linux/fs/jbd2/journal.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * linux/fs/jbd2/journal.c
   4 *
   5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   6 *
   7 * Copyright 1998 Red Hat corp --- All Rights Reserved
   8 *
   9 * Generic filesystem journal-writing code; part of the ext2fs
  10 * journaling system.
  11 *
  12 * This file manages journals: areas of disk reserved for logging
  13 * transactional updates.  This includes the kernel journaling thread
  14 * which is responsible for scheduling updates to the log.
  15 *
  16 * We do not actually manage the physical storage of the journal in this
  17 * file: that is left to a per-journal policy function, which allows us
  18 * to store the journal within a filesystem-specified area for ext2
  19 * journaling (ext2 can use a reserved inode for storing the log).
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/time.h>
  24#include <linux/fs.h>
  25#include <linux/jbd2.h>
  26#include <linux/errno.h>
  27#include <linux/slab.h>
  28#include <linux/init.h>
  29#include <linux/mm.h>
  30#include <linux/freezer.h>
  31#include <linux/pagemap.h>
  32#include <linux/kthread.h>
  33#include <linux/poison.h>
  34#include <linux/proc_fs.h>
  35#include <linux/seq_file.h>
  36#include <linux/math64.h>
  37#include <linux/hash.h>
  38#include <linux/log2.h>
  39#include <linux/vmalloc.h>
  40#include <linux/backing-dev.h>
  41#include <linux/bitops.h>
  42#include <linux/ratelimit.h>
  43#include <linux/sched/mm.h>
  44
  45#define CREATE_TRACE_POINTS
  46#include <trace/events/jbd2.h>
  47
  48#include <linux/uaccess.h>
  49#include <asm/page.h>
  50
  51#ifdef CONFIG_JBD2_DEBUG
  52ushort jbd2_journal_enable_debug __read_mostly;
  53EXPORT_SYMBOL(jbd2_journal_enable_debug);
  54
  55module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
  56MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
  57#endif
  58
  59EXPORT_SYMBOL(jbd2_journal_extend);
  60EXPORT_SYMBOL(jbd2_journal_stop);
  61EXPORT_SYMBOL(jbd2_journal_lock_updates);
  62EXPORT_SYMBOL(jbd2_journal_unlock_updates);
  63EXPORT_SYMBOL(jbd2_journal_get_write_access);
  64EXPORT_SYMBOL(jbd2_journal_get_create_access);
  65EXPORT_SYMBOL(jbd2_journal_get_undo_access);
  66EXPORT_SYMBOL(jbd2_journal_set_triggers);
  67EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
  68EXPORT_SYMBOL(jbd2_journal_forget);
  69EXPORT_SYMBOL(jbd2_journal_flush);
  70EXPORT_SYMBOL(jbd2_journal_revoke);
  71
  72EXPORT_SYMBOL(jbd2_journal_init_dev);
  73EXPORT_SYMBOL(jbd2_journal_init_inode);
  74EXPORT_SYMBOL(jbd2_journal_check_used_features);
  75EXPORT_SYMBOL(jbd2_journal_check_available_features);
  76EXPORT_SYMBOL(jbd2_journal_set_features);
  77EXPORT_SYMBOL(jbd2_journal_load);
  78EXPORT_SYMBOL(jbd2_journal_destroy);
  79EXPORT_SYMBOL(jbd2_journal_abort);
  80EXPORT_SYMBOL(jbd2_journal_errno);
  81EXPORT_SYMBOL(jbd2_journal_ack_err);
  82EXPORT_SYMBOL(jbd2_journal_clear_err);
  83EXPORT_SYMBOL(jbd2_log_wait_commit);
  84EXPORT_SYMBOL(jbd2_log_start_commit);
  85EXPORT_SYMBOL(jbd2_journal_start_commit);
  86EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
  87EXPORT_SYMBOL(jbd2_journal_wipe);
  88EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
  89EXPORT_SYMBOL(jbd2_journal_invalidatepage);
  90EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
  91EXPORT_SYMBOL(jbd2_journal_force_commit);
  92EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
  93EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
  94EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
  95EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
  96EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
  97EXPORT_SYMBOL(jbd2_inode_cache);
  98
  99static void __journal_abort_soft (journal_t *journal, int errno);
 100static int jbd2_journal_create_slab(size_t slab_size);
 101
 102#ifdef CONFIG_JBD2_DEBUG
 103void __jbd2_debug(int level, const char *file, const char *func,
 104                  unsigned int line, const char *fmt, ...)
 105{
 106        struct va_format vaf;
 107        va_list args;
 108
 109        if (level > jbd2_journal_enable_debug)
 110                return;
 111        va_start(args, fmt);
 112        vaf.fmt = fmt;
 113        vaf.va = &args;
 114        printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
 115        va_end(args);
 116}
 117EXPORT_SYMBOL(__jbd2_debug);
 118#endif
 119
 120/* Checksumming functions */
 121static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
 122{
 123        if (!jbd2_journal_has_csum_v2or3_feature(j))
 124                return 1;
 125
 126        return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
 127}
 128
 129static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
 130{
 131        __u32 csum;
 132        __be32 old_csum;
 133
 134        old_csum = sb->s_checksum;
 135        sb->s_checksum = 0;
 136        csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
 137        sb->s_checksum = old_csum;
 138
 139        return cpu_to_be32(csum);
 140}
 141
 142/*
 143 * Helper function used to manage commit timeouts
 144 */
 145
 146static void commit_timeout(struct timer_list *t)
 147{
 148        journal_t *journal = from_timer(journal, t, j_commit_timer);
 149
 150        wake_up_process(journal->j_task);
 151}
 152
 153/*
 154 * kjournald2: The main thread function used to manage a logging device
 155 * journal.
 156 *
 157 * This kernel thread is responsible for two things:
 158 *
 159 * 1) COMMIT:  Every so often we need to commit the current state of the
 160 *    filesystem to disk.  The journal thread is responsible for writing
 161 *    all of the metadata buffers to disk.
 162 *
 163 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
 164 *    of the data in that part of the log has been rewritten elsewhere on
 165 *    the disk.  Flushing these old buffers to reclaim space in the log is
 166 *    known as checkpointing, and this thread is responsible for that job.
 167 */
 168
 169static int kjournald2(void *arg)
 170{
 171        journal_t *journal = arg;
 172        transaction_t *transaction;
 173
 174        /*
 175         * Set up an interval timer which can be used to trigger a commit wakeup
 176         * after the commit interval expires
 177         */
 178        timer_setup(&journal->j_commit_timer, commit_timeout, 0);
 179
 180        set_freezable();
 181
 182        /* Record that the journal thread is running */
 183        journal->j_task = current;
 184        wake_up(&journal->j_wait_done_commit);
 185
 186        /*
 187         * Make sure that no allocations from this kernel thread will ever
 188         * recurse to the fs layer because we are responsible for the
 189         * transaction commit and any fs involvement might get stuck waiting for
 190         * the trasn. commit.
 191         */
 192        memalloc_nofs_save();
 193
 194        /*
 195         * And now, wait forever for commit wakeup events.
 196         */
 197        write_lock(&journal->j_state_lock);
 198
 199loop:
 200        if (journal->j_flags & JBD2_UNMOUNT)
 201                goto end_loop;
 202
 203        jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
 204                journal->j_commit_sequence, journal->j_commit_request);
 205
 206        if (journal->j_commit_sequence != journal->j_commit_request) {
 207                jbd_debug(1, "OK, requests differ\n");
 208                write_unlock(&journal->j_state_lock);
 209                del_timer_sync(&journal->j_commit_timer);
 210                jbd2_journal_commit_transaction(journal);
 211                write_lock(&journal->j_state_lock);
 212                goto loop;
 213        }
 214
 215        wake_up(&journal->j_wait_done_commit);
 216        if (freezing(current)) {
 217                /*
 218                 * The simpler the better. Flushing journal isn't a
 219                 * good idea, because that depends on threads that may
 220                 * be already stopped.
 221                 */
 222                jbd_debug(1, "Now suspending kjournald2\n");
 223                write_unlock(&journal->j_state_lock);
 224                try_to_freeze();
 225                write_lock(&journal->j_state_lock);
 226        } else {
 227                /*
 228                 * We assume on resume that commits are already there,
 229                 * so we don't sleep
 230                 */
 231                DEFINE_WAIT(wait);
 232                int should_sleep = 1;
 233
 234                prepare_to_wait(&journal->j_wait_commit, &wait,
 235                                TASK_INTERRUPTIBLE);
 236                if (journal->j_commit_sequence != journal->j_commit_request)
 237                        should_sleep = 0;
 238                transaction = journal->j_running_transaction;
 239                if (transaction && time_after_eq(jiffies,
 240                                                transaction->t_expires))
 241                        should_sleep = 0;
 242                if (journal->j_flags & JBD2_UNMOUNT)
 243                        should_sleep = 0;
 244                if (should_sleep) {
 245                        write_unlock(&journal->j_state_lock);
 246                        schedule();
 247                        write_lock(&journal->j_state_lock);
 248                }
 249                finish_wait(&journal->j_wait_commit, &wait);
 250        }
 251
 252        jbd_debug(1, "kjournald2 wakes\n");
 253
 254        /*
 255         * Were we woken up by a commit wakeup event?
 256         */
 257        transaction = journal->j_running_transaction;
 258        if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
 259                journal->j_commit_request = transaction->t_tid;
 260                jbd_debug(1, "woke because of timeout\n");
 261        }
 262        goto loop;
 263
 264end_loop:
 265        del_timer_sync(&journal->j_commit_timer);
 266        journal->j_task = NULL;
 267        wake_up(&journal->j_wait_done_commit);
 268        jbd_debug(1, "Journal thread exiting.\n");
 269        write_unlock(&journal->j_state_lock);
 270        return 0;
 271}
 272
 273static int jbd2_journal_start_thread(journal_t *journal)
 274{
 275        struct task_struct *t;
 276
 277        t = kthread_run(kjournald2, journal, "jbd2/%s",
 278                        journal->j_devname);
 279        if (IS_ERR(t))
 280                return PTR_ERR(t);
 281
 282        wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
 283        return 0;
 284}
 285
 286static void journal_kill_thread(journal_t *journal)
 287{
 288        write_lock(&journal->j_state_lock);
 289        journal->j_flags |= JBD2_UNMOUNT;
 290
 291        while (journal->j_task) {
 292                write_unlock(&journal->j_state_lock);
 293                wake_up(&journal->j_wait_commit);
 294                wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
 295                write_lock(&journal->j_state_lock);
 296        }
 297        write_unlock(&journal->j_state_lock);
 298}
 299
 300/*
 301 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
 302 *
 303 * Writes a metadata buffer to a given disk block.  The actual IO is not
 304 * performed but a new buffer_head is constructed which labels the data
 305 * to be written with the correct destination disk block.
 306 *
 307 * Any magic-number escaping which needs to be done will cause a
 308 * copy-out here.  If the buffer happens to start with the
 309 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
 310 * magic number is only written to the log for descripter blocks.  In
 311 * this case, we copy the data and replace the first word with 0, and we
 312 * return a result code which indicates that this buffer needs to be
 313 * marked as an escaped buffer in the corresponding log descriptor
 314 * block.  The missing word can then be restored when the block is read
 315 * during recovery.
 316 *
 317 * If the source buffer has already been modified by a new transaction
 318 * since we took the last commit snapshot, we use the frozen copy of
 319 * that data for IO. If we end up using the existing buffer_head's data
 320 * for the write, then we have to make sure nobody modifies it while the
 321 * IO is in progress. do_get_write_access() handles this.
 322 *
 323 * The function returns a pointer to the buffer_head to be used for IO.
 324 *
 325 *
 326 * Return value:
 327 *  <0: Error
 328 * >=0: Finished OK
 329 *
 330 * On success:
 331 * Bit 0 set == escape performed on the data
 332 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
 333 */
 334
 335int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
 336                                  struct journal_head  *jh_in,
 337                                  struct buffer_head **bh_out,
 338                                  sector_t blocknr)
 339{
 340        int need_copy_out = 0;
 341        int done_copy_out = 0;
 342        int do_escape = 0;
 343        char *mapped_data;
 344        struct buffer_head *new_bh;
 345        struct page *new_page;
 346        unsigned int new_offset;
 347        struct buffer_head *bh_in = jh2bh(jh_in);
 348        journal_t *journal = transaction->t_journal;
 349
 350        /*
 351         * The buffer really shouldn't be locked: only the current committing
 352         * transaction is allowed to write it, so nobody else is allowed
 353         * to do any IO.
 354         *
 355         * akpm: except if we're journalling data, and write() output is
 356         * also part of a shared mapping, and another thread has
 357         * decided to launch a writepage() against this buffer.
 358         */
 359        J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
 360
 361        new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
 362
 363        /* keep subsequent assertions sane */
 364        atomic_set(&new_bh->b_count, 1);
 365
 366        jbd_lock_bh_state(bh_in);
 367repeat:
 368        /*
 369         * If a new transaction has already done a buffer copy-out, then
 370         * we use that version of the data for the commit.
 371         */
 372        if (jh_in->b_frozen_data) {
 373                done_copy_out = 1;
 374                new_page = virt_to_page(jh_in->b_frozen_data);
 375                new_offset = offset_in_page(jh_in->b_frozen_data);
 376        } else {
 377                new_page = jh2bh(jh_in)->b_page;
 378                new_offset = offset_in_page(jh2bh(jh_in)->b_data);
 379        }
 380
 381        mapped_data = kmap_atomic(new_page);
 382        /*
 383         * Fire data frozen trigger if data already wasn't frozen.  Do this
 384         * before checking for escaping, as the trigger may modify the magic
 385         * offset.  If a copy-out happens afterwards, it will have the correct
 386         * data in the buffer.
 387         */
 388        if (!done_copy_out)
 389                jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
 390                                           jh_in->b_triggers);
 391
 392        /*
 393         * Check for escaping
 394         */
 395        if (*((__be32 *)(mapped_data + new_offset)) ==
 396                                cpu_to_be32(JBD2_MAGIC_NUMBER)) {
 397                need_copy_out = 1;
 398                do_escape = 1;
 399        }
 400        kunmap_atomic(mapped_data);
 401
 402        /*
 403         * Do we need to do a data copy?
 404         */
 405        if (need_copy_out && !done_copy_out) {
 406                char *tmp;
 407
 408                jbd_unlock_bh_state(bh_in);
 409                tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
 410                if (!tmp) {
 411                        brelse(new_bh);
 412                        return -ENOMEM;
 413                }
 414                jbd_lock_bh_state(bh_in);
 415                if (jh_in->b_frozen_data) {
 416                        jbd2_free(tmp, bh_in->b_size);
 417                        goto repeat;
 418                }
 419
 420                jh_in->b_frozen_data = tmp;
 421                mapped_data = kmap_atomic(new_page);
 422                memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
 423                kunmap_atomic(mapped_data);
 424
 425                new_page = virt_to_page(tmp);
 426                new_offset = offset_in_page(tmp);
 427                done_copy_out = 1;
 428
 429                /*
 430                 * This isn't strictly necessary, as we're using frozen
 431                 * data for the escaping, but it keeps consistency with
 432                 * b_frozen_data usage.
 433                 */
 434                jh_in->b_frozen_triggers = jh_in->b_triggers;
 435        }
 436
 437        /*
 438         * Did we need to do an escaping?  Now we've done all the
 439         * copying, we can finally do so.
 440         */
 441        if (do_escape) {
 442                mapped_data = kmap_atomic(new_page);
 443                *((unsigned int *)(mapped_data + new_offset)) = 0;
 444                kunmap_atomic(mapped_data);
 445        }
 446
 447        set_bh_page(new_bh, new_page, new_offset);
 448        new_bh->b_size = bh_in->b_size;
 449        new_bh->b_bdev = journal->j_dev;
 450        new_bh->b_blocknr = blocknr;
 451        new_bh->b_private = bh_in;
 452        set_buffer_mapped(new_bh);
 453        set_buffer_dirty(new_bh);
 454
 455        *bh_out = new_bh;
 456
 457        /*
 458         * The to-be-written buffer needs to get moved to the io queue,
 459         * and the original buffer whose contents we are shadowing or
 460         * copying is moved to the transaction's shadow queue.
 461         */
 462        JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
 463        spin_lock(&journal->j_list_lock);
 464        __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
 465        spin_unlock(&journal->j_list_lock);
 466        set_buffer_shadow(bh_in);
 467        jbd_unlock_bh_state(bh_in);
 468
 469        return do_escape | (done_copy_out << 1);
 470}
 471
 472/*
 473 * Allocation code for the journal file.  Manage the space left in the
 474 * journal, so that we can begin checkpointing when appropriate.
 475 */
 476
 477/*
 478 * Called with j_state_lock locked for writing.
 479 * Returns true if a transaction commit was started.
 480 */
 481int __jbd2_log_start_commit(journal_t *journal, tid_t target)
 482{
 483        /* Return if the txn has already requested to be committed */
 484        if (journal->j_commit_request == target)
 485                return 0;
 486
 487        /*
 488         * The only transaction we can possibly wait upon is the
 489         * currently running transaction (if it exists).  Otherwise,
 490         * the target tid must be an old one.
 491         */
 492        if (journal->j_running_transaction &&
 493            journal->j_running_transaction->t_tid == target) {
 494                /*
 495                 * We want a new commit: OK, mark the request and wakeup the
 496                 * commit thread.  We do _not_ do the commit ourselves.
 497                 */
 498
 499                journal->j_commit_request = target;
 500                jbd_debug(1, "JBD2: requesting commit %u/%u\n",
 501                          journal->j_commit_request,
 502                          journal->j_commit_sequence);
 503                journal->j_running_transaction->t_requested = jiffies;
 504                wake_up(&journal->j_wait_commit);
 505                return 1;
 506        } else if (!tid_geq(journal->j_commit_request, target))
 507                /* This should never happen, but if it does, preserve
 508                   the evidence before kjournald goes into a loop and
 509                   increments j_commit_sequence beyond all recognition. */
 510                WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
 511                          journal->j_commit_request,
 512                          journal->j_commit_sequence,
 513                          target, journal->j_running_transaction ?
 514                          journal->j_running_transaction->t_tid : 0);
 515        return 0;
 516}
 517
 518int jbd2_log_start_commit(journal_t *journal, tid_t tid)
 519{
 520        int ret;
 521
 522        write_lock(&journal->j_state_lock);
 523        ret = __jbd2_log_start_commit(journal, tid);
 524        write_unlock(&journal->j_state_lock);
 525        return ret;
 526}
 527
 528/*
 529 * Force and wait any uncommitted transactions.  We can only force the running
 530 * transaction if we don't have an active handle, otherwise, we will deadlock.
 531 * Returns: <0 in case of error,
 532 *           0 if nothing to commit,
 533 *           1 if transaction was successfully committed.
 534 */
 535static int __jbd2_journal_force_commit(journal_t *journal)
 536{
 537        transaction_t *transaction = NULL;
 538        tid_t tid;
 539        int need_to_start = 0, ret = 0;
 540
 541        read_lock(&journal->j_state_lock);
 542        if (journal->j_running_transaction && !current->journal_info) {
 543                transaction = journal->j_running_transaction;
 544                if (!tid_geq(journal->j_commit_request, transaction->t_tid))
 545                        need_to_start = 1;
 546        } else if (journal->j_committing_transaction)
 547                transaction = journal->j_committing_transaction;
 548
 549        if (!transaction) {
 550                /* Nothing to commit */
 551                read_unlock(&journal->j_state_lock);
 552                return 0;
 553        }
 554        tid = transaction->t_tid;
 555        read_unlock(&journal->j_state_lock);
 556        if (need_to_start)
 557                jbd2_log_start_commit(journal, tid);
 558        ret = jbd2_log_wait_commit(journal, tid);
 559        if (!ret)
 560                ret = 1;
 561
 562        return ret;
 563}
 564
 565/**
 566 * Force and wait upon a commit if the calling process is not within
 567 * transaction.  This is used for forcing out undo-protected data which contains
 568 * bitmaps, when the fs is running out of space.
 569 *
 570 * @journal: journal to force
 571 * Returns true if progress was made.
 572 */
 573int jbd2_journal_force_commit_nested(journal_t *journal)
 574{
 575        int ret;
 576
 577        ret = __jbd2_journal_force_commit(journal);
 578        return ret > 0;
 579}
 580
 581/**
 582 * int journal_force_commit() - force any uncommitted transactions
 583 * @journal: journal to force
 584 *
 585 * Caller want unconditional commit. We can only force the running transaction
 586 * if we don't have an active handle, otherwise, we will deadlock.
 587 */
 588int jbd2_journal_force_commit(journal_t *journal)
 589{
 590        int ret;
 591
 592        J_ASSERT(!current->journal_info);
 593        ret = __jbd2_journal_force_commit(journal);
 594        if (ret > 0)
 595                ret = 0;
 596        return ret;
 597}
 598
 599/*
 600 * Start a commit of the current running transaction (if any).  Returns true
 601 * if a transaction is going to be committed (or is currently already
 602 * committing), and fills its tid in at *ptid
 603 */
 604int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
 605{
 606        int ret = 0;
 607
 608        write_lock(&journal->j_state_lock);
 609        if (journal->j_running_transaction) {
 610                tid_t tid = journal->j_running_transaction->t_tid;
 611
 612                __jbd2_log_start_commit(journal, tid);
 613                /* There's a running transaction and we've just made sure
 614                 * it's commit has been scheduled. */
 615                if (ptid)
 616                        *ptid = tid;
 617                ret = 1;
 618        } else if (journal->j_committing_transaction) {
 619                /*
 620                 * If commit has been started, then we have to wait for
 621                 * completion of that transaction.
 622                 */
 623                if (ptid)
 624                        *ptid = journal->j_committing_transaction->t_tid;
 625                ret = 1;
 626        }
 627        write_unlock(&journal->j_state_lock);
 628        return ret;
 629}
 630
 631/*
 632 * Return 1 if a given transaction has not yet sent barrier request
 633 * connected with a transaction commit. If 0 is returned, transaction
 634 * may or may not have sent the barrier. Used to avoid sending barrier
 635 * twice in common cases.
 636 */
 637int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
 638{
 639        int ret = 0;
 640        transaction_t *commit_trans;
 641
 642        if (!(journal->j_flags & JBD2_BARRIER))
 643                return 0;
 644        read_lock(&journal->j_state_lock);
 645        /* Transaction already committed? */
 646        if (tid_geq(journal->j_commit_sequence, tid))
 647                goto out;
 648        commit_trans = journal->j_committing_transaction;
 649        if (!commit_trans || commit_trans->t_tid != tid) {
 650                ret = 1;
 651                goto out;
 652        }
 653        /*
 654         * Transaction is being committed and we already proceeded to
 655         * submitting a flush to fs partition?
 656         */
 657        if (journal->j_fs_dev != journal->j_dev) {
 658                if (!commit_trans->t_need_data_flush ||
 659                    commit_trans->t_state >= T_COMMIT_DFLUSH)
 660                        goto out;
 661        } else {
 662                if (commit_trans->t_state >= T_COMMIT_JFLUSH)
 663                        goto out;
 664        }
 665        ret = 1;
 666out:
 667        read_unlock(&journal->j_state_lock);
 668        return ret;
 669}
 670EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
 671
 672/*
 673 * Wait for a specified commit to complete.
 674 * The caller may not hold the journal lock.
 675 */
 676int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
 677{
 678        int err = 0;
 679
 680        read_lock(&journal->j_state_lock);
 681#ifdef CONFIG_PROVE_LOCKING
 682        /*
 683         * Some callers make sure transaction is already committing and in that
 684         * case we cannot block on open handles anymore. So don't warn in that
 685         * case.
 686         */
 687        if (tid_gt(tid, journal->j_commit_sequence) &&
 688            (!journal->j_committing_transaction ||
 689             journal->j_committing_transaction->t_tid != tid)) {
 690                read_unlock(&journal->j_state_lock);
 691                jbd2_might_wait_for_commit(journal);
 692                read_lock(&journal->j_state_lock);
 693        }
 694#endif
 695#ifdef CONFIG_JBD2_DEBUG
 696        if (!tid_geq(journal->j_commit_request, tid)) {
 697                printk(KERN_ERR
 698                       "%s: error: j_commit_request=%u, tid=%u\n",
 699                       __func__, journal->j_commit_request, tid);
 700        }
 701#endif
 702        while (tid_gt(tid, journal->j_commit_sequence)) {
 703                jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
 704                                  tid, journal->j_commit_sequence);
 705                read_unlock(&journal->j_state_lock);
 706                wake_up(&journal->j_wait_commit);
 707                wait_event(journal->j_wait_done_commit,
 708                                !tid_gt(tid, journal->j_commit_sequence));
 709                read_lock(&journal->j_state_lock);
 710        }
 711        read_unlock(&journal->j_state_lock);
 712
 713        if (unlikely(is_journal_aborted(journal)))
 714                err = -EIO;
 715        return err;
 716}
 717
 718/* Return 1 when transaction with given tid has already committed. */
 719int jbd2_transaction_committed(journal_t *journal, tid_t tid)
 720{
 721        int ret = 1;
 722
 723        read_lock(&journal->j_state_lock);
 724        if (journal->j_running_transaction &&
 725            journal->j_running_transaction->t_tid == tid)
 726                ret = 0;
 727        if (journal->j_committing_transaction &&
 728            journal->j_committing_transaction->t_tid == tid)
 729                ret = 0;
 730        read_unlock(&journal->j_state_lock);
 731        return ret;
 732}
 733EXPORT_SYMBOL(jbd2_transaction_committed);
 734
 735/*
 736 * When this function returns the transaction corresponding to tid
 737 * will be completed.  If the transaction has currently running, start
 738 * committing that transaction before waiting for it to complete.  If
 739 * the transaction id is stale, it is by definition already completed,
 740 * so just return SUCCESS.
 741 */
 742int jbd2_complete_transaction(journal_t *journal, tid_t tid)
 743{
 744        int     need_to_wait = 1;
 745
 746        read_lock(&journal->j_state_lock);
 747        if (journal->j_running_transaction &&
 748            journal->j_running_transaction->t_tid == tid) {
 749                if (journal->j_commit_request != tid) {
 750                        /* transaction not yet started, so request it */
 751                        read_unlock(&journal->j_state_lock);
 752                        jbd2_log_start_commit(journal, tid);
 753                        goto wait_commit;
 754                }
 755        } else if (!(journal->j_committing_transaction &&
 756                     journal->j_committing_transaction->t_tid == tid))
 757                need_to_wait = 0;
 758        read_unlock(&journal->j_state_lock);
 759        if (!need_to_wait)
 760                return 0;
 761wait_commit:
 762        return jbd2_log_wait_commit(journal, tid);
 763}
 764EXPORT_SYMBOL(jbd2_complete_transaction);
 765
 766/*
 767 * Log buffer allocation routines:
 768 */
 769
 770int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
 771{
 772        unsigned long blocknr;
 773
 774        write_lock(&journal->j_state_lock);
 775        J_ASSERT(journal->j_free > 1);
 776
 777        blocknr = journal->j_head;
 778        journal->j_head++;
 779        journal->j_free--;
 780        if (journal->j_head == journal->j_last)
 781                journal->j_head = journal->j_first;
 782        write_unlock(&journal->j_state_lock);
 783        return jbd2_journal_bmap(journal, blocknr, retp);
 784}
 785
 786/*
 787 * Conversion of logical to physical block numbers for the journal
 788 *
 789 * On external journals the journal blocks are identity-mapped, so
 790 * this is a no-op.  If needed, we can use j_blk_offset - everything is
 791 * ready.
 792 */
 793int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
 794                 unsigned long long *retp)
 795{
 796        int err = 0;
 797        unsigned long long ret;
 798
 799        if (journal->j_inode) {
 800                ret = bmap(journal->j_inode, blocknr);
 801                if (ret)
 802                        *retp = ret;
 803                else {
 804                        printk(KERN_ALERT "%s: journal block not found "
 805                                        "at offset %lu on %s\n",
 806                               __func__, blocknr, journal->j_devname);
 807                        err = -EIO;
 808                        __journal_abort_soft(journal, err);
 809                }
 810        } else {
 811                *retp = blocknr; /* +journal->j_blk_offset */
 812        }
 813        return err;
 814}
 815
 816/*
 817 * We play buffer_head aliasing tricks to write data/metadata blocks to
 818 * the journal without copying their contents, but for journal
 819 * descriptor blocks we do need to generate bona fide buffers.
 820 *
 821 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
 822 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
 823 * But we don't bother doing that, so there will be coherency problems with
 824 * mmaps of blockdevs which hold live JBD-controlled filesystems.
 825 */
 826struct buffer_head *
 827jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
 828{
 829        journal_t *journal = transaction->t_journal;
 830        struct buffer_head *bh;
 831        unsigned long long blocknr;
 832        journal_header_t *header;
 833        int err;
 834
 835        err = jbd2_journal_next_log_block(journal, &blocknr);
 836
 837        if (err)
 838                return NULL;
 839
 840        bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
 841        if (!bh)
 842                return NULL;
 843        lock_buffer(bh);
 844        memset(bh->b_data, 0, journal->j_blocksize);
 845        header = (journal_header_t *)bh->b_data;
 846        header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
 847        header->h_blocktype = cpu_to_be32(type);
 848        header->h_sequence = cpu_to_be32(transaction->t_tid);
 849        set_buffer_uptodate(bh);
 850        unlock_buffer(bh);
 851        BUFFER_TRACE(bh, "return this buffer");
 852        return bh;
 853}
 854
 855void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
 856{
 857        struct jbd2_journal_block_tail *tail;
 858        __u32 csum;
 859
 860        if (!jbd2_journal_has_csum_v2or3(j))
 861                return;
 862
 863        tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
 864                        sizeof(struct jbd2_journal_block_tail));
 865        tail->t_checksum = 0;
 866        csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
 867        tail->t_checksum = cpu_to_be32(csum);
 868}
 869
 870/*
 871 * Return tid of the oldest transaction in the journal and block in the journal
 872 * where the transaction starts.
 873 *
 874 * If the journal is now empty, return which will be the next transaction ID
 875 * we will write and where will that transaction start.
 876 *
 877 * The return value is 0 if journal tail cannot be pushed any further, 1 if
 878 * it can.
 879 */
 880int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
 881                              unsigned long *block)
 882{
 883        transaction_t *transaction;
 884        int ret;
 885
 886        read_lock(&journal->j_state_lock);
 887        spin_lock(&journal->j_list_lock);
 888        transaction = journal->j_checkpoint_transactions;
 889        if (transaction) {
 890                *tid = transaction->t_tid;
 891                *block = transaction->t_log_start;
 892        } else if ((transaction = journal->j_committing_transaction) != NULL) {
 893                *tid = transaction->t_tid;
 894                *block = transaction->t_log_start;
 895        } else if ((transaction = journal->j_running_transaction) != NULL) {
 896                *tid = transaction->t_tid;
 897                *block = journal->j_head;
 898        } else {
 899                *tid = journal->j_transaction_sequence;
 900                *block = journal->j_head;
 901        }
 902        ret = tid_gt(*tid, journal->j_tail_sequence);
 903        spin_unlock(&journal->j_list_lock);
 904        read_unlock(&journal->j_state_lock);
 905
 906        return ret;
 907}
 908
 909/*
 910 * Update information in journal structure and in on disk journal superblock
 911 * about log tail. This function does not check whether information passed in
 912 * really pushes log tail further. It's responsibility of the caller to make
 913 * sure provided log tail information is valid (e.g. by holding
 914 * j_checkpoint_mutex all the time between computing log tail and calling this
 915 * function as is the case with jbd2_cleanup_journal_tail()).
 916 *
 917 * Requires j_checkpoint_mutex
 918 */
 919int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
 920{
 921        unsigned long freed;
 922        int ret;
 923
 924        BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
 925
 926        /*
 927         * We cannot afford for write to remain in drive's caches since as
 928         * soon as we update j_tail, next transaction can start reusing journal
 929         * space and if we lose sb update during power failure we'd replay
 930         * old transaction with possibly newly overwritten data.
 931         */
 932        ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
 933                                              REQ_SYNC | REQ_FUA);
 934        if (ret)
 935                goto out;
 936
 937        write_lock(&journal->j_state_lock);
 938        freed = block - journal->j_tail;
 939        if (block < journal->j_tail)
 940                freed += journal->j_last - journal->j_first;
 941
 942        trace_jbd2_update_log_tail(journal, tid, block, freed);
 943        jbd_debug(1,
 944                  "Cleaning journal tail from %u to %u (offset %lu), "
 945                  "freeing %lu\n",
 946                  journal->j_tail_sequence, tid, block, freed);
 947
 948        journal->j_free += freed;
 949        journal->j_tail_sequence = tid;
 950        journal->j_tail = block;
 951        write_unlock(&journal->j_state_lock);
 952
 953out:
 954        return ret;
 955}
 956
 957/*
 958 * This is a variation of __jbd2_update_log_tail which checks for validity of
 959 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
 960 * with other threads updating log tail.
 961 */
 962void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
 963{
 964        mutex_lock_io(&journal->j_checkpoint_mutex);
 965        if (tid_gt(tid, journal->j_tail_sequence))
 966                __jbd2_update_log_tail(journal, tid, block);
 967        mutex_unlock(&journal->j_checkpoint_mutex);
 968}
 969
 970struct jbd2_stats_proc_session {
 971        journal_t *journal;
 972        struct transaction_stats_s *stats;
 973        int start;
 974        int max;
 975};
 976
 977static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
 978{
 979        return *pos ? NULL : SEQ_START_TOKEN;
 980}
 981
 982static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
 983{
 984        return NULL;
 985}
 986
 987static int jbd2_seq_info_show(struct seq_file *seq, void *v)
 988{
 989        struct jbd2_stats_proc_session *s = seq->private;
 990
 991        if (v != SEQ_START_TOKEN)
 992                return 0;
 993        seq_printf(seq, "%lu transactions (%lu requested), "
 994                   "each up to %u blocks\n",
 995                   s->stats->ts_tid, s->stats->ts_requested,
 996                   s->journal->j_max_transaction_buffers);
 997        if (s->stats->ts_tid == 0)
 998                return 0;
 999        seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1000            jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1001        seq_printf(seq, "  %ums request delay\n",
1002            (s->stats->ts_requested == 0) ? 0 :
1003            jiffies_to_msecs(s->stats->run.rs_request_delay /
1004                             s->stats->ts_requested));
1005        seq_printf(seq, "  %ums running transaction\n",
1006            jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1007        seq_printf(seq, "  %ums transaction was being locked\n",
1008            jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1009        seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1010            jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1011        seq_printf(seq, "  %ums logging transaction\n",
1012            jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1013        seq_printf(seq, "  %lluus average transaction commit time\n",
1014                   div_u64(s->journal->j_average_commit_time, 1000));
1015        seq_printf(seq, "  %lu handles per transaction\n",
1016            s->stats->run.rs_handle_count / s->stats->ts_tid);
1017        seq_printf(seq, "  %lu blocks per transaction\n",
1018            s->stats->run.rs_blocks / s->stats->ts_tid);
1019        seq_printf(seq, "  %lu logged blocks per transaction\n",
1020            s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1021        return 0;
1022}
1023
1024static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1025{
1026}
1027
1028static const struct seq_operations jbd2_seq_info_ops = {
1029        .start  = jbd2_seq_info_start,
1030        .next   = jbd2_seq_info_next,
1031        .stop   = jbd2_seq_info_stop,
1032        .show   = jbd2_seq_info_show,
1033};
1034
1035static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1036{
1037        journal_t *journal = PDE_DATA(inode);
1038        struct jbd2_stats_proc_session *s;
1039        int rc, size;
1040
1041        s = kmalloc(sizeof(*s), GFP_KERNEL);
1042        if (s == NULL)
1043                return -ENOMEM;
1044        size = sizeof(struct transaction_stats_s);
1045        s->stats = kmalloc(size, GFP_KERNEL);
1046        if (s->stats == NULL) {
1047                kfree(s);
1048                return -ENOMEM;
1049        }
1050        spin_lock(&journal->j_history_lock);
1051        memcpy(s->stats, &journal->j_stats, size);
1052        s->journal = journal;
1053        spin_unlock(&journal->j_history_lock);
1054
1055        rc = seq_open(file, &jbd2_seq_info_ops);
1056        if (rc == 0) {
1057                struct seq_file *m = file->private_data;
1058                m->private = s;
1059        } else {
1060                kfree(s->stats);
1061                kfree(s);
1062        }
1063        return rc;
1064
1065}
1066
1067static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1068{
1069        struct seq_file *seq = file->private_data;
1070        struct jbd2_stats_proc_session *s = seq->private;
1071        kfree(s->stats);
1072        kfree(s);
1073        return seq_release(inode, file);
1074}
1075
1076static const struct file_operations jbd2_seq_info_fops = {
1077        .owner          = THIS_MODULE,
1078        .open           = jbd2_seq_info_open,
1079        .read           = seq_read,
1080        .llseek         = seq_lseek,
1081        .release        = jbd2_seq_info_release,
1082};
1083
1084static struct proc_dir_entry *proc_jbd2_stats;
1085
1086static void jbd2_stats_proc_init(journal_t *journal)
1087{
1088        journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1089        if (journal->j_proc_entry) {
1090                proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1091                                 &jbd2_seq_info_fops, journal);
1092        }
1093}
1094
1095static void jbd2_stats_proc_exit(journal_t *journal)
1096{
1097        remove_proc_entry("info", journal->j_proc_entry);
1098        remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1099}
1100
1101/*
1102 * Management for journal control blocks: functions to create and
1103 * destroy journal_t structures, and to initialise and read existing
1104 * journal blocks from disk.  */
1105
1106/* First: create and setup a journal_t object in memory.  We initialise
1107 * very few fields yet: that has to wait until we have created the
1108 * journal structures from from scratch, or loaded them from disk. */
1109
1110static journal_t *journal_init_common(struct block_device *bdev,
1111                        struct block_device *fs_dev,
1112                        unsigned long long start, int len, int blocksize)
1113{
1114        static struct lock_class_key jbd2_trans_commit_key;
1115        journal_t *journal;
1116        int err;
1117        struct buffer_head *bh;
1118        int n;
1119
1120        journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1121        if (!journal)
1122                return NULL;
1123
1124        init_waitqueue_head(&journal->j_wait_transaction_locked);
1125        init_waitqueue_head(&journal->j_wait_done_commit);
1126        init_waitqueue_head(&journal->j_wait_commit);
1127        init_waitqueue_head(&journal->j_wait_updates);
1128        init_waitqueue_head(&journal->j_wait_reserved);
1129        mutex_init(&journal->j_barrier);
1130        mutex_init(&journal->j_checkpoint_mutex);
1131        spin_lock_init(&journal->j_revoke_lock);
1132        spin_lock_init(&journal->j_list_lock);
1133        rwlock_init(&journal->j_state_lock);
1134
1135        journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1136        journal->j_min_batch_time = 0;
1137        journal->j_max_batch_time = 15000; /* 15ms */
1138        atomic_set(&journal->j_reserved_credits, 0);
1139
1140        /* The journal is marked for error until we succeed with recovery! */
1141        journal->j_flags = JBD2_ABORT;
1142
1143        /* Set up a default-sized revoke table for the new mount. */
1144        err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1145        if (err)
1146                goto err_cleanup;
1147
1148        spin_lock_init(&journal->j_history_lock);
1149
1150        lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1151                         &jbd2_trans_commit_key, 0);
1152
1153        /* journal descriptor can store up to n blocks -bzzz */
1154        journal->j_blocksize = blocksize;
1155        journal->j_dev = bdev;
1156        journal->j_fs_dev = fs_dev;
1157        journal->j_blk_offset = start;
1158        journal->j_maxlen = len;
1159        n = journal->j_blocksize / sizeof(journal_block_tag_t);
1160        journal->j_wbufsize = n;
1161        journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1162                                        GFP_KERNEL);
1163        if (!journal->j_wbuf)
1164                goto err_cleanup;
1165
1166        bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1167        if (!bh) {
1168                pr_err("%s: Cannot get buffer for journal superblock\n",
1169                        __func__);
1170                goto err_cleanup;
1171        }
1172        journal->j_sb_buffer = bh;
1173        journal->j_superblock = (journal_superblock_t *)bh->b_data;
1174
1175        return journal;
1176
1177err_cleanup:
1178        kfree(journal->j_wbuf);
1179        jbd2_journal_destroy_revoke(journal);
1180        kfree(journal);
1181        return NULL;
1182}
1183
1184/* jbd2_journal_init_dev and jbd2_journal_init_inode:
1185 *
1186 * Create a journal structure assigned some fixed set of disk blocks to
1187 * the journal.  We don't actually touch those disk blocks yet, but we
1188 * need to set up all of the mapping information to tell the journaling
1189 * system where the journal blocks are.
1190 *
1191 */
1192
1193/**
1194 *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1195 *  @bdev: Block device on which to create the journal
1196 *  @fs_dev: Device which hold journalled filesystem for this journal.
1197 *  @start: Block nr Start of journal.
1198 *  @len:  Length of the journal in blocks.
1199 *  @blocksize: blocksize of journalling device
1200 *
1201 *  Returns: a newly created journal_t *
1202 *
1203 *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1204 *  range of blocks on an arbitrary block device.
1205 *
1206 */
1207journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1208                        struct block_device *fs_dev,
1209                        unsigned long long start, int len, int blocksize)
1210{
1211        journal_t *journal;
1212
1213        journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1214        if (!journal)
1215                return NULL;
1216
1217        bdevname(journal->j_dev, journal->j_devname);
1218        strreplace(journal->j_devname, '/', '!');
1219        jbd2_stats_proc_init(journal);
1220
1221        return journal;
1222}
1223
1224/**
1225 *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1226 *  @inode: An inode to create the journal in
1227 *
1228 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1229 * the journal.  The inode must exist already, must support bmap() and
1230 * must have all data blocks preallocated.
1231 */
1232journal_t *jbd2_journal_init_inode(struct inode *inode)
1233{
1234        journal_t *journal;
1235        char *p;
1236        unsigned long long blocknr;
1237
1238        blocknr = bmap(inode, 0);
1239        if (!blocknr) {
1240                pr_err("%s: Cannot locate journal superblock\n",
1241                        __func__);
1242                return NULL;
1243        }
1244
1245        jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1246                  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1247                  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1248
1249        journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1250                        blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1251                        inode->i_sb->s_blocksize);
1252        if (!journal)
1253                return NULL;
1254
1255        journal->j_inode = inode;
1256        bdevname(journal->j_dev, journal->j_devname);
1257        p = strreplace(journal->j_devname, '/', '!');
1258        sprintf(p, "-%lu", journal->j_inode->i_ino);
1259        jbd2_stats_proc_init(journal);
1260
1261        return journal;
1262}
1263
1264/*
1265 * If the journal init or create aborts, we need to mark the journal
1266 * superblock as being NULL to prevent the journal destroy from writing
1267 * back a bogus superblock.
1268 */
1269static void journal_fail_superblock (journal_t *journal)
1270{
1271        struct buffer_head *bh = journal->j_sb_buffer;
1272        brelse(bh);
1273        journal->j_sb_buffer = NULL;
1274}
1275
1276/*
1277 * Given a journal_t structure, initialise the various fields for
1278 * startup of a new journaling session.  We use this both when creating
1279 * a journal, and after recovering an old journal to reset it for
1280 * subsequent use.
1281 */
1282
1283static int journal_reset(journal_t *journal)
1284{
1285        journal_superblock_t *sb = journal->j_superblock;
1286        unsigned long long first, last;
1287
1288        first = be32_to_cpu(sb->s_first);
1289        last = be32_to_cpu(sb->s_maxlen);
1290        if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1291                printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1292                       first, last);
1293                journal_fail_superblock(journal);
1294                return -EINVAL;
1295        }
1296
1297        journal->j_first = first;
1298        journal->j_last = last;
1299
1300        journal->j_head = first;
1301        journal->j_tail = first;
1302        journal->j_free = last - first;
1303
1304        journal->j_tail_sequence = journal->j_transaction_sequence;
1305        journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1306        journal->j_commit_request = journal->j_commit_sequence;
1307
1308        journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1309
1310        /*
1311         * As a special case, if the on-disk copy is already marked as needing
1312         * no recovery (s_start == 0), then we can safely defer the superblock
1313         * update until the next commit by setting JBD2_FLUSHED.  This avoids
1314         * attempting a write to a potential-readonly device.
1315         */
1316        if (sb->s_start == 0) {
1317                jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1318                        "(start %ld, seq %u, errno %d)\n",
1319                        journal->j_tail, journal->j_tail_sequence,
1320                        journal->j_errno);
1321                journal->j_flags |= JBD2_FLUSHED;
1322        } else {
1323                /* Lock here to make assertions happy... */
1324                mutex_lock_io(&journal->j_checkpoint_mutex);
1325                /*
1326                 * Update log tail information. We use REQ_FUA since new
1327                 * transaction will start reusing journal space and so we
1328                 * must make sure information about current log tail is on
1329                 * disk before that.
1330                 */
1331                jbd2_journal_update_sb_log_tail(journal,
1332                                                journal->j_tail_sequence,
1333                                                journal->j_tail,
1334                                                REQ_SYNC | REQ_FUA);
1335                mutex_unlock(&journal->j_checkpoint_mutex);
1336        }
1337        return jbd2_journal_start_thread(journal);
1338}
1339
1340/*
1341 * This function expects that the caller will have locked the journal
1342 * buffer head, and will return with it unlocked
1343 */
1344static int jbd2_write_superblock(journal_t *journal, int write_flags)
1345{
1346        struct buffer_head *bh = journal->j_sb_buffer;
1347        journal_superblock_t *sb = journal->j_superblock;
1348        int ret;
1349
1350        /* Buffer got discarded which means block device got invalidated */
1351        if (!buffer_mapped(bh))
1352                return -EIO;
1353
1354        trace_jbd2_write_superblock(journal, write_flags);
1355        if (!(journal->j_flags & JBD2_BARRIER))
1356                write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1357        if (buffer_write_io_error(bh)) {
1358                /*
1359                 * Oh, dear.  A previous attempt to write the journal
1360                 * superblock failed.  This could happen because the
1361                 * USB device was yanked out.  Or it could happen to
1362                 * be a transient write error and maybe the block will
1363                 * be remapped.  Nothing we can do but to retry the
1364                 * write and hope for the best.
1365                 */
1366                printk(KERN_ERR "JBD2: previous I/O error detected "
1367                       "for journal superblock update for %s.\n",
1368                       journal->j_devname);
1369                clear_buffer_write_io_error(bh);
1370                set_buffer_uptodate(bh);
1371        }
1372        if (jbd2_journal_has_csum_v2or3(journal))
1373                sb->s_checksum = jbd2_superblock_csum(journal, sb);
1374        get_bh(bh);
1375        bh->b_end_io = end_buffer_write_sync;
1376        ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1377        wait_on_buffer(bh);
1378        if (buffer_write_io_error(bh)) {
1379                clear_buffer_write_io_error(bh);
1380                set_buffer_uptodate(bh);
1381                ret = -EIO;
1382        }
1383        if (ret) {
1384                printk(KERN_ERR "JBD2: Error %d detected when updating "
1385                       "journal superblock for %s.\n", ret,
1386                       journal->j_devname);
1387                jbd2_journal_abort(journal, ret);
1388        }
1389
1390        return ret;
1391}
1392
1393/**
1394 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1395 * @journal: The journal to update.
1396 * @tail_tid: TID of the new transaction at the tail of the log
1397 * @tail_block: The first block of the transaction at the tail of the log
1398 * @write_op: With which operation should we write the journal sb
1399 *
1400 * Update a journal's superblock information about log tail and write it to
1401 * disk, waiting for the IO to complete.
1402 */
1403int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1404                                     unsigned long tail_block, int write_op)
1405{
1406        journal_superblock_t *sb = journal->j_superblock;
1407        int ret;
1408
1409        if (is_journal_aborted(journal))
1410                return -EIO;
1411
1412        BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1413        jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1414                  tail_block, tail_tid);
1415
1416        lock_buffer(journal->j_sb_buffer);
1417        sb->s_sequence = cpu_to_be32(tail_tid);
1418        sb->s_start    = cpu_to_be32(tail_block);
1419
1420        ret = jbd2_write_superblock(journal, write_op);
1421        if (ret)
1422                goto out;
1423
1424        /* Log is no longer empty */
1425        write_lock(&journal->j_state_lock);
1426        WARN_ON(!sb->s_sequence);
1427        journal->j_flags &= ~JBD2_FLUSHED;
1428        write_unlock(&journal->j_state_lock);
1429
1430out:
1431        return ret;
1432}
1433
1434/**
1435 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1436 * @journal: The journal to update.
1437 * @write_op: With which operation should we write the journal sb
1438 *
1439 * Update a journal's dynamic superblock fields to show that journal is empty.
1440 * Write updated superblock to disk waiting for IO to complete.
1441 */
1442static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1443{
1444        journal_superblock_t *sb = journal->j_superblock;
1445
1446        BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1447        lock_buffer(journal->j_sb_buffer);
1448        if (sb->s_start == 0) {         /* Is it already empty? */
1449                unlock_buffer(journal->j_sb_buffer);
1450                return;
1451        }
1452
1453        jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1454                  journal->j_tail_sequence);
1455
1456        sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1457        sb->s_start    = cpu_to_be32(0);
1458
1459        jbd2_write_superblock(journal, write_op);
1460
1461        /* Log is no longer empty */
1462        write_lock(&journal->j_state_lock);
1463        journal->j_flags |= JBD2_FLUSHED;
1464        write_unlock(&journal->j_state_lock);
1465}
1466
1467
1468/**
1469 * jbd2_journal_update_sb_errno() - Update error in the journal.
1470 * @journal: The journal to update.
1471 *
1472 * Update a journal's errno.  Write updated superblock to disk waiting for IO
1473 * to complete.
1474 */
1475void jbd2_journal_update_sb_errno(journal_t *journal)
1476{
1477        journal_superblock_t *sb = journal->j_superblock;
1478        int errcode;
1479
1480        lock_buffer(journal->j_sb_buffer);
1481        errcode = journal->j_errno;
1482        if (errcode == -ESHUTDOWN)
1483                errcode = 0;
1484        jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1485        sb->s_errno    = cpu_to_be32(errcode);
1486
1487        jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1488}
1489EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1490
1491/*
1492 * Read the superblock for a given journal, performing initial
1493 * validation of the format.
1494 */
1495static int journal_get_superblock(journal_t *journal)
1496{
1497        struct buffer_head *bh;
1498        journal_superblock_t *sb;
1499        int err = -EIO;
1500
1501        bh = journal->j_sb_buffer;
1502
1503        J_ASSERT(bh != NULL);
1504        if (!buffer_uptodate(bh)) {
1505                ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1506                wait_on_buffer(bh);
1507                if (!buffer_uptodate(bh)) {
1508                        printk(KERN_ERR
1509                                "JBD2: IO error reading journal superblock\n");
1510                        goto out;
1511                }
1512        }
1513
1514        if (buffer_verified(bh))
1515                return 0;
1516
1517        sb = journal->j_superblock;
1518
1519        err = -EINVAL;
1520
1521        if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1522            sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1523                printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1524                goto out;
1525        }
1526
1527        switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1528        case JBD2_SUPERBLOCK_V1:
1529                journal->j_format_version = 1;
1530                break;
1531        case JBD2_SUPERBLOCK_V2:
1532                journal->j_format_version = 2;
1533                break;
1534        default:
1535                printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1536                goto out;
1537        }
1538
1539        if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1540                journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1541        else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1542                printk(KERN_WARNING "JBD2: journal file too short\n");
1543                goto out;
1544        }
1545
1546        if (be32_to_cpu(sb->s_first) == 0 ||
1547            be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1548                printk(KERN_WARNING
1549                        "JBD2: Invalid start block of journal: %u\n",
1550                        be32_to_cpu(sb->s_first));
1551                goto out;
1552        }
1553
1554        if (jbd2_has_feature_csum2(journal) &&
1555            jbd2_has_feature_csum3(journal)) {
1556                /* Can't have checksum v2 and v3 at the same time! */
1557                printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1558                       "at the same time!\n");
1559                goto out;
1560        }
1561
1562        if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1563            jbd2_has_feature_checksum(journal)) {
1564                /* Can't have checksum v1 and v2 on at the same time! */
1565                printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1566                       "at the same time!\n");
1567                goto out;
1568        }
1569
1570        if (!jbd2_verify_csum_type(journal, sb)) {
1571                printk(KERN_ERR "JBD2: Unknown checksum type\n");
1572                goto out;
1573        }
1574
1575        /* Load the checksum driver */
1576        if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1577                journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1578                if (IS_ERR(journal->j_chksum_driver)) {
1579                        printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1580                        err = PTR_ERR(journal->j_chksum_driver);
1581                        journal->j_chksum_driver = NULL;
1582                        goto out;
1583                }
1584        }
1585
1586        if (jbd2_journal_has_csum_v2or3(journal)) {
1587                /* Check superblock checksum */
1588                if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1589                        printk(KERN_ERR "JBD2: journal checksum error\n");
1590                        err = -EFSBADCRC;
1591                        goto out;
1592                }
1593
1594                /* Precompute checksum seed for all metadata */
1595                journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1596                                                   sizeof(sb->s_uuid));
1597        }
1598
1599        set_buffer_verified(bh);
1600
1601        return 0;
1602
1603out:
1604        journal_fail_superblock(journal);
1605        return err;
1606}
1607
1608/*
1609 * Load the on-disk journal superblock and read the key fields into the
1610 * journal_t.
1611 */
1612
1613static int load_superblock(journal_t *journal)
1614{
1615        int err;
1616        journal_superblock_t *sb;
1617
1618        err = journal_get_superblock(journal);
1619        if (err)
1620                return err;
1621
1622        sb = journal->j_superblock;
1623
1624        journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1625        journal->j_tail = be32_to_cpu(sb->s_start);
1626        journal->j_first = be32_to_cpu(sb->s_first);
1627        journal->j_last = be32_to_cpu(sb->s_maxlen);
1628        journal->j_errno = be32_to_cpu(sb->s_errno);
1629
1630        return 0;
1631}
1632
1633
1634/**
1635 * int jbd2_journal_load() - Read journal from disk.
1636 * @journal: Journal to act on.
1637 *
1638 * Given a journal_t structure which tells us which disk blocks contain
1639 * a journal, read the journal from disk to initialise the in-memory
1640 * structures.
1641 */
1642int jbd2_journal_load(journal_t *journal)
1643{
1644        int err;
1645        journal_superblock_t *sb;
1646
1647        err = load_superblock(journal);
1648        if (err)
1649                return err;
1650
1651        sb = journal->j_superblock;
1652        /* If this is a V2 superblock, then we have to check the
1653         * features flags on it. */
1654
1655        if (journal->j_format_version >= 2) {
1656                if ((sb->s_feature_ro_compat &
1657                     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1658                    (sb->s_feature_incompat &
1659                     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1660                        printk(KERN_WARNING
1661                                "JBD2: Unrecognised features on journal\n");
1662                        return -EINVAL;
1663                }
1664        }
1665
1666        /*
1667         * Create a slab for this blocksize
1668         */
1669        err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1670        if (err)
1671                return err;
1672
1673        /* Let the recovery code check whether it needs to recover any
1674         * data from the journal. */
1675        if (jbd2_journal_recover(journal))
1676                goto recovery_error;
1677
1678        if (journal->j_failed_commit) {
1679                printk(KERN_ERR "JBD2: journal transaction %u on %s "
1680                       "is corrupt.\n", journal->j_failed_commit,
1681                       journal->j_devname);
1682                return -EFSCORRUPTED;
1683        }
1684
1685        /* OK, we've finished with the dynamic journal bits:
1686         * reinitialise the dynamic contents of the superblock in memory
1687         * and reset them on disk. */
1688        if (journal_reset(journal))
1689                goto recovery_error;
1690
1691        journal->j_flags &= ~JBD2_ABORT;
1692        journal->j_flags |= JBD2_LOADED;
1693        return 0;
1694
1695recovery_error:
1696        printk(KERN_WARNING "JBD2: recovery failed\n");
1697        return -EIO;
1698}
1699
1700/**
1701 * void jbd2_journal_destroy() - Release a journal_t structure.
1702 * @journal: Journal to act on.
1703 *
1704 * Release a journal_t structure once it is no longer in use by the
1705 * journaled object.
1706 * Return <0 if we couldn't clean up the journal.
1707 */
1708int jbd2_journal_destroy(journal_t *journal)
1709{
1710        int err = 0;
1711
1712        /* Wait for the commit thread to wake up and die. */
1713        journal_kill_thread(journal);
1714
1715        /* Force a final log commit */
1716        if (journal->j_running_transaction)
1717                jbd2_journal_commit_transaction(journal);
1718
1719        /* Force any old transactions to disk */
1720
1721        /* Totally anal locking here... */
1722        spin_lock(&journal->j_list_lock);
1723        while (journal->j_checkpoint_transactions != NULL) {
1724                spin_unlock(&journal->j_list_lock);
1725                mutex_lock_io(&journal->j_checkpoint_mutex);
1726                err = jbd2_log_do_checkpoint(journal);
1727                mutex_unlock(&journal->j_checkpoint_mutex);
1728                /*
1729                 * If checkpointing failed, just free the buffers to avoid
1730                 * looping forever
1731                 */
1732                if (err) {
1733                        jbd2_journal_destroy_checkpoint(journal);
1734                        spin_lock(&journal->j_list_lock);
1735                        break;
1736                }
1737                spin_lock(&journal->j_list_lock);
1738        }
1739
1740        J_ASSERT(journal->j_running_transaction == NULL);
1741        J_ASSERT(journal->j_committing_transaction == NULL);
1742        J_ASSERT(journal->j_checkpoint_transactions == NULL);
1743        spin_unlock(&journal->j_list_lock);
1744
1745        if (journal->j_sb_buffer) {
1746                if (!is_journal_aborted(journal)) {
1747                        mutex_lock_io(&journal->j_checkpoint_mutex);
1748
1749                        write_lock(&journal->j_state_lock);
1750                        journal->j_tail_sequence =
1751                                ++journal->j_transaction_sequence;
1752                        write_unlock(&journal->j_state_lock);
1753
1754                        jbd2_mark_journal_empty(journal,
1755                                        REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1756                        mutex_unlock(&journal->j_checkpoint_mutex);
1757                } else
1758                        err = -EIO;
1759                brelse(journal->j_sb_buffer);
1760        }
1761
1762        if (journal->j_proc_entry)
1763                jbd2_stats_proc_exit(journal);
1764        iput(journal->j_inode);
1765        if (journal->j_revoke)
1766                jbd2_journal_destroy_revoke(journal);
1767        if (journal->j_chksum_driver)
1768                crypto_free_shash(journal->j_chksum_driver);
1769        kfree(journal->j_wbuf);
1770        kfree(journal);
1771
1772        return err;
1773}
1774
1775
1776/**
1777 *int jbd2_journal_check_used_features () - Check if features specified are used.
1778 * @journal: Journal to check.
1779 * @compat: bitmask of compatible features
1780 * @ro: bitmask of features that force read-only mount
1781 * @incompat: bitmask of incompatible features
1782 *
1783 * Check whether the journal uses all of a given set of
1784 * features.  Return true (non-zero) if it does.
1785 **/
1786
1787int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1788                                 unsigned long ro, unsigned long incompat)
1789{
1790        journal_superblock_t *sb;
1791
1792        if (!compat && !ro && !incompat)
1793                return 1;
1794        /* Load journal superblock if it is not loaded yet. */
1795        if (journal->j_format_version == 0 &&
1796            journal_get_superblock(journal) != 0)
1797                return 0;
1798        if (journal->j_format_version == 1)
1799                return 0;
1800
1801        sb = journal->j_superblock;
1802
1803        if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1804            ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1805            ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1806                return 1;
1807
1808        return 0;
1809}
1810
1811/**
1812 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1813 * @journal: Journal to check.
1814 * @compat: bitmask of compatible features
1815 * @ro: bitmask of features that force read-only mount
1816 * @incompat: bitmask of incompatible features
1817 *
1818 * Check whether the journaling code supports the use of
1819 * all of a given set of features on this journal.  Return true
1820 * (non-zero) if it can. */
1821
1822int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1823                                      unsigned long ro, unsigned long incompat)
1824{
1825        if (!compat && !ro && !incompat)
1826                return 1;
1827
1828        /* We can support any known requested features iff the
1829         * superblock is in version 2.  Otherwise we fail to support any
1830         * extended sb features. */
1831
1832        if (journal->j_format_version != 2)
1833                return 0;
1834
1835        if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1836            (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1837            (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1838                return 1;
1839
1840        return 0;
1841}
1842
1843/**
1844 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1845 * @journal: Journal to act on.
1846 * @compat: bitmask of compatible features
1847 * @ro: bitmask of features that force read-only mount
1848 * @incompat: bitmask of incompatible features
1849 *
1850 * Mark a given journal feature as present on the
1851 * superblock.  Returns true if the requested features could be set.
1852 *
1853 */
1854
1855int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1856                          unsigned long ro, unsigned long incompat)
1857{
1858#define INCOMPAT_FEATURE_ON(f) \
1859                ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1860#define COMPAT_FEATURE_ON(f) \
1861                ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1862        journal_superblock_t *sb;
1863
1864        if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1865                return 1;
1866
1867        if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1868                return 0;
1869
1870        /* If enabling v2 checksums, turn on v3 instead */
1871        if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1872                incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1873                incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1874        }
1875
1876        /* Asking for checksumming v3 and v1?  Only give them v3. */
1877        if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1878            compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1879                compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1880
1881        jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1882                  compat, ro, incompat);
1883
1884        sb = journal->j_superblock;
1885
1886        /* Load the checksum driver if necessary */
1887        if ((journal->j_chksum_driver == NULL) &&
1888            INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1889                journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1890                if (IS_ERR(journal->j_chksum_driver)) {
1891                        printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1892                        journal->j_chksum_driver = NULL;
1893                        return 0;
1894                }
1895                /* Precompute checksum seed for all metadata */
1896                journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1897                                                   sizeof(sb->s_uuid));
1898        }
1899
1900        lock_buffer(journal->j_sb_buffer);
1901
1902        /* If enabling v3 checksums, update superblock */
1903        if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1904                sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1905                sb->s_feature_compat &=
1906                        ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1907        }
1908
1909        /* If enabling v1 checksums, downgrade superblock */
1910        if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1911                sb->s_feature_incompat &=
1912                        ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1913                                     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1914
1915        sb->s_feature_compat    |= cpu_to_be32(compat);
1916        sb->s_feature_ro_compat |= cpu_to_be32(ro);
1917        sb->s_feature_incompat  |= cpu_to_be32(incompat);
1918        unlock_buffer(journal->j_sb_buffer);
1919
1920        return 1;
1921#undef COMPAT_FEATURE_ON
1922#undef INCOMPAT_FEATURE_ON
1923}
1924
1925/*
1926 * jbd2_journal_clear_features () - Clear a given journal feature in the
1927 *                                  superblock
1928 * @journal: Journal to act on.
1929 * @compat: bitmask of compatible features
1930 * @ro: bitmask of features that force read-only mount
1931 * @incompat: bitmask of incompatible features
1932 *
1933 * Clear a given journal feature as present on the
1934 * superblock.
1935 */
1936void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1937                                unsigned long ro, unsigned long incompat)
1938{
1939        journal_superblock_t *sb;
1940
1941        jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1942                  compat, ro, incompat);
1943
1944        sb = journal->j_superblock;
1945
1946        sb->s_feature_compat    &= ~cpu_to_be32(compat);
1947        sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1948        sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1949}
1950EXPORT_SYMBOL(jbd2_journal_clear_features);
1951
1952/**
1953 * int jbd2_journal_flush () - Flush journal
1954 * @journal: Journal to act on.
1955 *
1956 * Flush all data for a given journal to disk and empty the journal.
1957 * Filesystems can use this when remounting readonly to ensure that
1958 * recovery does not need to happen on remount.
1959 */
1960
1961int jbd2_journal_flush(journal_t *journal)
1962{
1963        int err = 0;
1964        transaction_t *transaction = NULL;
1965
1966        write_lock(&journal->j_state_lock);
1967
1968        /* Force everything buffered to the log... */
1969        if (journal->j_running_transaction) {
1970                transaction = journal->j_running_transaction;
1971                __jbd2_log_start_commit(journal, transaction->t_tid);
1972        } else if (journal->j_committing_transaction)
1973                transaction = journal->j_committing_transaction;
1974
1975        /* Wait for the log commit to complete... */
1976        if (transaction) {
1977                tid_t tid = transaction->t_tid;
1978
1979                write_unlock(&journal->j_state_lock);
1980                jbd2_log_wait_commit(journal, tid);
1981        } else {
1982                write_unlock(&journal->j_state_lock);
1983        }
1984
1985        /* ...and flush everything in the log out to disk. */
1986        spin_lock(&journal->j_list_lock);
1987        while (!err && journal->j_checkpoint_transactions != NULL) {
1988                spin_unlock(&journal->j_list_lock);
1989                mutex_lock_io(&journal->j_checkpoint_mutex);
1990                err = jbd2_log_do_checkpoint(journal);
1991                mutex_unlock(&journal->j_checkpoint_mutex);
1992                spin_lock(&journal->j_list_lock);
1993        }
1994        spin_unlock(&journal->j_list_lock);
1995
1996        if (is_journal_aborted(journal))
1997                return -EIO;
1998
1999        mutex_lock_io(&journal->j_checkpoint_mutex);
2000        if (!err) {
2001                err = jbd2_cleanup_journal_tail(journal);
2002                if (err < 0) {
2003                        mutex_unlock(&journal->j_checkpoint_mutex);
2004                        goto out;
2005                }
2006                err = 0;
2007        }
2008
2009        /* Finally, mark the journal as really needing no recovery.
2010         * This sets s_start==0 in the underlying superblock, which is
2011         * the magic code for a fully-recovered superblock.  Any future
2012         * commits of data to the journal will restore the current
2013         * s_start value. */
2014        jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2015        mutex_unlock(&journal->j_checkpoint_mutex);
2016        write_lock(&journal->j_state_lock);
2017        J_ASSERT(!journal->j_running_transaction);
2018        J_ASSERT(!journal->j_committing_transaction);
2019        J_ASSERT(!journal->j_checkpoint_transactions);
2020        J_ASSERT(journal->j_head == journal->j_tail);
2021        J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2022        write_unlock(&journal->j_state_lock);
2023out:
2024        return err;
2025}
2026
2027/**
2028 * int jbd2_journal_wipe() - Wipe journal contents
2029 * @journal: Journal to act on.
2030 * @write: flag (see below)
2031 *
2032 * Wipe out all of the contents of a journal, safely.  This will produce
2033 * a warning if the journal contains any valid recovery information.
2034 * Must be called between journal_init_*() and jbd2_journal_load().
2035 *
2036 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2037 * we merely suppress recovery.
2038 */
2039
2040int jbd2_journal_wipe(journal_t *journal, int write)
2041{
2042        int err = 0;
2043
2044        J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2045
2046        err = load_superblock(journal);
2047        if (err)
2048                return err;
2049
2050        if (!journal->j_tail)
2051                goto no_recovery;
2052
2053        printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2054                write ? "Clearing" : "Ignoring");
2055
2056        err = jbd2_journal_skip_recovery(journal);
2057        if (write) {
2058                /* Lock to make assertions happy... */
2059                mutex_lock_io(&journal->j_checkpoint_mutex);
2060                jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2061                mutex_unlock(&journal->j_checkpoint_mutex);
2062        }
2063
2064 no_recovery:
2065        return err;
2066}
2067
2068/*
2069 * Journal abort has very specific semantics, which we describe
2070 * for journal abort.
2071 *
2072 * Two internal functions, which provide abort to the jbd layer
2073 * itself are here.
2074 */
2075
2076/*
2077 * Quick version for internal journal use (doesn't lock the journal).
2078 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2079 * and don't attempt to make any other journal updates.
2080 */
2081void __jbd2_journal_abort_hard(journal_t *journal)
2082{
2083        transaction_t *transaction;
2084
2085        if (journal->j_flags & JBD2_ABORT)
2086                return;
2087
2088        printk(KERN_ERR "Aborting journal on device %s.\n",
2089               journal->j_devname);
2090
2091        write_lock(&journal->j_state_lock);
2092        journal->j_flags |= JBD2_ABORT;
2093        transaction = journal->j_running_transaction;
2094        if (transaction)
2095                __jbd2_log_start_commit(journal, transaction->t_tid);
2096        write_unlock(&journal->j_state_lock);
2097}
2098
2099/* Soft abort: record the abort error status in the journal superblock,
2100 * but don't do any other IO. */
2101static void __journal_abort_soft (journal_t *journal, int errno)
2102{
2103        int old_errno;
2104
2105        write_lock(&journal->j_state_lock);
2106        old_errno = journal->j_errno;
2107        if (!journal->j_errno || errno == -ESHUTDOWN)
2108                journal->j_errno = errno;
2109
2110        if (journal->j_flags & JBD2_ABORT) {
2111                write_unlock(&journal->j_state_lock);
2112                if (!old_errno && old_errno != -ESHUTDOWN &&
2113                    errno == -ESHUTDOWN)
2114                        jbd2_journal_update_sb_errno(journal);
2115                return;
2116        }
2117        write_unlock(&journal->j_state_lock);
2118
2119        __jbd2_journal_abort_hard(journal);
2120
2121        if (errno) {
2122                jbd2_journal_update_sb_errno(journal);
2123                write_lock(&journal->j_state_lock);
2124                journal->j_flags |= JBD2_REC_ERR;
2125                write_unlock(&journal->j_state_lock);
2126        }
2127}
2128
2129/**
2130 * void jbd2_journal_abort () - Shutdown the journal immediately.
2131 * @journal: the journal to shutdown.
2132 * @errno:   an error number to record in the journal indicating
2133 *           the reason for the shutdown.
2134 *
2135 * Perform a complete, immediate shutdown of the ENTIRE
2136 * journal (not of a single transaction).  This operation cannot be
2137 * undone without closing and reopening the journal.
2138 *
2139 * The jbd2_journal_abort function is intended to support higher level error
2140 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2141 * mode.
2142 *
2143 * Journal abort has very specific semantics.  Any existing dirty,
2144 * unjournaled buffers in the main filesystem will still be written to
2145 * disk by bdflush, but the journaling mechanism will be suspended
2146 * immediately and no further transaction commits will be honoured.
2147 *
2148 * Any dirty, journaled buffers will be written back to disk without
2149 * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2150 * filesystem, but we _do_ attempt to leave as much data as possible
2151 * behind for fsck to use for cleanup.
2152 *
2153 * Any attempt to get a new transaction handle on a journal which is in
2154 * ABORT state will just result in an -EROFS error return.  A
2155 * jbd2_journal_stop on an existing handle will return -EIO if we have
2156 * entered abort state during the update.
2157 *
2158 * Recursive transactions are not disturbed by journal abort until the
2159 * final jbd2_journal_stop, which will receive the -EIO error.
2160 *
2161 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2162 * which will be recorded (if possible) in the journal superblock.  This
2163 * allows a client to record failure conditions in the middle of a
2164 * transaction without having to complete the transaction to record the
2165 * failure to disk.  ext3_error, for example, now uses this
2166 * functionality.
2167 *
2168 * Errors which originate from within the journaling layer will NOT
2169 * supply an errno; a null errno implies that absolutely no further
2170 * writes are done to the journal (unless there are any already in
2171 * progress).
2172 *
2173 */
2174
2175void jbd2_journal_abort(journal_t *journal, int errno)
2176{
2177        __journal_abort_soft(journal, errno);
2178}
2179
2180/**
2181 * int jbd2_journal_errno () - returns the journal's error state.
2182 * @journal: journal to examine.
2183 *
2184 * This is the errno number set with jbd2_journal_abort(), the last
2185 * time the journal was mounted - if the journal was stopped
2186 * without calling abort this will be 0.
2187 *
2188 * If the journal has been aborted on this mount time -EROFS will
2189 * be returned.
2190 */
2191int jbd2_journal_errno(journal_t *journal)
2192{
2193        int err;
2194
2195        read_lock(&journal->j_state_lock);
2196        if (journal->j_flags & JBD2_ABORT)
2197                err = -EROFS;
2198        else
2199                err = journal->j_errno;
2200        read_unlock(&journal->j_state_lock);
2201        return err;
2202}
2203
2204/**
2205 * int jbd2_journal_clear_err () - clears the journal's error state
2206 * @journal: journal to act on.
2207 *
2208 * An error must be cleared or acked to take a FS out of readonly
2209 * mode.
2210 */
2211int jbd2_journal_clear_err(journal_t *journal)
2212{
2213        int err = 0;
2214
2215        write_lock(&journal->j_state_lock);
2216        if (journal->j_flags & JBD2_ABORT)
2217                err = -EROFS;
2218        else
2219                journal->j_errno = 0;
2220        write_unlock(&journal->j_state_lock);
2221        return err;
2222}
2223
2224/**
2225 * void jbd2_journal_ack_err() - Ack journal err.
2226 * @journal: journal to act on.
2227 *
2228 * An error must be cleared or acked to take a FS out of readonly
2229 * mode.
2230 */
2231void jbd2_journal_ack_err(journal_t *journal)
2232{
2233        write_lock(&journal->j_state_lock);
2234        if (journal->j_errno)
2235                journal->j_flags |= JBD2_ACK_ERR;
2236        write_unlock(&journal->j_state_lock);
2237}
2238
2239int jbd2_journal_blocks_per_page(struct inode *inode)
2240{
2241        return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2242}
2243
2244/*
2245 * helper functions to deal with 32 or 64bit block numbers.
2246 */
2247size_t journal_tag_bytes(journal_t *journal)
2248{
2249        size_t sz;
2250
2251        if (jbd2_has_feature_csum3(journal))
2252                return sizeof(journal_block_tag3_t);
2253
2254        sz = sizeof(journal_block_tag_t);
2255
2256        if (jbd2_has_feature_csum2(journal))
2257                sz += sizeof(__u16);
2258
2259        if (jbd2_has_feature_64bit(journal))
2260                return sz;
2261        else
2262                return sz - sizeof(__u32);
2263}
2264
2265/*
2266 * JBD memory management
2267 *
2268 * These functions are used to allocate block-sized chunks of memory
2269 * used for making copies of buffer_head data.  Very often it will be
2270 * page-sized chunks of data, but sometimes it will be in
2271 * sub-page-size chunks.  (For example, 16k pages on Power systems
2272 * with a 4k block file system.)  For blocks smaller than a page, we
2273 * use a SLAB allocator.  There are slab caches for each block size,
2274 * which are allocated at mount time, if necessary, and we only free
2275 * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2276 * this reason we don't need to a mutex to protect access to
2277 * jbd2_slab[] allocating or releasing memory; only in
2278 * jbd2_journal_create_slab().
2279 */
2280#define JBD2_MAX_SLABS 8
2281static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2282
2283static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2284        "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2285        "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2286};
2287
2288
2289static void jbd2_journal_destroy_slabs(void)
2290{
2291        int i;
2292
2293        for (i = 0; i < JBD2_MAX_SLABS; i++) {
2294                kmem_cache_destroy(jbd2_slab[i]);
2295                jbd2_slab[i] = NULL;
2296        }
2297}
2298
2299static int jbd2_journal_create_slab(size_t size)
2300{
2301        static DEFINE_MUTEX(jbd2_slab_create_mutex);
2302        int i = order_base_2(size) - 10;
2303        size_t slab_size;
2304
2305        if (size == PAGE_SIZE)
2306                return 0;
2307
2308        if (i >= JBD2_MAX_SLABS)
2309                return -EINVAL;
2310
2311        if (unlikely(i < 0))
2312                i = 0;
2313        mutex_lock(&jbd2_slab_create_mutex);
2314        if (jbd2_slab[i]) {
2315                mutex_unlock(&jbd2_slab_create_mutex);
2316                return 0;       /* Already created */
2317        }
2318
2319        slab_size = 1 << (i+10);
2320        jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2321                                         slab_size, 0, NULL);
2322        mutex_unlock(&jbd2_slab_create_mutex);
2323        if (!jbd2_slab[i]) {
2324                printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2325                return -ENOMEM;
2326        }
2327        return 0;
2328}
2329
2330static struct kmem_cache *get_slab(size_t size)
2331{
2332        int i = order_base_2(size) - 10;
2333
2334        BUG_ON(i >= JBD2_MAX_SLABS);
2335        if (unlikely(i < 0))
2336                i = 0;
2337        BUG_ON(jbd2_slab[i] == NULL);
2338        return jbd2_slab[i];
2339}
2340
2341void *jbd2_alloc(size_t size, gfp_t flags)
2342{
2343        void *ptr;
2344
2345        BUG_ON(size & (size-1)); /* Must be a power of 2 */
2346
2347        if (size < PAGE_SIZE)
2348                ptr = kmem_cache_alloc(get_slab(size), flags);
2349        else
2350                ptr = (void *)__get_free_pages(flags, get_order(size));
2351
2352        /* Check alignment; SLUB has gotten this wrong in the past,
2353         * and this can lead to user data corruption! */
2354        BUG_ON(((unsigned long) ptr) & (size-1));
2355
2356        return ptr;
2357}
2358
2359void jbd2_free(void *ptr, size_t size)
2360{
2361        if (size < PAGE_SIZE)
2362                kmem_cache_free(get_slab(size), ptr);
2363        else
2364                free_pages((unsigned long)ptr, get_order(size));
2365};
2366
2367/*
2368 * Journal_head storage management
2369 */
2370static struct kmem_cache *jbd2_journal_head_cache;
2371#ifdef CONFIG_JBD2_DEBUG
2372static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2373#endif
2374
2375static int __init jbd2_journal_init_journal_head_cache(void)
2376{
2377        J_ASSERT(!jbd2_journal_head_cache);
2378        jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2379                                sizeof(struct journal_head),
2380                                0,              /* offset */
2381                                SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2382                                NULL);          /* ctor */
2383        if (!jbd2_journal_head_cache) {
2384                printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2385                return -ENOMEM;
2386        }
2387        return 0;
2388}
2389
2390static void jbd2_journal_destroy_journal_head_cache(void)
2391{
2392        kmem_cache_destroy(jbd2_journal_head_cache);
2393        jbd2_journal_head_cache = NULL;
2394}
2395
2396/*
2397 * journal_head splicing and dicing
2398 */
2399static struct journal_head *journal_alloc_journal_head(void)
2400{
2401        struct journal_head *ret;
2402
2403#ifdef CONFIG_JBD2_DEBUG
2404        atomic_inc(&nr_journal_heads);
2405#endif
2406        ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2407        if (!ret) {
2408                jbd_debug(1, "out of memory for journal_head\n");
2409                pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2410                ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2411                                GFP_NOFS | __GFP_NOFAIL);
2412        }
2413        return ret;
2414}
2415
2416static void journal_free_journal_head(struct journal_head *jh)
2417{
2418#ifdef CONFIG_JBD2_DEBUG
2419        atomic_dec(&nr_journal_heads);
2420        memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2421#endif
2422        kmem_cache_free(jbd2_journal_head_cache, jh);
2423}
2424
2425/*
2426 * A journal_head is attached to a buffer_head whenever JBD has an
2427 * interest in the buffer.
2428 *
2429 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2430 * is set.  This bit is tested in core kernel code where we need to take
2431 * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2432 * there.
2433 *
2434 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2435 *
2436 * When a buffer has its BH_JBD bit set it is immune from being released by
2437 * core kernel code, mainly via ->b_count.
2438 *
2439 * A journal_head is detached from its buffer_head when the journal_head's
2440 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2441 * transaction (b_cp_transaction) hold their references to b_jcount.
2442 *
2443 * Various places in the kernel want to attach a journal_head to a buffer_head
2444 * _before_ attaching the journal_head to a transaction.  To protect the
2445 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2446 * journal_head's b_jcount refcount by one.  The caller must call
2447 * jbd2_journal_put_journal_head() to undo this.
2448 *
2449 * So the typical usage would be:
2450 *
2451 *      (Attach a journal_head if needed.  Increments b_jcount)
2452 *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2453 *      ...
2454 *      (Get another reference for transaction)
2455 *      jbd2_journal_grab_journal_head(bh);
2456 *      jh->b_transaction = xxx;
2457 *      (Put original reference)
2458 *      jbd2_journal_put_journal_head(jh);
2459 */
2460
2461/*
2462 * Give a buffer_head a journal_head.
2463 *
2464 * May sleep.
2465 */
2466struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2467{
2468        struct journal_head *jh;
2469        struct journal_head *new_jh = NULL;
2470
2471repeat:
2472        if (!buffer_jbd(bh))
2473                new_jh = journal_alloc_journal_head();
2474
2475        jbd_lock_bh_journal_head(bh);
2476        if (buffer_jbd(bh)) {
2477                jh = bh2jh(bh);
2478        } else {
2479                J_ASSERT_BH(bh,
2480                        (atomic_read(&bh->b_count) > 0) ||
2481                        (bh->b_page && bh->b_page->mapping));
2482
2483                if (!new_jh) {
2484                        jbd_unlock_bh_journal_head(bh);
2485                        goto repeat;
2486                }
2487
2488                jh = new_jh;
2489                new_jh = NULL;          /* We consumed it */
2490                set_buffer_jbd(bh);
2491                bh->b_private = jh;
2492                jh->b_bh = bh;
2493                get_bh(bh);
2494                BUFFER_TRACE(bh, "added journal_head");
2495        }
2496        jh->b_jcount++;
2497        jbd_unlock_bh_journal_head(bh);
2498        if (new_jh)
2499                journal_free_journal_head(new_jh);
2500        return bh->b_private;
2501}
2502
2503/*
2504 * Grab a ref against this buffer_head's journal_head.  If it ended up not
2505 * having a journal_head, return NULL
2506 */
2507struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2508{
2509        struct journal_head *jh = NULL;
2510
2511        jbd_lock_bh_journal_head(bh);
2512        if (buffer_jbd(bh)) {
2513                jh = bh2jh(bh);
2514                jh->b_jcount++;
2515        }
2516        jbd_unlock_bh_journal_head(bh);
2517        return jh;
2518}
2519
2520static void __journal_remove_journal_head(struct buffer_head *bh)
2521{
2522        struct journal_head *jh = bh2jh(bh);
2523
2524        J_ASSERT_JH(jh, jh->b_jcount >= 0);
2525        J_ASSERT_JH(jh, jh->b_transaction == NULL);
2526        J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2527        J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2528        J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2529        J_ASSERT_BH(bh, buffer_jbd(bh));
2530        J_ASSERT_BH(bh, jh2bh(jh) == bh);
2531        BUFFER_TRACE(bh, "remove journal_head");
2532        if (jh->b_frozen_data) {
2533                printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2534                jbd2_free(jh->b_frozen_data, bh->b_size);
2535        }
2536        if (jh->b_committed_data) {
2537                printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2538                jbd2_free(jh->b_committed_data, bh->b_size);
2539        }
2540        bh->b_private = NULL;
2541        jh->b_bh = NULL;        /* debug, really */
2542        clear_buffer_jbd(bh);
2543        journal_free_journal_head(jh);
2544}
2545
2546/*
2547 * Drop a reference on the passed journal_head.  If it fell to zero then
2548 * release the journal_head from the buffer_head.
2549 */
2550void jbd2_journal_put_journal_head(struct journal_head *jh)
2551{
2552        struct buffer_head *bh = jh2bh(jh);
2553
2554        jbd_lock_bh_journal_head(bh);
2555        J_ASSERT_JH(jh, jh->b_jcount > 0);
2556        --jh->b_jcount;
2557        if (!jh->b_jcount) {
2558                __journal_remove_journal_head(bh);
2559                jbd_unlock_bh_journal_head(bh);
2560                __brelse(bh);
2561        } else
2562                jbd_unlock_bh_journal_head(bh);
2563}
2564
2565/*
2566 * Initialize jbd inode head
2567 */
2568void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2569{
2570        jinode->i_transaction = NULL;
2571        jinode->i_next_transaction = NULL;
2572        jinode->i_vfs_inode = inode;
2573        jinode->i_flags = 0;
2574        jinode->i_dirty_start = 0;
2575        jinode->i_dirty_end = 0;
2576        INIT_LIST_HEAD(&jinode->i_list);
2577}
2578
2579/*
2580 * Function to be called before we start removing inode from memory (i.e.,
2581 * clear_inode() is a fine place to be called from). It removes inode from
2582 * transaction's lists.
2583 */
2584void jbd2_journal_release_jbd_inode(journal_t *journal,
2585                                    struct jbd2_inode *jinode)
2586{
2587        if (!journal)
2588                return;
2589restart:
2590        spin_lock(&journal->j_list_lock);
2591        /* Is commit writing out inode - we have to wait */
2592        if (jinode->i_flags & JI_COMMIT_RUNNING) {
2593                wait_queue_head_t *wq;
2594                DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2595                wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2596                prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2597                spin_unlock(&journal->j_list_lock);
2598                schedule();
2599                finish_wait(wq, &wait.wq_entry);
2600                goto restart;
2601        }
2602
2603        if (jinode->i_transaction) {
2604                list_del(&jinode->i_list);
2605                jinode->i_transaction = NULL;
2606        }
2607        spin_unlock(&journal->j_list_lock);
2608}
2609
2610
2611#ifdef CONFIG_PROC_FS
2612
2613#define JBD2_STATS_PROC_NAME "fs/jbd2"
2614
2615static void __init jbd2_create_jbd_stats_proc_entry(void)
2616{
2617        proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2618}
2619
2620static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2621{
2622        if (proc_jbd2_stats)
2623                remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2624}
2625
2626#else
2627
2628#define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2629#define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2630
2631#endif
2632
2633struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2634
2635static int __init jbd2_journal_init_inode_cache(void)
2636{
2637        J_ASSERT(!jbd2_inode_cache);
2638        jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2639        if (!jbd2_inode_cache) {
2640                pr_emerg("JBD2: failed to create inode cache\n");
2641                return -ENOMEM;
2642        }
2643        return 0;
2644}
2645
2646static int __init jbd2_journal_init_handle_cache(void)
2647{
2648        J_ASSERT(!jbd2_handle_cache);
2649        jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2650        if (!jbd2_handle_cache) {
2651                printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2652                return -ENOMEM;
2653        }
2654        return 0;
2655}
2656
2657static void jbd2_journal_destroy_inode_cache(void)
2658{
2659        kmem_cache_destroy(jbd2_inode_cache);
2660        jbd2_inode_cache = NULL;
2661}
2662
2663static void jbd2_journal_destroy_handle_cache(void)
2664{
2665        kmem_cache_destroy(jbd2_handle_cache);
2666        jbd2_handle_cache = NULL;
2667}
2668
2669/*
2670 * Module startup and shutdown
2671 */
2672
2673static int __init journal_init_caches(void)
2674{
2675        int ret;
2676
2677        ret = jbd2_journal_init_revoke_record_cache();
2678        if (ret == 0)
2679                ret = jbd2_journal_init_revoke_table_cache();
2680        if (ret == 0)
2681                ret = jbd2_journal_init_journal_head_cache();
2682        if (ret == 0)
2683                ret = jbd2_journal_init_handle_cache();
2684        if (ret == 0)
2685                ret = jbd2_journal_init_inode_cache();
2686        if (ret == 0)
2687                ret = jbd2_journal_init_transaction_cache();
2688        return ret;
2689}
2690
2691static void jbd2_journal_destroy_caches(void)
2692{
2693        jbd2_journal_destroy_revoke_record_cache();
2694        jbd2_journal_destroy_revoke_table_cache();
2695        jbd2_journal_destroy_journal_head_cache();
2696        jbd2_journal_destroy_handle_cache();
2697        jbd2_journal_destroy_inode_cache();
2698        jbd2_journal_destroy_transaction_cache();
2699        jbd2_journal_destroy_slabs();
2700}
2701
2702static int __init journal_init(void)
2703{
2704        int ret;
2705
2706        BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2707
2708        ret = journal_init_caches();
2709        if (ret == 0) {
2710                jbd2_create_jbd_stats_proc_entry();
2711        } else {
2712                jbd2_journal_destroy_caches();
2713        }
2714        return ret;
2715}
2716
2717static void __exit journal_exit(void)
2718{
2719#ifdef CONFIG_JBD2_DEBUG
2720        int n = atomic_read(&nr_journal_heads);
2721        if (n)
2722                printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2723#endif
2724        jbd2_remove_jbd_stats_proc_entry();
2725        jbd2_journal_destroy_caches();
2726}
2727
2728MODULE_LICENSE("GPL");
2729module_init(journal_init);
2730module_exit(journal_exit);
2731
2732