linux/fs/ocfs2/aops.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* -*- mode: c; c-basic-offset: 8; -*-
   3 * vim: noexpandtab sw=8 ts=8 sts=0:
   4 *
   5 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
   6 */
   7
   8#include <linux/fs.h>
   9#include <linux/slab.h>
  10#include <linux/highmem.h>
  11#include <linux/pagemap.h>
  12#include <asm/byteorder.h>
  13#include <linux/swap.h>
  14#include <linux/pipe_fs_i.h>
  15#include <linux/mpage.h>
  16#include <linux/quotaops.h>
  17#include <linux/blkdev.h>
  18#include <linux/uio.h>
  19#include <linux/mm.h>
  20
  21#include <cluster/masklog.h>
  22
  23#include "ocfs2.h"
  24
  25#include "alloc.h"
  26#include "aops.h"
  27#include "dlmglue.h"
  28#include "extent_map.h"
  29#include "file.h"
  30#include "inode.h"
  31#include "journal.h"
  32#include "suballoc.h"
  33#include "super.h"
  34#include "symlink.h"
  35#include "refcounttree.h"
  36#include "ocfs2_trace.h"
  37
  38#include "buffer_head_io.h"
  39#include "dir.h"
  40#include "namei.h"
  41#include "sysfile.h"
  42
  43static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
  44                                   struct buffer_head *bh_result, int create)
  45{
  46        int err = -EIO;
  47        int status;
  48        struct ocfs2_dinode *fe = NULL;
  49        struct buffer_head *bh = NULL;
  50        struct buffer_head *buffer_cache_bh = NULL;
  51        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  52        void *kaddr;
  53
  54        trace_ocfs2_symlink_get_block(
  55                        (unsigned long long)OCFS2_I(inode)->ip_blkno,
  56                        (unsigned long long)iblock, bh_result, create);
  57
  58        BUG_ON(ocfs2_inode_is_fast_symlink(inode));
  59
  60        if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
  61                mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
  62                     (unsigned long long)iblock);
  63                goto bail;
  64        }
  65
  66        status = ocfs2_read_inode_block(inode, &bh);
  67        if (status < 0) {
  68                mlog_errno(status);
  69                goto bail;
  70        }
  71        fe = (struct ocfs2_dinode *) bh->b_data;
  72
  73        if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
  74                                                    le32_to_cpu(fe->i_clusters))) {
  75                err = -ENOMEM;
  76                mlog(ML_ERROR, "block offset is outside the allocated size: "
  77                     "%llu\n", (unsigned long long)iblock);
  78                goto bail;
  79        }
  80
  81        /* We don't use the page cache to create symlink data, so if
  82         * need be, copy it over from the buffer cache. */
  83        if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
  84                u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
  85                            iblock;
  86                buffer_cache_bh = sb_getblk(osb->sb, blkno);
  87                if (!buffer_cache_bh) {
  88                        err = -ENOMEM;
  89                        mlog(ML_ERROR, "couldn't getblock for symlink!\n");
  90                        goto bail;
  91                }
  92
  93                /* we haven't locked out transactions, so a commit
  94                 * could've happened. Since we've got a reference on
  95                 * the bh, even if it commits while we're doing the
  96                 * copy, the data is still good. */
  97                if (buffer_jbd(buffer_cache_bh)
  98                    && ocfs2_inode_is_new(inode)) {
  99                        kaddr = kmap_atomic(bh_result->b_page);
 100                        if (!kaddr) {
 101                                mlog(ML_ERROR, "couldn't kmap!\n");
 102                                goto bail;
 103                        }
 104                        memcpy(kaddr + (bh_result->b_size * iblock),
 105                               buffer_cache_bh->b_data,
 106                               bh_result->b_size);
 107                        kunmap_atomic(kaddr);
 108                        set_buffer_uptodate(bh_result);
 109                }
 110                brelse(buffer_cache_bh);
 111        }
 112
 113        map_bh(bh_result, inode->i_sb,
 114               le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
 115
 116        err = 0;
 117
 118bail:
 119        brelse(bh);
 120
 121        return err;
 122}
 123
 124static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
 125                    struct buffer_head *bh_result, int create)
 126{
 127        int ret = 0;
 128        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 129
 130        down_read(&oi->ip_alloc_sem);
 131        ret = ocfs2_get_block(inode, iblock, bh_result, create);
 132        up_read(&oi->ip_alloc_sem);
 133
 134        return ret;
 135}
 136
 137int ocfs2_get_block(struct inode *inode, sector_t iblock,
 138                    struct buffer_head *bh_result, int create)
 139{
 140        int err = 0;
 141        unsigned int ext_flags;
 142        u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
 143        u64 p_blkno, count, past_eof;
 144        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 145
 146        trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
 147                              (unsigned long long)iblock, bh_result, create);
 148
 149        if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
 150                mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
 151                     inode, inode->i_ino);
 152
 153        if (S_ISLNK(inode->i_mode)) {
 154                /* this always does I/O for some reason. */
 155                err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
 156                goto bail;
 157        }
 158
 159        err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
 160                                          &ext_flags);
 161        if (err) {
 162                mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
 163                     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
 164                     (unsigned long long)p_blkno);
 165                goto bail;
 166        }
 167
 168        if (max_blocks < count)
 169                count = max_blocks;
 170
 171        /*
 172         * ocfs2 never allocates in this function - the only time we
 173         * need to use BH_New is when we're extending i_size on a file
 174         * system which doesn't support holes, in which case BH_New
 175         * allows __block_write_begin() to zero.
 176         *
 177         * If we see this on a sparse file system, then a truncate has
 178         * raced us and removed the cluster. In this case, we clear
 179         * the buffers dirty and uptodate bits and let the buffer code
 180         * ignore it as a hole.
 181         */
 182        if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
 183                clear_buffer_dirty(bh_result);
 184                clear_buffer_uptodate(bh_result);
 185                goto bail;
 186        }
 187
 188        /* Treat the unwritten extent as a hole for zeroing purposes. */
 189        if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 190                map_bh(bh_result, inode->i_sb, p_blkno);
 191
 192        bh_result->b_size = count << inode->i_blkbits;
 193
 194        if (!ocfs2_sparse_alloc(osb)) {
 195                if (p_blkno == 0) {
 196                        err = -EIO;
 197                        mlog(ML_ERROR,
 198                             "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
 199                             (unsigned long long)iblock,
 200                             (unsigned long long)p_blkno,
 201                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
 202                        mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
 203                        dump_stack();
 204                        goto bail;
 205                }
 206        }
 207
 208        past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 209
 210        trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
 211                                  (unsigned long long)past_eof);
 212        if (create && (iblock >= past_eof))
 213                set_buffer_new(bh_result);
 214
 215bail:
 216        if (err < 0)
 217                err = -EIO;
 218
 219        return err;
 220}
 221
 222int ocfs2_read_inline_data(struct inode *inode, struct page *page,
 223                           struct buffer_head *di_bh)
 224{
 225        void *kaddr;
 226        loff_t size;
 227        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
 228
 229        if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
 230                ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
 231                            (unsigned long long)OCFS2_I(inode)->ip_blkno);
 232                return -EROFS;
 233        }
 234
 235        size = i_size_read(inode);
 236
 237        if (size > PAGE_SIZE ||
 238            size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
 239                ocfs2_error(inode->i_sb,
 240                            "Inode %llu has with inline data has bad size: %Lu\n",
 241                            (unsigned long long)OCFS2_I(inode)->ip_blkno,
 242                            (unsigned long long)size);
 243                return -EROFS;
 244        }
 245
 246        kaddr = kmap_atomic(page);
 247        if (size)
 248                memcpy(kaddr, di->id2.i_data.id_data, size);
 249        /* Clear the remaining part of the page */
 250        memset(kaddr + size, 0, PAGE_SIZE - size);
 251        flush_dcache_page(page);
 252        kunmap_atomic(kaddr);
 253
 254        SetPageUptodate(page);
 255
 256        return 0;
 257}
 258
 259static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
 260{
 261        int ret;
 262        struct buffer_head *di_bh = NULL;
 263
 264        BUG_ON(!PageLocked(page));
 265        BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
 266
 267        ret = ocfs2_read_inode_block(inode, &di_bh);
 268        if (ret) {
 269                mlog_errno(ret);
 270                goto out;
 271        }
 272
 273        ret = ocfs2_read_inline_data(inode, page, di_bh);
 274out:
 275        unlock_page(page);
 276
 277        brelse(di_bh);
 278        return ret;
 279}
 280
 281static int ocfs2_readpage(struct file *file, struct page *page)
 282{
 283        struct inode *inode = page->mapping->host;
 284        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 285        loff_t start = (loff_t)page->index << PAGE_SHIFT;
 286        int ret, unlock = 1;
 287
 288        trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
 289                             (page ? page->index : 0));
 290
 291        ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
 292        if (ret != 0) {
 293                if (ret == AOP_TRUNCATED_PAGE)
 294                        unlock = 0;
 295                mlog_errno(ret);
 296                goto out;
 297        }
 298
 299        if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 300                /*
 301                 * Unlock the page and cycle ip_alloc_sem so that we don't
 302                 * busyloop waiting for ip_alloc_sem to unlock
 303                 */
 304                ret = AOP_TRUNCATED_PAGE;
 305                unlock_page(page);
 306                unlock = 0;
 307                down_read(&oi->ip_alloc_sem);
 308                up_read(&oi->ip_alloc_sem);
 309                goto out_inode_unlock;
 310        }
 311
 312        /*
 313         * i_size might have just been updated as we grabed the meta lock.  We
 314         * might now be discovering a truncate that hit on another node.
 315         * block_read_full_page->get_block freaks out if it is asked to read
 316         * beyond the end of a file, so we check here.  Callers
 317         * (generic_file_read, vm_ops->fault) are clever enough to check i_size
 318         * and notice that the page they just read isn't needed.
 319         *
 320         * XXX sys_readahead() seems to get that wrong?
 321         */
 322        if (start >= i_size_read(inode)) {
 323                zero_user(page, 0, PAGE_SIZE);
 324                SetPageUptodate(page);
 325                ret = 0;
 326                goto out_alloc;
 327        }
 328
 329        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 330                ret = ocfs2_readpage_inline(inode, page);
 331        else
 332                ret = block_read_full_page(page, ocfs2_get_block);
 333        unlock = 0;
 334
 335out_alloc:
 336        up_read(&oi->ip_alloc_sem);
 337out_inode_unlock:
 338        ocfs2_inode_unlock(inode, 0);
 339out:
 340        if (unlock)
 341                unlock_page(page);
 342        return ret;
 343}
 344
 345/*
 346 * This is used only for read-ahead. Failures or difficult to handle
 347 * situations are safe to ignore.
 348 *
 349 * Right now, we don't bother with BH_Boundary - in-inode extent lists
 350 * are quite large (243 extents on 4k blocks), so most inodes don't
 351 * grow out to a tree. If need be, detecting boundary extents could
 352 * trivially be added in a future version of ocfs2_get_block().
 353 */
 354static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
 355                           struct list_head *pages, unsigned nr_pages)
 356{
 357        int ret, err = -EIO;
 358        struct inode *inode = mapping->host;
 359        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 360        loff_t start;
 361        struct page *last;
 362
 363        /*
 364         * Use the nonblocking flag for the dlm code to avoid page
 365         * lock inversion, but don't bother with retrying.
 366         */
 367        ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
 368        if (ret)
 369                return err;
 370
 371        if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 372                ocfs2_inode_unlock(inode, 0);
 373                return err;
 374        }
 375
 376        /*
 377         * Don't bother with inline-data. There isn't anything
 378         * to read-ahead in that case anyway...
 379         */
 380        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 381                goto out_unlock;
 382
 383        /*
 384         * Check whether a remote node truncated this file - we just
 385         * drop out in that case as it's not worth handling here.
 386         */
 387        last = lru_to_page(pages);
 388        start = (loff_t)last->index << PAGE_SHIFT;
 389        if (start >= i_size_read(inode))
 390                goto out_unlock;
 391
 392        err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
 393
 394out_unlock:
 395        up_read(&oi->ip_alloc_sem);
 396        ocfs2_inode_unlock(inode, 0);
 397
 398        return err;
 399}
 400
 401/* Note: Because we don't support holes, our allocation has
 402 * already happened (allocation writes zeros to the file data)
 403 * so we don't have to worry about ordered writes in
 404 * ocfs2_writepage.
 405 *
 406 * ->writepage is called during the process of invalidating the page cache
 407 * during blocked lock processing.  It can't block on any cluster locks
 408 * to during block mapping.  It's relying on the fact that the block
 409 * mapping can't have disappeared under the dirty pages that it is
 410 * being asked to write back.
 411 */
 412static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
 413{
 414        trace_ocfs2_writepage(
 415                (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
 416                page->index);
 417
 418        return block_write_full_page(page, ocfs2_get_block, wbc);
 419}
 420
 421/* Taken from ext3. We don't necessarily need the full blown
 422 * functionality yet, but IMHO it's better to cut and paste the whole
 423 * thing so we can avoid introducing our own bugs (and easily pick up
 424 * their fixes when they happen) --Mark */
 425int walk_page_buffers(  handle_t *handle,
 426                        struct buffer_head *head,
 427                        unsigned from,
 428                        unsigned to,
 429                        int *partial,
 430                        int (*fn)(      handle_t *handle,
 431                                        struct buffer_head *bh))
 432{
 433        struct buffer_head *bh;
 434        unsigned block_start, block_end;
 435        unsigned blocksize = head->b_size;
 436        int err, ret = 0;
 437        struct buffer_head *next;
 438
 439        for (   bh = head, block_start = 0;
 440                ret == 0 && (bh != head || !block_start);
 441                block_start = block_end, bh = next)
 442        {
 443                next = bh->b_this_page;
 444                block_end = block_start + blocksize;
 445                if (block_end <= from || block_start >= to) {
 446                        if (partial && !buffer_uptodate(bh))
 447                                *partial = 1;
 448                        continue;
 449                }
 450                err = (*fn)(handle, bh);
 451                if (!ret)
 452                        ret = err;
 453        }
 454        return ret;
 455}
 456
 457static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
 458{
 459        sector_t status;
 460        u64 p_blkno = 0;
 461        int err = 0;
 462        struct inode *inode = mapping->host;
 463
 464        trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
 465                         (unsigned long long)block);
 466
 467        /*
 468         * The swap code (ab-)uses ->bmap to get a block mapping and then
 469         * bypasseѕ the file system for actual I/O.  We really can't allow
 470         * that on refcounted inodes, so we have to skip out here.  And yes,
 471         * 0 is the magic code for a bmap error..
 472         */
 473        if (ocfs2_is_refcount_inode(inode))
 474                return 0;
 475
 476        /* We don't need to lock journal system files, since they aren't
 477         * accessed concurrently from multiple nodes.
 478         */
 479        if (!INODE_JOURNAL(inode)) {
 480                err = ocfs2_inode_lock(inode, NULL, 0);
 481                if (err) {
 482                        if (err != -ENOENT)
 483                                mlog_errno(err);
 484                        goto bail;
 485                }
 486                down_read(&OCFS2_I(inode)->ip_alloc_sem);
 487        }
 488
 489        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
 490                err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
 491                                                  NULL);
 492
 493        if (!INODE_JOURNAL(inode)) {
 494                up_read(&OCFS2_I(inode)->ip_alloc_sem);
 495                ocfs2_inode_unlock(inode, 0);
 496        }
 497
 498        if (err) {
 499                mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
 500                     (unsigned long long)block);
 501                mlog_errno(err);
 502                goto bail;
 503        }
 504
 505bail:
 506        status = err ? 0 : p_blkno;
 507
 508        return status;
 509}
 510
 511static int ocfs2_releasepage(struct page *page, gfp_t wait)
 512{
 513        if (!page_has_buffers(page))
 514                return 0;
 515        return try_to_free_buffers(page);
 516}
 517
 518static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
 519                                            u32 cpos,
 520                                            unsigned int *start,
 521                                            unsigned int *end)
 522{
 523        unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
 524
 525        if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
 526                unsigned int cpp;
 527
 528                cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
 529
 530                cluster_start = cpos % cpp;
 531                cluster_start = cluster_start << osb->s_clustersize_bits;
 532
 533                cluster_end = cluster_start + osb->s_clustersize;
 534        }
 535
 536        BUG_ON(cluster_start > PAGE_SIZE);
 537        BUG_ON(cluster_end > PAGE_SIZE);
 538
 539        if (start)
 540                *start = cluster_start;
 541        if (end)
 542                *end = cluster_end;
 543}
 544
 545/*
 546 * 'from' and 'to' are the region in the page to avoid zeroing.
 547 *
 548 * If pagesize > clustersize, this function will avoid zeroing outside
 549 * of the cluster boundary.
 550 *
 551 * from == to == 0 is code for "zero the entire cluster region"
 552 */
 553static void ocfs2_clear_page_regions(struct page *page,
 554                                     struct ocfs2_super *osb, u32 cpos,
 555                                     unsigned from, unsigned to)
 556{
 557        void *kaddr;
 558        unsigned int cluster_start, cluster_end;
 559
 560        ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
 561
 562        kaddr = kmap_atomic(page);
 563
 564        if (from || to) {
 565                if (from > cluster_start)
 566                        memset(kaddr + cluster_start, 0, from - cluster_start);
 567                if (to < cluster_end)
 568                        memset(kaddr + to, 0, cluster_end - to);
 569        } else {
 570                memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
 571        }
 572
 573        kunmap_atomic(kaddr);
 574}
 575
 576/*
 577 * Nonsparse file systems fully allocate before we get to the write
 578 * code. This prevents ocfs2_write() from tagging the write as an
 579 * allocating one, which means ocfs2_map_page_blocks() might try to
 580 * read-in the blocks at the tail of our file. Avoid reading them by
 581 * testing i_size against each block offset.
 582 */
 583static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
 584                                 unsigned int block_start)
 585{
 586        u64 offset = page_offset(page) + block_start;
 587
 588        if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
 589                return 1;
 590
 591        if (i_size_read(inode) > offset)
 592                return 1;
 593
 594        return 0;
 595}
 596
 597/*
 598 * Some of this taken from __block_write_begin(). We already have our
 599 * mapping by now though, and the entire write will be allocating or
 600 * it won't, so not much need to use BH_New.
 601 *
 602 * This will also skip zeroing, which is handled externally.
 603 */
 604int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
 605                          struct inode *inode, unsigned int from,
 606                          unsigned int to, int new)
 607{
 608        int ret = 0;
 609        struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
 610        unsigned int block_end, block_start;
 611        unsigned int bsize = i_blocksize(inode);
 612
 613        if (!page_has_buffers(page))
 614                create_empty_buffers(page, bsize, 0);
 615
 616        head = page_buffers(page);
 617        for (bh = head, block_start = 0; bh != head || !block_start;
 618             bh = bh->b_this_page, block_start += bsize) {
 619                block_end = block_start + bsize;
 620
 621                clear_buffer_new(bh);
 622
 623                /*
 624                 * Ignore blocks outside of our i/o range -
 625                 * they may belong to unallocated clusters.
 626                 */
 627                if (block_start >= to || block_end <= from) {
 628                        if (PageUptodate(page))
 629                                set_buffer_uptodate(bh);
 630                        continue;
 631                }
 632
 633                /*
 634                 * For an allocating write with cluster size >= page
 635                 * size, we always write the entire page.
 636                 */
 637                if (new)
 638                        set_buffer_new(bh);
 639
 640                if (!buffer_mapped(bh)) {
 641                        map_bh(bh, inode->i_sb, *p_blkno);
 642                        clean_bdev_bh_alias(bh);
 643                }
 644
 645                if (PageUptodate(page)) {
 646                        if (!buffer_uptodate(bh))
 647                                set_buffer_uptodate(bh);
 648                } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
 649                           !buffer_new(bh) &&
 650                           ocfs2_should_read_blk(inode, page, block_start) &&
 651                           (block_start < from || block_end > to)) {
 652                        ll_rw_block(REQ_OP_READ, 0, 1, &bh);
 653                        *wait_bh++=bh;
 654                }
 655
 656                *p_blkno = *p_blkno + 1;
 657        }
 658
 659        /*
 660         * If we issued read requests - let them complete.
 661         */
 662        while(wait_bh > wait) {
 663                wait_on_buffer(*--wait_bh);
 664                if (!buffer_uptodate(*wait_bh))
 665                        ret = -EIO;
 666        }
 667
 668        if (ret == 0 || !new)
 669                return ret;
 670
 671        /*
 672         * If we get -EIO above, zero out any newly allocated blocks
 673         * to avoid exposing stale data.
 674         */
 675        bh = head;
 676        block_start = 0;
 677        do {
 678                block_end = block_start + bsize;
 679                if (block_end <= from)
 680                        goto next_bh;
 681                if (block_start >= to)
 682                        break;
 683
 684                zero_user(page, block_start, bh->b_size);
 685                set_buffer_uptodate(bh);
 686                mark_buffer_dirty(bh);
 687
 688next_bh:
 689                block_start = block_end;
 690                bh = bh->b_this_page;
 691        } while (bh != head);
 692
 693        return ret;
 694}
 695
 696#if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
 697#define OCFS2_MAX_CTXT_PAGES    1
 698#else
 699#define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
 700#endif
 701
 702#define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
 703
 704struct ocfs2_unwritten_extent {
 705        struct list_head        ue_node;
 706        struct list_head        ue_ip_node;
 707        u32                     ue_cpos;
 708        u32                     ue_phys;
 709};
 710
 711/*
 712 * Describe the state of a single cluster to be written to.
 713 */
 714struct ocfs2_write_cluster_desc {
 715        u32             c_cpos;
 716        u32             c_phys;
 717        /*
 718         * Give this a unique field because c_phys eventually gets
 719         * filled.
 720         */
 721        unsigned        c_new;
 722        unsigned        c_clear_unwritten;
 723        unsigned        c_needs_zero;
 724};
 725
 726struct ocfs2_write_ctxt {
 727        /* Logical cluster position / len of write */
 728        u32                             w_cpos;
 729        u32                             w_clen;
 730
 731        /* First cluster allocated in a nonsparse extend */
 732        u32                             w_first_new_cpos;
 733
 734        /* Type of caller. Must be one of buffer, mmap, direct.  */
 735        ocfs2_write_type_t              w_type;
 736
 737        struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
 738
 739        /*
 740         * This is true if page_size > cluster_size.
 741         *
 742         * It triggers a set of special cases during write which might
 743         * have to deal with allocating writes to partial pages.
 744         */
 745        unsigned int                    w_large_pages;
 746
 747        /*
 748         * Pages involved in this write.
 749         *
 750         * w_target_page is the page being written to by the user.
 751         *
 752         * w_pages is an array of pages which always contains
 753         * w_target_page, and in the case of an allocating write with
 754         * page_size < cluster size, it will contain zero'd and mapped
 755         * pages adjacent to w_target_page which need to be written
 756         * out in so that future reads from that region will get
 757         * zero's.
 758         */
 759        unsigned int                    w_num_pages;
 760        struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
 761        struct page                     *w_target_page;
 762
 763        /*
 764         * w_target_locked is used for page_mkwrite path indicating no unlocking
 765         * against w_target_page in ocfs2_write_end_nolock.
 766         */
 767        unsigned int                    w_target_locked:1;
 768
 769        /*
 770         * ocfs2_write_end() uses this to know what the real range to
 771         * write in the target should be.
 772         */
 773        unsigned int                    w_target_from;
 774        unsigned int                    w_target_to;
 775
 776        /*
 777         * We could use journal_current_handle() but this is cleaner,
 778         * IMHO -Mark
 779         */
 780        handle_t                        *w_handle;
 781
 782        struct buffer_head              *w_di_bh;
 783
 784        struct ocfs2_cached_dealloc_ctxt w_dealloc;
 785
 786        struct list_head                w_unwritten_list;
 787        unsigned int                    w_unwritten_count;
 788};
 789
 790void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
 791{
 792        int i;
 793
 794        for(i = 0; i < num_pages; i++) {
 795                if (pages[i]) {
 796                        unlock_page(pages[i]);
 797                        mark_page_accessed(pages[i]);
 798                        put_page(pages[i]);
 799                }
 800        }
 801}
 802
 803static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
 804{
 805        int i;
 806
 807        /*
 808         * w_target_locked is only set to true in the page_mkwrite() case.
 809         * The intent is to allow us to lock the target page from write_begin()
 810         * to write_end(). The caller must hold a ref on w_target_page.
 811         */
 812        if (wc->w_target_locked) {
 813                BUG_ON(!wc->w_target_page);
 814                for (i = 0; i < wc->w_num_pages; i++) {
 815                        if (wc->w_target_page == wc->w_pages[i]) {
 816                                wc->w_pages[i] = NULL;
 817                                break;
 818                        }
 819                }
 820                mark_page_accessed(wc->w_target_page);
 821                put_page(wc->w_target_page);
 822        }
 823        ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
 824}
 825
 826static void ocfs2_free_unwritten_list(struct inode *inode,
 827                                 struct list_head *head)
 828{
 829        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 830        struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
 831
 832        list_for_each_entry_safe(ue, tmp, head, ue_node) {
 833                list_del(&ue->ue_node);
 834                spin_lock(&oi->ip_lock);
 835                list_del(&ue->ue_ip_node);
 836                spin_unlock(&oi->ip_lock);
 837                kfree(ue);
 838        }
 839}
 840
 841static void ocfs2_free_write_ctxt(struct inode *inode,
 842                                  struct ocfs2_write_ctxt *wc)
 843{
 844        ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
 845        ocfs2_unlock_pages(wc);
 846        brelse(wc->w_di_bh);
 847        kfree(wc);
 848}
 849
 850static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
 851                                  struct ocfs2_super *osb, loff_t pos,
 852                                  unsigned len, ocfs2_write_type_t type,
 853                                  struct buffer_head *di_bh)
 854{
 855        u32 cend;
 856        struct ocfs2_write_ctxt *wc;
 857
 858        wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
 859        if (!wc)
 860                return -ENOMEM;
 861
 862        wc->w_cpos = pos >> osb->s_clustersize_bits;
 863        wc->w_first_new_cpos = UINT_MAX;
 864        cend = (pos + len - 1) >> osb->s_clustersize_bits;
 865        wc->w_clen = cend - wc->w_cpos + 1;
 866        get_bh(di_bh);
 867        wc->w_di_bh = di_bh;
 868        wc->w_type = type;
 869
 870        if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
 871                wc->w_large_pages = 1;
 872        else
 873                wc->w_large_pages = 0;
 874
 875        ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
 876        INIT_LIST_HEAD(&wc->w_unwritten_list);
 877
 878        *wcp = wc;
 879
 880        return 0;
 881}
 882
 883/*
 884 * If a page has any new buffers, zero them out here, and mark them uptodate
 885 * and dirty so they'll be written out (in order to prevent uninitialised
 886 * block data from leaking). And clear the new bit.
 887 */
 888static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
 889{
 890        unsigned int block_start, block_end;
 891        struct buffer_head *head, *bh;
 892
 893        BUG_ON(!PageLocked(page));
 894        if (!page_has_buffers(page))
 895                return;
 896
 897        bh = head = page_buffers(page);
 898        block_start = 0;
 899        do {
 900                block_end = block_start + bh->b_size;
 901
 902                if (buffer_new(bh)) {
 903                        if (block_end > from && block_start < to) {
 904                                if (!PageUptodate(page)) {
 905                                        unsigned start, end;
 906
 907                                        start = max(from, block_start);
 908                                        end = min(to, block_end);
 909
 910                                        zero_user_segment(page, start, end);
 911                                        set_buffer_uptodate(bh);
 912                                }
 913
 914                                clear_buffer_new(bh);
 915                                mark_buffer_dirty(bh);
 916                        }
 917                }
 918
 919                block_start = block_end;
 920                bh = bh->b_this_page;
 921        } while (bh != head);
 922}
 923
 924/*
 925 * Only called when we have a failure during allocating write to write
 926 * zero's to the newly allocated region.
 927 */
 928static void ocfs2_write_failure(struct inode *inode,
 929                                struct ocfs2_write_ctxt *wc,
 930                                loff_t user_pos, unsigned user_len)
 931{
 932        int i;
 933        unsigned from = user_pos & (PAGE_SIZE - 1),
 934                to = user_pos + user_len;
 935        struct page *tmppage;
 936
 937        if (wc->w_target_page)
 938                ocfs2_zero_new_buffers(wc->w_target_page, from, to);
 939
 940        for(i = 0; i < wc->w_num_pages; i++) {
 941                tmppage = wc->w_pages[i];
 942
 943                if (tmppage && page_has_buffers(tmppage)) {
 944                        if (ocfs2_should_order_data(inode))
 945                                ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
 946                                                           user_pos, user_len);
 947
 948                        block_commit_write(tmppage, from, to);
 949                }
 950        }
 951}
 952
 953static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
 954                                        struct ocfs2_write_ctxt *wc,
 955                                        struct page *page, u32 cpos,
 956                                        loff_t user_pos, unsigned user_len,
 957                                        int new)
 958{
 959        int ret;
 960        unsigned int map_from = 0, map_to = 0;
 961        unsigned int cluster_start, cluster_end;
 962        unsigned int user_data_from = 0, user_data_to = 0;
 963
 964        ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
 965                                        &cluster_start, &cluster_end);
 966
 967        /* treat the write as new if the a hole/lseek spanned across
 968         * the page boundary.
 969         */
 970        new = new | ((i_size_read(inode) <= page_offset(page)) &&
 971                        (page_offset(page) <= user_pos));
 972
 973        if (page == wc->w_target_page) {
 974                map_from = user_pos & (PAGE_SIZE - 1);
 975                map_to = map_from + user_len;
 976
 977                if (new)
 978                        ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 979                                                    cluster_start, cluster_end,
 980                                                    new);
 981                else
 982                        ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 983                                                    map_from, map_to, new);
 984                if (ret) {
 985                        mlog_errno(ret);
 986                        goto out;
 987                }
 988
 989                user_data_from = map_from;
 990                user_data_to = map_to;
 991                if (new) {
 992                        map_from = cluster_start;
 993                        map_to = cluster_end;
 994                }
 995        } else {
 996                /*
 997                 * If we haven't allocated the new page yet, we
 998                 * shouldn't be writing it out without copying user
 999                 * data. This is likely a math error from the caller.
1000                 */
1001                BUG_ON(!new);
1002
1003                map_from = cluster_start;
1004                map_to = cluster_end;
1005
1006                ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1007                                            cluster_start, cluster_end, new);
1008                if (ret) {
1009                        mlog_errno(ret);
1010                        goto out;
1011                }
1012        }
1013
1014        /*
1015         * Parts of newly allocated pages need to be zero'd.
1016         *
1017         * Above, we have also rewritten 'to' and 'from' - as far as
1018         * the rest of the function is concerned, the entire cluster
1019         * range inside of a page needs to be written.
1020         *
1021         * We can skip this if the page is up to date - it's already
1022         * been zero'd from being read in as a hole.
1023         */
1024        if (new && !PageUptodate(page))
1025                ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1026                                         cpos, user_data_from, user_data_to);
1027
1028        flush_dcache_page(page);
1029
1030out:
1031        return ret;
1032}
1033
1034/*
1035 * This function will only grab one clusters worth of pages.
1036 */
1037static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1038                                      struct ocfs2_write_ctxt *wc,
1039                                      u32 cpos, loff_t user_pos,
1040                                      unsigned user_len, int new,
1041                                      struct page *mmap_page)
1042{
1043        int ret = 0, i;
1044        unsigned long start, target_index, end_index, index;
1045        struct inode *inode = mapping->host;
1046        loff_t last_byte;
1047
1048        target_index = user_pos >> PAGE_SHIFT;
1049
1050        /*
1051         * Figure out how many pages we'll be manipulating here. For
1052         * non allocating write, we just change the one
1053         * page. Otherwise, we'll need a whole clusters worth.  If we're
1054         * writing past i_size, we only need enough pages to cover the
1055         * last page of the write.
1056         */
1057        if (new) {
1058                wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1059                start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1060                /*
1061                 * We need the index *past* the last page we could possibly
1062                 * touch.  This is the page past the end of the write or
1063                 * i_size, whichever is greater.
1064                 */
1065                last_byte = max(user_pos + user_len, i_size_read(inode));
1066                BUG_ON(last_byte < 1);
1067                end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1068                if ((start + wc->w_num_pages) > end_index)
1069                        wc->w_num_pages = end_index - start;
1070        } else {
1071                wc->w_num_pages = 1;
1072                start = target_index;
1073        }
1074        end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1075
1076        for(i = 0; i < wc->w_num_pages; i++) {
1077                index = start + i;
1078
1079                if (index >= target_index && index <= end_index &&
1080                    wc->w_type == OCFS2_WRITE_MMAP) {
1081                        /*
1082                         * ocfs2_pagemkwrite() is a little different
1083                         * and wants us to directly use the page
1084                         * passed in.
1085                         */
1086                        lock_page(mmap_page);
1087
1088                        /* Exit and let the caller retry */
1089                        if (mmap_page->mapping != mapping) {
1090                                WARN_ON(mmap_page->mapping);
1091                                unlock_page(mmap_page);
1092                                ret = -EAGAIN;
1093                                goto out;
1094                        }
1095
1096                        get_page(mmap_page);
1097                        wc->w_pages[i] = mmap_page;
1098                        wc->w_target_locked = true;
1099                } else if (index >= target_index && index <= end_index &&
1100                           wc->w_type == OCFS2_WRITE_DIRECT) {
1101                        /* Direct write has no mapping page. */
1102                        wc->w_pages[i] = NULL;
1103                        continue;
1104                } else {
1105                        wc->w_pages[i] = find_or_create_page(mapping, index,
1106                                                             GFP_NOFS);
1107                        if (!wc->w_pages[i]) {
1108                                ret = -ENOMEM;
1109                                mlog_errno(ret);
1110                                goto out;
1111                        }
1112                }
1113                wait_for_stable_page(wc->w_pages[i]);
1114
1115                if (index == target_index)
1116                        wc->w_target_page = wc->w_pages[i];
1117        }
1118out:
1119        if (ret)
1120                wc->w_target_locked = false;
1121        return ret;
1122}
1123
1124/*
1125 * Prepare a single cluster for write one cluster into the file.
1126 */
1127static int ocfs2_write_cluster(struct address_space *mapping,
1128                               u32 *phys, unsigned int new,
1129                               unsigned int clear_unwritten,
1130                               unsigned int should_zero,
1131                               struct ocfs2_alloc_context *data_ac,
1132                               struct ocfs2_alloc_context *meta_ac,
1133                               struct ocfs2_write_ctxt *wc, u32 cpos,
1134                               loff_t user_pos, unsigned user_len)
1135{
1136        int ret, i;
1137        u64 p_blkno;
1138        struct inode *inode = mapping->host;
1139        struct ocfs2_extent_tree et;
1140        int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1141
1142        if (new) {
1143                u32 tmp_pos;
1144
1145                /*
1146                 * This is safe to call with the page locks - it won't take
1147                 * any additional semaphores or cluster locks.
1148                 */
1149                tmp_pos = cpos;
1150                ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1151                                           &tmp_pos, 1, !clear_unwritten,
1152                                           wc->w_di_bh, wc->w_handle,
1153                                           data_ac, meta_ac, NULL);
1154                /*
1155                 * This shouldn't happen because we must have already
1156                 * calculated the correct meta data allocation required. The
1157                 * internal tree allocation code should know how to increase
1158                 * transaction credits itself.
1159                 *
1160                 * If need be, we could handle -EAGAIN for a
1161                 * RESTART_TRANS here.
1162                 */
1163                mlog_bug_on_msg(ret == -EAGAIN,
1164                                "Inode %llu: EAGAIN return during allocation.\n",
1165                                (unsigned long long)OCFS2_I(inode)->ip_blkno);
1166                if (ret < 0) {
1167                        mlog_errno(ret);
1168                        goto out;
1169                }
1170        } else if (clear_unwritten) {
1171                ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1172                                              wc->w_di_bh);
1173                ret = ocfs2_mark_extent_written(inode, &et,
1174                                                wc->w_handle, cpos, 1, *phys,
1175                                                meta_ac, &wc->w_dealloc);
1176                if (ret < 0) {
1177                        mlog_errno(ret);
1178                        goto out;
1179                }
1180        }
1181
1182        /*
1183         * The only reason this should fail is due to an inability to
1184         * find the extent added.
1185         */
1186        ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1187        if (ret < 0) {
1188                mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1189                            "at logical cluster %u",
1190                            (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1191                goto out;
1192        }
1193
1194        BUG_ON(*phys == 0);
1195
1196        p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1197        if (!should_zero)
1198                p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1199
1200        for(i = 0; i < wc->w_num_pages; i++) {
1201                int tmpret;
1202
1203                /* This is the direct io target page. */
1204                if (wc->w_pages[i] == NULL) {
1205                        p_blkno++;
1206                        continue;
1207                }
1208
1209                tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1210                                                      wc->w_pages[i], cpos,
1211                                                      user_pos, user_len,
1212                                                      should_zero);
1213                if (tmpret) {
1214                        mlog_errno(tmpret);
1215                        if (ret == 0)
1216                                ret = tmpret;
1217                }
1218        }
1219
1220        /*
1221         * We only have cleanup to do in case of allocating write.
1222         */
1223        if (ret && new)
1224                ocfs2_write_failure(inode, wc, user_pos, user_len);
1225
1226out:
1227
1228        return ret;
1229}
1230
1231static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1232                                       struct ocfs2_alloc_context *data_ac,
1233                                       struct ocfs2_alloc_context *meta_ac,
1234                                       struct ocfs2_write_ctxt *wc,
1235                                       loff_t pos, unsigned len)
1236{
1237        int ret, i;
1238        loff_t cluster_off;
1239        unsigned int local_len = len;
1240        struct ocfs2_write_cluster_desc *desc;
1241        struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1242
1243        for (i = 0; i < wc->w_clen; i++) {
1244                desc = &wc->w_desc[i];
1245
1246                /*
1247                 * We have to make sure that the total write passed in
1248                 * doesn't extend past a single cluster.
1249                 */
1250                local_len = len;
1251                cluster_off = pos & (osb->s_clustersize - 1);
1252                if ((cluster_off + local_len) > osb->s_clustersize)
1253                        local_len = osb->s_clustersize - cluster_off;
1254
1255                ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1256                                          desc->c_new,
1257                                          desc->c_clear_unwritten,
1258                                          desc->c_needs_zero,
1259                                          data_ac, meta_ac,
1260                                          wc, desc->c_cpos, pos, local_len);
1261                if (ret) {
1262                        mlog_errno(ret);
1263                        goto out;
1264                }
1265
1266                len -= local_len;
1267                pos += local_len;
1268        }
1269
1270        ret = 0;
1271out:
1272        return ret;
1273}
1274
1275/*
1276 * ocfs2_write_end() wants to know which parts of the target page it
1277 * should complete the write on. It's easiest to compute them ahead of
1278 * time when a more complete view of the write is available.
1279 */
1280static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1281                                        struct ocfs2_write_ctxt *wc,
1282                                        loff_t pos, unsigned len, int alloc)
1283{
1284        struct ocfs2_write_cluster_desc *desc;
1285
1286        wc->w_target_from = pos & (PAGE_SIZE - 1);
1287        wc->w_target_to = wc->w_target_from + len;
1288
1289        if (alloc == 0)
1290                return;
1291
1292        /*
1293         * Allocating write - we may have different boundaries based
1294         * on page size and cluster size.
1295         *
1296         * NOTE: We can no longer compute one value from the other as
1297         * the actual write length and user provided length may be
1298         * different.
1299         */
1300
1301        if (wc->w_large_pages) {
1302                /*
1303                 * We only care about the 1st and last cluster within
1304                 * our range and whether they should be zero'd or not. Either
1305                 * value may be extended out to the start/end of a
1306                 * newly allocated cluster.
1307                 */
1308                desc = &wc->w_desc[0];
1309                if (desc->c_needs_zero)
1310                        ocfs2_figure_cluster_boundaries(osb,
1311                                                        desc->c_cpos,
1312                                                        &wc->w_target_from,
1313                                                        NULL);
1314
1315                desc = &wc->w_desc[wc->w_clen - 1];
1316                if (desc->c_needs_zero)
1317                        ocfs2_figure_cluster_boundaries(osb,
1318                                                        desc->c_cpos,
1319                                                        NULL,
1320                                                        &wc->w_target_to);
1321        } else {
1322                wc->w_target_from = 0;
1323                wc->w_target_to = PAGE_SIZE;
1324        }
1325}
1326
1327/*
1328 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1329 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1330 * by the direct io procedure.
1331 * If this is a new extent that allocated by direct io, we should mark it in
1332 * the ip_unwritten_list.
1333 */
1334static int ocfs2_unwritten_check(struct inode *inode,
1335                                 struct ocfs2_write_ctxt *wc,
1336                                 struct ocfs2_write_cluster_desc *desc)
1337{
1338        struct ocfs2_inode_info *oi = OCFS2_I(inode);
1339        struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1340        int ret = 0;
1341
1342        if (!desc->c_needs_zero)
1343                return 0;
1344
1345retry:
1346        spin_lock(&oi->ip_lock);
1347        /* Needs not to zero no metter buffer or direct. The one who is zero
1348         * the cluster is doing zero. And he will clear unwritten after all
1349         * cluster io finished. */
1350        list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1351                if (desc->c_cpos == ue->ue_cpos) {
1352                        BUG_ON(desc->c_new);
1353                        desc->c_needs_zero = 0;
1354                        desc->c_clear_unwritten = 0;
1355                        goto unlock;
1356                }
1357        }
1358
1359        if (wc->w_type != OCFS2_WRITE_DIRECT)
1360                goto unlock;
1361
1362        if (new == NULL) {
1363                spin_unlock(&oi->ip_lock);
1364                new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1365                             GFP_NOFS);
1366                if (new == NULL) {
1367                        ret = -ENOMEM;
1368                        goto out;
1369                }
1370                goto retry;
1371        }
1372        /* This direct write will doing zero. */
1373        new->ue_cpos = desc->c_cpos;
1374        new->ue_phys = desc->c_phys;
1375        desc->c_clear_unwritten = 0;
1376        list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1377        list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1378        wc->w_unwritten_count++;
1379        new = NULL;
1380unlock:
1381        spin_unlock(&oi->ip_lock);
1382out:
1383        kfree(new);
1384        return ret;
1385}
1386
1387/*
1388 * Populate each single-cluster write descriptor in the write context
1389 * with information about the i/o to be done.
1390 *
1391 * Returns the number of clusters that will have to be allocated, as
1392 * well as a worst case estimate of the number of extent records that
1393 * would have to be created during a write to an unwritten region.
1394 */
1395static int ocfs2_populate_write_desc(struct inode *inode,
1396                                     struct ocfs2_write_ctxt *wc,
1397                                     unsigned int *clusters_to_alloc,
1398                                     unsigned int *extents_to_split)
1399{
1400        int ret;
1401        struct ocfs2_write_cluster_desc *desc;
1402        unsigned int num_clusters = 0;
1403        unsigned int ext_flags = 0;
1404        u32 phys = 0;
1405        int i;
1406
1407        *clusters_to_alloc = 0;
1408        *extents_to_split = 0;
1409
1410        for (i = 0; i < wc->w_clen; i++) {
1411                desc = &wc->w_desc[i];
1412                desc->c_cpos = wc->w_cpos + i;
1413
1414                if (num_clusters == 0) {
1415                        /*
1416                         * Need to look up the next extent record.
1417                         */
1418                        ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1419                                                 &num_clusters, &ext_flags);
1420                        if (ret) {
1421                                mlog_errno(ret);
1422                                goto out;
1423                        }
1424
1425                        /* We should already CoW the refcountd extent. */
1426                        BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1427
1428                        /*
1429                         * Assume worst case - that we're writing in
1430                         * the middle of the extent.
1431                         *
1432                         * We can assume that the write proceeds from
1433                         * left to right, in which case the extent
1434                         * insert code is smart enough to coalesce the
1435                         * next splits into the previous records created.
1436                         */
1437                        if (ext_flags & OCFS2_EXT_UNWRITTEN)
1438                                *extents_to_split = *extents_to_split + 2;
1439                } else if (phys) {
1440                        /*
1441                         * Only increment phys if it doesn't describe
1442                         * a hole.
1443                         */
1444                        phys++;
1445                }
1446
1447                /*
1448                 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1449                 * file that got extended.  w_first_new_cpos tells us
1450                 * where the newly allocated clusters are so we can
1451                 * zero them.
1452                 */
1453                if (desc->c_cpos >= wc->w_first_new_cpos) {
1454                        BUG_ON(phys == 0);
1455                        desc->c_needs_zero = 1;
1456                }
1457
1458                desc->c_phys = phys;
1459                if (phys == 0) {
1460                        desc->c_new = 1;
1461                        desc->c_needs_zero = 1;
1462                        desc->c_clear_unwritten = 1;
1463                        *clusters_to_alloc = *clusters_to_alloc + 1;
1464                }
1465
1466                if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1467                        desc->c_clear_unwritten = 1;
1468                        desc->c_needs_zero = 1;
1469                }
1470
1471                ret = ocfs2_unwritten_check(inode, wc, desc);
1472                if (ret) {
1473                        mlog_errno(ret);
1474                        goto out;
1475                }
1476
1477                num_clusters--;
1478        }
1479
1480        ret = 0;
1481out:
1482        return ret;
1483}
1484
1485static int ocfs2_write_begin_inline(struct address_space *mapping,
1486                                    struct inode *inode,
1487                                    struct ocfs2_write_ctxt *wc)
1488{
1489        int ret;
1490        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1491        struct page *page;
1492        handle_t *handle;
1493        struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1494
1495        handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1496        if (IS_ERR(handle)) {
1497                ret = PTR_ERR(handle);
1498                mlog_errno(ret);
1499                goto out;
1500        }
1501
1502        page = find_or_create_page(mapping, 0, GFP_NOFS);
1503        if (!page) {
1504                ocfs2_commit_trans(osb, handle);
1505                ret = -ENOMEM;
1506                mlog_errno(ret);
1507                goto out;
1508        }
1509        /*
1510         * If we don't set w_num_pages then this page won't get unlocked
1511         * and freed on cleanup of the write context.
1512         */
1513        wc->w_pages[0] = wc->w_target_page = page;
1514        wc->w_num_pages = 1;
1515
1516        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1517                                      OCFS2_JOURNAL_ACCESS_WRITE);
1518        if (ret) {
1519                ocfs2_commit_trans(osb, handle);
1520
1521                mlog_errno(ret);
1522                goto out;
1523        }
1524
1525        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1526                ocfs2_set_inode_data_inline(inode, di);
1527
1528        if (!PageUptodate(page)) {
1529                ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1530                if (ret) {
1531                        ocfs2_commit_trans(osb, handle);
1532
1533                        goto out;
1534                }
1535        }
1536
1537        wc->w_handle = handle;
1538out:
1539        return ret;
1540}
1541
1542int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1543{
1544        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1545
1546        if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1547                return 1;
1548        return 0;
1549}
1550
1551static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1552                                          struct inode *inode, loff_t pos,
1553                                          unsigned len, struct page *mmap_page,
1554                                          struct ocfs2_write_ctxt *wc)
1555{
1556        int ret, written = 0;
1557        loff_t end = pos + len;
1558        struct ocfs2_inode_info *oi = OCFS2_I(inode);
1559        struct ocfs2_dinode *di = NULL;
1560
1561        trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1562                                             len, (unsigned long long)pos,
1563                                             oi->ip_dyn_features);
1564
1565        /*
1566         * Handle inodes which already have inline data 1st.
1567         */
1568        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1569                if (mmap_page == NULL &&
1570                    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1571                        goto do_inline_write;
1572
1573                /*
1574                 * The write won't fit - we have to give this inode an
1575                 * inline extent list now.
1576                 */
1577                ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1578                if (ret)
1579                        mlog_errno(ret);
1580                goto out;
1581        }
1582
1583        /*
1584         * Check whether the inode can accept inline data.
1585         */
1586        if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1587                return 0;
1588
1589        /*
1590         * Check whether the write can fit.
1591         */
1592        di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1593        if (mmap_page ||
1594            end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1595                return 0;
1596
1597do_inline_write:
1598        ret = ocfs2_write_begin_inline(mapping, inode, wc);
1599        if (ret) {
1600                mlog_errno(ret);
1601                goto out;
1602        }
1603
1604        /*
1605         * This signals to the caller that the data can be written
1606         * inline.
1607         */
1608        written = 1;
1609out:
1610        return written ? written : ret;
1611}
1612
1613/*
1614 * This function only does anything for file systems which can't
1615 * handle sparse files.
1616 *
1617 * What we want to do here is fill in any hole between the current end
1618 * of allocation and the end of our write. That way the rest of the
1619 * write path can treat it as an non-allocating write, which has no
1620 * special case code for sparse/nonsparse files.
1621 */
1622static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1623                                        struct buffer_head *di_bh,
1624                                        loff_t pos, unsigned len,
1625                                        struct ocfs2_write_ctxt *wc)
1626{
1627        int ret;
1628        loff_t newsize = pos + len;
1629
1630        BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1631
1632        if (newsize <= i_size_read(inode))
1633                return 0;
1634
1635        ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1636        if (ret)
1637                mlog_errno(ret);
1638
1639        /* There is no wc if this is call from direct. */
1640        if (wc)
1641                wc->w_first_new_cpos =
1642                        ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1643
1644        return ret;
1645}
1646
1647static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1648                           loff_t pos)
1649{
1650        int ret = 0;
1651
1652        BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1653        if (pos > i_size_read(inode))
1654                ret = ocfs2_zero_extend(inode, di_bh, pos);
1655
1656        return ret;
1657}
1658
1659int ocfs2_write_begin_nolock(struct address_space *mapping,
1660                             loff_t pos, unsigned len, ocfs2_write_type_t type,
1661                             struct page **pagep, void **fsdata,
1662                             struct buffer_head *di_bh, struct page *mmap_page)
1663{
1664        int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1665        unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1666        struct ocfs2_write_ctxt *wc;
1667        struct inode *inode = mapping->host;
1668        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1669        struct ocfs2_dinode *di;
1670        struct ocfs2_alloc_context *data_ac = NULL;
1671        struct ocfs2_alloc_context *meta_ac = NULL;
1672        handle_t *handle;
1673        struct ocfs2_extent_tree et;
1674        int try_free = 1, ret1;
1675
1676try_again:
1677        ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1678        if (ret) {
1679                mlog_errno(ret);
1680                return ret;
1681        }
1682
1683        if (ocfs2_supports_inline_data(osb)) {
1684                ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1685                                                     mmap_page, wc);
1686                if (ret == 1) {
1687                        ret = 0;
1688                        goto success;
1689                }
1690                if (ret < 0) {
1691                        mlog_errno(ret);
1692                        goto out;
1693                }
1694        }
1695
1696        /* Direct io change i_size late, should not zero tail here. */
1697        if (type != OCFS2_WRITE_DIRECT) {
1698                if (ocfs2_sparse_alloc(osb))
1699                        ret = ocfs2_zero_tail(inode, di_bh, pos);
1700                else
1701                        ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1702                                                           len, wc);
1703                if (ret) {
1704                        mlog_errno(ret);
1705                        goto out;
1706                }
1707        }
1708
1709        ret = ocfs2_check_range_for_refcount(inode, pos, len);
1710        if (ret < 0) {
1711                mlog_errno(ret);
1712                goto out;
1713        } else if (ret == 1) {
1714                clusters_need = wc->w_clen;
1715                ret = ocfs2_refcount_cow(inode, di_bh,
1716                                         wc->w_cpos, wc->w_clen, UINT_MAX);
1717                if (ret) {
1718                        mlog_errno(ret);
1719                        goto out;
1720                }
1721        }
1722
1723        ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1724                                        &extents_to_split);
1725        if (ret) {
1726                mlog_errno(ret);
1727                goto out;
1728        }
1729        clusters_need += clusters_to_alloc;
1730
1731        di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1732
1733        trace_ocfs2_write_begin_nolock(
1734                        (unsigned long long)OCFS2_I(inode)->ip_blkno,
1735                        (long long)i_size_read(inode),
1736                        le32_to_cpu(di->i_clusters),
1737                        pos, len, type, mmap_page,
1738                        clusters_to_alloc, extents_to_split);
1739
1740        /*
1741         * We set w_target_from, w_target_to here so that
1742         * ocfs2_write_end() knows which range in the target page to
1743         * write out. An allocation requires that we write the entire
1744         * cluster range.
1745         */
1746        if (clusters_to_alloc || extents_to_split) {
1747                /*
1748                 * XXX: We are stretching the limits of
1749                 * ocfs2_lock_allocators(). It greatly over-estimates
1750                 * the work to be done.
1751                 */
1752                ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1753                                              wc->w_di_bh);
1754                ret = ocfs2_lock_allocators(inode, &et,
1755                                            clusters_to_alloc, extents_to_split,
1756                                            &data_ac, &meta_ac);
1757                if (ret) {
1758                        mlog_errno(ret);
1759                        goto out;
1760                }
1761
1762                if (data_ac)
1763                        data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1764
1765                credits = ocfs2_calc_extend_credits(inode->i_sb,
1766                                                    &di->id2.i_list);
1767        } else if (type == OCFS2_WRITE_DIRECT)
1768                /* direct write needs not to start trans if no extents alloc. */
1769                goto success;
1770
1771        /*
1772         * We have to zero sparse allocated clusters, unwritten extent clusters,
1773         * and non-sparse clusters we just extended.  For non-sparse writes,
1774         * we know zeros will only be needed in the first and/or last cluster.
1775         */
1776        if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1777                           wc->w_desc[wc->w_clen - 1].c_needs_zero))
1778                cluster_of_pages = 1;
1779        else
1780                cluster_of_pages = 0;
1781
1782        ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1783
1784        handle = ocfs2_start_trans(osb, credits);
1785        if (IS_ERR(handle)) {
1786                ret = PTR_ERR(handle);
1787                mlog_errno(ret);
1788                goto out;
1789        }
1790
1791        wc->w_handle = handle;
1792
1793        if (clusters_to_alloc) {
1794                ret = dquot_alloc_space_nodirty(inode,
1795                        ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1796                if (ret)
1797                        goto out_commit;
1798        }
1799
1800        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1801                                      OCFS2_JOURNAL_ACCESS_WRITE);
1802        if (ret) {
1803                mlog_errno(ret);
1804                goto out_quota;
1805        }
1806
1807        /*
1808         * Fill our page array first. That way we've grabbed enough so
1809         * that we can zero and flush if we error after adding the
1810         * extent.
1811         */
1812        ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1813                                         cluster_of_pages, mmap_page);
1814        if (ret && ret != -EAGAIN) {
1815                mlog_errno(ret);
1816                goto out_quota;
1817        }
1818
1819        /*
1820         * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1821         * the target page. In this case, we exit with no error and no target
1822         * page. This will trigger the caller, page_mkwrite(), to re-try
1823         * the operation.
1824         */
1825        if (ret == -EAGAIN) {
1826                BUG_ON(wc->w_target_page);
1827                ret = 0;
1828                goto out_quota;
1829        }
1830
1831        ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1832                                          len);
1833        if (ret) {
1834                mlog_errno(ret);
1835                goto out_quota;
1836        }
1837
1838        if (data_ac)
1839                ocfs2_free_alloc_context(data_ac);
1840        if (meta_ac)
1841                ocfs2_free_alloc_context(meta_ac);
1842
1843success:
1844        if (pagep)
1845                *pagep = wc->w_target_page;
1846        *fsdata = wc;
1847        return 0;
1848out_quota:
1849        if (clusters_to_alloc)
1850                dquot_free_space(inode,
1851                          ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1852out_commit:
1853        ocfs2_commit_trans(osb, handle);
1854
1855out:
1856        /*
1857         * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1858         * even in case of error here like ENOSPC and ENOMEM. So, we need
1859         * to unlock the target page manually to prevent deadlocks when
1860         * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1861         * to VM code.
1862         */
1863        if (wc->w_target_locked)
1864                unlock_page(mmap_page);
1865
1866        ocfs2_free_write_ctxt(inode, wc);
1867
1868        if (data_ac) {
1869                ocfs2_free_alloc_context(data_ac);
1870                data_ac = NULL;
1871        }
1872        if (meta_ac) {
1873                ocfs2_free_alloc_context(meta_ac);
1874                meta_ac = NULL;
1875        }
1876
1877        if (ret == -ENOSPC && try_free) {
1878                /*
1879                 * Try to free some truncate log so that we can have enough
1880                 * clusters to allocate.
1881                 */
1882                try_free = 0;
1883
1884                ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1885                if (ret1 == 1)
1886                        goto try_again;
1887
1888                if (ret1 < 0)
1889                        mlog_errno(ret1);
1890        }
1891
1892        return ret;
1893}
1894
1895static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1896                             loff_t pos, unsigned len, unsigned flags,
1897                             struct page **pagep, void **fsdata)
1898{
1899        int ret;
1900        struct buffer_head *di_bh = NULL;
1901        struct inode *inode = mapping->host;
1902
1903        ret = ocfs2_inode_lock(inode, &di_bh, 1);
1904        if (ret) {
1905                mlog_errno(ret);
1906                return ret;
1907        }
1908
1909        /*
1910         * Take alloc sem here to prevent concurrent lookups. That way
1911         * the mapping, zeroing and tree manipulation within
1912         * ocfs2_write() will be safe against ->readpage(). This
1913         * should also serve to lock out allocation from a shared
1914         * writeable region.
1915         */
1916        down_write(&OCFS2_I(inode)->ip_alloc_sem);
1917
1918        ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1919                                       pagep, fsdata, di_bh, NULL);
1920        if (ret) {
1921                mlog_errno(ret);
1922                goto out_fail;
1923        }
1924
1925        brelse(di_bh);
1926
1927        return 0;
1928
1929out_fail:
1930        up_write(&OCFS2_I(inode)->ip_alloc_sem);
1931
1932        brelse(di_bh);
1933        ocfs2_inode_unlock(inode, 1);
1934
1935        return ret;
1936}
1937
1938static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1939                                   unsigned len, unsigned *copied,
1940                                   struct ocfs2_dinode *di,
1941                                   struct ocfs2_write_ctxt *wc)
1942{
1943        void *kaddr;
1944
1945        if (unlikely(*copied < len)) {
1946                if (!PageUptodate(wc->w_target_page)) {
1947                        *copied = 0;
1948                        return;
1949                }
1950        }
1951
1952        kaddr = kmap_atomic(wc->w_target_page);
1953        memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1954        kunmap_atomic(kaddr);
1955
1956        trace_ocfs2_write_end_inline(
1957             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1958             (unsigned long long)pos, *copied,
1959             le16_to_cpu(di->id2.i_data.id_count),
1960             le16_to_cpu(di->i_dyn_features));
1961}
1962
1963int ocfs2_write_end_nolock(struct address_space *mapping,
1964                           loff_t pos, unsigned len, unsigned copied, void *fsdata)
1965{
1966        int i, ret;
1967        unsigned from, to, start = pos & (PAGE_SIZE - 1);
1968        struct inode *inode = mapping->host;
1969        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1970        struct ocfs2_write_ctxt *wc = fsdata;
1971        struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1972        handle_t *handle = wc->w_handle;
1973        struct page *tmppage;
1974
1975        BUG_ON(!list_empty(&wc->w_unwritten_list));
1976
1977        if (handle) {
1978                ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1979                                wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1980                if (ret) {
1981                        copied = ret;
1982                        mlog_errno(ret);
1983                        goto out;
1984                }
1985        }
1986
1987        if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1988                ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1989                goto out_write_size;
1990        }
1991
1992        if (unlikely(copied < len) && wc->w_target_page) {
1993                if (!PageUptodate(wc->w_target_page))
1994                        copied = 0;
1995
1996                ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1997                                       start+len);
1998        }
1999        if (wc->w_target_page)
2000                flush_dcache_page(wc->w_target_page);
2001
2002        for(i = 0; i < wc->w_num_pages; i++) {
2003                tmppage = wc->w_pages[i];
2004
2005                /* This is the direct io target page. */
2006                if (tmppage == NULL)
2007                        continue;
2008
2009                if (tmppage == wc->w_target_page) {
2010                        from = wc->w_target_from;
2011                        to = wc->w_target_to;
2012
2013                        BUG_ON(from > PAGE_SIZE ||
2014                               to > PAGE_SIZE ||
2015                               to < from);
2016                } else {
2017                        /*
2018                         * Pages adjacent to the target (if any) imply
2019                         * a hole-filling write in which case we want
2020                         * to flush their entire range.
2021                         */
2022                        from = 0;
2023                        to = PAGE_SIZE;
2024                }
2025
2026                if (page_has_buffers(tmppage)) {
2027                        if (handle && ocfs2_should_order_data(inode)) {
2028                                loff_t start_byte =
2029                                        ((loff_t)tmppage->index << PAGE_SHIFT) +
2030                                        from;
2031                                loff_t length = to - from;
2032                                ocfs2_jbd2_inode_add_write(handle, inode,
2033                                                           start_byte, length);
2034                        }
2035                        block_commit_write(tmppage, from, to);
2036                }
2037        }
2038
2039out_write_size:
2040        /* Direct io do not update i_size here. */
2041        if (wc->w_type != OCFS2_WRITE_DIRECT) {
2042                pos += copied;
2043                if (pos > i_size_read(inode)) {
2044                        i_size_write(inode, pos);
2045                        mark_inode_dirty(inode);
2046                }
2047                inode->i_blocks = ocfs2_inode_sector_count(inode);
2048                di->i_size = cpu_to_le64((u64)i_size_read(inode));
2049                inode->i_mtime = inode->i_ctime = current_time(inode);
2050                di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2051                di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2052                if (handle)
2053                        ocfs2_update_inode_fsync_trans(handle, inode, 1);
2054        }
2055        if (handle)
2056                ocfs2_journal_dirty(handle, wc->w_di_bh);
2057
2058out:
2059        /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2060         * lock, or it will cause a deadlock since journal commit threads holds
2061         * this lock and will ask for the page lock when flushing the data.
2062         * put it here to preserve the unlock order.
2063         */
2064        ocfs2_unlock_pages(wc);
2065
2066        if (handle)
2067                ocfs2_commit_trans(osb, handle);
2068
2069        ocfs2_run_deallocs(osb, &wc->w_dealloc);
2070
2071        brelse(wc->w_di_bh);
2072        kfree(wc);
2073
2074        return copied;
2075}
2076
2077static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2078                           loff_t pos, unsigned len, unsigned copied,
2079                           struct page *page, void *fsdata)
2080{
2081        int ret;
2082        struct inode *inode = mapping->host;
2083
2084        ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2085
2086        up_write(&OCFS2_I(inode)->ip_alloc_sem);
2087        ocfs2_inode_unlock(inode, 1);
2088
2089        return ret;
2090}
2091
2092struct ocfs2_dio_write_ctxt {
2093        struct list_head        dw_zero_list;
2094        unsigned                dw_zero_count;
2095        int                     dw_orphaned;
2096        pid_t                   dw_writer_pid;
2097};
2098
2099static struct ocfs2_dio_write_ctxt *
2100ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2101{
2102        struct ocfs2_dio_write_ctxt *dwc = NULL;
2103
2104        if (bh->b_private)
2105                return bh->b_private;
2106
2107        dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2108        if (dwc == NULL)
2109                return NULL;
2110        INIT_LIST_HEAD(&dwc->dw_zero_list);
2111        dwc->dw_zero_count = 0;
2112        dwc->dw_orphaned = 0;
2113        dwc->dw_writer_pid = task_pid_nr(current);
2114        bh->b_private = dwc;
2115        *alloc = 1;
2116
2117        return dwc;
2118}
2119
2120static void ocfs2_dio_free_write_ctx(struct inode *inode,
2121                                     struct ocfs2_dio_write_ctxt *dwc)
2122{
2123        ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2124        kfree(dwc);
2125}
2126
2127/*
2128 * TODO: Make this into a generic get_blocks function.
2129 *
2130 * From do_direct_io in direct-io.c:
2131 *  "So what we do is to permit the ->get_blocks function to populate
2132 *   bh.b_size with the size of IO which is permitted at this offset and
2133 *   this i_blkbits."
2134 *
2135 * This function is called directly from get_more_blocks in direct-io.c.
2136 *
2137 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2138 *                                      fs_count, map_bh, dio->rw == WRITE);
2139 */
2140static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2141                               struct buffer_head *bh_result, int create)
2142{
2143        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2144        struct ocfs2_inode_info *oi = OCFS2_I(inode);
2145        struct ocfs2_write_ctxt *wc;
2146        struct ocfs2_write_cluster_desc *desc = NULL;
2147        struct ocfs2_dio_write_ctxt *dwc = NULL;
2148        struct buffer_head *di_bh = NULL;
2149        u64 p_blkno;
2150        unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2151        loff_t pos = iblock << i_blkbits;
2152        sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2153        unsigned len, total_len = bh_result->b_size;
2154        int ret = 0, first_get_block = 0;
2155
2156        len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2157        len = min(total_len, len);
2158
2159        /*
2160         * bh_result->b_size is count in get_more_blocks according to write
2161         * "pos" and "end", we need map twice to return different buffer state:
2162         * 1. area in file size, not set NEW;
2163         * 2. area out file size, set  NEW.
2164         *
2165         *                 iblock    endblk
2166         * |--------|---------|---------|---------
2167         * |<-------area in file------->|
2168         */
2169
2170        if ((iblock <= endblk) &&
2171            ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2172                len = (endblk - iblock + 1) << i_blkbits;
2173
2174        mlog(0, "get block of %lu at %llu:%u req %u\n",
2175                        inode->i_ino, pos, len, total_len);
2176
2177        /*
2178         * Because we need to change file size in ocfs2_dio_end_io_write(), or
2179         * we may need to add it to orphan dir. So can not fall to fast path
2180         * while file size will be changed.
2181         */
2182        if (pos + total_len <= i_size_read(inode)) {
2183
2184                /* This is the fast path for re-write. */
2185                ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2186                if (buffer_mapped(bh_result) &&
2187                    !buffer_new(bh_result) &&
2188                    ret == 0)
2189                        goto out;
2190
2191                /* Clear state set by ocfs2_get_block. */
2192                bh_result->b_state = 0;
2193        }
2194
2195        dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2196        if (unlikely(dwc == NULL)) {
2197                ret = -ENOMEM;
2198                mlog_errno(ret);
2199                goto out;
2200        }
2201
2202        if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2203            ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2204            !dwc->dw_orphaned) {
2205                /*
2206                 * when we are going to alloc extents beyond file size, add the
2207                 * inode to orphan dir, so we can recall those spaces when
2208                 * system crashed during write.
2209                 */
2210                ret = ocfs2_add_inode_to_orphan(osb, inode);
2211                if (ret < 0) {
2212                        mlog_errno(ret);
2213                        goto out;
2214                }
2215                dwc->dw_orphaned = 1;
2216        }
2217
2218        ret = ocfs2_inode_lock(inode, &di_bh, 1);
2219        if (ret) {
2220                mlog_errno(ret);
2221                goto out;
2222        }
2223
2224        down_write(&oi->ip_alloc_sem);
2225
2226        if (first_get_block) {
2227                if (ocfs2_sparse_alloc(osb))
2228                        ret = ocfs2_zero_tail(inode, di_bh, pos);
2229                else
2230                        ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2231                                                           total_len, NULL);
2232                if (ret < 0) {
2233                        mlog_errno(ret);
2234                        goto unlock;
2235                }
2236        }
2237
2238        ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2239                                       OCFS2_WRITE_DIRECT, NULL,
2240                                       (void **)&wc, di_bh, NULL);
2241        if (ret) {
2242                mlog_errno(ret);
2243                goto unlock;
2244        }
2245
2246        desc = &wc->w_desc[0];
2247
2248        p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2249        BUG_ON(p_blkno == 0);
2250        p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2251
2252        map_bh(bh_result, inode->i_sb, p_blkno);
2253        bh_result->b_size = len;
2254        if (desc->c_needs_zero)
2255                set_buffer_new(bh_result);
2256
2257        if (iblock > endblk)
2258                set_buffer_new(bh_result);
2259
2260        /* May sleep in end_io. It should not happen in a irq context. So defer
2261         * it to dio work queue. */
2262        set_buffer_defer_completion(bh_result);
2263
2264        if (!list_empty(&wc->w_unwritten_list)) {
2265                struct ocfs2_unwritten_extent *ue = NULL;
2266
2267                ue = list_first_entry(&wc->w_unwritten_list,
2268                                      struct ocfs2_unwritten_extent,
2269                                      ue_node);
2270                BUG_ON(ue->ue_cpos != desc->c_cpos);
2271                /* The physical address may be 0, fill it. */
2272                ue->ue_phys = desc->c_phys;
2273
2274                list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2275                dwc->dw_zero_count += wc->w_unwritten_count;
2276        }
2277
2278        ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2279        BUG_ON(ret != len);
2280        ret = 0;
2281unlock:
2282        up_write(&oi->ip_alloc_sem);
2283        ocfs2_inode_unlock(inode, 1);
2284        brelse(di_bh);
2285out:
2286        if (ret < 0)
2287                ret = -EIO;
2288        return ret;
2289}
2290
2291static int ocfs2_dio_end_io_write(struct inode *inode,
2292                                  struct ocfs2_dio_write_ctxt *dwc,
2293                                  loff_t offset,
2294                                  ssize_t bytes)
2295{
2296        struct ocfs2_cached_dealloc_ctxt dealloc;
2297        struct ocfs2_extent_tree et;
2298        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2299        struct ocfs2_inode_info *oi = OCFS2_I(inode);
2300        struct ocfs2_unwritten_extent *ue = NULL;
2301        struct buffer_head *di_bh = NULL;
2302        struct ocfs2_dinode *di;
2303        struct ocfs2_alloc_context *data_ac = NULL;
2304        struct ocfs2_alloc_context *meta_ac = NULL;
2305        handle_t *handle = NULL;
2306        loff_t end = offset + bytes;
2307        int ret = 0, credits = 0, locked = 0;
2308
2309        ocfs2_init_dealloc_ctxt(&dealloc);
2310
2311        /* We do clear unwritten, delete orphan, change i_size here. If neither
2312         * of these happen, we can skip all this. */
2313        if (list_empty(&dwc->dw_zero_list) &&
2314            end <= i_size_read(inode) &&
2315            !dwc->dw_orphaned)
2316                goto out;
2317
2318        /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2319         * are in that context. */
2320        if (dwc->dw_writer_pid != task_pid_nr(current)) {
2321                inode_lock(inode);
2322                locked = 1;
2323        }
2324
2325        ret = ocfs2_inode_lock(inode, &di_bh, 1);
2326        if (ret < 0) {
2327                mlog_errno(ret);
2328                goto out;
2329        }
2330
2331        down_write(&oi->ip_alloc_sem);
2332
2333        /* Delete orphan before acquire i_mutex. */
2334        if (dwc->dw_orphaned) {
2335                BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2336
2337                end = end > i_size_read(inode) ? end : 0;
2338
2339                ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2340                                !!end, end);
2341                if (ret < 0)
2342                        mlog_errno(ret);
2343        }
2344
2345        di = (struct ocfs2_dinode *)di_bh->b_data;
2346
2347        ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2348
2349        /* Attach dealloc with extent tree in case that we may reuse extents
2350         * which are already unlinked from current extent tree due to extent
2351         * rotation and merging.
2352         */
2353        et.et_dealloc = &dealloc;
2354
2355        ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2356                                    &data_ac, &meta_ac);
2357        if (ret) {
2358                mlog_errno(ret);
2359                goto unlock;
2360        }
2361
2362        credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2363
2364        handle = ocfs2_start_trans(osb, credits);
2365        if (IS_ERR(handle)) {
2366                ret = PTR_ERR(handle);
2367                mlog_errno(ret);
2368                goto unlock;
2369        }
2370        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2371                                      OCFS2_JOURNAL_ACCESS_WRITE);
2372        if (ret) {
2373                mlog_errno(ret);
2374                goto commit;
2375        }
2376
2377        list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2378                ret = ocfs2_mark_extent_written(inode, &et, handle,
2379                                                ue->ue_cpos, 1,
2380                                                ue->ue_phys,
2381                                                meta_ac, &dealloc);
2382                if (ret < 0) {
2383                        mlog_errno(ret);
2384                        break;
2385                }
2386        }
2387
2388        if (end > i_size_read(inode)) {
2389                ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2390                if (ret < 0)
2391                        mlog_errno(ret);
2392        }
2393commit:
2394        ocfs2_commit_trans(osb, handle);
2395unlock:
2396        up_write(&oi->ip_alloc_sem);
2397        ocfs2_inode_unlock(inode, 1);
2398        brelse(di_bh);
2399out:
2400        if (data_ac)
2401                ocfs2_free_alloc_context(data_ac);
2402        if (meta_ac)
2403                ocfs2_free_alloc_context(meta_ac);
2404        ocfs2_run_deallocs(osb, &dealloc);
2405        if (locked)
2406                inode_unlock(inode);
2407        ocfs2_dio_free_write_ctx(inode, dwc);
2408
2409        return ret;
2410}
2411
2412/*
2413 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2414 * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2415 * to protect io on one node from truncation on another.
2416 */
2417static int ocfs2_dio_end_io(struct kiocb *iocb,
2418                            loff_t offset,
2419                            ssize_t bytes,
2420                            void *private)
2421{
2422        struct inode *inode = file_inode(iocb->ki_filp);
2423        int level;
2424        int ret = 0;
2425
2426        /* this io's submitter should not have unlocked this before we could */
2427        BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2428
2429        if (bytes <= 0)
2430                mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2431                                 (long long)bytes);
2432        if (private) {
2433                if (bytes > 0)
2434                        ret = ocfs2_dio_end_io_write(inode, private, offset,
2435                                                     bytes);
2436                else
2437                        ocfs2_dio_free_write_ctx(inode, private);
2438        }
2439
2440        ocfs2_iocb_clear_rw_locked(iocb);
2441
2442        level = ocfs2_iocb_rw_locked_level(iocb);
2443        ocfs2_rw_unlock(inode, level);
2444        return ret;
2445}
2446
2447static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2448{
2449        struct file *file = iocb->ki_filp;
2450        struct inode *inode = file->f_mapping->host;
2451        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2452        get_block_t *get_block;
2453
2454        /*
2455         * Fallback to buffered I/O if we see an inode without
2456         * extents.
2457         */
2458        if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2459                return 0;
2460
2461        /* Fallback to buffered I/O if we do not support append dio. */
2462        if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2463            !ocfs2_supports_append_dio(osb))
2464                return 0;
2465
2466        if (iov_iter_rw(iter) == READ)
2467                get_block = ocfs2_lock_get_block;
2468        else
2469                get_block = ocfs2_dio_wr_get_block;
2470
2471        return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2472                                    iter, get_block,
2473                                    ocfs2_dio_end_io, NULL, 0);
2474}
2475
2476const struct address_space_operations ocfs2_aops = {
2477        .readpage               = ocfs2_readpage,
2478        .readpages              = ocfs2_readpages,
2479        .writepage              = ocfs2_writepage,
2480        .write_begin            = ocfs2_write_begin,
2481        .write_end              = ocfs2_write_end,
2482        .bmap                   = ocfs2_bmap,
2483        .direct_IO              = ocfs2_direct_IO,
2484        .invalidatepage         = block_invalidatepage,
2485        .releasepage            = ocfs2_releasepage,
2486        .migratepage            = buffer_migrate_page,
2487        .is_partially_uptodate  = block_is_partially_uptodate,
2488        .error_remove_page      = generic_error_remove_page,
2489};
2490