely without I/O
1008         * errors and also does not have a checksum error.
1009         * If one is found, and if a checksum is present, the full block
1010         * that is known to contain an error is rewritten. Afterwards
1011         * the block is known to be corrected.
1012         * If a mirror is found which is completely correct, and no
1013         * checksum is present, only those pages are rewritten that had
1014         * an I/O error in the block to be repaired, since it cannot be
1015         * determined, which copy of the other pages is better (and it
1016         * could happen otherwise that a correct page would be
1017         * overwritten by a bad one).
1018         */
1019        for (mirror_index = 0; ;mirror_index++) {
1020                struct scrub_block *sblock_other;
1021
1022                if (mirror_index == failed_mirror_index)
1023                        continue;
1024
1025                /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1026                if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1027                        if (mirror_index >= BTRFS_MAX_MIRRORS)
1028                                break;
1029                        if (!sblocks_for_recheck[mirror_index].page_count)
1030                                break;
1031
1032                        sblock_other = sblocks_for_recheck + mirror_index;
1033                } else {
1034                        struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1035                        int max_allowed = r->bbio->num_stripes -
1036                                                r->bbio->num_tgtdevs;
1037
1038                        if (mirror_index >= max_allowed)
1039                                break;
1040                        if (!sblocks_for_recheck[1].page_count)
1041                                break;
1042
1043                        ASSERT(failed_mirror_index == 0);
1044                        sblock_other = sblocks_for_recheck + 1;
1045                        sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1046                }
1047
1048                /* build and submit the bios, check checksums */
1049                scrub_recheck_block(fs_info, sblock_other, 0);
1050
1051                if (!sblock_other->header_error &&
1052                    !sblock_other->checksum_error &&
1053                    sblock_other->no_io_error_seen) {
1054                        if (sctx->is_dev_replace) {
1055                                scrub_write_block_to_dev_replace(sblock_other);
1056                                goto corrected_error;
1057                        } else {
1058                                ret = scrub_repair_block_from_good_copy(
1059                                                sblock_bad, sblock_other);
1060                                if (!ret)
1061                                        goto corrected_error;
1062                        }
1063                }
1064        }
1065
1066        if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1067                goto did_not_correct_error;
1068
1069        /*
1070         * In case of I/O errors in the area that is supposed to be
1071         * repaired, continue by picking good copies of those pages.
1072         * Select the good pages from mirrors to rewrite bad pages from
1073         * the area to fix. Afterwards verify the checksum of the block
1074         * that is supposed to be repaired. This verification step is
1075         * only done for the purpose of statistic counting and for the
1076         * final scrub report, whether errors remain.
1077         * A perfect algorithm could make use of the checksum and try
1078         * all possible combinations of pages from the different mirrors
1079         * until the checksum verification succeeds. For example, when
1080         * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1081         * of mirror #2 is readable but the final checksum test fails,
1082         * then the 2nd page of mirror #3 could be tried, whether now
1083         * the final checksum succeeds. But this would be a rare
1084         * exception and is therefore not implemented. At least it is
1085         * avoided that the good copy is overwritten.
1086         * A more useful improvement would be to pick the sectors
1087         * without I/O error based on sector sizes (512 bytes on legacy
1088         * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1089         * mirror could be repaired by taking 512 byte of a different
1090         * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1091         * area are unreadable.
1092         */
1093        success = 1;
1094        for (page_num = 0; page_num < sblock_bad->page_count;
1095             page_num++) {
1096                struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1097                struct scrub_block *sblock_other = NULL;
1098
1099                /* skip no-io-error page in scrub */
1100                if (!page_bad->io_error && !sctx->is_dev_replace)
1101                        continue;
1102
1103                if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1104                        /*
1105                         * In case of dev replace, if raid56 rebuild process
1106                         * didn't work out correct data, then copy the content
1107                         * in sblock_bad to make sure target device is identical
1108                         * to source device, instead of writing garbage data in
1109                         * sblock_for_recheck array to target device.
1110                         */
1111                        sblock_other = NULL;
1112                } else if (page_bad->io_error) {
1113                        /* try to find no-io-error page in mirrors */
1114                        for (mirror_index = 0;
1115                             mirror_index < BTRFS_MAX_MIRRORS &&
1116                             sblocks_for_recheck[mirror_index].page_count > 0;
1117                             mirror_index++) {
1118                                if (!sblocks_for_recheck[mirror_index].
1119                                    pagev[page_num]->io_error) {
1120                                        sblock_other = sblocks_for_recheck +
1121                                                       mirror_index;
1122                                        break;
1123                                }
1124                        }
1125                        if (!sblock_other)
1126                                success = 0;
1127                }
1128
1129                if (sctx->is_dev_replace) {
1130                        /*
1131                         * did not find a mirror to fetch the page
1132                         * from. scrub_write_page_to_dev_replace()
1133                         * handles this case (page->io_error), by
1134                         * filling the block with zeros before
1135                         * submitting the write request
1136                         */
1137                        if (!sblock_other)
1138                                sblock_other = sblock_bad;
1139
1140                        if (scrub_write_page_to_dev_replace(sblock_other,
1141                                                            page_num) != 0) {
1142                                atomic64_inc(
1143                                        &fs_info->dev_replace.num_write_errors);
1144                                success = 0;
1145                        }
1146                } else if (sblock_other) {
1147                        ret = scrub_repair_page_from_good_copy(sblock_bad,
1148                                                               sblock_other,
1149                                                               page_num, 0);
1150                        if (0 == ret)
1151                                page_bad->io_error = 0;
1152                        else
1153                                success = 0;
1154                }
1155        }
1156
1157        if (success && !sctx->is_dev_replace) {
1158                if (is_metadata || have_csum) {
1159                        /*
1160                         * need to verify the checksum now that all
1161                         * sectors on disk are repaired (the write
1162                         * request for data to be repaired is on its way).
1163                         * Just be lazy and use scrub_recheck_block()
1164                         * which re-reads the data before the checksum
1165                         * is verified, but most likely the data comes out
1166                         * of the page cache.
1167                         */
1168                        scrub_recheck_block(fs_info, sblock_bad, 1);
1169                        if (!sblock_bad->header_error &&
1170                            !sblock_bad->checksum_error &&
1171                            sblock_bad->no_io_error_seen)
1172                                goto corrected_error;
1173                        else
1174                                goto did_not_correct_error;
1175                } else {
1176corrected_error:
1177                        spin_lock(&sctx->stat_lock);
1178                        sctx->stat.corrected_errors++;
1179                        sblock_to_check->data_corrected = 1;
1180                        spin_unlock(&sctx->stat_lock);
1181                        btrfs_err_rl_in_rcu(fs_info,
1182                                "fixed up error at logical %llu on dev %s",
1183                                logical, rcu_str_deref(dev->name));
1184                }
1185        } else {
1186did_not_correct_error:
1187                spin_lock(&sctx->stat_lock);
1188                sctx->stat.uncorrectable_errors++;
1189                spin_unlock(&sctx->stat_lock);
1190                btrfs_err_rl_in_rcu(fs_info,
1191                        "unable to fixup (regular) error at logical %llu on dev %s",
1192                        logical, rcu_str_deref(dev->name));
1193        }
1194
1195out:
1196        if (sblocks_for_recheck) {
1197                for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1198                     mirror_index++) {
1199                        struct scrub_block *sblock = sblocks_for_recheck +
1200                                                     mirror_index;
1201                        struct scrub_recover *recover;
1202                        int page_index;
1203
1204                        for (page_index = 0; page_index < sblock->page_count;
1205                             page_index++) {
1206                                sblock->pagev[page_index]->sblock = NULL;
1207                                recover = sblock->pagev[page_index]->recover;
1208                                if (recover) {
1209                                        scrub_put_recover(fs_info, recover);
1210                                        sblock->pagev[page_index]->recover =
1211                                                                        NULL;
1212                                }
1213                                scrub_page_put(sblock->pagev[page_index]);
1214                        }
1215                }
1216                kfree(sblocks_for_recheck);
1217        }
1218
1219        ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1220        memalloc_nofs_restore(nofs_flag);
1221        if (ret < 0)
1222                return ret;
1223        return 0;
1224}
1225
1226static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1227{
1228        if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1229                return 2;
1230        else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1231                return 3;
1232        else
1233                return (int)bbio->num_stripes;
1234}
1235
1236static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1237                                                 u64 *raid_map,
1238                                                 u64 mapped_length,
1239                                                 int nstripes, int mirror,
1240                                                 int *stripe_index,
1241                                                 u64 *stripe_offset)
1242{
1243        int i;
1244
1245        if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1246                /* RAID5/6 */
1247                for (i = 0; i < nstripes; i++) {
1248                        if (raid_map[i] == RAID6_Q_STRIPE ||
1249                            raid_map[i] == RAID5_P_STRIPE)
1250                                continue;
1251
1252                        if (logical >= raid_map[i] &&
1253                            logical < raid_map[i] + mapped_length)
1254                                break;
1255                }
1256
1257                *stripe_index = i;
1258                *stripe_offset = logical - raid_map[i];
1259        } else {
1260                /* The other RAID type */
1261                *stripe_index = mirror;
1262                *stripe_offset = 0;
1263        }
1264}
1265
1266static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1267                                     struct scrub_block *sblocks_for_recheck)
1268{
1269        struct scrub_ctx *sctx = original_sblock->sctx;
1270        struct btrfs_fs_info *fs_info = sctx->fs_info;
1271        u64 length = original_sblock->page_count * PAGE_SIZE;
1272        u64 logical = original_sblock->pagev[0]->logical;
1273        u64 generation = original_sblock->pagev[0]->generation;
1274        u64 flags = original_sblock->pagev[0]->flags;
1275        u64 have_csum = original_sblock->pagev[0]->have_csum;
1276        struct scrub_recover *recover;
1277        struct btrfs_bio *bbio;
1278        u64 sublen;
1279        u64 mapped_length;
1280        u64 stripe_offset;
1281        int stripe_index;
1282        int page_index = 0;
1283        int mirror_index;
1284        int nmirrors;
1285        int ret;
1286
1287        /*
1288         * note: the two members refs and outstanding_pages
1289         * are not used (and not set) in the blocks that are used for
1290         * the recheck procedure
1291         */
1292
1293        while (length > 0) {
1294                sublen = min_t(u64, length, PAGE_SIZE);
1295                mapped_length = sublen;
1296                bbio = NULL;
1297
1298                /*
1299                 * with a length of PAGE_SIZE, each returned stripe
1300                 * represents one mirror
1301                 */
1302                btrfs_bio_counter_inc_blocked(fs_info);
1303                ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1304                                logical, &mapped_length, &bbio);
1305                if (ret || !bbio || mapped_length < sublen) {
1306                        btrfs_put_bbio(bbio);
1307                        btrfs_bio_counter_dec(fs_info);
1308                        return -EIO;
1309                }
1310
1311                recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1312                if (!recover) {
1313                        btrfs_put_bbio(bbio);
1314                        btrfs_bio_counter_dec(fs_info);
1315                        return -ENOMEM;
1316                }
1317
1318                refcount_set(&recover->refs, 1);
1319                recover->bbio = bbio;
1320                recover->map_length = mapped_length;
1321
1322                BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1323
1324                nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1325
1326                for (mirror_index = 0; mirror_index < nmirrors;
1327                     mirror_index++) {
1328                        struct scrub_block *sblock;
1329                        struct scrub_page *page;
1330
1331                        sblock = sblocks_for_recheck + mirror_index;
1332                        sblock->sctx = sctx;
1333
1334                        page = kzalloc(sizeof(*page), GFP_NOFS);
1335                        if (!page) {
1336leave_nomem:
1337                                spin_lock(&sctx->stat_lock);
1338                                sctx->stat.malloc_errors++;
1339                                spin_unlock(&sctx->stat_lock);
1340                                scrub_put_recover(fs_info, recover);
1341                                return -ENOMEM;
1342                        }
1343                        scrub_page_get(page);
1344                        sblock->pagev[page_index] = page;
1345                        page->sblock = sblock;
1346                        page->flags = flags;
1347                        page->generation = generation;
1348                        page->logical = logical;
1349                        page->have_csum = have_csum;
1350                        if (have_csum)
1351                                memcpy(page->csum,
1352                                       original_sblock->pagev[0]->csum,
1353                                       sctx->csum_size);
1354
1355                        scrub_stripe_index_and_offset(logical,
1356                                                      bbio->map_type,
1357                                                      bbio->raid_map,
1358                                                      mapped_length,
1359                                                      bbio->num_stripes -
1360                                                      bbio->num_tgtdevs,
1361                                                      mirror_index,
1362                                                      &stripe_index,
1363                                                      &stripe_offset);
1364                        page->physical = bbio->stripes[stripe_index].physical +
1365                                         stripe_offset;
1366                        page->dev = bbio->stripes[stripe_index].dev;
1367
1368                        BUG_ON(page_index >= original_sblock->page_count);
1369                        page->physical_for_dev_replace =
1370                                original_sblock->pagev[page_index]->
1371                                physical_for_dev_replace;
1372                        /* for missing devices, dev->bdev is NULL */
1373                        page->mirror_num = mirror_index + 1;
1374                        sblock->page_count++;
1375                        page->page = alloc_page(GFP_NOFS);
1376                        if (!page->page)
1377                                goto leave_nomem;
1378
1379                        scrub_get_recover(recover);
1380                        page->recover = recover;
1381                }
1382                scrub_put_recover(fs_info, recover);
1383                length -= sublen;
1384                logical += sublen;
1385                page_index++;
1386        }
1387
1388        return 0;
1389}
1390
1391static void scrub_bio_wait_endio(struct bio *bio)
1392{
1393        complete(bio->bi_private);
1394}
1395
1396static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1397                                        struct bio *bio,
1398                                        struct scrub_page *page)
1399{
1400        DECLARE_COMPLETION_ONSTACK(done);
1401        int ret;
1402        int mirror_num;
1403
1404        bio->bi_iter.bi_sector = page->logical >> 9;
1405        bio->bi_private = &done;
1406        bio->bi_end_io = scrub_bio_wait_endio;
1407
1408        mirror_num = page->sblock->pagev[0]->mirror_num;
1409        ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1410                                    page->recover->map_length,
1411                                    mirror_num, 0);
1412        if (ret)
1413                return ret;
1414
1415        wait_for_completion_io(&done);
1416        return blk_status_to_errno(bio->bi_status);
1417}
1418
1419static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1420                                          struct scrub_block *sblock)
1421{
1422        struct scrub_page *first_page = sblock->pagev[0];
1423        struct bio *bio;
1424        int page_num;
1425
1426        /* All pages in sblock belong to the same stripe on the same device. */
1427        ASSERT(first_page->dev);
1428        if (!first_page->dev->bdev)
1429                goto out;
1430
1431        bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1432        bio_set_dev(bio, first_page->dev->bdev);
1433
1434        for (page_num = 0; page_num < sblock->page_count; page_num++) {
1435                struct scrub_page *page = sblock->pagev[page_num];
1436
1437                WARN_ON(!page->page);
1438                bio_add_page(bio, page->page, PAGE_SIZE, 0);
1439        }
1440
1441        if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1442                bio_put(bio);
1443                goto out;
1444        }
1445
1446        bio_put(bio);
1447
1448        scrub_recheck_block_checksum(sblock);
1449
1450        return;
1451out:
1452        for (page_num = 0; page_num < sblock->page_count; page_num++)
1453                sblock->pagev[page_num]->io_error = 1;
1454
1455        sblock->no_io_error_seen = 0;
1456}
1457
1458/*
1459 * this function will check the on disk data for checksum errors, header
1460 * errors and read I/O errors. If any I/O errors happen, the exact pages
1461 * which are errored are marked as being bad. The goal is to enable scrub
1462 * to take those pages that are not errored from all the mirrors so that
1463 * the pages that are errored in the just handled mirror can be repaired.
1464 */
1465static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1466                                struct scrub_block *sblock,
1467                                int retry_failed_mirror)
1468{
1469        int page_num;
1470
1471        sblock->no_io_error_seen = 1;
1472
1473        /* short cut for raid56 */
1474        if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1475                return scrub_recheck_block_on_raid56(fs_info, sblock);
1476
1477        for (page_num = 0; page_num < sblock->page_count; page_num++) {
1478                struct bio *bio;
1479                struct scrub_page *page = sblock->pagev[page_num];
1480
1481                if (page->dev->bdev == NULL) {
1482                        page->io_error = 1;
1483                        sblock->no_io_error_seen = 0;
1484                        continue;
1485                }
1486
1487                WARN_ON(!page->page);
1488                bio = btrfs_io_bio_alloc(1);
1489                bio_set_dev(bio, page->dev->bdev);
1490
1491                bio_add_page(bio, page->page, PAGE_SIZE, 0);
1492                bio->bi_iter.bi_sector = page->physical >> 9;
1493                bio->bi_opf = REQ_OP_READ;
1494
1495                if (btrfsic_submit_bio_wait(bio)) {
1496                        page->io_error = 1;
1497                        sblock->no_io_error_seen = 0;
1498                }
1499
1500                bio_put(bio);
1501        }
1502
1503        if (sblock->no_io_error_seen)
1504                scrub_recheck_block_checksum(sblock);
1505}
1506
1507static inline int scrub_check_fsid(u8 fsid[],
1508                                   struct scrub_page *spage)
1509{
1510        struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1511        int ret;
1512
1513        ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1514        return !ret;
1515}
1516
1517static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1518{
1519        sblock->header_error = 0;
1520        sblock->checksum_error = 0;
1521        sblock->generation_error = 0;
1522
1523        if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1524                scrub_checksum_data(sblock);
1525        else
1526                scrub_checksum_tree_block(sblock);
1527}
1528
1529static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1530                                             struct scrub_block *sblock_good)
1531{
1532        int page_num;
1533        int ret = 0;
1534
1535        for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1536                int ret_sub;
1537
1538                ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1539                                                           sblock_good,
1540                                                           page_num, 1);
1541                if (ret_sub)
1542                        ret = ret_sub;
1543        }
1544
1545        return ret;
1546}
1547
1548static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1549                                            struct scrub_block *sblock_good,
1550                                            int page_num, int force_write)
1551{
1552        struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1553        struct scrub_page *page_good = sblock_good->pagev[page_num];
1554        struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1555
1556        BUG_ON(page_bad->page == NULL);
1557        BUG_ON(page_good->page == NULL);
1558        if (force_write || sblock_bad->header_error ||
1559            sblock_bad->checksum_error || page_bad->io_error) {
1560                struct bio *bio;
1561                int ret;
1562
1563                if (!page_bad->dev->bdev) {
1564                        btrfs_warn_rl(fs_info,
1565                                "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1566                        return -EIO;
1567                }
1568
1569                bio = btrfs_io_bio_alloc(1);
1570                bio_set_dev(bio, page_bad->dev->bdev);
1571                bio->bi_iter.bi_sector = page_bad->physical >> 9;
1572                bio->bi_opf = REQ_OP_WRITE;
1573
1574                ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1575                if (PAGE_SIZE != ret) {
1576                        bio_put(bio);
1577                        return -EIO;
1578                }
1579
1580                if (btrfsic_submit_bio_wait(bio)) {
1581                        btrfs_dev_stat_inc_and_print(page_bad->dev,
1582                                BTRFS_DEV_STAT_WRITE_ERRS);
1583                        atomic64_inc(&fs_info->dev_replace.num_write_errors);
1584                        bio_put(bio);
1585                        return -EIO;
1586                }
1587                bio_put(bio);
1588        }
1589
1590        return 0;
1591}
1592
1593static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1594{
1595        struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1596        int page_num;
1597
1598        /*
1599         * This block is used for the check of the parity on the source device,
1600         * so the data needn't be written into the destination device.
1601         */
1602        if (sblock->sparity)
1603                return;
1604
1605        for (page_num = 0; page_num < sblock->page_count; page_num++) {
1606                int ret;
1607
1608                ret = scrub_write_page_to_dev_replace(sblock, page_num);
1609                if (ret)
1610                        atomic64_inc(&fs_info->dev_replace.num_write_errors);
1611        }
1612}
1613
1614static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1615                                           int page_num)
1616{
1617        struct scrub_page *spage = sblock->pagev[page_num];
1618
1619        BUG_ON(spage->page == NULL);
1620        if (spage->io_error) {
1621                void *mapped_buffer = kmap_atomic(spage->page);
1622
1623                clear_page(mapped_buffer);
1624                flush_dcache_page(spage->page);
1625                kunmap_atomic(mapped_buffer);
1626        }
1627        return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1628}
1629
1630static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1631                                    struct scrub_page *spage)
1632{
1633        struct scrub_bio *sbio;
1634        int ret;
1635
1636        mutex_lock(&sctx->wr_lock);
1637again:
1638        if (!sctx->wr_curr_bio) {
1639                sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1640                                              GFP_KERNEL);
1641                if (!sctx->wr_curr_bio) {
1642                        mutex_unlock(&sctx->wr_lock);
1643                        return -ENOMEM;
1644                }
1645                sctx->wr_curr_bio->sctx = sctx;
1646                sctx->wr_curr_bio->page_count = 0;
1647        }
1648        sbio = sctx->wr_curr_bio;
1649        if (sbio->page_count == 0) {
1650                struct bio *bio;
1651
1652                sbio->physical = spage->physical_for_dev_replace;
1653                sbio->logical = spage->logical;
1654                sbio->dev = sctx->wr_tgtdev;
1655                bio = sbio->bio;
1656                if (!bio) {
1657                        bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1658                        sbio->bio = bio;
1659                }
1660
1661                bio->bi_private = sbio;
1662                bio->bi_end_io = scrub_wr_bio_end_io;
1663                bio_set_dev(bio, sbio->dev->bdev);
1664                bio->bi_iter.bi_sector = sbio->physical >> 9;
1665                bio->bi_opf = REQ_OP_WRITE;
1666                sbio->status = 0;
1667        } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1668                   spage->physical_for_dev_replace ||
1669                   sbio->logical + sbio->page_count * PAGE_SIZE !=
1670                   spage->logical) {
1671                scrub_wr_submit(sctx);
1672                goto again;
1673        }
1674
1675        ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1676        if (ret != PAGE_SIZE) {
1677                if (sbio->page_count < 1) {
1678                        bio_put(sbio->bio);
1679                        sbio->bio = NULL;
1680                        mutex_unlock(&sctx->wr_lock);
1681                        return -EIO;
1682                }
1683                scrub_wr_submit(sctx);
1684                goto again;
1685        }
1686
1687        sbio->pagev[sbio->page_count] = spage;
1688        scrub_page_get(spage);
1689        sbio->page_count++;
1690        if (sbio->page_count == sctx->pages_per_wr_bio)
1691                scrub_wr_submit(sctx);
1692        mutex_unlock(&sctx->wr_lock);
1693
1694        return 0;
1695}
1696
1697static void scrub_wr_submit(struct scrub_ctx *sctx)
1698{
1699        struct scrub_bio *sbio;
1700
1701        if (!sctx->wr_curr_bio)
1702                return;
1703
1704        sbio = sctx->wr_curr_bio;
1705        sctx->wr_curr_bio = NULL;
1706        WARN_ON(!sbio->bio->bi_disk);
1707        scrub_pending_bio_inc(sctx);
1708        /* process all writes in a single worker thread. Then the block layer
1709         * orders the requests before sending them to the driver which
1710         * doubled the write performance on spinning disks when measured
1711         * with Linux 3.5 */
1712        btrfsic_submit_bio(sbio->bio);
1713}
1714
1715static void scrub_wr_bio_end_io(struct bio *bio)
1716{
1717        struct scrub_bio *sbio = bio->bi_private;
1718        struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1719
1720        sbio->status = bio->bi_status;
1721        sbio->bio = bio;
1722
1723        btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1724                         scrub_wr_bio_end_io_worker, NULL, NULL);
1725        btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1726}
1727
1728static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1729{
1730        struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1731        struct scrub_ctx *sctx = sbio->sctx;
1732        int i;
1733
1734        WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1735        if (sbio->status) {
1736                struct btrfs_dev_replace *dev_replace =
1737                        &sbio->sctx->fs_info->dev_replace;
1738
1739                for (i = 0; i < sbio->page_count; i++) {
1740                        struct scrub_page *spage = sbio->pagev[i];
1741
1742                        spage->io_error = 1;
1743                        atomic64_inc(&dev_replace->num_write_errors);
1744                }
1745        }
1746
1747        for (i = 0; i < sbio->page_count; i++)
1748                scrub_page_put(sbio->pagev[i]);
1749
1750        bio_put(sbio->bio);
1751        kfree(sbio);
1752        scrub_pending_bio_dec(sctx);
1753}
1754
1755static int scrub_checksum(struct scrub_block *sblock)
1756{
1757        u64 flags;
1758        int ret;
1759
1760        /*
1761         * No need to initialize these stats currently,
1762         * because this function only use return value
1763         * instead of these stats value.
1764         *
1765         * Todo:
1766         * always use stats
1767         */
1768        sblock->header_error = 0;
1769        sblock->generation_error = 0;
1770        sblock->checksum_error = 0;
1771
1772        WARN_ON(sblock->page_count < 1);
1773        flags = sblock->pagev[0]->flags;
1774        ret = 0;
1775        if (flags & BTRFS_EXTENT_FLAG_DATA)
1776                ret = scrub_checksum_data(sblock);
1777        else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1778                ret = scrub_checksum_tree_block(sblock);
1779        else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1780                (void)scrub_checksum_super(sblock);
1781        else
1782                WARN_ON(1);
1783        if (ret)
1784                scrub_handle_errored_block(sblock);
1785
1786        return ret;
1787}
1788
1789static int scrub_checksum_data(struct scrub_block *sblock)
1790{
1791        struct scrub_ctx *sctx = sblock->sctx;
1792        struct btrfs_fs_info *fs_info = sctx->fs_info;
1793        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1794        u8 csum[BTRFS_CSUM_SIZE];
1795        u8 *on_disk_csum;
1796        struct page *page;
1797        void *buffer;
1798        u64 len;
1799        int index;
1800
1801        BUG_ON(sblock->page_count < 1);
1802        if (!sblock->pagev[0]->have_csum)
1803                return 0;
1804
1805        shash->tfm = fs_info->csum_shash;
1806        crypto_shash_init(shash);
1807
1808        on_disk_csum = sblock->pagev[0]->csum;
1809        page = sblock->pagev[0]->page;
1810        buffer = kmap_atomic(page);
1811
1812        len = sctx->fs_info->sectorsize;
1813        index = 0;
1814        for (;;) {
1815                u64 l = min_t(u64, len, PAGE_SIZE);
1816
1817                crypto_shash_update(shash, buffer, l);
1818                kunmap_atomic(buffer);
1819                len -= l;
1820                if (len == 0)
1821                        break;
1822                index++;
1823                BUG_ON(index >= sblock->page_count);
1824                BUG_ON(!sblock->pagev[index]->page);
1825                page = sblock->pagev[index]->page;
1826                buffer = kmap_atomic(page);
1827        }
1828
1829        crypto_shash_final(shash, csum);
1830        if (memcmp(csum, on_disk_csum, sctx->csum_size))
1831                sblock->checksum_error = 1;
1832
1833        return sblock->checksum_error;
1834}
1835
1836static int scrub_checksum_tree_block(struct scrub_block *sblock)
1837{
1838        struct scrub_ctx *sctx = sblock->sctx;
1839        struct btrfs_header *h;
1840        struct btrfs_fs_info *fs_info = sctx->fs_info;
1841        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1842        u8 calculated_csum[BTRFS_CSUM_SIZE];
1843        u8 on_disk_csum[BTRFS_CSUM_SIZE];
1844        struct page *page;
1845        void *mapped_buffer;
1846        u64 mapped_size;
1847        void *p;
1848        u64 len;
1849        int index;
1850
1851        shash->tfm = fs_info->csum_shash;
1852        crypto_shash_init(shash);
1853
1854        BUG_ON(sblock->page_count < 1);
1855        page = sblock->pagev[0]->page;
1856        mapped_buffer = kmap_atomic(page);
1857        h = (struct btrfs_header *)mapped_buffer;
1858        memcpy(on_disk_csum, h->csum, sctx->csum_size);
1859
1860        /*
1861         * we don't use the getter functions here, as we
1862         * a) don't have an extent buffer and
1863         * b) the page is already kmapped
1864         */
1865        if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1866                sblock->header_error = 1;
1867
1868        if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1869                sblock->header_error = 1;
1870                sblock->generation_error = 1;
1871        }
1872
1873        if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1874                sblock->header_error = 1;
1875
1876        if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1877                   BTRFS_UUID_SIZE))
1878                sblock->header_error = 1;
1879
1880        len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
1881        mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1882        p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1883        index = 0;
1884        for (;;) {
1885                u64 l = min_t(u64, len, mapped_size);
1886
1887                crypto_shash_update(shash, p, l);
1888                kunmap_atomic(mapped_buffer);
1889                len -= l;
1890                if (len == 0)
1891                        break;
1892                index++;
1893                BUG_ON(index >= sblock->page_count);
1894                BUG_ON(!sblock->pagev[index]->page);
1895                page = sblock->pagev[index]->page;
1896                mapped_buffer = kmap_atomic(page);
1897                mapped_size = PAGE_SIZE;
1898                p = mapped_buffer;
1899        }
1900
1901        crypto_shash_final(shash, calculated_csum);
1902        if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1903                sblock->checksum_error = 1;
1904
1905        return sblock->header_error || sblock->checksum_error;
1906}
1907
1908static int scrub_checksum_super(struct scrub_block *sblock)
1909{
1910        struct btrfs_super_block *s;
1911        struct scrub_ctx *sctx = sblock->sctx;
1912        struct btrfs_fs_info *fs_info = sctx->fs_info;
1913        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1914        u8 calculated_csum[BTRFS_CSUM_SIZE];
1915        u8 on_disk_csum[BTRFS_CSUM_SIZE];
1916        struct page *page;
1917        void *mapped_buffer;
1918        u64 mapped_size;
1919        void *p;
1920        int fail_gen = 0;
1921        int fail_cor = 0;
1922        u64 len;
1923        int index;
1924
1925        shash->tfm = fs_info->csum_shash;
1926        crypto_shash_init(shash);
1927
1928        BUG_ON(sblock->page_count < 1);
1929        page = sblock->pagev[0]->page;
1930        mapped_buffer = kmap_atomic(page);
1931        s = (struct btrfs_super_block *)mapped_buffer;
1932        memcpy(on_disk_csum, s->csum, sctx->csum_size);
1933
1934        if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1935                ++fail_cor;
1936
1937        if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1938                ++fail_gen;
1939
1940        if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1941                ++fail_cor;
1942
1943        len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1944        mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1945        p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1946        index = 0;
1947        for (;;) {
1948                u64 l = min_t(u64, len, mapped_size);
1949
1950                crypto_shash_update(shash, p, l);
1951                kunmap_atomic(mapped_buffer);
1952                len -= l;
1953                if (len == 0)
1954                        break;
1955                index++;
1956                BUG_ON(index >= sblock->page_count);
1957                BUG_ON(!sblock->pagev[index]->page);
1958                page = sblock->pagev[index]->page;
1959                mapped_buffer = kmap_atomic(page);
1960                mapped_size = PAGE_SIZE;
1961                p = mapped_buffer;
1962        }
1963
1964        crypto_shash_final(shash, calculated_csum);
1965        if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1966                ++fail_cor;
1967
1968        if (fail_cor + fail_gen) {
1969                /*
1970                 * if we find an error in a super block, we just report it.
1971                 * They will get written with the next transaction commit
1972                 * anyway
1973                 */
1974                spin_lock(&sctx->stat_lock);
1975                ++sctx->stat.super_errors;
1976                spin_unlock(&sctx->stat_lock);
1977                if (fail_cor)
1978                        btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1979                                BTRFS_DEV_STAT_CORRUPTION_ERRS);
1980                else
1981                        btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1982                                BTRFS_DEV_STAT_GENERATION_ERRS);
1983        }
1984
1985        return fail_cor + fail_gen;
1986}
1987
1988static void scrub_block_get(struct scrub_block *sblock)
1989{
1990        refcount_inc(&sblock->refs);
1991}
1992
1993static void scrub_block_put(struct scrub_block *sblock)
1994{
1995        if (refcount_dec_and_test(&sblock->refs)) {
1996                int i;
1997
1998                if (sblock->sparity)
1999                        scrub_parity_put(sblock->sparity);
2000
2001                for (i = 0; i < sblock->page_count; i++)
2002                        scrub_page_put(sblock->pagev[i]);
2003                kfree(sblock);
2004        }
2005}
2006
2007static void scrub_page_get(struct scrub_page *spage)
2008{
2009        atomic_inc(&spage->refs);
2010}
2011
2012static void scrub_page_put(struct scrub_page *spage)
2013{
2014        if (atomic_dec_and_test(&spage->refs)) {
2015                if (spage->page)
2016                        __free_page(spage->page);
2017                kfree(spage);
2018        }
2019}
2020
2021static void scrub_submit(struct scrub_ctx *sctx)
2022{
2023        struct scrub_bio *sbio;
2024
2025        if (sctx->curr == -1)
2026                return;
2027
2028        sbio = sctx->bios[sctx->curr];
2029        sctx->curr = -1;
2030        scrub_pending_bio_inc(sctx);
2031        btrfsic_submit_bio(sbio->bio);
2032}
2033
2034static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2035                                    struct scrub_page *spage)
2036{
2037        struct scrub_block *sblock = spage->sblock;
2038        struct scrub_bio *sbio;
2039        int ret;
2040
2041again:
2042        /*
2043         * grab a fresh bio or wait for one to become available
2044         */
2045        while (sctx->curr == -1) {
2046                spin_lock(&sctx->list_lock);
2047                sctx->curr = sctx->first_free;
2048                if (sctx->curr != -1) {
2049                        sctx->first_free = sctx->bios[sctx->curr]->next_free;
2050                        sctx->bios[sctx->curr]->next_free = -1;
2051                        sctx->bios[sctx->curr]->page_count = 0;
2052                        spin_unlock(&sctx->list_lock);
2053                } else {
2054                        spin_unlock(&sctx->list_lock);
2055                        wait_event(sctx->list_wait, sctx->first_free != -1);
2056                }
2057        }
2058        sbio = sctx->bios[sctx->curr];
2059        if (sbio->page_count == 0) {
2060                struct bio *bio;
2061
2062                sbio->physical = spage->physical;
2063                sbio->logical = spage->logical;
2064                sbio->dev = spage->dev;
2065                bio = sbio->bio;
2066                if (!bio) {
2067                        bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2068                        sbio->bio = bio;
2069                }
2070
2071                bio->bi_private = sbio;
2072                bio->bi_end_io = scrub_bio_end_io;
2073                bio_set_dev(bio, sbio->dev->bdev);
2074                bio->bi_iter.bi_sector = sbio->physical >> 9;
2075                bio->bi_opf = REQ_OP_READ;
2076                sbio->status = 0;
2077        } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2078                   spage->physical ||
2079                   sbio->logical + sbio->page_count * PAGE_SIZE !=
2080                   spage->logical ||
2081                   sbio->dev != spage->dev) {
2082                scrub_submit(sctx);
2083                goto again;
2084        }
2085
2086        sbio->pagev[sbio->page_count] = spage;
2087        ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2088        if (ret != PAGE_SIZE) {
2089                if (sbio->page_count < 1) {
2090                        bio_put(sbio->bio);
2091                        sbio->bio = NULL;
2092                        return -EIO;
2093                }
2094                scrub_submit(sctx);
2095                goto again;
2096        }
2097
2098        scrub_block_get(sblock); /* one for the page added to the bio */
2099        atomic_inc(&sblock->outstanding_pages);
2100        sbio->page_count++;
2101        if (sbio->page_count == sctx->pages_per_rd_bio)
2102                scrub_submit(sctx);
2103
2104        return 0;
2105}
2106
2107static void scrub_missing_raid56_end_io(struct bio *bio)
2108{
2109        struct scrub_block *sblock = bio->bi_private;
2110        struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2111
2112        if (bio->bi_status)
2113                sblock->no_io_error_seen = 0;
2114
2115        bio_put(bio);
2116
2117        btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2118}
2119
2120static void scrub_missing_raid56_worker(struct btrfs_work *work)
2121{
2122        struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2123        struct scrub_ctx *sctx = sblock->sctx;
2124        struct btrfs_fs_info *fs_info = sctx->fs_info;
2125        u64 logical;
2126        struct btrfs_device *dev;
2127
2128        logical = sblock->pagev[0]->logical;
2129        dev = sblock->pagev[0]->dev;
2130
2131        if (sblock->no_io_error_seen)
2132                scrub_recheck_block_checksum(sblock);
2133
2134        if (!sblock->no_io_error_seen) {
2135                spin_lock(&sctx->stat_lock);
2136                sctx->stat.read_errors++;
2137                spin_unlock(&sctx->stat_lock);
2138                btrfs_err_rl_in_rcu(fs_info,
2139                        "IO error rebuilding logical %llu for dev %s",
2140                        logical, rcu_str_deref(dev->name));
2141        } else if (sblock->header_error || sblock->checksum_error) {
2142                spin_lock(&sctx->stat_lock);
2143                sctx->stat.uncorrectable_errors++;
2144                spin_unlock(&sctx->stat_lock);
2145                btrfs_err_rl_in_rcu(fs_info,
2146                        "failed to rebuild valid logical %llu for dev %s",
2147                        logical, rcu_str_deref(dev->name));
2148        } else {
2149                scrub_write_block_to_dev_replace(sblock);
2150        }
2151
2152        scrub_block_put(sblock);
2153
2154        if (sctx->is_dev_replace && sctx->flush_all_writes) {
2155                mutex_lock(&sctx->wr_lock);
2156                scrub_wr_submit(sctx);
2157                mutex_unlock(&sctx->wr_lock);
2158        }
2159
2160        scrub_pending_bio_dec(sctx);
2161}
2162
2163static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2164{
2165        struct scrub_ctx *sctx = sblock->sctx;
2166        struct btrfs_fs_info *fs_info = sctx->fs_info;
2167        u64 length = sblock->page_count * PAGE_SIZE;
2168        u64 logical = sblock->pagev[0]->logical;
2169        struct btrfs_bio *bbio = NULL;
2170        struct bio *bio;
2171        struct btrfs_raid_bio *rbio;
2172        int ret;
2173        int i;
2174
2175        btrfs_bio_counter_inc_blocked(fs_info);
2176        ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2177                        &length, &bbio);
2178        if (ret || !bbio || !bbio->raid_map)
2179                goto bbio_out;
2180
2181        if (WARN_ON(!sctx->is_dev_replace ||
2182                    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2183                /*
2184                 * We shouldn't be scrubbing a missing device. Even for dev
2185                 * replace, we should only get here for RAID 5/6. We either
2186                 * managed to mount something with no mirrors remaining or
2187                 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2188                 */
2189                goto bbio_out;
2190        }
2191
2192        bio = btrfs_io_bio_alloc(0);
2193        bio->bi_iter.bi_sector = logical >> 9;
2194        bio->bi_private = sblock;
2195        bio->bi_end_io = scrub_missing_raid56_end_io;
2196
2197        rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2198        if (!rbio)
2199                goto rbio_out;
2200
2201        for (i = 0; i < sblock->page_count; i++) {
2202                struct scrub_page *spage = sblock->pagev[i];
2203
2204                raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2205        }
2206
2207        btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2208                        scrub_missing_raid56_worker, NULL, NULL);
2209        scrub_block_get(sblock);
2210        scrub_pending_bio_inc(sctx);
2211        raid56_submit_missing_rbio(rbio);
2212        return;
2213
2214rbio_out:
2215        bio_put(bio);
2216bbio_out:
2217        btrfs_bio_counter_dec(fs_info);
2218        btrfs_put_bbio(bbio);
2219        spin_lock(&sctx->stat_lock);
2220        sctx->stat.malloc_errors++;
2221        spin_unlock(&sctx->stat_lock);
2222}
2223
2224static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2225                       u64 physical, struct btrfs_device *dev, u64 flags,
2226                       u64 gen, int mirror_num, u8 *csum, int force,
2227                       u64 physical_for_dev_replace)
2228{
2229        struct scrub_block *sblock;
2230        int index;
2231
2232        sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2233        if (!sblock) {
2234                spin_lock(&sctx->stat_lock);
2235                sctx->stat.malloc_errors++;
2236                spin_unlock(&sctx->stat_lock);
2237                return -ENOMEM;
2238        }
2239
2240        /* one ref inside this function, plus one for each page added to
2241         * a bio later on */
2242        refcount_set(&sblock->refs, 1);
2243        sblock->sctx = sctx;
2244        sblock->no_io_error_seen = 1;
2245
2246        for (index = 0; len > 0; index++) {
2247                struct scrub_page *spage;
2248                u64 l = min_t(u64, len, PAGE_SIZE);
2249
2250                spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2251                if (!spage) {
2252leave_nomem:
2253                        spin_lock(&sctx->stat_lock);
2254                        sctx->stat.malloc_errors++;
2255                        spin_unlock(&sctx->stat_lock);
2256                        scrub_block_put(sblock);
2257                        return -ENOMEM;
2258                }
2259                BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2260                scrub_page_get(spage);
2261                sblock->pagev[index] = spage;
2262                spage->sblock = sblock;
2263                spage->dev = dev;
2264                spage->flags = flags;
2265                spage->generation = gen;
2266                spage->logical = logical;
2267                spage->physical = physical;
2268                spage->physical_for_dev_replace = physical_for_dev_replace;
2269                spage->mirror_num = mirror_num;
2270                if (csum) {
2271                        spage->have_csum = 1;
2272                        memcpy(spage->csum, csum, sctx->csum_size);
2273                } else {
2274                        spage->have_csum = 0;
2275                }
2276                sblock->page_count++;
2277                spage->page = alloc_page(GFP_KERNEL);
2278                if (!spage->page)
2279                        goto leave_nomem;
2280                len -= l;
2281                logical += l;
2282                physical += l;
2283                physical_for_dev_replace += l;
2284        }
2285
2286        WARN_ON(sblock->page_count == 0);
2287        if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2288                /*
2289                 * This case should only be hit for RAID 5/6 device replace. See
2290                 * the comment in scrub_missing_raid56_pages() for details.
2291                 */
2292                scrub_missing_raid56_pages(sblock);
2293        } else {
2294                for (index = 0; index < sblock->page_count; index++) {
2295                        struct scrub_page *spage = sblock->pagev[index];
2296                        int ret;
2297
2298                        ret = scrub_add_page_to_rd_bio(sctx, spage);
2299                        if (ret) {
2300                                scrub_block_put(sblock);
2301                                return ret;
2302                        }
2303                }
2304
2305                if (force)
2306                        scrub_submit(sctx);
2307        }
2308
2309        /* last one frees, either here or in bio completion for last page */
2310        scrub_block_put(sblock);
2311        return 0;
2312}
2313
2314static void scrub_bio_end_io(struct bio *bio)
2315{
2316        struct scrub_bio *sbio = bio->bi_private;
2317        struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2318
2319        sbio->status = bio->bi_status;
2320        sbio->bio = bio;
2321
2322        btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2323}
2324
2325static void scrub_bio_end_io_worker(struct btrfs_work *work)
2326{
2327        struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2328        struct scrub_ctx *sctx = sbio->sctx;
2329        int i;
2330
2331        BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2332        if (sbio->status) {
2333                for (i = 0; i < sbio->page_count; i++) {
2334                        struct scrub_page *spage = sbio->pagev[i];
2335
2336                        spage->io_error = 1;
2337                        spage->sblock->no_io_error_seen = 0;
2338                }
2339        }
2340
2341        /* now complete the scrub_block items that have all pages completed */
2342        for (i = 0; i < sbio->page_count; i++) {
2343                struct scrub_page *spage = sbio->pagev[i];
2344                struct scrub_block *sblock = spage->sblock;
2345
2346                if (atomic_dec_and_test(&sblock->outstanding_pages))
2347                        scrub_block_complete(sblock);
2348                scrub_block_put(sblock);
2349        }
2350
2351        bio_put(sbio->bio);
2352        sbio->bio = NULL;
2353        spin_lock(&sctx->list_lock);
2354        sbio->next_free = sctx->first_free;
2355        sctx->first_free = sbio->index;
2356        spin_unlock(&sctx->list_lock);
2357
2358        if (sctx->is_dev_replace && sctx->flush_all_writes) {
2359                mutex_lock(&sctx->wr_lock);
2360                scrub_wr_submit(sctx);
2361                mutex_unlock(&sctx->wr_lock);
2362        }
2363
2364        scrub_pending_bio_dec(sctx);
2365}
2366
2367static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2368                                       unsigned long *bitmap,
2369                                       u64 start, u64 len)
2370{
2371        u64 offset;
2372        u64 nsectors64;
2373        u32 nsectors;
2374        int sectorsize = sparity->sctx->fs_info->sectorsize;
2375
2376        if (len >= sparity->stripe_len) {
2377                bitmap_set(bitmap, 0, sparity->nsectors);
2378                return;
2379        }
2380
2381        start -= sparity->logic_start;
2382        start = div64_u64_rem(start, sparity->stripe_len, &offset);
2383        offset = div_u64(offset, sectorsize);
2384        nsectors64 = div_u64(len, sectorsize);
2385
2386        ASSERT(nsectors64 < UINT_MAX);
2387        nsectors = (u32)nsectors64;
2388
2389        if (offset + nsectors <= sparity->nsectors) {
2390                bitmap_set(bitmap, offset, nsectors);
2391                return;
2392        }
2393
2394        bitmap_set(bitmap, offset, sparity->nsectors - offset);
2395        bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2396}
2397
2398static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2399                                                   u64 start, u64 len)
2400{
2401        __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2402}
2403
2404static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2405                                                  u64 start, u64 len)
2406{
2407        __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2408}
2409
2410static void scrub_block_complete(struct scrub_block *sblock)
2411{
2412        int corrupted = 0;
2413
2414        if (!sblock->no_io_error_seen) {
2415                corrupted = 1;
2416                scrub_handle_errored_block(sblock);
2417        } else {
2418                /*
2419                 * if has checksum error, write via repair mechanism in
2420                 * dev replace case, otherwise write here in dev replace
2421                 * case.
2422                 */
2423                corrupted = scrub_checksum(sblock);
2424                if (!corrupted && sblock->sctx->is_dev_replace)
2425                        scrub_write_block_to_dev_replace(sblock);
2426        }
2427
2428        if (sblock->sparity && corrupted && !sblock->data_corrected) {
2429                u64 start = sblock->pagev[0]->logical;
2430                u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2431                          PAGE_SIZE;
2432
2433                scrub_parity_mark_sectors_error(sblock->sparity,
2434                                                start, end - start);
2435        }
2436}
2437
2438static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2439{
2440        struct btrfs_ordered_sum *sum = NULL;
2441        unsigned long index;
2442        unsigned long num_sectors;
2443
2444        while (!list_empty(&sctx->csum_list)) {
2445                sum = list_first_entry(&sctx->csum_list,
2446                                       struct btrfs_ordered_sum, list);
2447                if (sum->bytenr > logical)
2448                        return 0;
2449                if (sum->bytenr + sum->len > logical)
2450                        break;
2451
2452                ++sctx->stat.csum_discards;
2453                list_del(&sum->list);
2454                kfree(sum);
2455                sum = NULL;
2456        }
2457        if (!sum)
2458                return 0;
2459
2460        index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2461        ASSERT(index < UINT_MAX);
2462
2463        num_sectors = sum->len / sctx->fs_info->sectorsize;
2464        memcpy(csum, sum->sums + index * sctx->csum_size, sctx->csum_size);
2465        if (index == num_sectors - 1) {
2466                list_del(&sum->list);
2467                kfree(sum);
2468        }
2469        return 1;
2470}
2471
2472/* scrub extent tries to collect up to 64 kB for each bio */
2473static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2474                        u64 logical, u64 len,
2475                        u64 physical, struct btrfs_device *dev, u64 flags,
2476                        u64 gen, int mirror_num, u64 physical_for_dev_replace)
2477{
2478        int ret;
2479        u8 csum[BTRFS_CSUM_SIZE];
2480        u32 blocksize;
2481
2482        if (flags & BTRFS_EXTENT_FLAG_DATA) {
2483                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2484                        blocksize = map->stripe_len;
2485                else
2486                        blocksize = sctx->fs_info->sectorsize;
2487                spin_lock(&sctx->stat_lock);
2488                sctx->stat.data_extents_scrubbed++;
2489                sctx->stat.data_bytes_scrubbed += len;
2490                spin_unlock(&sctx->stat_lock);
2491        } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2492                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2493                        blocksize = map->stripe_len;
2494                else
2495                        blocksize = sctx->fs_info->nodesize;
2496                spin_lock(&sctx->stat_lock);
2497                sctx->stat.tree_extents_scrubbed++;
2498                sctx->stat.tree_bytes_scrubbed += len;
2499                spin_unlock(&sctx->stat_lock);
2500        } else {
2501                blocksize = sctx->fs_info->sectorsize;
2502                WARN_ON(1);
2503        }
2504
2505        while (len) {
2506                u64 l = min_t(u64, len, blocksize);
2507                int have_csum = 0;
2508
2509                if (flags & BTRFS_EXTENT_FLAG_DATA) {
2510                        /* push csums to sbio */
2511                        have_csum = scrub_find_csum(sctx, logical, csum);
2512                        if (have_csum == 0)
2513                                ++sctx->stat.no_csum;
2514                }
2515                ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2516                                  mirror_num, have_csum ? csum : NULL, 0,
2517                                  physical_for_dev_replace);
2518                if (ret)
2519                        return ret;
2520                len -= l;
2521                logical += l;
2522                physical += l;
2523                physical_for_dev_replace += l;
2524        }
2525        return 0;
2526}
2527
2528static int scrub_pages_for_parity(struct scrub_parity *sparity,
2529                                  u64 logical, u64 len,
2530                                  u64 physical, struct btrfs_device *dev,
2531                                  u64 flags, u64 gen, int mirror_num, u8 *csum)
2532{
2533        struct scrub_ctx *sctx = sparity->sctx;
2534        struct scrub_block *sblock;
2535        int index;
2536
2537        sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2538        if (!sblock) {
2539                spin_lock(&sctx->stat_lock);
2540                sctx->stat.malloc_errors++;
2541                spin_unlock(&sctx->stat_lock);
2542                return -ENOMEM;
2543        }
2544
2545        /* one ref inside this function, plus one for each page added to
2546         * a bio later on */
2547        refcount_set(&sblock->refs, 1);
2548        sblock->sctx = sctx;
2549        sblock->no_io_error_seen = 1;
2550        sblock->sparity = sparity;
2551        scrub_parity_get(sparity);
2552
2553        for (index = 0; len > 0; index++) {
2554                struct scrub_page *spage;
2555                u64 l = min_t(u64, len, PAGE_SIZE);
2556
2557                spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2558                if (!spage) {
2559leave_nomem:
2560                        spin_lock(&sctx->stat_lock);
2561                        sctx->stat.malloc_errors++;
2562                        spin_unlock(&sctx->stat_lock);
2563                        scrub_block_put(sblock);
2564                        return -ENOMEM;
2565                }
2566                BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2567                /* For scrub block */
2568                scrub_page_get(spage);
2569                sblock->pagev[index] = spage;
2570                /* For scrub parity */
2571                scrub_page_get(spage);
2572                list_add_tail(&spage->list, &sparity->spages);
2573                spage->sblock = sblock;
2574                spage->dev = dev;
2575                spage->flags = flags;
2576                spage->generation = gen;
2577                spage->logical = logical;
2578                spage->physical = physical;
2579                spage->mirror_num = mirror_num;
2580                if (csum) {
2581                        spage->have_csum = 1;
2582                        memcpy(spage->csum, csum, sctx->csum_size);
2583                } else {
2584                        spage->have_csum = 0;
2585                }
2586                sblock->page_count++;
2587                spage->page = alloc_page(GFP_KERNEL);
2588                if (!spage->page)
2589                        goto leave_nomem;
2590                len -= l;
2591                logical += l;
2592                physical += l;
2593        }
2594
2595        WARN_ON(sblock->page_count == 0);
2596        for (index = 0; index < sblock->page_count; index++) {
2597                struct scrub_page *spage = sblock->pagev[index];
2598                int ret;
2599
2600                ret = scrub_add_page_to_rd_bio(sctx, spage);
2601                if (ret) {
2602                        scrub_block_put(sblock);
2603                        return ret;
2604                }
2605        }
2606
2607        /* last one frees, either here or in bio completion for last page */
2608        scrub_block_put(sblock);
2609        return 0;
2610}
2611
2612static int scrub_extent_for_parity(struct scrub_parity *sparity,
2613                                   u64 logical, u64 len,
2614                                   u64 physical, struct btrfs_device *dev,
2615                                   u64 flags, u64 gen, int mirror_num)
2616{
2617        struct scrub_ctx *sctx = sparity->sctx;
2618        int ret;
2619        u8 csum[BTRFS_CSUM_SIZE];
2620        u32 blocksize;
2621
2622        if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2623                scrub_parity_mark_sectors_error(sparity, logical, len);
2624                return 0;
2625        }
2626
2627        if (flags & BTRFS_EXTENT_FLAG_DATA) {
2628                blocksize = sparity->stripe_len;
2629        } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2630                blocksize = sparity->stripe_len;
2631        } else {
2632                blocksize = sctx->fs_info->sectorsize;
2633                WARN_ON(1);
2634        }
2635
2636        while (len) {
2637                u64 l = min_t(u64, len, blocksize);
2638                int have_csum = 0;
2639
2640                if (flags & BTRFS_EXTENT_FLAG_DATA) {
2641                        /* push csums to sbio */
2642                        have_csum = scrub_find_csum(sctx, logical, csum);
2643                        if (have_csum == 0)
2644                                goto skip;
2645                }
2646                ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2647                                             flags, gen, mirror_num,
2648                                             have_csum ? csum : NULL);
2649                if (ret)
2650                        return ret;
2651skip:
2652                len -= l;
2653                logical += l;
2654                physical += l;
2655        }
2656        return 0;
2657}
2658
2659/*
2660 * Given a physical address, this will calculate it's
2661 * logical offset. if this is a parity stripe, it will return
2662 * the most left data stripe's logical offset.
2663 *
2664 * return 0 if it is a data stripe, 1 means parity stripe.
2665 */
2666static int get_raid56_logic_offset(u64 physical, int num,
2667                                   struct map_lookup *map, u64 *offset,
2668                                   u64 *stripe_start)
2669{
2670        int i;
2671        int j = 0;
2672        u64 stripe_nr;
2673        u64 last_offset;
2674        u32 stripe_index;
2675        u32 rot;
2676        const int data_stripes = nr_data_stripes(map);
2677
2678        last_offset = (physical - map->stripes[num].physical) * data_stripes;
2679        if (stripe_start)
2680                *stripe_start = last_offset;
2681
2682        *offset = last_offset;
2683        for (i = 0; i < data_stripes; i++) {
2684                *offset = last_offset + i * map->stripe_len;
2685
2686                stripe_nr = div64_u64(*offset, map->stripe_len);
2687                stripe_nr = div_u64(stripe_nr, data_stripes);
2688
2689                /* Work out the disk rotation on this stripe-set */
2690                stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2691                /* calculate which stripe this data locates */
2692                rot += i;
2693                stripe_index = rot % map->num_stripes;
2694                if (stripe_index == num)
2695                        return 0;
2696                if (stripe_index < num)
2697                        j++;
2698        }
2699        *offset = last_offset + j * map->stripe_len;
2700        return 1;
2701}
2702
2703static void scrub_free_parity(struct scrub_parity *sparity)
2704{
2705        struct scrub_ctx *sctx = sparity->sctx;
2706        struct scrub_page *curr, *next;
2707        int nbits;
2708
2709        nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2710        if (nbits) {
2711                spin_lock(&sctx->stat_lock);
2712                sctx->stat.read_errors += nbits;
2713                sctx->stat.uncorrectable_errors += nbits;
2714                spin_unlock(&sctx->stat_lock);
2715        }
2716
2717        list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2718                list_del_init(&curr->list);
2719                scrub_page_put(curr);
2720        }
2721
2722        kfree(sparity);
2723}
2724
2725static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2726{
2727        struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2728                                                    work);
2729        struct scrub_ctx *sctx = sparity->sctx;
2730
2731        scrub_free_parity(sparity);
2732        scrub_pending_bio_dec(sctx);
2733}
2734
2735static void scrub_parity_bio_endio(struct bio *bio)
2736{
2737        struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2738        struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2739
2740        if (bio->bi_status)
2741                bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2742                          sparity->nsectors);
2743
2744        bio_put(bio);
2745
2746        btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2747                        scrub_parity_bio_endio_worker, NULL, NULL);
2748        btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2749}
2750
2751static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2752{
2753        struct scrub_ctx *sctx = sparity->sctx;
2754        struct btrfs_fs_info *fs_info = sctx->fs_info;
2755        struct bio *bio;
2756        struct btrfs_raid_bio *rbio;
2757        struct btrfs_bio *bbio = NULL;
2758        u64 length;
2759        int ret;
2760
2761        if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2762                           sparity->nsectors))
2763                goto out;
2764
2765        length = sparity->logic_end - sparity->logic_start;
2766
2767        btrfs_bio_counter_inc_blocked(fs_info);
2768        ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2769                               &length, &bbio);
2770        if (ret || !bbio || !bbio->raid_map)
2771                goto bbio_out;
2772
2773        bio = btrfs_io_bio_alloc(0);
2774        bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2775        bio->bi_private = sparity;
2776        bio->bi_end_io = scrub_parity_bio_endio;
2777
2778        rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2779                                              length, sparity->scrub_dev,
2780                                              sparity->dbitmap,
2781                                              sparity->nsectors);
2782        if (!rbio)
2783                goto rbio_out;
2784
2785        scrub_pending_bio_inc(sctx);
2786        raid56_parity_submit_scrub_rbio(rbio);
2787        return;
2788
2789rbio_out:
2790        bio_put(bio);
2791bbio_out:
2792        btrfs_bio_counter_dec(fs_info);
2793        btrfs_put_bbio(bbio);
2794        bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2795                  sparity->nsectors);
2796        spin_lock(&sctx->stat_lock);
2797        sctx->stat.malloc_errors++;
2798        spin_unlock(&sctx->stat_lock);
2799out:
2800        scrub_free_parity(sparity);
2801}
2802
2803static inline int scrub_calc_parity_bitmap_len(int nsectors)
2804{
2805        return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2806}
2807
2808static void scrub_parity_get(struct scrub_parity *sparity)
2809{
2810        refcount_inc(&sparity->refs);
2811}
2812
2813static void scrub_parity_put(struct scrub_parity *sparity)
2814{
2815        if (!refcount_dec_and_test(&sparity->refs))
2816                return;
2817
2818        scrub_parity_check_and_repair(sparity);
2819}
2820
2821static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2822                                                  struct map_lookup *map,
2823                                                  struct btrfs_device *sdev,
2824                                                  struct btrfs_path *path,
2825                                                  u64 logic_start,
2826                                                  u64 logic_end)
2827{
2828        struct btrfs_fs_info *fs_info = sctx->fs_info;
2829        struct btrfs_root *root = fs_info->extent_root;
2830        struct btrfs_root *csum_root = fs_info->csum_root;
2831        struct btrfs_extent_item *extent;
2832        struct btrfs_bio *bbio = NULL;
2833        u64 flags;
2834        int ret;
2835        int slot;
2836        struct extent_buffer *l;
2837        struct btrfs_key key;
2838        u64 generation;
2839        u64 extent_logical;
2840        u64 extent_physical;
2841        u64 extent_len;
2842        u64 mapped_length;
2843        struct btrfs_device *extent_dev;
2844        struct scrub_parity *sparity;
2845        int nsectors;
2846        int bitmap_len;
2847        int extent_mirror_num;
2848        int stop_loop = 0;
2849
2850        nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2851        bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2852        sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2853                          GFP_NOFS);
2854        if (!sparity) {
2855                spin_lock(&sctx->stat_lock);
2856                sctx->stat.malloc_errors++;
2857                spin_unlock(&sctx->stat_lock);
2858                return -ENOMEM;
2859        }
2860
2861        sparity->stripe_len = map->stripe_len;
2862        sparity->nsectors = nsectors;
2863        sparity->sctx = sctx;
2864        sparity->scrub_dev = sdev;
2865        sparity->logic_start = logic_start;
2866        sparity->logic_end = logic_end;
2867        refcount_set(&sparity->refs, 1);
2868        INIT_LIST_HEAD(&sparity->spages);
2869        sparity->dbitmap = sparity->bitmap;
2870        sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2871
2872        ret = 0;
2873        while (logic_start < logic_end) {
2874                if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2875                        key.type = BTRFS_METADATA_ITEM_KEY;
2876                else
2877                        key.type = BTRFS_EXTENT_ITEM_KEY;
2878                key.objectid = logic_start;
2879                key.offset = (u64)-1;
2880
2881                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2882                if (ret < 0)
2883                        goto out;
2884
2885                if (ret > 0) {
2886                        ret = btrfs_previous_extent_item(root, path, 0);
2887                        if (ret < 0)
2888                                goto out;
2889                        if (ret > 0) {
2890                                btrfs_release_path(path);
2891                                ret = btrfs_search_slot(NULL, root, &key,
2892                                                        path, 0, 0);
2893                                if (ret < 0)
2894                                        goto out;
2895                        }
2896                }
2897
2898                stop_loop = 0;
2899                while (1) {
2900                        u64 bytes;
2901
2902                        l = path->nodes[0];
2903                        slot = path->slots[0];
2904                        if (slot >= btrfs_header_nritems(l)) {
2905                                ret = btrfs_next_leaf(root, path);
2906                                if (ret == 0)
2907                                        continue;
2908                                if (ret < 0)
2909                                        goto out;
2910
2911                                stop_loop = 1;
2912                                break;
2913                        }
2914                        btrfs_item_key_to_cpu(l, &key, slot);
2915
2916                        if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2917                            key.type != BTRFS_METADATA_ITEM_KEY)
2918                                goto next;
2919
2920                        if (key.type == BTRFS_METADATA_ITEM_KEY)
2921                                bytes = fs_info->nodesize;
2922                        else
2923                                bytes = key.offset;
2924
2925                        if (key.objectid + bytes <= logic_start)
2926                                goto next;
2927
2928                        if (key.objectid >= logic_end) {
2929                                stop_loop = 1;
2930                                break;
2931                        }
2932
2933                        while (key.objectid >= logic_start + map->stripe_len)
2934                                logic_start += map->stripe_len;
2935
2936                        extent = btrfs_item_ptr(l, slot,
2937                                                struct btrfs_extent_item);
2938                        flags = btrfs_extent_flags(l, extent);
2939                        generation = btrfs_extent_generation(l, extent);
2940
2941                        if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2942                            (key.objectid < logic_start ||
2943                             key.objectid + bytes >
2944                             logic_start + map->stripe_len)) {
2945                                btrfs_err(fs_info,
2946                                          "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2947                                          key.objectid, logic_start);
2948                                spin_lock(&sctx->stat_lock);
2949                                sctx->stat.uncorrectable_errors++;
2950                                spin_unlock(&sctx->stat_lock);
2951                                goto next;
2952                        }
2953again:
2954                        extent_logical = key.objectid;
2955                        extent_len = bytes;
2956
2957                        if (extent_logical < logic_start) {
2958                                extent_len -= logic_start - extent_logical;
2959                                extent_logical = logic_start;
2960                        }
2961
2962                        if (extent_logical + extent_len >
2963                            logic_start + map->stripe_len)
2964                                extent_len = logic_start + map->stripe_len -
2965                                             extent_logical;
2966
2967                        scrub_parity_mark_sectors_data(sparity, extent_logical,
2968                                                       extent_len);
2969
2970                        mapped_length = extent_len;
2971                        bbio = NULL;
2972                        ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2973                                        extent_logical, &mapped_length, &bbio,
2974                                        0);
2975                        if (!ret) {
2976                                if (!bbio || mapped_length < extent_len)
2977                                        ret = -EIO;
2978                        }
2979                        if (ret) {
2980                                btrfs_put_bbio(bbio);
2981                                goto out;
2982                        }
2983                        extent_physical = bbio->stripes[0].physical;
2984                        extent_mirror_num = bbio->mirror_num;
2985                        extent_dev = bbio->stripes[0].dev;
2986                        btrfs_put_bbio(bbio);
2987
2988                        ret = btrfs_lookup_csums_range(csum_root,
2989                                                extent_logical,
2990                                                extent_logical + extent_len - 1,
2991                                                &sctx->csum_list, 1);
2992                        if (ret)
2993                                goto out;
2994
2995                        ret = scrub_extent_for_parity(sparity, extent_logical,
2996                                                      extent_len,
2997                                                      extent_physical,
2998                                                      extent_dev, flags,
2999                                                      generation,
3000                                                      extent_mirror_num);
3001
3002                        scrub_free_csums(sctx);
3003
3004                        if (ret)
3005                                goto out;
3006
3007                        if (extent_logical + extent_len <
3008                            key.objectid + bytes) {
3009                                logic_start += map->stripe_len;
3010
3011                                if (logic_start >= logic_end) {
3012                                        stop_loop = 1;
3013                                        break;
3014                                }
3015
3016                                if (logic_start < key.objectid + bytes) {
3017                                        cond_resched();
3018                                        goto again;
3019                                }
3020                        }
3021next:
3022                        path->slots[0]++;
3023                }
3024
3025                btrfs_release_path(path);
3026
3027                if (stop_loop)
3028                        break;
3029
3030                logic_start += map->stripe_len;
3031        }
3032out:
3033        if (ret < 0)
3034                scrub_parity_mark_sectors_error(sparity, logic_start,
3035                                                logic_end - logic_start);
3036        scrub_parity_put(sparity);
3037        scrub_submit(sctx);
3038        mutex_lock(&sctx->wr_lock);
3039        scrub_wr_submit(sctx);
3040        mutex_unlock(&sctx->wr_lock);
3041
3042        btrfs_release_path(path);
3043        return ret < 0 ? ret : 0;
3044}
3045
3046static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3047                                           struct map_lookup *map,
3048                                           struct btrfs_device *scrub_dev,
3049                                           int num, u64 base, u64 length)
3050{
3051        struct btrfs_path *path, *ppath;
3052        struct btrfs_fs_info *fs_info = sctx->fs_info;
3053        struct btrfs_root *root = fs_info->extent_root;
3054        struct btrfs_root *csum_root = fs_info->csum_root;
3055        struct btrfs_extent_item *extent;
3056        struct blk_plug plug;
3057        u64 flags;
3058        int ret;
3059        int slot;
3060        u64 nstripes;
3061        struct extent_buffer *l;
3062        u64 physical;
3063        u64 logical;
3064        u64 logic_end;
3065        u64 physical_end;
3066        u64 generation;
3067        int mirror_num;
3068        struct reada_control *reada1;
3069        struct reada_control *reada2;
3070        struct btrfs_key key;
3071        struct btrfs_key key_end;
3072        u64 increment = map->stripe_len;
3073        u64 offset;
3074        u64 extent_logical;
3075        u64 extent_physical;
3076        u64 extent_len;
3077        u64 stripe_logical;
3078        u64 stripe_end;
3079        struct btrfs_device *extent_dev;
3080        int extent_mirror_num;
3081        int stop_loop = 0;
3082
3083        physical = map->stripes[num].physical;
3084        offset = 0;
3085        nstripes = div64_u64(length, map->stripe_len);
3086        if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3087                offset = map->stripe_len * num;
3088                increment = map->stripe_len * map->num_stripes;
3089                mirror_num = 1;
3090        } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3091                int factor = map->num_stripes / map->sub_stripes;
3092                offset = map->stripe_len * (num / map->sub_stripes);
3093                increment = map->stripe_len * factor;
3094                mirror_num = num % map->sub_stripes + 1;
3095        } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
3096                increment = map->stripe_len;
3097                mirror_num = num % map->num_stripes + 1;
3098        } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3099                increment = map->stripe_len;
3100                mirror_num = num % map->num_stripes + 1;
3101        } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3102                get_raid56_logic_offset(physical, num, map, &offset, NULL);
3103                increment = map->stripe_len * nr_data_stripes(map);
3104                mirror_num = 1;
3105        } else {
3106                increment = map->stripe_len;
3107                mirror_num = 1;
3108        }
3109
3110        path = btrfs_alloc_path();
3111        if (!path)
3112                return -ENOMEM;
3113
3114        ppath = btrfs_alloc_path();
3115        if (!ppath) {
3116                btrfs_free_path(path);
3117                return -ENOMEM;
3118        }
3119
3120        /*
3121         * work on commit root. The related disk blocks are static as
3122         * long as COW is applied. This means, it is save to rewrite
3123         * them to repair disk errors without any race conditions
3124         */
3125        path->search_commit_root = 1;
3126        path->skip_locking = 1;
3127
3128        ppath->search_commit_root = 1;
3129        ppath->skip_locking = 1;
3130        /*
3131         * trigger the readahead for extent tree csum tree and wait for
3132         * completion. During readahead, the scrub is officially paused
3133         * to not hold off transaction commits
3134         */
3135        logical = base + offset;
3136        physical_end = physical + nstripes * map->stripe_len;
3137        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3138                get_raid56_logic_offset(physical_end, num,
3139                                        map, &logic_end, NULL);
3140                logic_end += base;
3141        } else {
3142                logic_end = logical + increment * nstripes;
3143        }
3144        wait_event(sctx->list_wait,
3145                   atomic_read(&sctx->bios_in_flight) == 0);
3146        scrub_blocked_if_needed(fs_info);
3147
3148        /* FIXME it might be better to start readahead at commit root */
3149        key.objectid = logical;
3150        key.type = BTRFS_EXTENT_ITEM_KEY;
3151        key.offset = (u64)0;
3152        key_end.objectid = logic_end;
3153        key_end.type = BTRFS_METADATA_ITEM_KEY;
3154        key_end.offset = (u64)-1;
3155        reada1 = btrfs_reada_add(root, &key, &key_end);
3156
3157        key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3158        key.type = BTRFS_EXTENT_CSUM_KEY;
3159        key.offset = logical;
3160        key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3161        key_end.type = BTRFS_EXTENT_CSUM_KEY;
3162        key_end.offset = logic_end;
3163        reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3164
3165        if (!IS_ERR(reada1))
3166                btrfs_reada_wait(reada1);
3167        if (!IS_ERR(reada2))
3168                btrfs_reada_wait(reada2);
3169
3170
3171        /*
3172         * collect all data csums for the stripe to avoid seeking during
3173         * the scrub. This might currently (crc32) end up to be about 1MB
3174         */
3175        blk_start_plug(&plug);
3176
3177        /*
3178         * now find all extents for each stripe and scrub them
3179         */
3180        ret = 0;
3181        while (physical < physical_end) {
3182                /*
3183                 * canceled?
3184                 */
3185                if (atomic_read(&fs_info->scrub_cancel_req) ||
3186                    atomic_read(&sctx->cancel_req)) {
3187                        ret = -ECANCELED;
3188                        goto out;
3189                }
3190                /*
3191                 * check to see if we have to pause
3192                 */
3193                if (atomic_read(&fs_info->scrub_pause_req)) {
3194                        /* push queued extents */
3195                        sctx->flush_all_writes = true;
3196                        scrub_submit(sctx);
3197                        mutex_lock(&sctx->wr_lock);
3198                        scrub_wr_submit(sctx);
3199                        mutex_unlock(&sctx->wr_lock);
3200                        wait_event(sctx->list_wait,
3201                                   atomic_read(&sctx->bios_in_flight) == 0);
3202                        sctx->flush_all_writes = false;
3203                        scrub_blocked_if_needed(fs_info);
3204                }
3205
3206                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3207                        ret = get_raid56_logic_offset(physical, num, map,
3208                                                      &logical,
3209                                                      &stripe_logical);
3210                        logical += base;
3211                        if (ret) {
3212                                /* it is parity strip */
3213                                stripe_logical += base;
3214                                stripe_end = stripe_logical + increment;
3215                                ret = scrub_raid56_parity(sctx, map, scrub_dev,
3216                                                          ppath, stripe_logical,
3217                                                          stripe_end);
3218                                if (ret)
3219                                        goto out;
3220                                goto skip;
3221                        }
3222                }
3223
3224                if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3225                        key.type = BTRFS_METADATA_ITEM_KEY;
3226                else
3227                        key.type = BTRFS_EXTENT_ITEM_KEY;
3228                key.objectid = logical;
3229                key.offset = (u64)-1;
3230
3231                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3232                if (ret < 0)
3233                        goto out;
3234
3235                if (ret > 0) {
3236                        ret = btrfs_previous_extent_item(root, path, 0);
3237                        if (ret < 0)
3238                                goto out;
3239                        if (ret > 0) {
3240                                /* there's no smaller item, so stick with the
3241                                 * larger one */
3242                                btrfs_release_path(path);
3243                                ret = btrfs_search_slot(NULL, root, &key,
3244                                                        path, 0, 0);
3245                                if (ret < 0)
3246                                        goto out;
3247                        }
3248                }
3249
3250                stop_loop = 0;
3251                while (1) {
3252                        u64 bytes;
3253
3254                        l = path->nodes[0];
3255                        slot = path->slots[0];
3256                        if (slot >= btrfs_header_nritems(l)) {
3257                                ret = btrfs_next_leaf(root, path);
3258                                if (ret == 0)
3259                                        continue;
3260                                if (ret < 0)
3261                                        goto out;
3262
3263                                stop_loop = 1;
3264                                break;
3265                        }
3266                        btrfs_item_key_to_cpu(l, &key, slot);
3267
3268                        if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3269                            key.type != BTRFS_METADATA_ITEM_KEY)
3270                                goto next;
3271
3272                        if (key.type == BTRFS_METADATA_ITEM_KEY)
3273                                bytes = fs_info->nodesize;
3274                        else
3275                                bytes = key.offset;
3276
3277                        if (key.objectid + bytes <= logical)
3278                                goto next;
3279
3280                        if (key.objectid >= logical + map->stripe_len) {
3281                                /* out of this device extent */
3282                                if (key.objectid >= logic_end)
3283                                        stop_loop = 1;
3284                                break;
3285                        }
3286
3287                        extent = btrfs_item_ptr(l, slot,
3288                                                struct btrfs_extent_item);
3289                        flags = btrfs_extent_flags(l, extent);
3290                        generation = btrfs_extent_generation(l, extent);
3291
3292                        if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3293                            (key.objectid < logical ||
3294                             key.objectid + bytes >
3295                             logical + map->stripe_len)) {
3296                                btrfs_err(fs_info,
3297                                           "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3298                                       key.objectid, logical);
3299                                spin_lock(&sctx->stat_lock);
3300                                sctx->stat.uncorrectable_errors++;
3301                                spin_unlock(&sctx->stat_lock);
3302                                goto next;
3303                        }
3304
3305again:
3306                        extent_logical = key.objectid;
3307                        extent_len = bytes;
3308
3309                        /*
3310                         * trim extent to this stripe
3311                         */
3312                        if (extent_logical < logical) {
3313                                extent_len -= logical - extent_logical;
3314                                extent_logical = logical;
3315                        }
3316                        if (extent_logical + extent_len >
3317                            logical + map->stripe_len) {
3318                                extent_len = logical + map->stripe_len -
3319                                             extent_logical;
3320                        }
3321
3322                        extent_physical = extent_logical - logical + physical;
3323                        extent_dev = scrub_dev;
3324                        extent_mirror_num = mirror_num;
3325                        if (sctx->is_dev_replace)
3326                                scrub_remap_extent(fs_info, extent_logical,
3327                                                   extent_len, &extent_physical,
3328                                                   &extent_dev,
3329                                                   &extent_mirror_num);
3330
3331                        ret = btrfs_lookup_csums_range(csum_root,
3332                                                       extent_logical,
3333                                                       extent_logical +
3334                                                       extent_len - 1,
3335                                                       &sctx->csum_list, 1);
3336                        if (ret)
3337                                goto out;
3338
3339                        ret = scrub_extent(sctx, map, extent_logical, extent_len,
3340                                           extent_physical, extent_dev, flags,
3341                                           generation, extent_mirror_num,
3342                                           extent_logical - logical + physical);
3343
3344                        scrub_free_csums(sctx);
3345
3346                        if (ret)
3347                                goto out;
3348
3349                        if (extent_logical + extent_len <
3350                            key.objectid + bytes) {
3351                                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3352                                        /*
3353                                         * loop until we find next data stripe
3354                                         * or we have finished all stripes.
3355                                         */
3356loop:
3357                                        physical += map->stripe_len;
3358                                        ret = get_raid56_logic_offset(physical,
3359                                                        num, map, &logical,
3360                                                        &stripe_logical);
3361                                        logical += base;
3362
3363                                        if (ret && physical < physical_end) {
3364                                                stripe_logical += base;
3365                                                stripe_end = stripe_logical +
3366                                                                increment;
3367                                                ret = scrub_raid56_parity(sctx,
3368                                                        map, scrub_dev, ppath,
3369                                                        stripe_logical,
3370                                                        stripe_end);
3371                                                if (ret)
3372                                                        goto out;
3373                                                goto loop;
3374                                        }
3375                                } else {
3376                                        physical += map->stripe_len;
3377                                        logical += increment;
3378                                }
3379                                if (logical < key.objectid + bytes) {
3380                                        cond_resched();
3381                                        goto again;
3382                                }
3383
3384                                if (physical >= physical_end) {
3385                                        stop_loop = 1;
3386                                        break;
3387                                }
3388                        }
3389next:
3390                        path->slots[0]++;
3391                }
3392                btrfs_release_path(path);
3393skip:
3394                logical += increment;
3395                physical += map->stripe_len;
3396                spin_lock(&sctx->stat_lock);
3397                if (stop_loop)
3398                        sctx->stat.last_physical = map->stripes[num].physical +
3399                                                   length;
3400                else
3401                        sctx->stat.last_physical = physical;
3402                spin_unlock(&sctx->stat_lock);
3403                if (stop_loop)
3404                        break;
3405        }
3406out:
3407        /* push queued extents */
3408        scrub_submit(sctx);
3409        mutex_lock(&sctx->wr_lock);
3410        scrub_wr_submit(sctx);
3411        mutex_unlock(&sctx->wr_lock);
3412
3413        blk_finish_plug(&plug);
3414        btrfs_free_path(path);
3415        btrfs_free_path(ppath);
3416        return ret < 0 ? ret : 0;
3417}
3418
3419static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3420                                          struct btrfs_device *scrub_dev,
3421                                          u64 chunk_offset, u64 length,
3422                                          u64 dev_offset,
3423                                          struct btrfs_block_group_cache *cache)
3424{
3425        struct btrfs_fs_info *fs_info = sctx->fs_info;
3426        struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3427        struct map_lookup *map;
3428        struct extent_map *em;
3429        int i;
3430        int ret = 0;
3431
3432        read_lock(&map_tree->lock);
3433        em = lookup_extent_mapping(map_tree, chunk_offset, 1);
3434        read_unlock(&map_tree->lock);
3435
3436        if (!em) {
3437                /*
3438                 * Might have been an unused block group deleted by the cleaner
3439                 * kthread or relocation.
3440                 */
3441                spin_lock(&cache->lock);
3442                if (!cache->removed)
3443                        ret = -EINVAL;
3444                spin_unlock(&cache->lock);
3445
3446                return ret;
3447        }
3448
3449        map = em->map_lookup;
3450        if (em->start != chunk_offset)
3451                goto out;
3452
3453        if (em->len < length)
3454                goto out;
3455
3456        for (i = 0; i < map->num_stripes; ++i) {
3457                if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3458                    map->stripes[i].physical == dev_offset) {
3459                        ret = scrub_stripe(sctx, map, scrub_dev, i,
3460                                           chunk_offset, length);
3461                        if (ret)
3462                                goto out;
3463                }
3464        }
3465out:
3466        free_extent_map(em);
3467
3468        return ret;
3469}
3470
3471static noinline_for_stack
3472int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3473                           struct btrfs_device *scrub_dev, u64 start, u64 end)
3474{
3475        struct btrfs_dev_extent *dev_extent = NULL;
3476        struct btrfs_path *path;
3477        struct btrfs_fs_info *fs_info = sctx->fs_info;
3478        struct btrfs_root *root = fs_info->dev_root;
3479        u64 length;
3480        u64 chunk_offset;
3481        int ret = 0;
3482        int ro_set;
3483        int slot;
3484        struct extent_buffer *l;
3485        struct btrfs_key key;
3486        struct btrfs_key found_key;
3487        struct btrfs_block_group_cache *cache;
3488        struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3489
3490        path = btrfs_alloc_path();
3491        if (!path)
3492                return -ENOMEM;
3493
3494        path->reada = READA_FORWARD;
3495        path->search_commit_root = 1;
3496        path->skip_locking = 1;
3497
3498        key.objectid = scrub_dev->devid;
3499        key.offset = 0ull;
3500        key.type = BTRFS_DEV_EXTENT_KEY;
3501
3502        while (1) {
3503                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3504                if (ret < 0)
3505                        break;
3506                if (ret > 0) {
3507                        if (path->slots[0] >=
3508                            btrfs_header_nritems(path->nodes[0])) {
3509                                ret = btrfs_next_leaf(root, path);
3510                                if (ret < 0)
3511                                        break;
3512                                if (ret > 0) {
3513                                        ret = 0;
3514                                        break;
3515                                }
3516                        } else {
3517                                ret = 0;
3518                        }
3519                }
3520
3521                l = path->nodes[0];
3522                slot = path->slots[0];
3523
3524                btrfs_item_key_to_cpu(l, &found_key, slot);
3525
3526                if (found_key.objectid != scrub_dev->devid)
3527                        break;
3528
3529                if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3530                        break;
3531
3532                if (found_key.offset >= end)
3533                        break;
3534
3535                if (found_key.offset < key.offset)
3536                        break;
3537
3538                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3539                length = btrfs_dev_extent_length(l, dev_extent);
3540
3541                if (found_key.offset + length <= start)
3542                        goto skip;
3543
3544                chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3545
3546                /*
3547                 * get a reference on the corresponding block group to prevent
3548                 * the chunk from going away while we scrub it
3549                 */
3550                cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3551
3552                /* some chunks are removed but not committed to disk yet,
3553                 * continue scrubbing */
3554                if (!cache)
3555                        goto skip;
3556
3557                /*
3558                 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3559                 * to avoid deadlock caused by:
3560                 * btrfs_inc_block_group_ro()
3561                 * -> btrfs_wait_for_commit()
3562                 * -> btrfs_commit_transaction()
3563                 * -> btrfs_scrub_pause()
3564                 */
3565                scrub_pause_on(fs_info);
3566                ret = btrfs_inc_block_group_ro(cache);
3567                if (!ret && sctx->is_dev_replace) {
3568                        /*
3569                         * If we are doing a device replace wait for any tasks
3570                         * that started delalloc right before we set the block
3571                         * group to RO mode, as they might have just allocated
3572                         * an extent from it or decided they could do a nocow
3573                         * write. And if any such tasks did that, wait for their
3574                         * ordered extents to complete and then commit the
3575                         * current transaction, so that we can later see the new
3576                         * extent items in the extent tree - the ordered extents
3577                         * create delayed data references (for cow writes) when
3578                         * they complete, which will be run and insert the
3579                         * corresponding extent items into the extent tree when
3580                         * we commit the transaction they used when running
3581                         * inode.c:btrfs_finish_ordered_io(). We later use
3582                         * the commit root of the extent tree to find extents
3583                         * to copy from the srcdev into the tgtdev, and we don't
3584                         * want to miss any new extents.
3585                         */
3586                        btrfs_wait_block_group_reservations(cache);
3587                        btrfs_wait_nocow_writers(cache);
3588                        ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3589                                                       cache->key.objectid,
3590                                                       cache->key.offset);
3591                        if (ret > 0) {
3592                                struct btrfs_trans_handle *trans;
3593
3594                                trans = btrfs_join_transaction(root);
3595                                if (IS_ERR(trans))
3596                                        ret = PTR_ERR(trans);
3597                                else
3598                                        ret = btrfs_commit_transaction(trans);
3599                                if (ret) {
3600                                        scrub_pause_off(fs_info);
3601                                        btrfs_put_block_group(cache);
3602                                        break;
3603                                }
3604                        }
3605                }
3606                scrub_pause_off(fs_info);
3607
3608                if (ret == 0) {
3609                        ro_set = 1;
3610                } else if (ret == -ENOSPC) {
3611                        /*
3612                         * btrfs_inc_block_group_ro return -ENOSPC when it
3613                         * failed in creating new chunk for metadata.
3614                         * It is not a problem for scrub/replace, because
3615                         * metadata are always cowed, and our scrub paused
3616                         * commit_transactions.
3617                         */
3618                        ro_set = 0;
3619                } else {
3620                        btrfs_warn(fs_info,
3621                                   "failed setting block group ro: %d", ret);
3622                        btrfs_put_block_group(cache);
3623                        break;
3624                }
3625
3626                down_write(&fs_info->dev_replace.rwsem);
3627                dev_replace->cursor_right = found_key.offset + length;
3628                dev_replace->cursor_left = found_key.offset;
3629                dev_replace->item_needs_writeback = 1;
3630                up_write(&dev_replace->rwsem);
3631
3632                ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3633                                  found_key.offset, cache);
3634
3635                /*
3636                 * flush, submit all pending read and write bios, afterwards
3637                 * wait for them.
3638                 * Note that in the dev replace case, a read request causes
3639                 * write requests that are submitted in the read completion
3640                 * worker. Therefore in the current situation, it is required
3641                 * that all write requests are flushed, so that all read and
3642                 * write requests are really completed when bios_in_flight
3643                 * changes to 0.
3644                 */
3645                sctx->flush_all_writes = true;
3646                scrub_submit(sctx);
3647                mutex_lock(&sctx->wr_lock);
3648                scrub_wr_submit(sctx);
3649                mutex_unlock(&sctx->wr_lock);
3650
3651                wait_event(sctx->list_wait,
3652                           atomic_read(&sctx->bios_in_flight) == 0);
3653
3654                scrub_pause_on(fs_info);
3655
3656                /*
3657                 * must be called before we decrease @scrub_paused.
3658                 * make sure we don't block transaction commit while
3659                 * we are waiting pending workers finished.
3660                 */
3661                wait_event(sctx->list_wait,
3662                           atomic_read(&sctx->workers_pending) == 0);
3663                sctx->flush_all_writes = false;
3664
3665                scrub_pause_off(fs_info);
3666
3667                down_write(&fs_info->dev_replace.rwsem);
3668                dev_replace->cursor_left = dev_replace->cursor_right;
3669                dev_replace->item_needs_writeback = 1;
3670                up_write(&fs_info->dev_replace.rwsem);
3671
3672                if (ro_set)
3673                        btrfs_dec_block_group_ro(cache);
3674
3675                /*
3676                 * We might have prevented the cleaner kthread from deleting
3677                 * this block group if it was already unused because we raced
3678                 * and set it to RO mode first. So add it back to the unused
3679                 * list, otherwise it might not ever be deleted unless a manual
3680                 * balance is triggered or it becomes used and unused again.
3681                 */
3682                spin_lock(&cache->lock);
3683                if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3684                    btrfs_block_group_used(&cache->item) == 0) {
3685                        spin_unlock(&cache->lock);
3686                        btrfs_mark_bg_unused(cache);
3687                } else {
3688                        spin_unlock(&cache->lock);
3689                }
3690
3691                btrfs_put_block_group(cache);
3692                if (ret)
3693                        break;
3694                if (sctx->is_dev_replace &&
3695                    atomic64_read(&dev_replace->num_write_errors) > 0) {
3696                        ret = -EIO;
3697                        break;
3698                }
3699                if (sctx->stat.malloc_errors > 0) {
3700                        ret = -ENOMEM;
3701                        break;
3702                }
3703skip:
3704                key.offset = found_key.offset + length;
3705                btrfs_release_path(path);
3706        }
3707
3708        btrfs_free_path(path);
3709
3710        return ret;
3711}
3712
3713static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3714                                           struct btrfs_device *scrub_dev)
3715{
3716        int     i;
3717        u64     bytenr;
3718        u64     gen;
3719        int     ret;
3720        struct btrfs_fs_info *fs_info = sctx->fs_info;
3721
3722        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3723                return -EIO;
3724
3725        /* Seed devices of a new filesystem has their own generation. */
3726        if (scrub_dev->fs_devices != fs_info->fs_devices)
3727                gen = scrub_dev->generation;
3728        else
3729                gen = fs_info->last_trans_committed;
3730
3731        for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3732                bytenr = btrfs_sb_offset(i);
3733                if (bytenr + BTRFS_SUPER_INFO_SIZE >
3734                    scrub_dev->commit_total_bytes)
3735                        break;
3736
3737                ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3738                                  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3739                                  NULL, 1, bytenr);
3740                if (ret)
3741                        return ret;
3742        }
3743        wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3744
3745        return 0;
3746}
3747
3748/*
3749 * get a reference count on fs_info->scrub_workers. start worker if necessary
3750 */
3751static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3752                                                int is_dev_replace)
3753{
3754        unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3755        int max_active = fs_info->thread_pool_size;
3756
3757        lockdep_assert_held(&fs_info->scrub_lock);
3758
3759        if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
3760                ASSERT(fs_info->scrub_workers == NULL);
3761                fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
3762                                flags, is_dev_replace ? 1 : max_active, 4);
3763                if (!fs_info->scrub_workers)
3764                        goto fail_scrub_workers;
3765
3766                ASSERT(fs_info->scrub_wr_completion_workers == NULL);
3767                fs_info->scrub_wr_completion_workers =
3768                        btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3769                                              max_active, 2);
3770                if (!fs_info->scrub_wr_completion_workers)
3771                        goto fail_scrub_wr_completion_workers;
3772
3773                ASSERT(fs_info->scrub_parity_workers == NULL);
3774                fs_info->scrub_parity_workers =
3775                        btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3776                                              max_active, 2);
3777                if (!fs_info->scrub_parity_workers)
3778                        goto fail_scrub_parity_workers;
3779
3780                refcount_set(&fs_info->scrub_workers_refcnt, 1);
3781        } else {
3782                refcount_inc(&fs_info->scrub_workers_refcnt);
3783        }
3784        return 0;
3785
3786fail_scrub_parity_workers:
3787        btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3788fail_scrub_wr_completion_workers:
3789        btrfs_destroy_workqueue(fs_info->scrub_workers);
3790fail_scrub_workers:
3791        return -ENOMEM;
3792}
3793
3794int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3795                    u64 end, struct btrfs_scrub_progress *progress,
3796                    int readonly, int is_dev_replace)
3797{
3798        struct scrub_ctx *sctx;
3799        int ret;
3800        struct btrfs_device *dev;
3801        unsigned int nofs_flag;
3802        struct btrfs_workqueue *scrub_workers = NULL;
3803        struct btrfs_workqueue *scrub_wr_comp = NULL;
3804        struct btrfs_workqueue *scrub_parity = NULL;
3805
3806        if (btrfs_fs_closing(fs_info))
3807                return -EAGAIN;
3808
3809        if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3810                /*
3811                 * in this case scrub is unable to calculate the checksum
3812                 * the way scrub is implemented. Do not handle this
3813                 * situation at all because it won't ever happen.
3814                 */
3815                btrfs_err(fs_info,
3816                           "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3817                       fs_info->nodesize,
3818                       BTRFS_STRIPE_LEN);
3819                return -EINVAL;
3820        }
3821
3822        if (fs_info->sectorsize != PAGE_SIZE) {
3823                /* not supported for data w/o checksums */
3824                btrfs_err_rl(fs_info,
3825                           "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3826                       fs_info->sectorsize, PAGE_SIZE);
3827                return -EINVAL;
3828        }
3829
3830        if (fs_info->nodesize >
3831            PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3832            fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3833                /*
3834                 * would exhaust the array bounds of pagev member in
3835                 * struct scrub_block
3836                 */
3837                btrfs_err(fs_info,
3838                          "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3839                       fs_info->nodesize,
3840                       SCRUB_MAX_PAGES_PER_BLOCK,
3841                       fs_info->sectorsize,
3842                       SCRUB_MAX_PAGES_PER_BLOCK);
3843                return -EINVAL;
3844        }
3845
3846        /* Allocate outside of device_list_mutex */
3847        sctx = scrub_setup_ctx(fs_info, is_dev_replace);
3848        if (IS_ERR(sctx))
3849                return PTR_ERR(sctx);
3850
3851        mutex_lock(&fs_info->fs_devices->device_list_mutex);
3852        dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
3853        if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3854                     !is_dev_replace)) {
3855                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3856                ret = -ENODEV;
3857                goto out_free_ctx;
3858        }
3859
3860        if (!is_dev_replace && !readonly &&
3861            !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3862                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3863                btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
3864                                rcu_str_deref(dev->name));
3865                ret = -EROFS;
3866                goto out_free_ctx;
3867        }
3868
3869        mutex_lock(&fs_info->scrub_lock);
3870        if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3871            test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
3872                mutex_unlock(&fs_info->scrub_lock);
3873                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3874                ret = -EIO;
3875                goto out_free_ctx;
3876        }
3877
3878        down_read(&fs_info->dev_replace.rwsem);
3879        if (dev->scrub_ctx ||
3880            (!is_dev_replace &&
3881             btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3882                up_read(&fs_info->dev_replace.rwsem);
3883                mutex_unlock(&fs_info->scrub_lock);
3884                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3885                ret = -EINPROGRESS;
3886                goto out_free_ctx;
3887        }
3888        up_read(&fs_info->dev_replace.rwsem);
3889
3890        ret = scrub_workers_get(fs_info, is_dev_replace);
3891        if (ret) {
3892                mutex_unlock(&fs_info->scrub_lock);
3893                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3894                goto out_free_ctx;
3895        }
3896
3897        sctx->readonly = readonly;
3898        dev->scrub_ctx = sctx;
3899        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3900
3901        /*
3902         * checking @scrub_pause_req here, we can avoid
3903         * race between committing transaction and scrubbing.
3904         */
3905        __scrub_blocked_if_needed(fs_info);
3906        atomic_inc(&fs_info->scrubs_running);
3907        mutex_unlock(&fs_info->scrub_lock);
3908
3909        /*
3910         * In order to avoid deadlock with reclaim when there is a transaction
3911         * trying to pause scrub, make sure we use GFP_NOFS for all the
3912         * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
3913         * invoked by our callees. The pausing request is done when the
3914         * transaction commit starts, and it blocks the transaction until scrub
3915         * is paused (done at specific points at scrub_stripe() or right above
3916         * before incrementing fs_info->scrubs_running).
3917         */
3918        nofs_flag = memalloc_nofs_save();
3919        if (!is_dev_replace) {
3920                btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3921                /*
3922                 * by holding device list mutex, we can
3923                 * kick off writing super in log tree sync.
3924                 */
3925                mutex_lock(&fs_info->fs_devices->device_list_mutex);
3926                ret = scrub_supers(sctx, dev);
3927                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3928        }
3929
3930        if (!ret)
3931                ret = scrub_enumerate_chunks(sctx, dev, start, end);
3932        memalloc_nofs_restore(nofs_flag);
3933
3934        wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3935        atomic_dec(&fs_info->scrubs_running);
3936        wake_up(&fs_info->scrub_pause_wait);
3937
3938        wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3939
3940        if (progress)
3941                memcpy(progress, &sctx->stat, sizeof(*progress));
3942
3943        if (!is_dev_replace)
3944                btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3945                        ret ? "not finished" : "finished", devid, ret);
3946
3947        mutex_lock(&fs_info->scrub_lock);
3948        dev->scrub_ctx = NULL;
3949        if (refcount_dec_and_test(&fs_info->scrub_workers_refcnt)) {
3950                scrub_workers = fs_info->scrub_workers;
3951                scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3952                scrub_parity = fs_info->scrub_parity_workers;
3953
3954                fs_info->scrub_workers = NULL;
3955                fs_info->scrub_wr_completion_workers = NULL;
3956                fs_info->scrub_parity_workers = NULL;
3957        }
3958        mutex_unlock(&fs_info->scrub_lock);
3959
3960        btrfs_destroy_workqueue(scrub_workers);
3961        btrfs_destroy_workqueue(scrub_wr_comp);
3962        btrfs_destroy_workqueue(scrub_parity);
3963        scrub_put_ctx(sctx);
3964
3965        return ret;
3966
3967out_free_ctx:
3968        scrub_free_ctx(sctx);
3969
3970        return ret;
3971}
3972
3973void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3974{
3975        mutex_lock(&fs_info->scrub_lock);
3976        atomic_inc(&fs_info->scrub_pause_req);
3977        while (atomic_read(&fs_info->scrubs_paused) !=
3978               atomic_read(&fs_info->scrubs_running)) {
3979                mutex_unlock(&fs_info->scrub_lock);
3980                wait_event(fs_info->scrub_pause_wait,
3981                           atomic_read(&fs_info->scrubs_paused) ==
3982                           atomic_read(&fs_info->scrubs_running));
3983                mutex_lock(&fs_info->scrub_lock);
3984        }
3985        mutex_unlock(&fs_info->scrub_lock);
3986}
3987
3988void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3989{
3990        atomic_dec(&fs_info->scrub_pause_req);
3991        wake_up(&fs_info->scrub_pause_wait);
3992}
3993
3994int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3995{
3996        mutex_lock(&fs_info->scrub_lock);
3997        if (!atomic_read(&fs_info->scrubs_running)) {
3998                mutex_unlock(&fs_info->scrub_lock);
3999                return -ENOTCONN;
4000        }
4001
4002        atomic_inc(&fs_info->scrub_cancel_req);
4003        while (atomic_read(&fs_info->scrubs_running)) {
4004                mutex_unlock(&fs_info->scrub_lock);
4005                wait_event(fs_info->scrub_pause_wait,
4006                           atomic_read(&fs_info->scrubs_running) == 0);
4007                mutex_lock(&fs_info->scrub_lock);
4008        }
4009        atomic_dec(&fs_info->scrub_cancel_req);
4010        mutex_unlock(&fs_info->scrub_lock);
4011
4012        return 0;
4013}
4014
4015int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4016{
4017        struct btrfs_fs_info *fs_info = dev->fs_info;
4018        struct scrub_ctx *sctx;
4019
4020        mutex_lock(&fs_info->scrub_lock);
4021        sctx = dev->scrub_ctx;
4022        if (!sctx) {
4023                mutex_unlock(&fs_info->scrub_lock);
4024                return -ENOTCONN;
4025        }
4026        atomic_inc(&sctx->cancel_req);
4027        while (dev->scrub_ctx) {
4028                mutex_unlock(&fs_info->scrub_lock);
4029                wait_event(fs_info->scrub_pause_wait,
4030                           dev->scrub_ctx == NULL);
4031                mutex_lock(&fs_info->scrub_lock);
4032        }
4033        mutex_unlock(&fs_info->scrub_lock);
4034
4035        return 0;
4036}
4037
4038int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4039                         struct btrfs_scrub_progress *progress)
4040{
4041        struct btrfs_device *dev;
4042        struct scrub_ctx *sctx = NULL;
4043
4044        mutex_lock(&fs_info->fs_devices->device_list_mutex);
4045        dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
4046        if (dev)
4047                sctx = dev->scrub_ctx;
4048        if (sctx)
4049                memcpy(progress, &sctx->stat, sizeof(*progress));
4050        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4051
4052        return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4053}
4054
4055static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4056                               u64 extent_logical, u64 extent_len,
4057                               u64 *extent_physical,
4058                               struct btrfs_device **extent_dev,
4059                               int *extent_mirror_num)
4060{
4061        u64 mapped_length;
4062        struct btrfs_bio *bbio = NULL;
4063        int ret;
4064
4065        mapped_length = extent_len;
4066        ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4067                              &mapped_length, &bbio, 0);
4068        if (ret || !bbio || mapped_length < extent_len ||
4069            !bbio->stripes[0].dev->bdev) {
4070                btrfs_put_bbio(bbio);
4071                return;
4072        }
4073
4074        *extent_physical = bbio->stripes[0].physical;
4075        *extent_mirror_num = bbio->mirror_num;
4076        *extent_dev = bbio->stripes[0].dev;
4077        btrfs_put_bbio(bbio);
4078}
4079