linux/fs/dax.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/dax.c - Direct Access filesystem code
   4 * Copyright (c) 2013-2014 Intel Corporation
   5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
   6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
   7 */
   8
   9#include <linux/atomic.h>
  10#include <linux/blkdev.h>
  11#include <linux/buffer_head.h>
  12#include <linux/dax.h>
  13#include <linux/fs.h>
  14#include <linux/genhd.h>
  15#include <linux/highmem.h>
  16#include <linux/memcontrol.h>
  17#include <linux/mm.h>
  18#include <linux/mutex.h>
  19#include <linux/pagevec.h>
  20#include <linux/sched.h>
  21#include <linux/sched/signal.h>
  22#include <linux/uio.h>
  23#include <linux/vmstat.h>
  24#include <linux/pfn_t.h>
  25#include <linux/sizes.h>
  26#include <linux/mmu_notifier.h>
  27#include <linux/iomap.h>
  28#include <asm/pgalloc.h>
  29
  30#define CREATE_TRACE_POINTS
  31#include <trace/events/fs_dax.h>
  32
  33static inline unsigned int pe_order(enum page_entry_size pe_size)
  34{
  35        if (pe_size == PE_SIZE_PTE)
  36                return PAGE_SHIFT - PAGE_SHIFT;
  37        if (pe_size == PE_SIZE_PMD)
  38                return PMD_SHIFT - PAGE_SHIFT;
  39        if (pe_size == PE_SIZE_PUD)
  40                return PUD_SHIFT - PAGE_SHIFT;
  41        return ~0;
  42}
  43
  44/* We choose 4096 entries - same as per-zone page wait tables */
  45#define DAX_WAIT_TABLE_BITS 12
  46#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
  47
  48/* The 'colour' (ie low bits) within a PMD of a page offset.  */
  49#define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
  50#define PG_PMD_NR       (PMD_SIZE >> PAGE_SHIFT)
  51
  52/* The order of a PMD entry */
  53#define PMD_ORDER       (PMD_SHIFT - PAGE_SHIFT)
  54
  55static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
  56
  57static int __init init_dax_wait_table(void)
  58{
  59        int i;
  60
  61        for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
  62                init_waitqueue_head(wait_table + i);
  63        return 0;
  64}
  65fs_initcall(init_dax_wait_table);
  66
  67/*
  68 * DAX pagecache entries use XArray value entries so they can't be mistaken
  69 * for pages.  We use one bit for locking, one bit for the entry size (PMD)
  70 * and two more to tell us if the entry is a zero page or an empty entry that
  71 * is just used for locking.  In total four special bits.
  72 *
  73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
  74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
  75 * block allocation.
  76 */
  77#define DAX_SHIFT       (4)
  78#define DAX_LOCKED      (1UL << 0)
  79#define DAX_PMD         (1UL << 1)
  80#define DAX_ZERO_PAGE   (1UL << 2)
  81#define DAX_EMPTY       (1UL << 3)
  82
  83static unsigned long dax_to_pfn(void *entry)
  84{
  85        return xa_to_value(entry) >> DAX_SHIFT;
  86}
  87
  88static void *dax_make_entry(pfn_t pfn, unsigned long flags)
  89{
  90        return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
  91}
  92
  93static bool dax_is_locked(void *entry)
  94{
  95        return xa_to_value(entry) & DAX_LOCKED;
  96}
  97
  98static unsigned int dax_entry_order(void *entry)
  99{
 100        if (xa_to_value(entry) & DAX_PMD)
 101                return PMD_ORDER;
 102        return 0;
 103}
 104
 105static unsigned long dax_is_pmd_entry(void *entry)
 106{
 107        return xa_to_value(entry) & DAX_PMD;
 108}
 109
 110static bool dax_is_pte_entry(void *entry)
 111{
 112        return !(xa_to_value(entry) & DAX_PMD);
 113}
 114
 115static int dax_is_zero_entry(void *entry)
 116{
 117        return xa_to_value(entry) & DAX_ZERO_PAGE;
 118}
 119
 120static int dax_is_empty_entry(void *entry)
 121{
 122        return xa_to_value(entry) & DAX_EMPTY;
 123}
 124
 125/*
 126 * true if the entry that was found is of a smaller order than the entry
 127 * we were looking for
 128 */
 129static bool dax_is_conflict(void *entry)
 130{
 131        return entry == XA_RETRY_ENTRY;
 132}
 133
 134/*
 135 * DAX page cache entry locking
 136 */
 137struct exceptional_entry_key {
 138        struct xarray *xa;
 139        pgoff_t entry_start;
 140};
 141
 142struct wait_exceptional_entry_queue {
 143        wait_queue_entry_t wait;
 144        struct exceptional_entry_key key;
 145};
 146
 147static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
 148                void *entry, struct exceptional_entry_key *key)
 149{
 150        unsigned long hash;
 151        unsigned long index = xas->xa_index;
 152
 153        /*
 154         * If 'entry' is a PMD, align the 'index' that we use for the wait
 155         * queue to the start of that PMD.  This ensures that all offsets in
 156         * the range covered by the PMD map to the same bit lock.
 157         */
 158        if (dax_is_pmd_entry(entry))
 159                index &= ~PG_PMD_COLOUR;
 160        key->xa = xas->xa;
 161        key->entry_start = index;
 162
 163        hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
 164        return wait_table + hash;
 165}
 166
 167static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
 168                unsigned int mode, int sync, void *keyp)
 169{
 170        struct exceptional_entry_key *key = keyp;
 171        struct wait_exceptional_entry_queue *ewait =
 172                container_of(wait, struct wait_exceptional_entry_queue, wait);
 173
 174        if (key->xa != ewait->key.xa ||
 175            key->entry_start != ewait->key.entry_start)
 176                return 0;
 177        return autoremove_wake_function(wait, mode, sync, NULL);
 178}
 179
 180/*
 181 * @entry may no longer be the entry at the index in the mapping.
 182 * The important information it's conveying is whether the entry at
 183 * this index used to be a PMD entry.
 184 */
 185static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
 186{
 187        struct exceptional_entry_key key;
 188        wait_queue_head_t *wq;
 189
 190        wq = dax_entry_waitqueue(xas, entry, &key);
 191
 192        /*
 193         * Checking for locked entry and prepare_to_wait_exclusive() happens
 194         * under the i_pages lock, ditto for entry handling in our callers.
 195         * So at this point all tasks that could have seen our entry locked
 196         * must be in the waitqueue and the following check will see them.
 197         */
 198        if (waitqueue_active(wq))
 199                __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
 200}
 201
 202/*
 203 * Look up entry in page cache, wait for it to become unlocked if it
 204 * is a DAX entry and return it.  The caller must subsequently call
 205 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
 206 * if it did.  The entry returned may have a larger order than @order.
 207 * If @order is larger than the order of the entry found in i_pages, this
 208 * function returns a dax_is_conflict entry.
 209 *
 210 * Must be called with the i_pages lock held.
 211 */
 212static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
 213{
 214        void *entry;
 215        struct wait_exceptional_entry_queue ewait;
 216        wait_queue_head_t *wq;
 217
 218        init_wait(&ewait.wait);
 219        ewait.wait.func = wake_exceptional_entry_func;
 220
 221        for (;;) {
 222                entry = xas_find_conflict(xas);
 223                if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
 224                        return entry;
 225                if (dax_entry_order(entry) < order)
 226                        return XA_RETRY_ENTRY;
 227                if (!dax_is_locked(entry))
 228                        return entry;
 229
 230                wq = dax_entry_waitqueue(xas, entry, &ewait.key);
 231                prepare_to_wait_exclusive(wq, &ewait.wait,
 232                                          TASK_UNINTERRUPTIBLE);
 233                xas_unlock_irq(xas);
 234                xas_reset(xas);
 235                schedule();
 236                finish_wait(wq, &ewait.wait);
 237                xas_lock_irq(xas);
 238        }
 239}
 240
 241/*
 242 * The only thing keeping the address space around is the i_pages lock
 243 * (it's cycled in clear_inode() after removing the entries from i_pages)
 244 * After we call xas_unlock_irq(), we cannot touch xas->xa.
 245 */
 246static void wait_entry_unlocked(struct xa_state *xas, void *entry)
 247{
 248        struct wait_exceptional_entry_queue ewait;
 249        wait_queue_head_t *wq;
 250
 251        init_wait(&ewait.wait);
 252        ewait.wait.func = wake_exceptional_entry_func;
 253
 254        wq = dax_entry_waitqueue(xas, entry, &ewait.key);
 255        /*
 256         * Unlike get_unlocked_entry() there is no guarantee that this
 257         * path ever successfully retrieves an unlocked entry before an
 258         * inode dies. Perform a non-exclusive wait in case this path
 259         * never successfully performs its own wake up.
 260         */
 261        prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
 262        xas_unlock_irq(xas);
 263        schedule();
 264        finish_wait(wq, &ewait.wait);
 265}
 266
 267static void put_unlocked_entry(struct xa_state *xas, void *entry)
 268{
 269        /* If we were the only waiter woken, wake the next one */
 270        if (entry && !dax_is_conflict(entry))
 271                dax_wake_entry(xas, entry, false);
 272}
 273
 274/*
 275 * We used the xa_state to get the entry, but then we locked the entry and
 276 * dropped the xa_lock, so we know the xa_state is stale and must be reset
 277 * before use.
 278 */
 279static void dax_unlock_entry(struct xa_state *xas, void *entry)
 280{
 281        void *old;
 282
 283        BUG_ON(dax_is_locked(entry));
 284        xas_reset(xas);
 285        xas_lock_irq(xas);
 286        old = xas_store(xas, entry);
 287        xas_unlock_irq(xas);
 288        BUG_ON(!dax_is_locked(old));
 289        dax_wake_entry(xas, entry, false);
 290}
 291
 292/*
 293 * Return: The entry stored at this location before it was locked.
 294 */
 295static void *dax_lock_entry(struct xa_state *xas, void *entry)
 296{
 297        unsigned long v = xa_to_value(entry);
 298        return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
 299}
 300
 301static unsigned long dax_entry_size(void *entry)
 302{
 303        if (dax_is_zero_entry(entry))
 304                return 0;
 305        else if (dax_is_empty_entry(entry))
 306                return 0;
 307        else if (dax_is_pmd_entry(entry))
 308                return PMD_SIZE;
 309        else
 310                return PAGE_SIZE;
 311}
 312
 313static unsigned long dax_end_pfn(void *entry)
 314{
 315        return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
 316}
 317
 318/*
 319 * Iterate through all mapped pfns represented by an entry, i.e. skip
 320 * 'empty' and 'zero' entries.
 321 */
 322#define for_each_mapped_pfn(entry, pfn) \
 323        for (pfn = dax_to_pfn(entry); \
 324                        pfn < dax_end_pfn(entry); pfn++)
 325
 326/*
 327 * TODO: for reflink+dax we need a way to associate a single page with
 328 * multiple address_space instances at different linear_page_index()
 329 * offsets.
 330 */
 331static void dax_associate_entry(void *entry, struct address_space *mapping,
 332                struct vm_area_struct *vma, unsigned long address)
 333{
 334        unsigned long size = dax_entry_size(entry), pfn, index;
 335        int i = 0;
 336
 337        if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
 338                return;
 339
 340        index = linear_page_index(vma, address & ~(size - 1));
 341        for_each_mapped_pfn(entry, pfn) {
 342                struct page *page = pfn_to_page(pfn);
 343
 344                WARN_ON_ONCE(page->mapping);
 345                page->mapping = mapping;
 346                page->index = index + i++;
 347        }
 348}
 349
 350static void dax_disassociate_entry(void *entry, struct address_space *mapping,
 351                bool trunc)
 352{
 353        unsigned long pfn;
 354
 355        if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
 356                return;
 357
 358        for_each_mapped_pfn(entry, pfn) {
 359                struct page *page = pfn_to_page(pfn);
 360
 361                WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
 362                WARN_ON_ONCE(page->mapping && page->mapping != mapping);
 363                page->mapping = NULL;
 364                page->index = 0;
 365        }
 366}
 367
 368static struct page *dax_busy_page(void *entry)
 369{
 370        unsigned long pfn;
 371
 372        for_each_mapped_pfn(entry, pfn) {
 373                struct page *page = pfn_to_page(pfn);
 374
 375                if (page_ref_count(page) > 1)
 376                        return page;
 377        }
 378        return NULL;
 379}
 380
 381/*
 382 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
 383 * @page: The page whose entry we want to lock
 384 *
 385 * Context: Process context.
 386 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
 387 * not be locked.
 388 */
 389dax_entry_t dax_lock_page(struct page *page)
 390{
 391        XA_STATE(xas, NULL, 0);
 392        void *entry;
 393
 394        /* Ensure page->mapping isn't freed while we look at it */
 395        rcu_read_lock();
 396        for (;;) {
 397                struct address_space *mapping = READ_ONCE(page->mapping);
 398
 399                entry = NULL;
 400                if (!mapping || !dax_mapping(mapping))
 401                        break;
 402
 403                /*
 404                 * In the device-dax case there's no need to lock, a
 405                 * struct dev_pagemap pin is sufficient to keep the
 406                 * inode alive, and we assume we have dev_pagemap pin
 407                 * otherwise we would not have a valid pfn_to_page()
 408                 * translation.
 409                 */
 410                entry = (void *)~0UL;
 411                if (S_ISCHR(mapping->host->i_mode))
 412                        break;
 413
 414                xas.xa = &mapping->i_pages;
 415                xas_lock_irq(&xas);
 416                if (mapping != page->mapping) {
 417                        xas_unlock_irq(&xas);
 418                        continue;
 419                }
 420                xas_set(&xas, page->index);
 421                entry = xas_load(&xas);
 422                if (dax_is_locked(entry)) {
 423                        rcu_read_unlock();
 424                        wait_entry_unlocked(&xas, entry);
 425                        rcu_read_lock();
 426                        continue;
 427                }
 428                dax_lock_entry(&xas, entry);
 429                xas_unlock_irq(&xas);
 430                break;
 431        }
 432        rcu_read_unlock();
 433        return (dax_entry_t)entry;
 434}
 435
 436void dax_unlock_page(struct page *page, dax_entry_t cookie)
 437{
 438        struct address_space *mapping = page->mapping;
 439        XA_STATE(xas, &mapping->i_pages, page->index);
 440
 441        if (S_ISCHR(mapping->host->i_mode))
 442                return;
 443
 444        dax_unlock_entry(&xas, (void *)cookie);
 445}
 446
 447/*
 448 * Find page cache entry at given index. If it is a DAX entry, return it
 449 * with the entry locked. If the page cache doesn't contain an entry at
 450 * that index, add a locked empty entry.
 451 *
 452 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
 453 * either return that locked entry or will return VM_FAULT_FALLBACK.
 454 * This will happen if there are any PTE entries within the PMD range
 455 * that we are requesting.
 456 *
 457 * We always favor PTE entries over PMD entries. There isn't a flow where we
 458 * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
 459 * insertion will fail if it finds any PTE entries already in the tree, and a
 460 * PTE insertion will cause an existing PMD entry to be unmapped and
 461 * downgraded to PTE entries.  This happens for both PMD zero pages as
 462 * well as PMD empty entries.
 463 *
 464 * The exception to this downgrade path is for PMD entries that have
 465 * real storage backing them.  We will leave these real PMD entries in
 466 * the tree, and PTE writes will simply dirty the entire PMD entry.
 467 *
 468 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
 469 * persistent memory the benefit is doubtful. We can add that later if we can
 470 * show it helps.
 471 *
 472 * On error, this function does not return an ERR_PTR.  Instead it returns
 473 * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
 474 * overlap with xarray value entries.
 475 */
 476static void *grab_mapping_entry(struct xa_state *xas,
 477                struct address_space *mapping, unsigned int order)
 478{
 479        unsigned long index = xas->xa_index;
 480        bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
 481        void *entry;
 482
 483retry:
 484        xas_lock_irq(xas);
 485        entry = get_unlocked_entry(xas, order);
 486
 487        if (entry) {
 488                if (dax_is_conflict(entry))
 489                        goto fallback;
 490                if (!xa_is_value(entry)) {
 491                        xas_set_err(xas, EIO);
 492                        goto out_unlock;
 493                }
 494
 495                if (order == 0) {
 496                        if (dax_is_pmd_entry(entry) &&
 497                            (dax_is_zero_entry(entry) ||
 498                             dax_is_empty_entry(entry))) {
 499                                pmd_downgrade = true;
 500                        }
 501                }
 502        }
 503
 504        if (pmd_downgrade) {
 505                /*
 506                 * Make sure 'entry' remains valid while we drop
 507                 * the i_pages lock.
 508                 */
 509                dax_lock_entry(xas, entry);
 510
 511                /*
 512                 * Besides huge zero pages the only other thing that gets
 513                 * downgraded are empty entries which don't need to be
 514                 * unmapped.
 515                 */
 516                if (dax_is_zero_entry(entry)) {
 517                        xas_unlock_irq(xas);
 518                        unmap_mapping_pages(mapping,
 519                                        xas->xa_index & ~PG_PMD_COLOUR,
 520                                        PG_PMD_NR, false);
 521                        xas_reset(xas);
 522                        xas_lock_irq(xas);
 523                }
 524
 525                dax_disassociate_entry(entry, mapping, false);
 526                xas_store(xas, NULL);   /* undo the PMD join */
 527                dax_wake_entry(xas, entry, true);
 528                mapping->nrexceptional--;
 529                entry = NULL;
 530                xas_set(xas, index);
 531        }
 532
 533        if (entry) {
 534                dax_lock_entry(xas, entry);
 535        } else {
 536                unsigned long flags = DAX_EMPTY;
 537
 538                if (order > 0)
 539                        flags |= DAX_PMD;
 540                entry = dax_make_entry(pfn_to_pfn_t(0), flags);
 541                dax_lock_entry(xas, entry);
 542                if (xas_error(xas))
 543                        goto out_unlock;
 544                mapping->nrexceptional++;
 545        }
 546
 547out_unlock:
 548        xas_unlock_irq(xas);
 549        if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
 550                goto retry;
 551        if (xas->xa_node == XA_ERROR(-ENOMEM))
 552                return xa_mk_internal(VM_FAULT_OOM);
 553        if (xas_error(xas))
 554                return xa_mk_internal(VM_FAULT_SIGBUS);
 555        return entry;
 556fallback:
 557        xas_unlock_irq(xas);
 558        return xa_mk_internal(VM_FAULT_FALLBACK);
 559}
 560
 561/**
 562 * dax_layout_busy_page - find first pinned page in @mapping
 563 * @mapping: address space to scan for a page with ref count > 1
 564 *
 565 * DAX requires ZONE_DEVICE mapped pages. These pages are never
 566 * 'onlined' to the page allocator so they are considered idle when
 567 * page->count == 1. A filesystem uses this interface to determine if
 568 * any page in the mapping is busy, i.e. for DMA, or other
 569 * get_user_pages() usages.
 570 *
 571 * It is expected that the filesystem is holding locks to block the
 572 * establishment of new mappings in this address_space. I.e. it expects
 573 * to be able to run unmap_mapping_range() and subsequently not race
 574 * mapping_mapped() becoming true.
 575 */
 576struct page *dax_layout_busy_page(struct address_space *mapping)
 577{
 578        XA_STATE(xas, &mapping->i_pages, 0);
 579        void *entry;
 580        unsigned int scanned = 0;
 581        struct page *page = NULL;
 582
 583        /*
 584         * In the 'limited' case get_user_pages() for dax is disabled.
 585         */
 586        if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
 587                return NULL;
 588
 589        if (!dax_mapping(mapping) || !mapping_mapped(mapping))
 590                return NULL;
 591
 592        /*
 593         * If we race get_user_pages_fast() here either we'll see the
 594         * elevated page count in the iteration and wait, or
 595         * get_user_pages_fast() will see that the page it took a reference
 596         * against is no longer mapped in the page tables and bail to the
 597         * get_user_pages() slow path.  The slow path is protected by
 598         * pte_lock() and pmd_lock(). New references are not taken without
 599         * holding those locks, and unmap_mapping_range() will not zero the
 600         * pte or pmd without holding the respective lock, so we are
 601         * guaranteed to either see new references or prevent new
 602         * references from being established.
 603         */
 604        unmap_mapping_range(mapping, 0, 0, 0);
 605
 606        xas_lock_irq(&xas);
 607        xas_for_each(&xas, entry, ULONG_MAX) {
 608                if (WARN_ON_ONCE(!xa_is_value(entry)))
 609                        continue;
 610                if (unlikely(dax_is_locked(entry)))
 611                        entry = get_unlocked_entry(&xas, 0);
 612                if (entry)
 613                        page = dax_busy_page(entry);
 614                put_unlocked_entry(&xas, entry);
 615                if (page)
 616                        break;
 617                if (++scanned % XA_CHECK_SCHED)
 618                        continue;
 619
 620                xas_pause(&xas);
 621                xas_unlock_irq(&xas);
 622                cond_resched();
 623                xas_lock_irq(&xas);
 624        }
 625        xas_unlock_irq(&xas);
 626        return page;
 627}
 628EXPORT_SYMBOL_GPL(dax_layout_busy_page);
 629
 630static int __dax_invalidate_entry(struct address_space *mapping,
 631                                          pgoff_t index, bool trunc)
 632{
 633        XA_STATE(xas, &mapping->i_pages, index);
 634        int ret = 0;
 635        void *entry;
 636
 637        xas_lock_irq(&xas);
 638        entry = get_unlocked_entry(&xas, 0);
 639        if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
 640                goto out;
 641        if (!trunc &&
 642            (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
 643             xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
 644                goto out;
 645        dax_disassociate_entry(entry, mapping, trunc);
 646        xas_store(&xas, NULL);
 647        mapping->nrexceptional--;
 648        ret = 1;
 649out:
 650        put_unlocked_entry(&xas, entry);
 651        xas_unlock_irq(&xas);
 652        return ret;
 653}
 654
 655/*
 656 * Delete DAX entry at @index from @mapping.  Wait for it
 657 * to be unlocked before deleting it.
 658 */
 659int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
 660{
 661        int ret = __dax_invalidate_entry(mapping, index, true);
 662
 663        /*
 664         * This gets called from truncate / punch_hole path. As such, the caller
 665         * must hold locks protecting against concurrent modifications of the
 666         * page cache (usually fs-private i_mmap_sem for writing). Since the
 667         * caller has seen a DAX entry for this index, we better find it
 668         * at that index as well...
 669         */
 670        WARN_ON_ONCE(!ret);
 671        return ret;
 672}
 673
 674/*
 675 * Invalidate DAX entry if it is clean.
 676 */
 677int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
 678                                      pgoff_t index)
 679{
 680        return __dax_invalidate_entry(mapping, index, false);
 681}
 682
 683static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
 684                sector_t sector, size_t size, struct page *to,
 685                unsigned long vaddr)
 686{
 687        void *vto, *kaddr;
 688        pgoff_t pgoff;
 689        long rc;
 690        int id;
 691
 692        rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
 693        if (rc)
 694                return rc;
 695
 696        id = dax_read_lock();
 697        rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
 698        if (rc < 0) {
 699                dax_read_unlock(id);
 700                return rc;
 701        }
 702        vto = kmap_atomic(to);
 703        copy_user_page(vto, (void __force *)kaddr, vaddr, to);
 704        kunmap_atomic(vto);
 705        dax_read_unlock(id);
 706        return 0;
 707}
 708
 709/*
 710 * By this point grab_mapping_entry() has ensured that we have a locked entry
 711 * of the appropriate size so we don't have to worry about downgrading PMDs to
 712 * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
 713 * already in the tree, we will skip the insertion and just dirty the PMD as
 714 * appropriate.
 715 */
 716static void *dax_insert_entry(struct xa_state *xas,
 717                struct address_space *mapping, struct vm_fault *vmf,
 718                void *entry, pfn_t pfn, unsigned long flags, bool dirty)
 719{
 720        void *new_entry = dax_make_entry(pfn, flags);
 721
 722        if (dirty)
 723                __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 724
 725        if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
 726                unsigned long index = xas->xa_index;
 727                /* we are replacing a zero page with block mapping */
 728                if (dax_is_pmd_entry(entry))
 729                        unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
 730                                        PG_PMD_NR, false);
 731                else /* pte entry */
 732                        unmap_mapping_pages(mapping, index, 1, false);
 733        }
 734
 735        xas_reset(xas);
 736        xas_lock_irq(xas);
 737        if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
 738                void *old;
 739
 740                dax_disassociate_entry(entry, mapping, false);
 741                dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
 742                /*
 743                 * Only swap our new entry into the page cache if the current
 744                 * entry is a zero page or an empty entry.  If a normal PTE or
 745                 * PMD entry is already in the cache, we leave it alone.  This
 746                 * means that if we are trying to insert a PTE and the
 747                 * existing entry is a PMD, we will just leave the PMD in the
 748                 * tree and dirty it if necessary.
 749                 */
 750                old = dax_lock_entry(xas, new_entry);
 751                WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
 752                                        DAX_LOCKED));
 753                entry = new_entry;
 754        } else {
 755                xas_load(xas);  /* Walk the xa_state */
 756        }
 757
 758        if (dirty)
 759                xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
 760
 761        xas_unlock_irq(xas);
 762        return entry;
 763}
 764
 765static inline
 766unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
 767{
 768        unsigned long address;
 769
 770        address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 771        VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
 772        return address;
 773}
 774
 775/* Walk all mappings of a given index of a file and writeprotect them */
 776static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
 777                unsigned long pfn)
 778{
 779        struct vm_area_struct *vma;
 780        pte_t pte, *ptep = NULL;
 781        pmd_t *pmdp = NULL;
 782        spinlock_t *ptl;
 783
 784        i_mmap_lock_read(mapping);
 785        vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
 786                struct mmu_notifier_range range;
 787                unsigned long address;
 788
 789                cond_resched();
 790
 791                if (!(vma->vm_flags & VM_SHARED))
 792                        continue;
 793
 794                address = pgoff_address(index, vma);
 795
 796                /*
 797                 * Note because we provide range to follow_pte_pmd it will
 798                 * call mmu_notifier_invalidate_range_start() on our behalf
 799                 * before taking any lock.
 800                 */
 801                if (follow_pte_pmd(vma->vm_mm, address, &range,
 802                                   &ptep, &pmdp, &ptl))
 803                        continue;
 804
 805                /*
 806                 * No need to call mmu_notifier_invalidate_range() as we are
 807                 * downgrading page table protection not changing it to point
 808                 * to a new page.
 809                 *
 810                 * See Documentation/vm/mmu_notifier.rst
 811                 */
 812                if (pmdp) {
 813#ifdef CONFIG_FS_DAX_PMD
 814                        pmd_t pmd;
 815
 816                        if (pfn != pmd_pfn(*pmdp))
 817                                goto unlock_pmd;
 818                        if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
 819                                goto unlock_pmd;
 820
 821                        flush_cache_page(vma, address, pfn);
 822                        pmd = pmdp_invalidate(vma, address, pmdp);
 823                        pmd = pmd_wrprotect(pmd);
 824                        pmd = pmd_mkclean(pmd);
 825                        set_pmd_at(vma->vm_mm, address, pmdp, pmd);
 826unlock_pmd:
 827#endif
 828                        spin_unlock(ptl);
 829                } else {
 830                        if (pfn != pte_pfn(*ptep))
 831                                goto unlock_pte;
 832                        if (!pte_dirty(*ptep) && !pte_write(*ptep))
 833                                goto unlock_pte;
 834
 835                        flush_cache_page(vma, address, pfn);
 836                        pte = ptep_clear_flush(vma, address, ptep);
 837                        pte = pte_wrprotect(pte);
 838                        pte = pte_mkclean(pte);
 839                        set_pte_at(vma->vm_mm, address, ptep, pte);
 840unlock_pte:
 841                        pte_unmap_unlock(ptep, ptl);
 842                }
 843
 844                mmu_notifier_invalidate_range_end(&range);
 845        }
 846        i_mmap_unlock_read(mapping);
 847}
 848
 849static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
 850                struct address_space *mapping, void *entry)
 851{
 852        unsigned long pfn, index, count;
 853        long ret = 0;
 854
 855        /*
 856         * A page got tagged dirty in DAX mapping? Something is seriously
 857         * wrong.
 858         */
 859        if (WARN_ON(!xa_is_value(entry)))
 860                return -EIO;
 861
 862        if (unlikely(dax_is_locked(entry))) {
 863                void *old_entry = entry;
 864
 865                entry = get_unlocked_entry(xas, 0);
 866
 867                /* Entry got punched out / reallocated? */
 868                if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
 869                        goto put_unlocked;
 870                /*
 871                 * Entry got reallocated elsewhere? No need to writeback.
 872                 * We have to compare pfns as we must not bail out due to
 873                 * difference in lockbit or entry type.
 874                 */
 875                if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
 876                        goto put_unlocked;
 877                if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
 878                                        dax_is_zero_entry(entry))) {
 879                        ret = -EIO;
 880                        goto put_unlocked;
 881                }
 882
 883                /* Another fsync thread may have already done this entry */
 884                if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
 885                        goto put_unlocked;
 886        }
 887
 888        /* Lock the entry to serialize with page faults */
 889        dax_lock_entry(xas, entry);
 890
 891        /*
 892         * We can clear the tag now but we have to be careful so that concurrent
 893         * dax_writeback_one() calls for the same index cannot finish before we
 894         * actually flush the caches. This is achieved as the calls will look
 895         * at the entry only under the i_pages lock and once they do that
 896         * they will see the entry locked and wait for it to unlock.
 897         */
 898        xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
 899        xas_unlock_irq(xas);
 900
 901        /*
 902         * If dax_writeback_mapping_range() was given a wbc->range_start
 903         * in the middle of a PMD, the 'index' we use needs to be
 904         * aligned to the start of the PMD.
 905         * This allows us to flush for PMD_SIZE and not have to worry about
 906         * partial PMD writebacks.
 907         */
 908        pfn = dax_to_pfn(entry);
 909        count = 1UL << dax_entry_order(entry);
 910        index = xas->xa_index & ~(count - 1);
 911
 912        dax_entry_mkclean(mapping, index, pfn);
 913        dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
 914        /*
 915         * After we have flushed the cache, we can clear the dirty tag. There
 916         * cannot be new dirty data in the pfn after the flush has completed as
 917         * the pfn mappings are writeprotected and fault waits for mapping
 918         * entry lock.
 919         */
 920        xas_reset(xas);
 921        xas_lock_irq(xas);
 922        xas_store(xas, entry);
 923        xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
 924        dax_wake_entry(xas, entry, false);
 925
 926        trace_dax_writeback_one(mapping->host, index, count);
 927        return ret;
 928
 929 put_unlocked:
 930        put_unlocked_entry(xas, entry);
 931        return ret;
 932}
 933
 934/*
 935 * Flush the mapping to the persistent domain within the byte range of [start,
 936 * end]. This is required by data integrity operations to ensure file data is
 937 * on persistent storage prior to completion of the operation.
 938 */
 939int dax_writeback_mapping_range(struct address_space *mapping,
 940                struct block_device *bdev, struct writeback_control *wbc)
 941{
 942        XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
 943        struct inode *inode = mapping->host;
 944        pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
 945        struct dax_device *dax_dev;
 946        void *entry;
 947        int ret = 0;
 948        unsigned int scanned = 0;
 949
 950        if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
 951                return -EIO;
 952
 953        if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
 954                return 0;
 955
 956        dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 957        if (!dax_dev)
 958                return -EIO;
 959
 960        trace_dax_writeback_range(inode, xas.xa_index, end_index);
 961
 962        tag_pages_for_writeback(mapping, xas.xa_index, end_index);
 963
 964        xas_lock_irq(&xas);
 965        xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
 966                ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
 967                if (ret < 0) {
 968                        mapping_set_error(mapping, ret);
 969                        break;
 970                }
 971                if (++scanned % XA_CHECK_SCHED)
 972                        continue;
 973
 974                xas_pause(&xas);
 975                xas_unlock_irq(&xas);
 976                cond_resched();
 977                xas_lock_irq(&xas);
 978        }
 979        xas_unlock_irq(&xas);
 980        put_dax(dax_dev);
 981        trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
 982        return ret;
 983}
 984EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
 985
 986static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
 987{
 988        return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
 989}
 990
 991static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
 992                         pfn_t *pfnp)
 993{
 994        const sector_t sector = dax_iomap_sector(iomap, pos);
 995        pgoff_t pgoff;
 996        int id, rc;
 997        long length;
 998
 999        rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
1000        if (rc)
1001                return rc;
1002        id = dax_read_lock();
1003        length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1004                                   NULL, pfnp);
1005        if (length < 0) {
1006                rc = length;
1007                goto out;
1008        }
1009        rc = -EINVAL;
1010        if (PFN_PHYS(length) < size)
1011                goto out;
1012        if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1013                goto out;
1014        /* For larger pages we need devmap */
1015        if (length > 1 && !pfn_t_devmap(*pfnp))
1016                goto out;
1017        rc = 0;
1018out:
1019        dax_read_unlock(id);
1020        return rc;
1021}
1022
1023/*
1024 * The user has performed a load from a hole in the file.  Allocating a new
1025 * page in the file would cause excessive storage usage for workloads with
1026 * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1027 * If this page is ever written to we will re-fault and change the mapping to
1028 * point to real DAX storage instead.
1029 */
1030static vm_fault_t dax_load_hole(struct xa_state *xas,
1031                struct address_space *mapping, void **entry,
1032                struct vm_fault *vmf)
1033{
1034        struct inode *inode = mapping->host;
1035        unsigned long vaddr = vmf->address;
1036        pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1037        vm_fault_t ret;
1038
1039        *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1040                        DAX_ZERO_PAGE, false);
1041
1042        ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1043        trace_dax_load_hole(inode, vmf, ret);
1044        return ret;
1045}
1046
1047static bool dax_range_is_aligned(struct block_device *bdev,
1048                                 unsigned int offset, unsigned int length)
1049{
1050        unsigned short sector_size = bdev_logical_block_size(bdev);
1051
1052        if (!IS_ALIGNED(offset, sector_size))
1053                return false;
1054        if (!IS_ALIGNED(length, sector_size))
1055                return false;
1056
1057        return true;
1058}
1059
1060int __dax_zero_page_range(struct block_device *bdev,
1061                struct dax_device *dax_dev, sector_t sector,
1062                unsigned int offset, unsigned int size)
1063{
1064        if (dax_range_is_aligned(bdev, offset, size)) {
1065                sector_t start_sector = sector + (offset >> 9);
1066
1067                return blkdev_issue_zeroout(bdev, start_sector,
1068                                size >> 9, GFP_NOFS, 0);
1069        } else {
1070                pgoff_t pgoff;
1071                long rc, id;
1072                void *kaddr;
1073
1074                rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1075                if (rc)
1076                        return rc;
1077
1078                id = dax_read_lock();
1079                rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1080                if (rc < 0) {
1081                        dax_read_unlock(id);
1082                        return rc;
1083                }
1084                memset(kaddr + offset, 0, size);
1085                dax_flush(dax_dev, kaddr + offset, size);
1086                dax_read_unlock(id);
1087        }
1088        return 0;
1089}
1090EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1091
1092static loff_t
1093dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1094                struct iomap *iomap)
1095{
1096        struct block_device *bdev = iomap->bdev;
1097        struct dax_device *dax_dev = iomap->dax_dev;
1098        struct iov_iter *iter = data;
1099        loff_t end = pos + length, done = 0;
1100        ssize_t ret = 0;
1101        size_t xfer;
1102        int id;
1103
1104        if (iov_iter_rw(iter) == READ) {
1105                end = min(end, i_size_read(inode));
1106                if (pos >= end)
1107                        return 0;
1108
1109                if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1110                        return iov_iter_zero(min(length, end - pos), iter);
1111        }
1112
1113        if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1114                return -EIO;
1115
1116        /*
1117         * Write can allocate block for an area which has a hole page mapped
1118         * into page tables. We have to tear down these mappings so that data
1119         * written by write(2) is visible in mmap.
1120         */
1121        if (iomap->flags & IOMAP_F_NEW) {
1122                invalidate_inode_pages2_range(inode->i_mapping,
1123                                              pos >> PAGE_SHIFT,
1124                                              (end - 1) >> PAGE_SHIFT);
1125        }
1126
1127        id = dax_read_lock();
1128        while (pos < end) {
1129                unsigned offset = pos & (PAGE_SIZE - 1);
1130                const size_t size = ALIGN(length + offset, PAGE_SIZE);
1131                const sector_t sector = dax_iomap_sector(iomap, pos);
1132                ssize_t map_len;
1133                pgoff_t pgoff;
1134                void *kaddr;
1135
1136                if (fatal_signal_pending(current)) {
1137                        ret = -EINTR;
1138                        break;
1139                }
1140
1141                ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1142                if (ret)
1143                        break;
1144
1145                map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1146                                &kaddr, NULL);
1147                if (map_len < 0) {
1148                        ret = map_len;
1149                        break;
1150                }
1151
1152                map_len = PFN_PHYS(map_len);
1153                kaddr += offset;
1154                map_len -= offset;
1155                if (map_len > end - pos)
1156                        map_len = end - pos;
1157
1158                /*
1159                 * The userspace address for the memory copy has already been
1160                 * validated via access_ok() in either vfs_read() or
1161                 * vfs_write(), depending on which operation we are doing.
1162                 */
1163                if (iov_iter_rw(iter) == WRITE)
1164                        xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1165                                        map_len, iter);
1166                else
1167                        xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1168                                        map_len, iter);
1169
1170                pos += xfer;
1171                length -= xfer;
1172                done += xfer;
1173
1174                if (xfer == 0)
1175                        ret = -EFAULT;
1176                if (xfer < map_len)
1177                        break;
1178        }
1179        dax_read_unlock(id);
1180
1181        return done ? done : ret;
1182}
1183
1184/**
1185 * dax_iomap_rw - Perform I/O to a DAX file
1186 * @iocb:       The control block for this I/O
1187 * @iter:       The addresses to do I/O from or to
1188 * @ops:        iomap ops passed from the file system
1189 *
1190 * This function performs read and write operations to directly mapped
1191 * persistent memory.  The callers needs to take care of read/write exclusion
1192 * and evicting any page cache pages in the region under I/O.
1193 */
1194ssize_t
1195dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1196                const struct iomap_ops *ops)
1197{
1198        struct address_space *mapping = iocb->ki_filp->f_mapping;
1199        struct inode *inode = mapping->host;
1200        loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1201        unsigned flags = 0;
1202
1203        if (iov_iter_rw(iter) == WRITE) {
1204                lockdep_assert_held_write(&inode->i_rwsem);
1205                flags |= IOMAP_WRITE;
1206        } else {
1207                lockdep_assert_held(&inode->i_rwsem);
1208        }
1209
1210        while (iov_iter_count(iter)) {
1211                ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1212                                iter, dax_iomap_actor);
1213                if (ret <= 0)
1214                        break;
1215                pos += ret;
1216                done += ret;
1217        }
1218
1219        iocb->ki_pos += done;
1220        return done ? done : ret;
1221}
1222EXPORT_SYMBOL_GPL(dax_iomap_rw);
1223
1224static vm_fault_t dax_fault_return(int error)
1225{
1226        if (error == 0)
1227                return VM_FAULT_NOPAGE;
1228        return vmf_error(error);
1229}
1230
1231/*
1232 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1233 * flushed on write-faults (non-cow), but not read-faults.
1234 */
1235static bool dax_fault_is_synchronous(unsigned long flags,
1236                struct vm_area_struct *vma, struct iomap *iomap)
1237{
1238        return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1239                && (iomap->flags & IOMAP_F_DIRTY);
1240}
1241
1242static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1243                               int *iomap_errp, const struct iomap_ops *ops)
1244{
1245        struct vm_area_struct *vma = vmf->vma;
1246        struct address_space *mapping = vma->vm_file->f_mapping;
1247        XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1248        struct inode *inode = mapping->host;
1249        unsigned long vaddr = vmf->address;
1250        loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1251        struct iomap iomap = { 0 };
1252        unsigned flags = IOMAP_FAULT;
1253        int error, major = 0;
1254        bool write = vmf->flags & FAULT_FLAG_WRITE;
1255        bool sync;
1256        vm_fault_t ret = 0;
1257        void *entry;
1258        pfn_t pfn;
1259
1260        trace_dax_pte_fault(inode, vmf, ret);
1261        /*
1262         * Check whether offset isn't beyond end of file now. Caller is supposed
1263         * to hold locks serializing us with truncate / punch hole so this is
1264         * a reliable test.
1265         */
1266        if (pos >= i_size_read(inode)) {
1267                ret = VM_FAULT_SIGBUS;
1268                goto out;
1269        }
1270
1271        if (write && !vmf->cow_page)
1272                flags |= IOMAP_WRITE;
1273
1274        entry = grab_mapping_entry(&xas, mapping, 0);
1275        if (xa_is_internal(entry)) {
1276                ret = xa_to_internal(entry);
1277                goto out;
1278        }
1279
1280        /*
1281         * It is possible, particularly with mixed reads & writes to private
1282         * mappings, that we have raced with a PMD fault that overlaps with
1283         * the PTE we need to set up.  If so just return and the fault will be
1284         * retried.
1285         */
1286        if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1287                ret = VM_FAULT_NOPAGE;
1288                goto unlock_entry;
1289        }
1290
1291        /*
1292         * Note that we don't bother to use iomap_apply here: DAX required
1293         * the file system block size to be equal the page size, which means
1294         * that we never have to deal with more than a single extent here.
1295         */
1296        error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1297        if (iomap_errp)
1298                *iomap_errp = error;
1299        if (error) {
1300                ret = dax_fault_return(error);
1301                goto unlock_entry;
1302        }
1303        if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1304                error = -EIO;   /* fs corruption? */
1305                goto error_finish_iomap;
1306        }
1307
1308        if (vmf->cow_page) {
1309                sector_t sector = dax_iomap_sector(&iomap, pos);
1310
1311                switch (iomap.type) {
1312                case IOMAP_HOLE:
1313                case IOMAP_UNWRITTEN:
1314                        clear_user_highpage(vmf->cow_page, vaddr);
1315                        break;
1316                case IOMAP_MAPPED:
1317                        error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1318                                        sector, PAGE_SIZE, vmf->cow_page, vaddr);
1319                        break;
1320                default:
1321                        WARN_ON_ONCE(1);
1322                        error = -EIO;
1323                        break;
1324                }
1325
1326                if (error)
1327                        goto error_finish_iomap;
1328
1329                __SetPageUptodate(vmf->cow_page);
1330                ret = finish_fault(vmf);
1331                if (!ret)
1332                        ret = VM_FAULT_DONE_COW;
1333                goto finish_iomap;
1334        }
1335
1336        sync = dax_fault_is_synchronous(flags, vma, &iomap);
1337
1338        switch (iomap.type) {
1339        case IOMAP_MAPPED:
1340                if (iomap.flags & IOMAP_F_NEW) {
1341                        count_vm_event(PGMAJFAULT);
1342                        count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1343                        major = VM_FAULT_MAJOR;
1344                }
1345                error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1346                if (error < 0)
1347                        goto error_finish_iomap;
1348
1349                entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1350                                                 0, write && !sync);
1351
1352                /*
1353                 * If we are doing synchronous page fault and inode needs fsync,
1354                 * we can insert PTE into page tables only after that happens.
1355                 * Skip insertion for now and return the pfn so that caller can
1356                 * insert it after fsync is done.
1357                 */
1358                if (sync) {
1359                        if (WARN_ON_ONCE(!pfnp)) {
1360                                error = -EIO;
1361                                goto error_finish_iomap;
1362                        }
1363                        *pfnp = pfn;
1364                        ret = VM_FAULT_NEEDDSYNC | major;
1365                        goto finish_iomap;
1366                }
1367                trace_dax_insert_mapping(inode, vmf, entry);
1368                if (write)
1369                        ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1370                else
1371                        ret = vmf_insert_mixed(vma, vaddr, pfn);
1372
1373                goto finish_iomap;
1374        case IOMAP_UNWRITTEN:
1375        case IOMAP_HOLE:
1376                if (!write) {
1377                        ret = dax_load_hole(&xas, mapping, &entry, vmf);
1378                        goto finish_iomap;
1379                }
1380                /*FALLTHRU*/
1381        default:
1382                WARN_ON_ONCE(1);
1383                error = -EIO;
1384                break;
1385        }
1386
1387 error_finish_iomap:
1388        ret = dax_fault_return(error);
1389 finish_iomap:
1390        if (ops->iomap_end) {
1391                int copied = PAGE_SIZE;
1392
1393                if (ret & VM_FAULT_ERROR)
1394                        copied = 0;
1395                /*
1396                 * The fault is done by now and there's no way back (other
1397                 * thread may be already happily using PTE we have installed).
1398                 * Just ignore error from ->iomap_end since we cannot do much
1399                 * with it.
1400                 */
1401                ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1402        }
1403 unlock_entry:
1404        dax_unlock_entry(&xas, entry);
1405 out:
1406        trace_dax_pte_fault_done(inode, vmf, ret);
1407        return ret | major;
1408}
1409
1410#ifdef CONFIG_FS_DAX_PMD
1411static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1412                struct iomap *iomap, void **entry)
1413{
1414        struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1415        unsigned long pmd_addr = vmf->address & PMD_MASK;
1416        struct vm_area_struct *vma = vmf->vma;
1417        struct inode *inode = mapping->host;
1418        pgtable_t pgtable = NULL;
1419        struct page *zero_page;
1420        spinlock_t *ptl;
1421        pmd_t pmd_entry;
1422        pfn_t pfn;
1423
1424        zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1425
1426        if (unlikely(!zero_page))
1427                goto fallback;
1428
1429        pfn = page_to_pfn_t(zero_page);
1430        *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1431                        DAX_PMD | DAX_ZERO_PAGE, false);
1432
1433        if (arch_needs_pgtable_deposit()) {
1434                pgtable = pte_alloc_one(vma->vm_mm);
1435                if (!pgtable)
1436                        return VM_FAULT_OOM;
1437        }
1438
1439        ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1440        if (!pmd_none(*(vmf->pmd))) {
1441                spin_unlock(ptl);
1442                goto fallback;
1443        }
1444
1445        if (pgtable) {
1446                pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1447                mm_inc_nr_ptes(vma->vm_mm);
1448        }
1449        pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1450        pmd_entry = pmd_mkhuge(pmd_entry);
1451        set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1452        spin_unlock(ptl);
1453        trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1454        return VM_FAULT_NOPAGE;
1455
1456fallback:
1457        if (pgtable)
1458                pte_free(vma->vm_mm, pgtable);
1459        trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1460        return VM_FAULT_FALLBACK;
1461}
1462
1463static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1464                               const struct iomap_ops *ops)
1465{
1466        struct vm_area_struct *vma = vmf->vma;
1467        struct address_space *mapping = vma->vm_file->f_mapping;
1468        XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1469        unsigned long pmd_addr = vmf->address & PMD_MASK;
1470        bool write = vmf->flags & FAULT_FLAG_WRITE;
1471        bool sync;
1472        unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1473        struct inode *inode = mapping->host;
1474        vm_fault_t result = VM_FAULT_FALLBACK;
1475        struct iomap iomap = { 0 };
1476        pgoff_t max_pgoff;
1477        void *entry;
1478        loff_t pos;
1479        int error;
1480        pfn_t pfn;
1481
1482        /*
1483         * Check whether offset isn't beyond end of file now. Caller is
1484         * supposed to hold locks serializing us with truncate / punch hole so
1485         * this is a reliable test.
1486         */
1487        max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1488
1489        trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1490
1491        /*
1492         * Make sure that the faulting address's PMD offset (color) matches
1493         * the PMD offset from the start of the file.  This is necessary so
1494         * that a PMD range in the page table overlaps exactly with a PMD
1495         * range in the page cache.
1496         */
1497        if ((vmf->pgoff & PG_PMD_COLOUR) !=
1498            ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1499                goto fallback;
1500
1501        /* Fall back to PTEs if we're going to COW */
1502        if (write && !(vma->vm_flags & VM_SHARED))
1503                goto fallback;
1504
1505        /* If the PMD would extend outside the VMA */
1506        if (pmd_addr < vma->vm_start)
1507                goto fallback;
1508        if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1509                goto fallback;
1510
1511        if (xas.xa_index >= max_pgoff) {
1512                result = VM_FAULT_SIGBUS;
1513                goto out;
1514        }
1515
1516        /* If the PMD would extend beyond the file size */
1517        if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1518                goto fallback;
1519
1520        /*
1521         * grab_mapping_entry() will make sure we get an empty PMD entry,
1522         * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1523         * entry is already in the array, for instance), it will return
1524         * VM_FAULT_FALLBACK.
1525         */
1526        entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1527        if (xa_is_internal(entry)) {
1528                result = xa_to_internal(entry);
1529                goto fallback;
1530        }
1531
1532        /*
1533         * It is possible, particularly with mixed reads & writes to private
1534         * mappings, that we have raced with a PTE fault that overlaps with
1535         * the PMD we need to set up.  If so just return and the fault will be
1536         * retried.
1537         */
1538        if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1539                        !pmd_devmap(*vmf->pmd)) {
1540                result = 0;
1541                goto unlock_entry;
1542        }
1543
1544        /*
1545         * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1546         * setting up a mapping, so really we're using iomap_begin() as a way
1547         * to look up our filesystem block.
1548         */
1549        pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1550        error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1551        if (error)
1552                goto unlock_entry;
1553
1554        if (iomap.offset + iomap.length < pos + PMD_SIZE)
1555                goto finish_iomap;
1556
1557        sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1558
1559        switch (iomap.type) {
1560        case IOMAP_MAPPED:
1561                error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1562                if (error < 0)
1563                        goto finish_iomap;
1564
1565                entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1566                                                DAX_PMD, write && !sync);
1567
1568                /*
1569                 * If we are doing synchronous page fault and inode needs fsync,
1570                 * we can insert PMD into page tables only after that happens.
1571                 * Skip insertion for now and return the pfn so that caller can
1572                 * insert it after fsync is done.
1573                 */
1574                if (sync) {
1575                        if (WARN_ON_ONCE(!pfnp))
1576                                goto finish_iomap;
1577                        *pfnp = pfn;
1578                        result = VM_FAULT_NEEDDSYNC;
1579                        goto finish_iomap;
1580                }
1581
1582                trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1583                result = vmf_insert_pfn_pmd(vmf, pfn, write);
1584                break;
1585        case IOMAP_UNWRITTEN:
1586        case IOMAP_HOLE:
1587                if (WARN_ON_ONCE(write))
1588                        break;
1589                result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1590                break;
1591        default:
1592                WARN_ON_ONCE(1);
1593                break;
1594        }
1595
1596 finish_iomap:
1597        if (ops->iomap_end) {
1598                int copied = PMD_SIZE;
1599
1600                if (result == VM_FAULT_FALLBACK)
1601                        copied = 0;
1602                /*
1603                 * The fault is done by now and there's no way back (other
1604                 * thread may be already happily using PMD we have installed).
1605                 * Just ignore error from ->iomap_end since we cannot do much
1606                 * with it.
1607                 */
1608                ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1609                                &iomap);
1610        }
1611 unlock_entry:
1612        dax_unlock_entry(&xas, entry);
1613 fallback:
1614        if (result == VM_FAULT_FALLBACK) {
1615                split_huge_pmd(vma, vmf->pmd, vmf->address);
1616                count_vm_event(THP_FAULT_FALLBACK);
1617        }
1618out:
1619        trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1620        return result;
1621}
1622#else
1623static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1624                               const struct iomap_ops *ops)
1625{
1626        return VM_FAULT_FALLBACK;
1627}
1628#endif /* CONFIG_FS_DAX_PMD */
1629
1630/**
1631 * dax_iomap_fault - handle a page fault on a DAX file
1632 * @vmf: The description of the fault
1633 * @pe_size: Size of the page to fault in
1634 * @pfnp: PFN to insert for synchronous faults if fsync is required
1635 * @iomap_errp: Storage for detailed error code in case of error
1636 * @ops: Iomap ops passed from the file system
1637 *
1638 * When a page fault occurs, filesystems may call this helper in
1639 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1640 * has done all the necessary locking for page fault to proceed
1641 * successfully.
1642 */
1643vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1644                    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1645{
1646        switch (pe_size) {
1647        case PE_SIZE_PTE:
1648                return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1649        case PE_SIZE_PMD:
1650                return dax_iomap_pmd_fault(vmf, pfnp, ops);
1651        default:
1652                return VM_FAULT_FALLBACK;
1653        }
1654}
1655EXPORT_SYMBOL_GPL(dax_iomap_fault);
1656
1657/*
1658 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1659 * @vmf: The description of the fault
1660 * @pfn: PFN to insert
1661 * @order: Order of entry to insert.
1662 *
1663 * This function inserts a writeable PTE or PMD entry into the page tables
1664 * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1665 */
1666static vm_fault_t
1667dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1668{
1669        struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1670        XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1671        void *entry;
1672        vm_fault_t ret;
1673
1674        xas_lock_irq(&xas);
1675        entry = get_unlocked_entry(&xas, order);
1676        /* Did we race with someone splitting entry or so? */
1677        if (!entry || dax_is_conflict(entry) ||
1678            (order == 0 && !dax_is_pte_entry(entry))) {
1679                put_unlocked_entry(&xas, entry);
1680                xas_unlock_irq(&xas);
1681                trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1682                                                      VM_FAULT_NOPAGE);
1683                return VM_FAULT_NOPAGE;
1684        }
1685        xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1686        dax_lock_entry(&xas, entry);
1687        xas_unlock_irq(&xas);
1688        if (order == 0)
1689                ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1690#ifdef CONFIG_FS_DAX_PMD
1691        else if (order == PMD_ORDER)
1692                ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1693#endif
1694        else
1695                ret = VM_FAULT_FALLBACK;
1696        dax_unlock_entry(&xas, entry);
1697        trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1698        return ret;
1699}
1700
1701/**
1702 * dax_finish_sync_fault - finish synchronous page fault
1703 * @vmf: The description of the fault
1704 * @pe_size: Size of entry to be inserted
1705 * @pfn: PFN to insert
1706 *
1707 * This function ensures that the file range touched by the page fault is
1708 * stored persistently on the media and handles inserting of appropriate page
1709 * table entry.
1710 */
1711vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1712                enum page_entry_size pe_size, pfn_t pfn)
1713{
1714        int err;
1715        loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1716        unsigned int order = pe_order(pe_size);
1717        size_t len = PAGE_SIZE << order;
1718
1719        err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1720        if (err)
1721                return VM_FAULT_SIGBUS;
1722        return dax_insert_pfn_mkwrite(vmf, pfn, order);
1723}
1724EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1725