linux/fs/proc/base.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/proc/base.c
   4 *
   5 *  Copyright (C) 1991, 1992 Linus Torvalds
   6 *
   7 *  proc base directory handling functions
   8 *
   9 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
  10 *  Instead of using magical inumbers to determine the kind of object
  11 *  we allocate and fill in-core inodes upon lookup. They don't even
  12 *  go into icache. We cache the reference to task_struct upon lookup too.
  13 *  Eventually it should become a filesystem in its own. We don't use the
  14 *  rest of procfs anymore.
  15 *
  16 *
  17 *  Changelog:
  18 *  17-Jan-2005
  19 *  Allan Bezerra
  20 *  Bruna Moreira <bruna.moreira@indt.org.br>
  21 *  Edjard Mota <edjard.mota@indt.org.br>
  22 *  Ilias Biris <ilias.biris@indt.org.br>
  23 *  Mauricio Lin <mauricio.lin@indt.org.br>
  24 *
  25 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  26 *
  27 *  A new process specific entry (smaps) included in /proc. It shows the
  28 *  size of rss for each memory area. The maps entry lacks information
  29 *  about physical memory size (rss) for each mapped file, i.e.,
  30 *  rss information for executables and library files.
  31 *  This additional information is useful for any tools that need to know
  32 *  about physical memory consumption for a process specific library.
  33 *
  34 *  Changelog:
  35 *  21-Feb-2005
  36 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  37 *  Pud inclusion in the page table walking.
  38 *
  39 *  ChangeLog:
  40 *  10-Mar-2005
  41 *  10LE Instituto Nokia de Tecnologia - INdT:
  42 *  A better way to walks through the page table as suggested by Hugh Dickins.
  43 *
  44 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  45 *  Smaps information related to shared, private, clean and dirty pages.
  46 *
  47 *  Paul Mundt <paul.mundt@nokia.com>:
  48 *  Overall revision about smaps.
  49 */
  50
  51#include <linux/uaccess.h>
  52
  53#include <linux/errno.h>
  54#include <linux/time.h>
  55#include <linux/proc_fs.h>
  56#include <linux/stat.h>
  57#include <linux/task_io_accounting_ops.h>
  58#include <linux/init.h>
  59#include <linux/capability.h>
  60#include <linux/file.h>
  61#include <linux/fdtable.h>
  62#include <linux/generic-radix-tree.h>
  63#include <linux/string.h>
  64#include <linux/seq_file.h>
  65#include <linux/namei.h>
  66#include <linux/mnt_namespace.h>
  67#include <linux/mm.h>
  68#include <linux/swap.h>
  69#include <linux/rcupdate.h>
  70#include <linux/kallsyms.h>
  71#include <linux/stacktrace.h>
  72#include <linux/resource.h>
  73#include <linux/module.h>
  74#include <linux/mount.h>
  75#include <linux/security.h>
  76#include <linux/ptrace.h>
  77#include <linux/tracehook.h>
  78#include <linux/printk.h>
  79#include <linux/cache.h>
  80#include <linux/cgroup.h>
  81#include <linux/cpuset.h>
  82#include <linux/audit.h>
  83#include <linux/poll.h>
  84#include <linux/nsproxy.h>
  85#include <linux/oom.h>
  86#include <linux/elf.h>
  87#include <linux/pid_namespace.h>
  88#include <linux/user_namespace.h>
  89#include <linux/fs_struct.h>
  90#include <linux/slab.h>
  91#include <linux/sched/autogroup.h>
  92#include <linux/sched/mm.h>
  93#include <linux/sched/coredump.h>
  94#include <linux/sched/debug.h>
  95#include <linux/sched/stat.h>
  96#include <linux/posix-timers.h>
  97#include <trace/events/oom.h>
  98#include "internal.h"
  99#include "fd.h"
 100
 101#include "../../lib/kstrtox.h"
 102
 103/* NOTE:
 104 *      Implementing inode permission operations in /proc is almost
 105 *      certainly an error.  Permission checks need to happen during
 106 *      each system call not at open time.  The reason is that most of
 107 *      what we wish to check for permissions in /proc varies at runtime.
 108 *
 109 *      The classic example of a problem is opening file descriptors
 110 *      in /proc for a task before it execs a suid executable.
 111 */
 112
 113static u8 nlink_tid __ro_after_init;
 114static u8 nlink_tgid __ro_after_init;
 115
 116struct pid_entry {
 117        const char *name;
 118        unsigned int len;
 119        umode_t mode;
 120        const struct inode_operations *iop;
 121        const struct file_operations *fop;
 122        union proc_op op;
 123};
 124
 125#define NOD(NAME, MODE, IOP, FOP, OP) {                 \
 126        .name = (NAME),                                 \
 127        .len  = sizeof(NAME) - 1,                       \
 128        .mode = MODE,                                   \
 129        .iop  = IOP,                                    \
 130        .fop  = FOP,                                    \
 131        .op   = OP,                                     \
 132}
 133
 134#define DIR(NAME, MODE, iops, fops)     \
 135        NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 136#define LNK(NAME, get_link)                                     \
 137        NOD(NAME, (S_IFLNK|S_IRWXUGO),                          \
 138                &proc_pid_link_inode_operations, NULL,          \
 139                { .proc_get_link = get_link } )
 140#define REG(NAME, MODE, fops)                           \
 141        NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 142#define ONE(NAME, MODE, show)                           \
 143        NOD(NAME, (S_IFREG|(MODE)),                     \
 144                NULL, &proc_single_file_operations,     \
 145                { .proc_show = show } )
 146#define ATTR(LSM, NAME, MODE)                           \
 147        NOD(NAME, (S_IFREG|(MODE)),                     \
 148                NULL, &proc_pid_attr_operations,        \
 149                { .lsm = LSM })
 150
 151/*
 152 * Count the number of hardlinks for the pid_entry table, excluding the .
 153 * and .. links.
 154 */
 155static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
 156        unsigned int n)
 157{
 158        unsigned int i;
 159        unsigned int count;
 160
 161        count = 2;
 162        for (i = 0; i < n; ++i) {
 163                if (S_ISDIR(entries[i].mode))
 164                        ++count;
 165        }
 166
 167        return count;
 168}
 169
 170static int get_task_root(struct task_struct *task, struct path *root)
 171{
 172        int result = -ENOENT;
 173
 174        task_lock(task);
 175        if (task->fs) {
 176                get_fs_root(task->fs, root);
 177                result = 0;
 178        }
 179        task_unlock(task);
 180        return result;
 181}
 182
 183static int proc_cwd_link(struct dentry *dentry, struct path *path)
 184{
 185        struct task_struct *task = get_proc_task(d_inode(dentry));
 186        int result = -ENOENT;
 187
 188        if (task) {
 189                task_lock(task);
 190                if (task->fs) {
 191                        get_fs_pwd(task->fs, path);
 192                        result = 0;
 193                }
 194                task_unlock(task);
 195                put_task_struct(task);
 196        }
 197        return result;
 198}
 199
 200static int proc_root_link(struct dentry *dentry, struct path *path)
 201{
 202        struct task_struct *task = get_proc_task(d_inode(dentry));
 203        int result = -ENOENT;
 204
 205        if (task) {
 206                result = get_task_root(task, path);
 207                put_task_struct(task);
 208        }
 209        return result;
 210}
 211
 212/*
 213 * If the user used setproctitle(), we just get the string from
 214 * user space at arg_start, and limit it to a maximum of one page.
 215 */
 216static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
 217                                size_t count, unsigned long pos,
 218                                unsigned long arg_start)
 219{
 220        char *page;
 221        int ret, got;
 222
 223        if (pos >= PAGE_SIZE)
 224                return 0;
 225
 226        page = (char *)__get_free_page(GFP_KERNEL);
 227        if (!page)
 228                return -ENOMEM;
 229
 230        ret = 0;
 231        got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
 232        if (got > 0) {
 233                int len = strnlen(page, got);
 234
 235                /* Include the NUL character if it was found */
 236                if (len < got)
 237                        len++;
 238
 239                if (len > pos) {
 240                        len -= pos;
 241                        if (len > count)
 242                                len = count;
 243                        len -= copy_to_user(buf, page+pos, len);
 244                        if (!len)
 245                                len = -EFAULT;
 246                        ret = len;
 247                }
 248        }
 249        free_page((unsigned long)page);
 250        return ret;
 251}
 252
 253static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
 254                              size_t count, loff_t *ppos)
 255{
 256        unsigned long arg_start, arg_end, env_start, env_end;
 257        unsigned long pos, len;
 258        char *page, c;
 259
 260        /* Check if process spawned far enough to have cmdline. */
 261        if (!mm->env_end)
 262                return 0;
 263
 264        spin_lock(&mm->arg_lock);
 265        arg_start = mm->arg_start;
 266        arg_end = mm->arg_end;
 267        env_start = mm->env_start;
 268        env_end = mm->env_end;
 269        spin_unlock(&mm->arg_lock);
 270
 271        if (arg_start >= arg_end)
 272                return 0;
 273
 274        /*
 275         * We allow setproctitle() to overwrite the argument
 276         * strings, and overflow past the original end. But
 277         * only when it overflows into the environment area.
 278         */
 279        if (env_start != arg_end || env_end < env_start)
 280                env_start = env_end = arg_end;
 281        len = env_end - arg_start;
 282
 283        /* We're not going to care if "*ppos" has high bits set */
 284        pos = *ppos;
 285        if (pos >= len)
 286                return 0;
 287        if (count > len - pos)
 288                count = len - pos;
 289        if (!count)
 290                return 0;
 291
 292        /*
 293         * Magical special case: if the argv[] end byte is not
 294         * zero, the user has overwritten it with setproctitle(3).
 295         *
 296         * Possible future enhancement: do this only once when
 297         * pos is 0, and set a flag in the 'struct file'.
 298         */
 299        if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
 300                return get_mm_proctitle(mm, buf, count, pos, arg_start);
 301
 302        /*
 303         * For the non-setproctitle() case we limit things strictly
 304         * to the [arg_start, arg_end[ range.
 305         */
 306        pos += arg_start;
 307        if (pos < arg_start || pos >= arg_end)
 308                return 0;
 309        if (count > arg_end - pos)
 310                count = arg_end - pos;
 311
 312        page = (char *)__get_free_page(GFP_KERNEL);
 313        if (!page)
 314                return -ENOMEM;
 315
 316        len = 0;
 317        while (count) {
 318                int got;
 319                size_t size = min_t(size_t, PAGE_SIZE, count);
 320
 321                got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
 322                if (got <= 0)
 323                        break;
 324                got -= copy_to_user(buf, page, got);
 325                if (unlikely(!got)) {
 326                        if (!len)
 327                                len = -EFAULT;
 328                        break;
 329                }
 330                pos += got;
 331                buf += got;
 332                len += got;
 333                count -= got;
 334        }
 335
 336        free_page((unsigned long)page);
 337        return len;
 338}
 339
 340static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
 341                                size_t count, loff_t *pos)
 342{
 343        struct mm_struct *mm;
 344        ssize_t ret;
 345
 346        mm = get_task_mm(tsk);
 347        if (!mm)
 348                return 0;
 349
 350        ret = get_mm_cmdline(mm, buf, count, pos);
 351        mmput(mm);
 352        return ret;
 353}
 354
 355static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 356                                     size_t count, loff_t *pos)
 357{
 358        struct task_struct *tsk;
 359        ssize_t ret;
 360
 361        BUG_ON(*pos < 0);
 362
 363        tsk = get_proc_task(file_inode(file));
 364        if (!tsk)
 365                return -ESRCH;
 366        ret = get_task_cmdline(tsk, buf, count, pos);
 367        put_task_struct(tsk);
 368        if (ret > 0)
 369                *pos += ret;
 370        return ret;
 371}
 372
 373static const struct file_operations proc_pid_cmdline_ops = {
 374        .read   = proc_pid_cmdline_read,
 375        .llseek = generic_file_llseek,
 376};
 377
 378#ifdef CONFIG_KALLSYMS
 379/*
 380 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 381 * Returns the resolved symbol.  If that fails, simply return the address.
 382 */
 383static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 384                          struct pid *pid, struct task_struct *task)
 385{
 386        unsigned long wchan;
 387        char symname[KSYM_NAME_LEN];
 388
 389        if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
 390                goto print0;
 391
 392        wchan = get_wchan(task);
 393        if (wchan && !lookup_symbol_name(wchan, symname)) {
 394                seq_puts(m, symname);
 395                return 0;
 396        }
 397
 398print0:
 399        seq_putc(m, '0');
 400        return 0;
 401}
 402#endif /* CONFIG_KALLSYMS */
 403
 404static int lock_trace(struct task_struct *task)
 405{
 406        int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 407        if (err)
 408                return err;
 409        if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
 410                mutex_unlock(&task->signal->cred_guard_mutex);
 411                return -EPERM;
 412        }
 413        return 0;
 414}
 415
 416static void unlock_trace(struct task_struct *task)
 417{
 418        mutex_unlock(&task->signal->cred_guard_mutex);
 419}
 420
 421#ifdef CONFIG_STACKTRACE
 422
 423#define MAX_STACK_TRACE_DEPTH   64
 424
 425static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 426                          struct pid *pid, struct task_struct *task)
 427{
 428        unsigned long *entries;
 429        int err;
 430
 431        /*
 432         * The ability to racily run the kernel stack unwinder on a running task
 433         * and then observe the unwinder output is scary; while it is useful for
 434         * debugging kernel issues, it can also allow an attacker to leak kernel
 435         * stack contents.
 436         * Doing this in a manner that is at least safe from races would require
 437         * some work to ensure that the remote task can not be scheduled; and
 438         * even then, this would still expose the unwinder as local attack
 439         * surface.
 440         * Therefore, this interface is restricted to root.
 441         */
 442        if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
 443                return -EACCES;
 444
 445        entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
 446                                GFP_KERNEL);
 447        if (!entries)
 448                return -ENOMEM;
 449
 450        err = lock_trace(task);
 451        if (!err) {
 452                unsigned int i, nr_entries;
 453
 454                nr_entries = stack_trace_save_tsk(task, entries,
 455                                                  MAX_STACK_TRACE_DEPTH, 0);
 456
 457                for (i = 0; i < nr_entries; i++) {
 458                        seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
 459                }
 460
 461                unlock_trace(task);
 462        }
 463        kfree(entries);
 464
 465        return err;
 466}
 467#endif
 468
 469#ifdef CONFIG_SCHED_INFO
 470/*
 471 * Provides /proc/PID/schedstat
 472 */
 473static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 474                              struct pid *pid, struct task_struct *task)
 475{
 476        if (unlikely(!sched_info_on()))
 477                seq_puts(m, "0 0 0\n");
 478        else
 479                seq_printf(m, "%llu %llu %lu\n",
 480                   (unsigned long long)task->se.sum_exec_runtime,
 481                   (unsigned long long)task->sched_info.run_delay,
 482                   task->sched_info.pcount);
 483
 484        return 0;
 485}
 486#endif
 487
 488#ifdef CONFIG_LATENCYTOP
 489static int lstats_show_proc(struct seq_file *m, void *v)
 490{
 491        int i;
 492        struct inode *inode = m->private;
 493        struct task_struct *task = get_proc_task(inode);
 494
 495        if (!task)
 496                return -ESRCH;
 497        seq_puts(m, "Latency Top version : v0.1\n");
 498        for (i = 0; i < LT_SAVECOUNT; i++) {
 499                struct latency_record *lr = &task->latency_record[i];
 500                if (lr->backtrace[0]) {
 501                        int q;
 502                        seq_printf(m, "%i %li %li",
 503                                   lr->count, lr->time, lr->max);
 504                        for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 505                                unsigned long bt = lr->backtrace[q];
 506
 507                                if (!bt)
 508                                        break;
 509                                seq_printf(m, " %ps", (void *)bt);
 510                        }
 511                        seq_putc(m, '\n');
 512                }
 513
 514        }
 515        put_task_struct(task);
 516        return 0;
 517}
 518
 519static int lstats_open(struct inode *inode, struct file *file)
 520{
 521        return single_open(file, lstats_show_proc, inode);
 522}
 523
 524static ssize_t lstats_write(struct file *file, const char __user *buf,
 525                            size_t count, loff_t *offs)
 526{
 527        struct task_struct *task = get_proc_task(file_inode(file));
 528
 529        if (!task)
 530                return -ESRCH;
 531        clear_tsk_latency_tracing(task);
 532        put_task_struct(task);
 533
 534        return count;
 535}
 536
 537static const struct file_operations proc_lstats_operations = {
 538        .open           = lstats_open,
 539        .read           = seq_read,
 540        .write          = lstats_write,
 541        .llseek         = seq_lseek,
 542        .release        = single_release,
 543};
 544
 545#endif
 546
 547static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 548                          struct pid *pid, struct task_struct *task)
 549{
 550        unsigned long totalpages = totalram_pages() + total_swap_pages;
 551        unsigned long points = 0;
 552
 553        points = oom_badness(task, totalpages) * 1000 / totalpages;
 554        seq_printf(m, "%lu\n", points);
 555
 556        return 0;
 557}
 558
 559struct limit_names {
 560        const char *name;
 561        const char *unit;
 562};
 563
 564static const struct limit_names lnames[RLIM_NLIMITS] = {
 565        [RLIMIT_CPU] = {"Max cpu time", "seconds"},
 566        [RLIMIT_FSIZE] = {"Max file size", "bytes"},
 567        [RLIMIT_DATA] = {"Max data size", "bytes"},
 568        [RLIMIT_STACK] = {"Max stack size", "bytes"},
 569        [RLIMIT_CORE] = {"Max core file size", "bytes"},
 570        [RLIMIT_RSS] = {"Max resident set", "bytes"},
 571        [RLIMIT_NPROC] = {"Max processes", "processes"},
 572        [RLIMIT_NOFILE] = {"Max open files", "files"},
 573        [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 574        [RLIMIT_AS] = {"Max address space", "bytes"},
 575        [RLIMIT_LOCKS] = {"Max file locks", "locks"},
 576        [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 577        [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 578        [RLIMIT_NICE] = {"Max nice priority", NULL},
 579        [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 580        [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 581};
 582
 583/* Display limits for a process */
 584static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 585                           struct pid *pid, struct task_struct *task)
 586{
 587        unsigned int i;
 588        unsigned long flags;
 589
 590        struct rlimit rlim[RLIM_NLIMITS];
 591
 592        if (!lock_task_sighand(task, &flags))
 593                return 0;
 594        memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 595        unlock_task_sighand(task, &flags);
 596
 597        /*
 598         * print the file header
 599         */
 600        seq_puts(m, "Limit                     "
 601                "Soft Limit           "
 602                "Hard Limit           "
 603                "Units     \n");
 604
 605        for (i = 0; i < RLIM_NLIMITS; i++) {
 606                if (rlim[i].rlim_cur == RLIM_INFINITY)
 607                        seq_printf(m, "%-25s %-20s ",
 608                                   lnames[i].name, "unlimited");
 609                else
 610                        seq_printf(m, "%-25s %-20lu ",
 611                                   lnames[i].name, rlim[i].rlim_cur);
 612
 613                if (rlim[i].rlim_max == RLIM_INFINITY)
 614                        seq_printf(m, "%-20s ", "unlimited");
 615                else
 616                        seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 617
 618                if (lnames[i].unit)
 619                        seq_printf(m, "%-10s\n", lnames[i].unit);
 620                else
 621                        seq_putc(m, '\n');
 622        }
 623
 624        return 0;
 625}
 626
 627#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 628static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 629                            struct pid *pid, struct task_struct *task)
 630{
 631        struct syscall_info info;
 632        u64 *args = &info.data.args[0];
 633        int res;
 634
 635        res = lock_trace(task);
 636        if (res)
 637                return res;
 638
 639        if (task_current_syscall(task, &info))
 640                seq_puts(m, "running\n");
 641        else if (info.data.nr < 0)
 642                seq_printf(m, "%d 0x%llx 0x%llx\n",
 643                           info.data.nr, info.sp, info.data.instruction_pointer);
 644        else
 645                seq_printf(m,
 646                       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
 647                       info.data.nr,
 648                       args[0], args[1], args[2], args[3], args[4], args[5],
 649                       info.sp, info.data.instruction_pointer);
 650        unlock_trace(task);
 651
 652        return 0;
 653}
 654#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 655
 656/************************************************************************/
 657/*                       Here the fs part begins                        */
 658/************************************************************************/
 659
 660/* permission checks */
 661static int proc_fd_access_allowed(struct inode *inode)
 662{
 663        struct task_struct *task;
 664        int allowed = 0;
 665        /* Allow access to a task's file descriptors if it is us or we
 666         * may use ptrace attach to the process and find out that
 667         * information.
 668         */
 669        task = get_proc_task(inode);
 670        if (task) {
 671                allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 672                put_task_struct(task);
 673        }
 674        return allowed;
 675}
 676
 677int proc_setattr(struct dentry *dentry, struct iattr *attr)
 678{
 679        int error;
 680        struct inode *inode = d_inode(dentry);
 681
 682        if (attr->ia_valid & ATTR_MODE)
 683                return -EPERM;
 684
 685        error = setattr_prepare(dentry, attr);
 686        if (error)
 687                return error;
 688
 689        setattr_copy(inode, attr);
 690        mark_inode_dirty(inode);
 691        return 0;
 692}
 693
 694/*
 695 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 696 * or euid/egid (for hide_pid_min=2)?
 697 */
 698static bool has_pid_permissions(struct pid_namespace *pid,
 699                                 struct task_struct *task,
 700                                 int hide_pid_min)
 701{
 702        if (pid->hide_pid < hide_pid_min)
 703                return true;
 704        if (in_group_p(pid->pid_gid))
 705                return true;
 706        return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 707}
 708
 709
 710static int proc_pid_permission(struct inode *inode, int mask)
 711{
 712        struct pid_namespace *pid = proc_pid_ns(inode);
 713        struct task_struct *task;
 714        bool has_perms;
 715
 716        task = get_proc_task(inode);
 717        if (!task)
 718                return -ESRCH;
 719        has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
 720        put_task_struct(task);
 721
 722        if (!has_perms) {
 723                if (pid->hide_pid == HIDEPID_INVISIBLE) {
 724                        /*
 725                         * Let's make getdents(), stat(), and open()
 726                         * consistent with each other.  If a process
 727                         * may not stat() a file, it shouldn't be seen
 728                         * in procfs at all.
 729                         */
 730                        return -ENOENT;
 731                }
 732
 733                return -EPERM;
 734        }
 735        return generic_permission(inode, mask);
 736}
 737
 738
 739
 740static const struct inode_operations proc_def_inode_operations = {
 741        .setattr        = proc_setattr,
 742};
 743
 744static int proc_single_show(struct seq_file *m, void *v)
 745{
 746        struct inode *inode = m->private;
 747        struct pid_namespace *ns = proc_pid_ns(inode);
 748        struct pid *pid = proc_pid(inode);
 749        struct task_struct *task;
 750        int ret;
 751
 752        task = get_pid_task(pid, PIDTYPE_PID);
 753        if (!task)
 754                return -ESRCH;
 755
 756        ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 757
 758        put_task_struct(task);
 759        return ret;
 760}
 761
 762static int proc_single_open(struct inode *inode, struct file *filp)
 763{
 764        return single_open(filp, proc_single_show, inode);
 765}
 766
 767static const struct file_operations proc_single_file_operations = {
 768        .open           = proc_single_open,
 769        .read           = seq_read,
 770        .llseek         = seq_lseek,
 771        .release        = single_release,
 772};
 773
 774
 775struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 776{
 777        struct task_struct *task = get_proc_task(inode);
 778        struct mm_struct *mm = ERR_PTR(-ESRCH);
 779
 780        if (task) {
 781                mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
 782                put_task_struct(task);
 783
 784                if (!IS_ERR_OR_NULL(mm)) {
 785                        /* ensure this mm_struct can't be freed */
 786                        mmgrab(mm);
 787                        /* but do not pin its memory */
 788                        mmput(mm);
 789                }
 790        }
 791
 792        return mm;
 793}
 794
 795static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 796{
 797        struct mm_struct *mm = proc_mem_open(inode, mode);
 798
 799        if (IS_ERR(mm))
 800                return PTR_ERR(mm);
 801
 802        file->private_data = mm;
 803        return 0;
 804}
 805
 806static int mem_open(struct inode *inode, struct file *file)
 807{
 808        int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 809
 810        /* OK to pass negative loff_t, we can catch out-of-range */
 811        file->f_mode |= FMODE_UNSIGNED_OFFSET;
 812
 813        return ret;
 814}
 815
 816static ssize_t mem_rw(struct file *file, char __user *buf,
 817                        size_t count, loff_t *ppos, int write)
 818{
 819        struct mm_struct *mm = file->private_data;
 820        unsigned long addr = *ppos;
 821        ssize_t copied;
 822        char *page;
 823        unsigned int flags;
 824
 825        if (!mm)
 826                return 0;
 827
 828        page = (char *)__get_free_page(GFP_KERNEL);
 829        if (!page)
 830                return -ENOMEM;
 831
 832        copied = 0;
 833        if (!mmget_not_zero(mm))
 834                goto free;
 835
 836        flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
 837
 838        while (count > 0) {
 839                int this_len = min_t(int, count, PAGE_SIZE);
 840
 841                if (write && copy_from_user(page, buf, this_len)) {
 842                        copied = -EFAULT;
 843                        break;
 844                }
 845
 846                this_len = access_remote_vm(mm, addr, page, this_len, flags);
 847                if (!this_len) {
 848                        if (!copied)
 849                                copied = -EIO;
 850                        break;
 851                }
 852
 853                if (!write && copy_to_user(buf, page, this_len)) {
 854                        copied = -EFAULT;
 855                        break;
 856                }
 857
 858                buf += this_len;
 859                addr += this_len;
 860                copied += this_len;
 861                count -= this_len;
 862        }
 863        *ppos = addr;
 864
 865        mmput(mm);
 866free:
 867        free_page((unsigned long) page);
 868        return copied;
 869}
 870
 871static ssize_t mem_read(struct file *file, char __user *buf,
 872                        size_t count, loff_t *ppos)
 873{
 874        return mem_rw(file, buf, count, ppos, 0);
 875}
 876
 877static ssize_t mem_write(struct file *file, const char __user *buf,
 878                         size_t count, loff_t *ppos)
 879{
 880        return mem_rw(file, (char __user*)buf, count, ppos, 1);
 881}
 882
 883loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 884{
 885        switch (orig) {
 886        case 0:
 887                file->f_pos = offset;
 888                break;
 889        case 1:
 890                file->f_pos += offset;
 891                break;
 892        default:
 893                return -EINVAL;
 894        }
 895        force_successful_syscall_return();
 896        return file->f_pos;
 897}
 898
 899static int mem_release(struct inode *inode, struct file *file)
 900{
 901        struct mm_struct *mm = file->private_data;
 902        if (mm)
 903                mmdrop(mm);
 904        return 0;
 905}
 906
 907static const struct file_operations proc_mem_operations = {
 908        .llseek         = mem_lseek,
 909        .read           = mem_read,
 910        .write          = mem_write,
 911        .open           = mem_open,
 912        .release        = mem_release,
 913};
 914
 915static int environ_open(struct inode *inode, struct file *file)
 916{
 917        return __mem_open(inode, file, PTRACE_MODE_READ);
 918}
 919
 920static ssize_t environ_read(struct file *file, char __user *buf,
 921                        size_t count, loff_t *ppos)
 922{
 923        char *page;
 924        unsigned long src = *ppos;
 925        int ret = 0;
 926        struct mm_struct *mm = file->private_data;
 927        unsigned long env_start, env_end;
 928
 929        /* Ensure the process spawned far enough to have an environment. */
 930        if (!mm || !mm->env_end)
 931                return 0;
 932
 933        page = (char *)__get_free_page(GFP_KERNEL);
 934        if (!page)
 935                return -ENOMEM;
 936
 937        ret = 0;
 938        if (!mmget_not_zero(mm))
 939                goto free;
 940
 941        spin_lock(&mm->arg_lock);
 942        env_start = mm->env_start;
 943        env_end = mm->env_end;
 944        spin_unlock(&mm->arg_lock);
 945
 946        while (count > 0) {
 947                size_t this_len, max_len;
 948                int retval;
 949
 950                if (src >= (env_end - env_start))
 951                        break;
 952
 953                this_len = env_end - (env_start + src);
 954
 955                max_len = min_t(size_t, PAGE_SIZE, count);
 956                this_len = min(max_len, this_len);
 957
 958                retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
 959
 960                if (retval <= 0) {
 961                        ret = retval;
 962                        break;
 963                }
 964
 965                if (copy_to_user(buf, page, retval)) {
 966                        ret = -EFAULT;
 967                        break;
 968                }
 969
 970                ret += retval;
 971                src += retval;
 972                buf += retval;
 973                count -= retval;
 974        }
 975        *ppos = src;
 976        mmput(mm);
 977
 978free:
 979        free_page((unsigned long) page);
 980        return ret;
 981}
 982
 983static const struct file_operations proc_environ_operations = {
 984        .open           = environ_open,
 985        .read           = environ_read,
 986        .llseek         = generic_file_llseek,
 987        .release        = mem_release,
 988};
 989
 990static int auxv_open(struct inode *inode, struct file *file)
 991{
 992        return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
 993}
 994
 995static ssize_t auxv_read(struct file *file, char __user *buf,
 996                        size_t count, loff_t *ppos)
 997{
 998        struct mm_struct *mm = file->private_data;
 999        unsigned int nwords = 0;
1000
1001        if (!mm)
1002                return 0;
1003        do {
1004                nwords += 2;
1005        } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1006        return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1007                                       nwords * sizeof(mm->saved_auxv[0]));
1008}
1009
1010static const struct file_operations proc_auxv_operations = {
1011        .open           = auxv_open,
1012        .read           = auxv_read,
1013        .llseek         = generic_file_llseek,
1014        .release        = mem_release,
1015};
1016
1017static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1018                            loff_t *ppos)
1019{
1020        struct task_struct *task = get_proc_task(file_inode(file));
1021        char buffer[PROC_NUMBUF];
1022        int oom_adj = OOM_ADJUST_MIN;
1023        size_t len;
1024
1025        if (!task)
1026                return -ESRCH;
1027        if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1028                oom_adj = OOM_ADJUST_MAX;
1029        else
1030                oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1031                          OOM_SCORE_ADJ_MAX;
1032        put_task_struct(task);
1033        len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1034        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1035}
1036
1037static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1038{
1039        static DEFINE_MUTEX(oom_adj_mutex);
1040        struct mm_struct *mm = NULL;
1041        struct task_struct *task;
1042        int err = 0;
1043
1044        task = get_proc_task(file_inode(file));
1045        if (!task)
1046                return -ESRCH;
1047
1048        mutex_lock(&oom_adj_mutex);
1049        if (legacy) {
1050                if (oom_adj < task->signal->oom_score_adj &&
1051                                !capable(CAP_SYS_RESOURCE)) {
1052                        err = -EACCES;
1053                        goto err_unlock;
1054                }
1055                /*
1056                 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1057                 * /proc/pid/oom_score_adj instead.
1058                 */
1059                pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1060                          current->comm, task_pid_nr(current), task_pid_nr(task),
1061                          task_pid_nr(task));
1062        } else {
1063                if ((short)oom_adj < task->signal->oom_score_adj_min &&
1064                                !capable(CAP_SYS_RESOURCE)) {
1065                        err = -EACCES;
1066                        goto err_unlock;
1067                }
1068        }
1069
1070        /*
1071         * Make sure we will check other processes sharing the mm if this is
1072         * not vfrok which wants its own oom_score_adj.
1073         * pin the mm so it doesn't go away and get reused after task_unlock
1074         */
1075        if (!task->vfork_done) {
1076                struct task_struct *p = find_lock_task_mm(task);
1077
1078                if (p) {
1079                        if (atomic_read(&p->mm->mm_users) > 1) {
1080                                mm = p->mm;
1081                                mmgrab(mm);
1082                        }
1083                        task_unlock(p);
1084                }
1085        }
1086
1087        task->signal->oom_score_adj = oom_adj;
1088        if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1089                task->signal->oom_score_adj_min = (short)oom_adj;
1090        trace_oom_score_adj_update(task);
1091
1092        if (mm) {
1093                struct task_struct *p;
1094
1095                rcu_read_lock();
1096                for_each_process(p) {
1097                        if (same_thread_group(task, p))
1098                                continue;
1099
1100                        /* do not touch kernel threads or the global init */
1101                        if (p->flags & PF_KTHREAD || is_global_init(p))
1102                                continue;
1103
1104                        task_lock(p);
1105                        if (!p->vfork_done && process_shares_mm(p, mm)) {
1106                                p->signal->oom_score_adj = oom_adj;
1107                                if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1108                                        p->signal->oom_score_adj_min = (short)oom_adj;
1109                        }
1110                        task_unlock(p);
1111                }
1112                rcu_read_unlock();
1113                mmdrop(mm);
1114        }
1115err_unlock:
1116        mutex_unlock(&oom_adj_mutex);
1117        put_task_struct(task);
1118        return err;
1119}
1120
1121/*
1122 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1123 * kernels.  The effective policy is defined by oom_score_adj, which has a
1124 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1125 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1126 * Processes that become oom disabled via oom_adj will still be oom disabled
1127 * with this implementation.
1128 *
1129 * oom_adj cannot be removed since existing userspace binaries use it.
1130 */
1131static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1132                             size_t count, loff_t *ppos)
1133{
1134        char buffer[PROC_NUMBUF];
1135        int oom_adj;
1136        int err;
1137
1138        memset(buffer, 0, sizeof(buffer));
1139        if (count > sizeof(buffer) - 1)
1140                count = sizeof(buffer) - 1;
1141        if (copy_from_user(buffer, buf, count)) {
1142                err = -EFAULT;
1143                goto out;
1144        }
1145
1146        err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1147        if (err)
1148                goto out;
1149        if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1150             oom_adj != OOM_DISABLE) {
1151                err = -EINVAL;
1152                goto out;
1153        }
1154
1155        /*
1156         * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1157         * value is always attainable.
1158         */
1159        if (oom_adj == OOM_ADJUST_MAX)
1160                oom_adj = OOM_SCORE_ADJ_MAX;
1161        else
1162                oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1163
1164        err = __set_oom_adj(file, oom_adj, true);
1165out:
1166        return err < 0 ? err : count;
1167}
1168
1169static const struct file_operations proc_oom_adj_operations = {
1170        .read           = oom_adj_read,
1171        .write          = oom_adj_write,
1172        .llseek         = generic_file_llseek,
1173};
1174
1175static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1176                                        size_t count, loff_t *ppos)
1177{
1178        struct task_struct *task = get_proc_task(file_inode(file));
1179        char buffer[PROC_NUMBUF];
1180        short oom_score_adj = OOM_SCORE_ADJ_MIN;
1181        size_t len;
1182
1183        if (!task)
1184                return -ESRCH;
1185        oom_score_adj = task->signal->oom_score_adj;
1186        put_task_struct(task);
1187        len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1188        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1189}
1190
1191static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1192                                        size_t count, loff_t *ppos)
1193{
1194        char buffer[PROC_NUMBUF];
1195        int oom_score_adj;
1196        int err;
1197
1198        memset(buffer, 0, sizeof(buffer));
1199        if (count > sizeof(buffer) - 1)
1200                count = sizeof(buffer) - 1;
1201        if (copy_from_user(buffer, buf, count)) {
1202                err = -EFAULT;
1203                goto out;
1204        }
1205
1206        err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1207        if (err)
1208                goto out;
1209        if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1210                        oom_score_adj > OOM_SCORE_ADJ_MAX) {
1211                err = -EINVAL;
1212                goto out;
1213        }
1214
1215        err = __set_oom_adj(file, oom_score_adj, false);
1216out:
1217        return err < 0 ? err : count;
1218}
1219
1220static const struct file_operations proc_oom_score_adj_operations = {
1221        .read           = oom_score_adj_read,
1222        .write          = oom_score_adj_write,
1223        .llseek         = default_llseek,
1224};
1225
1226#ifdef CONFIG_AUDIT
1227#define TMPBUFLEN 11
1228static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1229                                  size_t count, loff_t *ppos)
1230{
1231        struct inode * inode = file_inode(file);
1232        struct task_struct *task = get_proc_task(inode);
1233        ssize_t length;
1234        char tmpbuf[TMPBUFLEN];
1235
1236        if (!task)
1237                return -ESRCH;
1238        length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1239                           from_kuid(file->f_cred->user_ns,
1240                                     audit_get_loginuid(task)));
1241        put_task_struct(task);
1242        return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1243}
1244
1245static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1246                                   size_t count, loff_t *ppos)
1247{
1248        struct inode * inode = file_inode(file);
1249        uid_t loginuid;
1250        kuid_t kloginuid;
1251        int rv;
1252
1253        rcu_read_lock();
1254        if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1255                rcu_read_unlock();
1256                return -EPERM;
1257        }
1258        rcu_read_unlock();
1259
1260        if (*ppos != 0) {
1261                /* No partial writes. */
1262                return -EINVAL;
1263        }
1264
1265        rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1266        if (rv < 0)
1267                return rv;
1268
1269        /* is userspace tring to explicitly UNSET the loginuid? */
1270        if (loginuid == AUDIT_UID_UNSET) {
1271                kloginuid = INVALID_UID;
1272        } else {
1273                kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1274                if (!uid_valid(kloginuid))
1275                        return -EINVAL;
1276        }
1277
1278        rv = audit_set_loginuid(kloginuid);
1279        if (rv < 0)
1280                return rv;
1281        return count;
1282}
1283
1284static const struct file_operations proc_loginuid_operations = {
1285        .read           = proc_loginuid_read,
1286        .write          = proc_loginuid_write,
1287        .llseek         = generic_file_llseek,
1288};
1289
1290static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1291                                  size_t count, loff_t *ppos)
1292{
1293        struct inode * inode = file_inode(file);
1294        struct task_struct *task = get_proc_task(inode);
1295        ssize_t length;
1296        char tmpbuf[TMPBUFLEN];
1297
1298        if (!task)
1299                return -ESRCH;
1300        length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1301                                audit_get_sessionid(task));
1302        put_task_struct(task);
1303        return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1304}
1305
1306static const struct file_operations proc_sessionid_operations = {
1307        .read           = proc_sessionid_read,
1308        .llseek         = generic_file_llseek,
1309};
1310#endif
1311
1312#ifdef CONFIG_FAULT_INJECTION
1313static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1314                                      size_t count, loff_t *ppos)
1315{
1316        struct task_struct *task = get_proc_task(file_inode(file));
1317        char buffer[PROC_NUMBUF];
1318        size_t len;
1319        int make_it_fail;
1320
1321        if (!task)
1322                return -ESRCH;
1323        make_it_fail = task->make_it_fail;
1324        put_task_struct(task);
1325
1326        len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1327
1328        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1329}
1330
1331static ssize_t proc_fault_inject_write(struct file * file,
1332                        const char __user * buf, size_t count, loff_t *ppos)
1333{
1334        struct task_struct *task;
1335        char buffer[PROC_NUMBUF];
1336        int make_it_fail;
1337        int rv;
1338
1339        if (!capable(CAP_SYS_RESOURCE))
1340                return -EPERM;
1341        memset(buffer, 0, sizeof(buffer));
1342        if (count > sizeof(buffer) - 1)
1343                count = sizeof(buffer) - 1;
1344        if (copy_from_user(buffer, buf, count))
1345                return -EFAULT;
1346        rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1347        if (rv < 0)
1348                return rv;
1349        if (make_it_fail < 0 || make_it_fail > 1)
1350                return -EINVAL;
1351
1352        task = get_proc_task(file_inode(file));
1353        if (!task)
1354                return -ESRCH;
1355        task->make_it_fail = make_it_fail;
1356        put_task_struct(task);
1357
1358        return count;
1359}
1360
1361static const struct file_operations proc_fault_inject_operations = {
1362        .read           = proc_fault_inject_read,
1363        .write          = proc_fault_inject_write,
1364        .llseek         = generic_file_llseek,
1365};
1366
1367static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1368                                   size_t count, loff_t *ppos)
1369{
1370        struct task_struct *task;
1371        int err;
1372        unsigned int n;
1373
1374        err = kstrtouint_from_user(buf, count, 0, &n);
1375        if (err)
1376                return err;
1377
1378        task = get_proc_task(file_inode(file));
1379        if (!task)
1380                return -ESRCH;
1381        task->fail_nth = n;
1382        put_task_struct(task);
1383
1384        return count;
1385}
1386
1387static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1388                                  size_t count, loff_t *ppos)
1389{
1390        struct task_struct *task;
1391        char numbuf[PROC_NUMBUF];
1392        ssize_t len;
1393
1394        task = get_proc_task(file_inode(file));
1395        if (!task)
1396                return -ESRCH;
1397        len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1398        put_task_struct(task);
1399        return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1400}
1401
1402static const struct file_operations proc_fail_nth_operations = {
1403        .read           = proc_fail_nth_read,
1404        .write          = proc_fail_nth_write,
1405};
1406#endif
1407
1408
1409#ifdef CONFIG_SCHED_DEBUG
1410/*
1411 * Print out various scheduling related per-task fields:
1412 */
1413static int sched_show(struct seq_file *m, void *v)
1414{
1415        struct inode *inode = m->private;
1416        struct pid_namespace *ns = proc_pid_ns(inode);
1417        struct task_struct *p;
1418
1419        p = get_proc_task(inode);
1420        if (!p)
1421                return -ESRCH;
1422        proc_sched_show_task(p, ns, m);
1423
1424        put_task_struct(p);
1425
1426        return 0;
1427}
1428
1429static ssize_t
1430sched_write(struct file *file, const char __user *buf,
1431            size_t count, loff_t *offset)
1432{
1433        struct inode *inode = file_inode(file);
1434        struct task_struct *p;
1435
1436        p = get_proc_task(inode);
1437        if (!p)
1438                return -ESRCH;
1439        proc_sched_set_task(p);
1440
1441        put_task_struct(p);
1442
1443        return count;
1444}
1445
1446static int sched_open(struct inode *inode, struct file *filp)
1447{
1448        return single_open(filp, sched_show, inode);
1449}
1450
1451static const struct file_operations proc_pid_sched_operations = {
1452        .open           = sched_open,
1453        .read           = seq_read,
1454        .write          = sched_write,
1455        .llseek         = seq_lseek,
1456        .release        = single_release,
1457};
1458
1459#endif
1460
1461#ifdef CONFIG_SCHED_AUTOGROUP
1462/*
1463 * Print out autogroup related information:
1464 */
1465static int sched_autogroup_show(struct seq_file *m, void *v)
1466{
1467        struct inode *inode = m->private;
1468        struct task_struct *p;
1469
1470        p = get_proc_task(inode);
1471        if (!p)
1472                return -ESRCH;
1473        proc_sched_autogroup_show_task(p, m);
1474
1475        put_task_struct(p);
1476
1477        return 0;
1478}
1479
1480static ssize_t
1481sched_autogroup_write(struct file *file, const char __user *buf,
1482            size_t count, loff_t *offset)
1483{
1484        struct inode *inode = file_inode(file);
1485        struct task_struct *p;
1486        char buffer[PROC_NUMBUF];
1487        int nice;
1488        int err;
1489
1490        memset(buffer, 0, sizeof(buffer));
1491        if (count > sizeof(buffer) - 1)
1492                count = sizeof(buffer) - 1;
1493        if (copy_from_user(buffer, buf, count))
1494                return -EFAULT;
1495
1496        err = kstrtoint(strstrip(buffer), 0, &nice);
1497        if (err < 0)
1498                return err;
1499
1500        p = get_proc_task(inode);
1501        if (!p)
1502                return -ESRCH;
1503
1504        err = proc_sched_autogroup_set_nice(p, nice);
1505        if (err)
1506                count = err;
1507
1508        put_task_struct(p);
1509
1510        return count;
1511}
1512
1513static int sched_autogroup_open(struct inode *inode, struct file *filp)
1514{
1515        int ret;
1516
1517        ret = single_open(filp, sched_autogroup_show, NULL);
1518        if (!ret) {
1519                struct seq_file *m = filp->private_data;
1520
1521                m->private = inode;
1522        }
1523        return ret;
1524}
1525
1526static const struct file_operations proc_pid_sched_autogroup_operations = {
1527        .open           = sched_autogroup_open,
1528        .read           = seq_read,
1529        .write          = sched_autogroup_write,
1530        .llseek         = seq_lseek,
1531        .release        = single_release,
1532};
1533
1534#endif /* CONFIG_SCHED_AUTOGROUP */
1535
1536static ssize_t comm_write(struct file *file, const char __user *buf,
1537                                size_t count, loff_t *offset)
1538{
1539        struct inode *inode = file_inode(file);
1540        struct task_struct *p;
1541        char buffer[TASK_COMM_LEN];
1542        const size_t maxlen = sizeof(buffer) - 1;
1543
1544        memset(buffer, 0, sizeof(buffer));
1545        if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1546                return -EFAULT;
1547
1548        p = get_proc_task(inode);
1549        if (!p)
1550                return -ESRCH;
1551
1552        if (same_thread_group(current, p))
1553                set_task_comm(p, buffer);
1554        else
1555                count = -EINVAL;
1556
1557        put_task_struct(p);
1558
1559        return count;
1560}
1561
1562static int comm_show(struct seq_file *m, void *v)
1563{
1564        struct inode *inode = m->private;
1565        struct task_struct *p;
1566
1567        p = get_proc_task(inode);
1568        if (!p)
1569                return -ESRCH;
1570
1571        proc_task_name(m, p, false);
1572        seq_putc(m, '\n');
1573
1574        put_task_struct(p);
1575
1576        return 0;
1577}
1578
1579static int comm_open(struct inode *inode, struct file *filp)
1580{
1581        return single_open(filp, comm_show, inode);
1582}
1583
1584static const struct file_operations proc_pid_set_comm_operations = {
1585        .open           = comm_open,
1586        .read           = seq_read,
1587        .write          = comm_write,
1588        .llseek         = seq_lseek,
1589        .release        = single_release,
1590};
1591
1592static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1593{
1594        struct task_struct *task;
1595        struct file *exe_file;
1596
1597        task = get_proc_task(d_inode(dentry));
1598        if (!task)
1599                return -ENOENT;
1600        exe_file = get_task_exe_file(task);
1601        put_task_struct(task);
1602        if (exe_file) {
1603                *exe_path = exe_file->f_path;
1604                path_get(&exe_file->f_path);
1605                fput(exe_file);
1606                return 0;
1607        } else
1608                return -ENOENT;
1609}
1610
1611static const char *proc_pid_get_link(struct dentry *dentry,
1612                                     struct inode *inode,
1613                                     struct delayed_call *done)
1614{
1615        struct path path;
1616        int error = -EACCES;
1617
1618        if (!dentry)
1619                return ERR_PTR(-ECHILD);
1620
1621        /* Are we allowed to snoop on the tasks file descriptors? */
1622        if (!proc_fd_access_allowed(inode))
1623                goto out;
1624
1625        error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1626        if (error)
1627                goto out;
1628
1629        nd_jump_link(&path);
1630        return NULL;
1631out:
1632        return ERR_PTR(error);
1633}
1634
1635static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1636{
1637        char *tmp = (char *)__get_free_page(GFP_KERNEL);
1638        char *pathname;
1639        int len;
1640
1641        if (!tmp)
1642                return -ENOMEM;
1643
1644        pathname = d_path(path, tmp, PAGE_SIZE);
1645        len = PTR_ERR(pathname);
1646        if (IS_ERR(pathname))
1647                goto out;
1648        len = tmp + PAGE_SIZE - 1 - pathname;
1649
1650        if (len > buflen)
1651                len = buflen;
1652        if (copy_to_user(buffer, pathname, len))
1653                len = -EFAULT;
1654 out:
1655        free_page((unsigned long)tmp);
1656        return len;
1657}
1658
1659static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1660{
1661        int error = -EACCES;
1662        struct inode *inode = d_inode(dentry);
1663        struct path path;
1664
1665        /* Are we allowed to snoop on the tasks file descriptors? */
1666        if (!proc_fd_access_allowed(inode))
1667                goto out;
1668
1669        error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1670        if (error)
1671                goto out;
1672
1673        error = do_proc_readlink(&path, buffer, buflen);
1674        path_put(&path);
1675out:
1676        return error;
1677}
1678
1679const struct inode_operations proc_pid_link_inode_operations = {
1680        .readlink       = proc_pid_readlink,
1681        .get_link       = proc_pid_get_link,
1682        .setattr        = proc_setattr,
1683};
1684
1685
1686/* building an inode */
1687
1688void task_dump_owner(struct task_struct *task, umode_t mode,
1689                     kuid_t *ruid, kgid_t *rgid)
1690{
1691        /* Depending on the state of dumpable compute who should own a
1692         * proc file for a task.
1693         */
1694        const struct cred *cred;
1695        kuid_t uid;
1696        kgid_t gid;
1697
1698        if (unlikely(task->flags & PF_KTHREAD)) {
1699                *ruid = GLOBAL_ROOT_UID;
1700                *rgid = GLOBAL_ROOT_GID;
1701                return;
1702        }
1703
1704        /* Default to the tasks effective ownership */
1705        rcu_read_lock();
1706        cred = __task_cred(task);
1707        uid = cred->euid;
1708        gid = cred->egid;
1709        rcu_read_unlock();
1710
1711        /*
1712         * Before the /proc/pid/status file was created the only way to read
1713         * the effective uid of a /process was to stat /proc/pid.  Reading
1714         * /proc/pid/status is slow enough that procps and other packages
1715         * kept stating /proc/pid.  To keep the rules in /proc simple I have
1716         * made this apply to all per process world readable and executable
1717         * directories.
1718         */
1719        if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1720                struct mm_struct *mm;
1721                task_lock(task);
1722                mm = task->mm;
1723                /* Make non-dumpable tasks owned by some root */
1724                if (mm) {
1725                        if (get_dumpable(mm) != SUID_DUMP_USER) {
1726                                struct user_namespace *user_ns = mm->user_ns;
1727
1728                                uid = make_kuid(user_ns, 0);
1729                                if (!uid_valid(uid))
1730                                        uid = GLOBAL_ROOT_UID;
1731
1732                                gid = make_kgid(user_ns, 0);
1733                                if (!gid_valid(gid))
1734                                        gid = GLOBAL_ROOT_GID;
1735                        }
1736                } else {
1737                        uid = GLOBAL_ROOT_UID;
1738                        gid = GLOBAL_ROOT_GID;
1739                }
1740                task_unlock(task);
1741        }
1742        *ruid = uid;
1743        *rgid = gid;
1744}
1745
1746struct inode *proc_pid_make_inode(struct super_block * sb,
1747                                  struct task_struct *task, umode_t mode)
1748{
1749        struct inode * inode;
1750        struct proc_inode *ei;
1751
1752        /* We need a new inode */
1753
1754        inode = new_inode(sb);
1755        if (!inode)
1756                goto out;
1757
1758        /* Common stuff */
1759        ei = PROC_I(inode);
1760        inode->i_mode = mode;
1761        inode->i_ino = get_next_ino();
1762        inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1763        inode->i_op = &proc_def_inode_operations;
1764
1765        /*
1766         * grab the reference to task.
1767         */
1768        ei->pid = get_task_pid(task, PIDTYPE_PID);
1769        if (!ei->pid)
1770                goto out_unlock;
1771
1772        task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1773        security_task_to_inode(task, inode);
1774
1775out:
1776        return inode;
1777
1778out_unlock:
1779        iput(inode);
1780        return NULL;
1781}
1782
1783int pid_getattr(const struct path *path, struct kstat *stat,
1784                u32 request_mask, unsigned int query_flags)
1785{
1786        struct inode *inode = d_inode(path->dentry);
1787        struct pid_namespace *pid = proc_pid_ns(inode);
1788        struct task_struct *task;
1789
1790        generic_fillattr(inode, stat);
1791
1792        stat->uid = GLOBAL_ROOT_UID;
1793        stat->gid = GLOBAL_ROOT_GID;
1794        rcu_read_lock();
1795        task = pid_task(proc_pid(inode), PIDTYPE_PID);
1796        if (task) {
1797                if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1798                        rcu_read_unlock();
1799                        /*
1800                         * This doesn't prevent learning whether PID exists,
1801                         * it only makes getattr() consistent with readdir().
1802                         */
1803                        return -ENOENT;
1804                }
1805                task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1806        }
1807        rcu_read_unlock();
1808        return 0;
1809}
1810
1811/* dentry stuff */
1812
1813/*
1814 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1815 */
1816void pid_update_inode(struct task_struct *task, struct inode *inode)
1817{
1818        task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1819
1820        inode->i_mode &= ~(S_ISUID | S_ISGID);
1821        security_task_to_inode(task, inode);
1822}
1823
1824/*
1825 * Rewrite the inode's ownerships here because the owning task may have
1826 * performed a setuid(), etc.
1827 *
1828 */
1829static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1830{
1831        struct inode *inode;
1832        struct task_struct *task;
1833
1834        if (flags & LOOKUP_RCU)
1835                return -ECHILD;
1836
1837        inode = d_inode(dentry);
1838        task = get_proc_task(inode);
1839
1840        if (task) {
1841                pid_update_inode(task, inode);
1842                put_task_struct(task);
1843                return 1;
1844        }
1845        return 0;
1846}
1847
1848static inline bool proc_inode_is_dead(struct inode *inode)
1849{
1850        return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1851}
1852
1853int pid_delete_dentry(const struct dentry *dentry)
1854{
1855        /* Is the task we represent dead?
1856         * If so, then don't put the dentry on the lru list,
1857         * kill it immediately.
1858         */
1859        return proc_inode_is_dead(d_inode(dentry));
1860}
1861
1862const struct dentry_operations pid_dentry_operations =
1863{
1864        .d_revalidate   = pid_revalidate,
1865        .d_delete       = pid_delete_dentry,
1866};
1867
1868/* Lookups */
1869
1870/*
1871 * Fill a directory entry.
1872 *
1873 * If possible create the dcache entry and derive our inode number and
1874 * file type from dcache entry.
1875 *
1876 * Since all of the proc inode numbers are dynamically generated, the inode
1877 * numbers do not exist until the inode is cache.  This means creating the
1878 * the dcache entry in readdir is necessary to keep the inode numbers
1879 * reported by readdir in sync with the inode numbers reported
1880 * by stat.
1881 */
1882bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1883        const char *name, unsigned int len,
1884        instantiate_t instantiate, struct task_struct *task, const void *ptr)
1885{
1886        struct dentry *child, *dir = file->f_path.dentry;
1887        struct qstr qname = QSTR_INIT(name, len);
1888        struct inode *inode;
1889        unsigned type = DT_UNKNOWN;
1890        ino_t ino = 1;
1891
1892        child = d_hash_and_lookup(dir, &qname);
1893        if (!child) {
1894                DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1895                child = d_alloc_parallel(dir, &qname, &wq);
1896                if (IS_ERR(child))
1897                        goto end_instantiate;
1898                if (d_in_lookup(child)) {
1899                        struct dentry *res;
1900                        res = instantiate(child, task, ptr);
1901                        d_lookup_done(child);
1902                        if (unlikely(res)) {
1903                                dput(child);
1904                                child = res;
1905                                if (IS_ERR(child))
1906                                        goto end_instantiate;
1907                        }
1908                }
1909        }
1910        inode = d_inode(child);
1911        ino = inode->i_ino;
1912        type = inode->i_mode >> 12;
1913        dput(child);
1914end_instantiate:
1915        return dir_emit(ctx, name, len, ino, type);
1916}
1917
1918/*
1919 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1920 * which represent vma start and end addresses.
1921 */
1922static int dname_to_vma_addr(struct dentry *dentry,
1923                             unsigned long *start, unsigned long *end)
1924{
1925        const char *str = dentry->d_name.name;
1926        unsigned long long sval, eval;
1927        unsigned int len;
1928
1929        if (str[0] == '0' && str[1] != '-')
1930                return -EINVAL;
1931        len = _parse_integer(str, 16, &sval);
1932        if (len & KSTRTOX_OVERFLOW)
1933                return -EINVAL;
1934        if (sval != (unsigned long)sval)
1935                return -EINVAL;
1936        str += len;
1937
1938        if (*str != '-')
1939                return -EINVAL;
1940        str++;
1941
1942        if (str[0] == '0' && str[1])
1943                return -EINVAL;
1944        len = _parse_integer(str, 16, &eval);
1945        if (len & KSTRTOX_OVERFLOW)
1946                return -EINVAL;
1947        if (eval != (unsigned long)eval)
1948                return -EINVAL;
1949        str += len;
1950
1951        if (*str != '\0')
1952                return -EINVAL;
1953
1954        *start = sval;
1955        *end = eval;
1956
1957        return 0;
1958}
1959
1960static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1961{
1962        unsigned long vm_start, vm_end;
1963        bool exact_vma_exists = false;
1964        struct mm_struct *mm = NULL;
1965        struct task_struct *task;
1966        struct inode *inode;
1967        int status = 0;
1968
1969        if (flags & LOOKUP_RCU)
1970                return -ECHILD;
1971
1972        inode = d_inode(dentry);
1973        task = get_proc_task(inode);
1974        if (!task)
1975                goto out_notask;
1976
1977        mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1978        if (IS_ERR_OR_NULL(mm))
1979                goto out;
1980
1981        if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1982                status = down_read_killable(&mm->mmap_sem);
1983                if (!status) {
1984                        exact_vma_exists = !!find_exact_vma(mm, vm_start,
1985                                                            vm_end);
1986                        up_read(&mm->mmap_sem);
1987                }
1988        }
1989
1990        mmput(mm);
1991
1992        if (exact_vma_exists) {
1993                task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1994
1995                security_task_to_inode(task, inode);
1996                status = 1;
1997        }
1998
1999out:
2000        put_task_struct(task);
2001
2002out_notask:
2003        return status;
2004}
2005
2006static const struct dentry_operations tid_map_files_dentry_operations = {
2007        .d_revalidate   = map_files_d_revalidate,
2008        .d_delete       = pid_delete_dentry,
2009};
2010
2011static int map_files_get_link(struct dentry *dentry, struct path *path)
2012{
2013        unsigned long vm_start, vm_end;
2014        struct vm_area_struct *vma;
2015        struct task_struct *task;
2016        struct mm_struct *mm;
2017        int rc;
2018
2019        rc = -ENOENT;
2020        task = get_proc_task(d_inode(dentry));
2021        if (!task)
2022                goto out;
2023
2024        mm = get_task_mm(task);
2025        put_task_struct(task);
2026        if (!mm)
2027                goto out;
2028
2029        rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2030        if (rc)
2031                goto out_mmput;
2032
2033        rc = down_read_killable(&mm->mmap_sem);
2034        if (rc)
2035                goto out_mmput;
2036
2037        rc = -ENOENT;
2038        vma = find_exact_vma(mm, vm_start, vm_end);
2039        if (vma && vma->vm_file) {
2040                *path = vma->vm_file->f_path;
2041                path_get(path);
2042                rc = 0;
2043        }
2044        up_read(&mm->mmap_sem);
2045
2046out_mmput:
2047        mmput(mm);
2048out:
2049        return rc;
2050}
2051
2052struct map_files_info {
2053        unsigned long   start;
2054        unsigned long   end;
2055        fmode_t         mode;
2056};
2057
2058/*
2059 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2060 * symlinks may be used to bypass permissions on ancestor directories in the
2061 * path to the file in question.
2062 */
2063static const char *
2064proc_map_files_get_link(struct dentry *dentry,
2065                        struct inode *inode,
2066                        struct delayed_call *done)
2067{
2068        if (!capable(CAP_SYS_ADMIN))
2069                return ERR_PTR(-EPERM);
2070
2071        return proc_pid_get_link(dentry, inode, done);
2072}
2073
2074/*
2075 * Identical to proc_pid_link_inode_operations except for get_link()
2076 */
2077static const struct inode_operations proc_map_files_link_inode_operations = {
2078        .readlink       = proc_pid_readlink,
2079        .get_link       = proc_map_files_get_link,
2080        .setattr        = proc_setattr,
2081};
2082
2083static struct dentry *
2084proc_map_files_instantiate(struct dentry *dentry,
2085                           struct task_struct *task, const void *ptr)
2086{
2087        fmode_t mode = (fmode_t)(unsigned long)ptr;
2088        struct proc_inode *ei;
2089        struct inode *inode;
2090
2091        inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2092                                    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2093                                    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2094        if (!inode)
2095                return ERR_PTR(-ENOENT);
2096
2097        ei = PROC_I(inode);
2098        ei->op.proc_get_link = map_files_get_link;
2099
2100        inode->i_op = &proc_map_files_link_inode_operations;
2101        inode->i_size = 64;
2102
2103        d_set_d_op(dentry, &tid_map_files_dentry_operations);
2104        return d_splice_alias(inode, dentry);
2105}
2106
2107static struct dentry *proc_map_files_lookup(struct inode *dir,
2108                struct dentry *dentry, unsigned int flags)
2109{
2110        unsigned long vm_start, vm_end;
2111        struct vm_area_struct *vma;
2112        struct task_struct *task;
2113        struct dentry *result;
2114        struct mm_struct *mm;
2115
2116        result = ERR_PTR(-ENOENT);
2117        task = get_proc_task(dir);
2118        if (!task)
2119                goto out;
2120
2121        result = ERR_PTR(-EACCES);
2122        if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2123                goto out_put_task;
2124
2125        result = ERR_PTR(-ENOENT);
2126        if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2127                goto out_put_task;
2128
2129        mm = get_task_mm(task);
2130        if (!mm)
2131                goto out_put_task;
2132
2133        result = ERR_PTR(-EINTR);
2134        if (down_read_killable(&mm->mmap_sem))
2135                goto out_put_mm;
2136
2137        result = ERR_PTR(-ENOENT);
2138        vma = find_exact_vma(mm, vm_start, vm_end);
2139        if (!vma)
2140                goto out_no_vma;
2141
2142        if (vma->vm_file)
2143                result = proc_map_files_instantiate(dentry, task,
2144                                (void *)(unsigned long)vma->vm_file->f_mode);
2145
2146out_no_vma:
2147        up_read(&mm->mmap_sem);
2148out_put_mm:
2149        mmput(mm);
2150out_put_task:
2151        put_task_struct(task);
2152out:
2153        return result;
2154}
2155
2156static const struct inode_operations proc_map_files_inode_operations = {
2157        .lookup         = proc_map_files_lookup,
2158        .permission     = proc_fd_permission,
2159        .setattr        = proc_setattr,
2160};
2161
2162static int
2163proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2164{
2165        struct vm_area_struct *vma;
2166        struct task_struct *task;
2167        struct mm_struct *mm;
2168        unsigned long nr_files, pos, i;
2169        GENRADIX(struct map_files_info) fa;
2170        struct map_files_info *p;
2171        int ret;
2172
2173        genradix_init(&fa);
2174
2175        ret = -ENOENT;
2176        task = get_proc_task(file_inode(file));
2177        if (!task)
2178                goto out;
2179
2180        ret = -EACCES;
2181        if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2182                goto out_put_task;
2183
2184        ret = 0;
2185        if (!dir_emit_dots(file, ctx))
2186                goto out_put_task;
2187
2188        mm = get_task_mm(task);
2189        if (!mm)
2190                goto out_put_task;
2191
2192        ret = down_read_killable(&mm->mmap_sem);
2193        if (ret) {
2194                mmput(mm);
2195                goto out_put_task;
2196        }
2197
2198        nr_files = 0;
2199
2200        /*
2201         * We need two passes here:
2202         *
2203         *  1) Collect vmas of mapped files with mmap_sem taken
2204         *  2) Release mmap_sem and instantiate entries
2205         *
2206         * otherwise we get lockdep complained, since filldir()
2207         * routine might require mmap_sem taken in might_fault().
2208         */
2209
2210        for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2211                if (!vma->vm_file)
2212                        continue;
2213                if (++pos <= ctx->pos)
2214                        continue;
2215
2216                p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2217                if (!p) {
2218                        ret = -ENOMEM;
2219                        up_read(&mm->mmap_sem);
2220                        mmput(mm);
2221                        goto out_put_task;
2222                }
2223
2224                p->start = vma->vm_start;
2225                p->end = vma->vm_end;
2226                p->mode = vma->vm_file->f_mode;
2227        }
2228        up_read(&mm->mmap_sem);
2229        mmput(mm);
2230
2231        for (i = 0; i < nr_files; i++) {
2232                char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2233                unsigned int len;
2234
2235                p = genradix_ptr(&fa, i);
2236                len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2237                if (!proc_fill_cache(file, ctx,
2238                                      buf, len,
2239                                      proc_map_files_instantiate,
2240                                      task,
2241                                      (void *)(unsigned long)p->mode))
2242                        break;
2243                ctx->pos++;
2244        }
2245
2246out_put_task:
2247        put_task_struct(task);
2248out:
2249        genradix_free(&fa);
2250        return ret;
2251}
2252
2253static const struct file_operations proc_map_files_operations = {
2254        .read           = generic_read_dir,
2255        .iterate_shared = proc_map_files_readdir,
2256        .llseek         = generic_file_llseek,
2257};
2258
2259#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2260struct timers_private {
2261        struct pid *pid;
2262        struct task_struct *task;
2263        struct sighand_struct *sighand;
2264        struct pid_namespace *ns;
2265        unsigned long flags;
2266};
2267
2268static void *timers_start(struct seq_file *m, loff_t *pos)
2269{
2270        struct timers_private *tp = m->private;
2271
2272        tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2273        if (!tp->task)
2274                return ERR_PTR(-ESRCH);
2275
2276        tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2277        if (!tp->sighand)
2278                return ERR_PTR(-ESRCH);
2279
2280        return seq_list_start(&tp->task->signal->posix_timers, *pos);
2281}
2282
2283static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2284{
2285        struct timers_private *tp = m->private;
2286        return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2287}
2288
2289static void timers_stop(struct seq_file *m, void *v)
2290{
2291        struct timers_private *tp = m->private;
2292
2293        if (tp->sighand) {
2294                unlock_task_sighand(tp->task, &tp->flags);
2295                tp->sighand = NULL;
2296        }
2297
2298        if (tp->task) {
2299                put_task_struct(tp->task);
2300                tp->task = NULL;
2301        }
2302}
2303
2304static int show_timer(struct seq_file *m, void *v)
2305{
2306        struct k_itimer *timer;
2307        struct timers_private *tp = m->private;
2308        int notify;
2309        static const char * const nstr[] = {
2310                [SIGEV_SIGNAL] = "signal",
2311                [SIGEV_NONE] = "none",
2312                [SIGEV_THREAD] = "thread",
2313        };
2314
2315        timer = list_entry((struct list_head *)v, struct k_itimer, list);
2316        notify = timer->it_sigev_notify;
2317
2318        seq_printf(m, "ID: %d\n", timer->it_id);
2319        seq_printf(m, "signal: %d/%px\n",
2320                   timer->sigq->info.si_signo,
2321                   timer->sigq->info.si_value.sival_ptr);
2322        seq_printf(m, "notify: %s/%s.%d\n",
2323                   nstr[notify & ~SIGEV_THREAD_ID],
2324                   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2325                   pid_nr_ns(timer->it_pid, tp->ns));
2326        seq_printf(m, "ClockID: %d\n", timer->it_clock);
2327
2328        return 0;
2329}
2330
2331static const struct seq_operations proc_timers_seq_ops = {
2332        .start  = timers_start,
2333        .next   = timers_next,
2334        .stop   = timers_stop,
2335        .show   = show_timer,
2336};
2337
2338static int proc_timers_open(struct inode *inode, struct file *file)
2339{
2340        struct timers_private *tp;
2341
2342        tp = __seq_open_private(file, &proc_timers_seq_ops,
2343                        sizeof(struct timers_private));
2344        if (!tp)
2345                return -ENOMEM;
2346
2347        tp->pid = proc_pid(inode);
2348        tp->ns = proc_pid_ns(inode);
2349        return 0;
2350}
2351
2352static const struct file_operations proc_timers_operations = {
2353        .open           = proc_timers_open,
2354        .read           = seq_read,
2355        .llseek         = seq_lseek,
2356        .release        = seq_release_private,
2357};
2358#endif
2359
2360static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2361                                        size_t count, loff_t *offset)
2362{
2363        struct inode *inode = file_inode(file);
2364        struct task_struct *p;
2365        u64 slack_ns;
2366        int err;
2367
2368        err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2369        if (err < 0)
2370                return err;
2371
2372        p = get_proc_task(inode);
2373        if (!p)
2374                return -ESRCH;
2375
2376        if (p != current) {
2377                rcu_read_lock();
2378                if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2379                        rcu_read_unlock();
2380                        count = -EPERM;
2381                        goto out;
2382                }
2383                rcu_read_unlock();
2384
2385                err = security_task_setscheduler(p);
2386                if (err) {
2387                        count = err;
2388                        goto out;
2389                }
2390        }
2391
2392        task_lock(p);
2393        if (slack_ns == 0)
2394                p->timer_slack_ns = p->default_timer_slack_ns;
2395        else
2396                p->timer_slack_ns = slack_ns;
2397        task_unlock(p);
2398
2399out:
2400        put_task_struct(p);
2401
2402        return count;
2403}
2404
2405static int timerslack_ns_show(struct seq_file *m, void *v)
2406{
2407        struct inode *inode = m->private;
2408        struct task_struct *p;
2409        int err = 0;
2410
2411        p = get_proc_task(inode);
2412        if (!p)
2413                return -ESRCH;
2414
2415        if (p != current) {
2416                rcu_read_lock();
2417                if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2418                        rcu_read_unlock();
2419                        err = -EPERM;
2420                        goto out;
2421                }
2422                rcu_read_unlock();
2423
2424                err = security_task_getscheduler(p);
2425                if (err)
2426                        goto out;
2427        }
2428
2429        task_lock(p);
2430        seq_printf(m, "%llu\n", p->timer_slack_ns);
2431        task_unlock(p);
2432
2433out:
2434        put_task_struct(p);
2435
2436        return err;
2437}
2438
2439static int timerslack_ns_open(struct inode *inode, struct file *filp)
2440{
2441        return single_open(filp, timerslack_ns_show, inode);
2442}
2443
2444static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2445        .open           = timerslack_ns_open,
2446        .read           = seq_read,
2447        .write          = timerslack_ns_write,
2448        .llseek         = seq_lseek,
2449        .release        = single_release,
2450};
2451
2452static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2453        struct task_struct *task, const void *ptr)
2454{
2455        const struct pid_entry *p = ptr;
2456        struct inode *inode;
2457        struct proc_inode *ei;
2458
2459        inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2460        if (!inode)
2461                return ERR_PTR(-ENOENT);
2462
2463        ei = PROC_I(inode);
2464        if (S_ISDIR(inode->i_mode))
2465                set_nlink(inode, 2);    /* Use getattr to fix if necessary */
2466        if (p->iop)
2467                inode->i_op = p->iop;
2468        if (p->fop)
2469                inode->i_fop = p->fop;
2470        ei->op = p->op;
2471        pid_update_inode(task, inode);
2472        d_set_d_op(dentry, &pid_dentry_operations);
2473        return d_splice_alias(inode, dentry);
2474}
2475
2476static struct dentry *proc_pident_lookup(struct inode *dir, 
2477                                         struct dentry *dentry,
2478                                         const struct pid_entry *p,
2479                                         const struct pid_entry *end)
2480{
2481        struct task_struct *task = get_proc_task(dir);
2482        struct dentry *res = ERR_PTR(-ENOENT);
2483
2484        if (!task)
2485                goto out_no_task;
2486
2487        /*
2488         * Yes, it does not scale. And it should not. Don't add
2489         * new entries into /proc/<tgid>/ without very good reasons.
2490         */
2491        for (; p < end; p++) {
2492                if (p->len != dentry->d_name.len)
2493                        continue;
2494                if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2495                        res = proc_pident_instantiate(dentry, task, p);
2496                        break;
2497                }
2498        }
2499        put_task_struct(task);
2500out_no_task:
2501        return res;
2502}
2503
2504static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2505                const struct pid_entry *ents, unsigned int nents)
2506{
2507        struct task_struct *task = get_proc_task(file_inode(file));
2508        const struct pid_entry *p;
2509
2510        if (!task)
2511                return -ENOENT;
2512
2513        if (!dir_emit_dots(file, ctx))
2514                goto out;
2515
2516        if (ctx->pos >= nents + 2)
2517                goto out;
2518
2519        for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2520                if (!proc_fill_cache(file, ctx, p->name, p->len,
2521                                proc_pident_instantiate, task, p))
2522                        break;
2523                ctx->pos++;
2524        }
2525out:
2526        put_task_struct(task);
2527        return 0;
2528}
2529
2530#ifdef CONFIG_SECURITY
2531static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2532                                  size_t count, loff_t *ppos)
2533{
2534        struct inode * inode = file_inode(file);
2535        char *p = NULL;
2536        ssize_t length;
2537        struct task_struct *task = get_proc_task(inode);
2538
2539        if (!task)
2540                return -ESRCH;
2541
2542        length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2543                                      (char*)file->f_path.dentry->d_name.name,
2544                                      &p);
2545        put_task_struct(task);
2546        if (length > 0)
2547                length = simple_read_from_buffer(buf, count, ppos, p, length);
2548        kfree(p);
2549        return length;
2550}
2551
2552static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2553                                   size_t count, loff_t *ppos)
2554{
2555        struct inode * inode = file_inode(file);
2556        struct task_struct *task;
2557        void *page;
2558        int rv;
2559
2560        rcu_read_lock();
2561        task = pid_task(proc_pid(inode), PIDTYPE_PID);
2562        if (!task) {
2563                rcu_read_unlock();
2564                return -ESRCH;
2565        }
2566        /* A task may only write its own attributes. */
2567        if (current != task) {
2568                rcu_read_unlock();
2569                return -EACCES;
2570        }
2571        /* Prevent changes to overridden credentials. */
2572        if (current_cred() != current_real_cred()) {
2573                rcu_read_unlock();
2574                return -EBUSY;
2575        }
2576        rcu_read_unlock();
2577
2578        if (count > PAGE_SIZE)
2579                count = PAGE_SIZE;
2580
2581        /* No partial writes. */
2582        if (*ppos != 0)
2583                return -EINVAL;
2584
2585        page = memdup_user(buf, count);
2586        if (IS_ERR(page)) {
2587                rv = PTR_ERR(page);
2588                goto out;
2589        }
2590
2591        /* Guard against adverse ptrace interaction */
2592        rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2593        if (rv < 0)
2594                goto out_free;
2595
2596        rv = security_setprocattr(PROC_I(inode)->op.lsm,
2597                                  file->f_path.dentry->d_name.name, page,
2598                                  count);
2599        mutex_unlock(&current->signal->cred_guard_mutex);
2600out_free:
2601        kfree(page);
2602out:
2603        return rv;
2604}
2605
2606static const struct file_operations proc_pid_attr_operations = {
2607        .read           = proc_pid_attr_read,
2608        .write          = proc_pid_attr_write,
2609        .llseek         = generic_file_llseek,
2610};
2611
2612#define LSM_DIR_OPS(LSM) \
2613static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2614                             struct dir_context *ctx) \
2615{ \
2616        return proc_pident_readdir(filp, ctx, \
2617                                   LSM##_attr_dir_stuff, \
2618                                   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2619} \
2620\
2621static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2622        .read           = generic_read_dir, \
2623        .iterate        = proc_##LSM##_attr_dir_iterate, \
2624        .llseek         = default_llseek, \
2625}; \
2626\
2627static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2628                                struct dentry *dentry, unsigned int flags) \
2629{ \
2630        return proc_pident_lookup(dir, dentry, \
2631                                  LSM##_attr_dir_stuff, \
2632                                  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2633} \
2634\
2635static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2636        .lookup         = proc_##LSM##_attr_dir_lookup, \
2637        .getattr        = pid_getattr, \
2638        .setattr        = proc_setattr, \
2639}
2640
2641#ifdef CONFIG_SECURITY_SMACK
2642static const struct pid_entry smack_attr_dir_stuff[] = {
2643        ATTR("smack", "current",        0666),
2644};
2645LSM_DIR_OPS(smack);
2646#endif
2647
2648static const struct pid_entry attr_dir_stuff[] = {
2649        ATTR(NULL, "current",           0666),
2650        ATTR(NULL, "prev",              0444),
2651        ATTR(NULL, "exec",              0666),
2652        ATTR(NULL, "fscreate",          0666),
2653        ATTR(NULL, "keycreate",         0666),
2654        ATTR(NULL, "sockcreate",        0666),
2655#ifdef CONFIG_SECURITY_SMACK
2656        DIR("smack",                    0555,
2657            proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2658#endif
2659};
2660
2661static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2662{
2663        return proc_pident_readdir(file, ctx, 
2664                                   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2665}
2666
2667static const struct file_operations proc_attr_dir_operations = {
2668        .read           = generic_read_dir,
2669        .iterate_shared = proc_attr_dir_readdir,
2670        .llseek         = generic_file_llseek,
2671};
2672
2673static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2674                                struct dentry *dentry, unsigned int flags)
2675{
2676        return proc_pident_lookup(dir, dentry,
2677                                  attr_dir_stuff,
2678                                  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2679}
2680
2681static const struct inode_operations proc_attr_dir_inode_operations = {
2682        .lookup         = proc_attr_dir_lookup,
2683        .getattr        = pid_getattr,
2684        .setattr        = proc_setattr,
2685};
2686
2687#endif
2688
2689#ifdef CONFIG_ELF_CORE
2690static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2691                                         size_t count, loff_t *ppos)
2692{
2693        struct task_struct *task = get_proc_task(file_inode(file));
2694        struct mm_struct *mm;
2695        char buffer[PROC_NUMBUF];
2696        size_t len;
2697        int ret;
2698
2699        if (!task)
2700                return -ESRCH;
2701
2702        ret = 0;
2703        mm = get_task_mm(task);
2704        if (mm) {
2705                len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2706                               ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2707                                MMF_DUMP_FILTER_SHIFT));
2708                mmput(mm);
2709                ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2710        }
2711
2712        put_task_struct(task);
2713
2714        return ret;
2715}
2716
2717static ssize_t proc_coredump_filter_write(struct file *file,
2718                                          const char __user *buf,
2719                                          size_t count,
2720                                          loff_t *ppos)
2721{
2722        struct task_struct *task;
2723        struct mm_struct *mm;
2724        unsigned int val;
2725        int ret;
2726        int i;
2727        unsigned long mask;
2728
2729        ret = kstrtouint_from_user(buf, count, 0, &val);
2730        if (ret < 0)
2731                return ret;
2732
2733        ret = -ESRCH;
2734        task = get_proc_task(file_inode(file));
2735        if (!task)
2736                goto out_no_task;
2737
2738        mm = get_task_mm(task);
2739        if (!mm)
2740                goto out_no_mm;
2741        ret = 0;
2742
2743        for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2744                if (val & mask)
2745                        set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2746                else
2747                        clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2748        }
2749
2750        mmput(mm);
2751 out_no_mm:
2752        put_task_struct(task);
2753 out_no_task:
2754        if (ret < 0)
2755                return ret;
2756        return count;
2757}
2758
2759static const struct file_operations proc_coredump_filter_operations = {
2760        .read           = proc_coredump_filter_read,
2761        .write          = proc_coredump_filter_write,
2762        .llseek         = generic_file_llseek,
2763};
2764#endif
2765
2766#ifdef CONFIG_TASK_IO_ACCOUNTING
2767static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2768{
2769        struct task_io_accounting acct = task->ioac;
2770        unsigned long flags;
2771        int result;
2772
2773        result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2774        if (result)
2775                return result;
2776
2777        if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2778                result = -EACCES;
2779                goto out_unlock;
2780        }
2781
2782        if (whole && lock_task_sighand(task, &flags)) {
2783                struct task_struct *t = task;
2784
2785                task_io_accounting_add(&acct, &task->signal->ioac);
2786                while_each_thread(task, t)
2787                        task_io_accounting_add(&acct, &t->ioac);
2788
2789                unlock_task_sighand(task, &flags);
2790        }
2791        seq_printf(m,
2792                   "rchar: %llu\n"
2793                   "wchar: %llu\n"
2794                   "syscr: %llu\n"
2795                   "syscw: %llu\n"
2796                   "read_bytes: %llu\n"
2797                   "write_bytes: %llu\n"
2798                   "cancelled_write_bytes: %llu\n",
2799                   (unsigned long long)acct.rchar,
2800                   (unsigned long long)acct.wchar,
2801                   (unsigned long long)acct.syscr,
2802                   (unsigned long long)acct.syscw,
2803                   (unsigned long long)acct.read_bytes,
2804                   (unsigned long long)acct.write_bytes,
2805                   (unsigned long long)acct.cancelled_write_bytes);
2806        result = 0;
2807
2808out_unlock:
2809        mutex_unlock(&task->signal->cred_guard_mutex);
2810        return result;
2811}
2812
2813static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2814                                  struct pid *pid, struct task_struct *task)
2815{
2816        return do_io_accounting(task, m, 0);
2817}
2818
2819static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2820                                   struct pid *pid, struct task_struct *task)
2821{
2822        return do_io_accounting(task, m, 1);
2823}
2824#endif /* CONFIG_TASK_IO_ACCOUNTING */
2825
2826#ifdef CONFIG_USER_NS
2827static int proc_id_map_open(struct inode *inode, struct file *file,
2828        const struct seq_operations *seq_ops)
2829{
2830        struct user_namespace *ns = NULL;
2831        struct task_struct *task;
2832        struct seq_file *seq;
2833        int ret = -EINVAL;
2834
2835        task = get_proc_task(inode);
2836        if (task) {
2837                rcu_read_lock();
2838                ns = get_user_ns(task_cred_xxx(task, user_ns));
2839                rcu_read_unlock();
2840                put_task_struct(task);
2841        }
2842        if (!ns)
2843                goto err;
2844
2845        ret = seq_open(file, seq_ops);
2846        if (ret)
2847                goto err_put_ns;
2848
2849        seq = file->private_data;
2850        seq->private = ns;
2851
2852        return 0;
2853err_put_ns:
2854        put_user_ns(ns);
2855err:
2856        return ret;
2857}
2858
2859static int proc_id_map_release(struct inode *inode, struct file *file)
2860{
2861        struct seq_file *seq = file->private_data;
2862        struct user_namespace *ns = seq->private;
2863        put_user_ns(ns);
2864        return seq_release(inode, file);
2865}
2866
2867static int proc_uid_map_open(struct inode *inode, struct file *file)
2868{
2869        return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2870}
2871
2872static int proc_gid_map_open(struct inode *inode, struct file *file)
2873{
2874        return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2875}
2876
2877static int proc_projid_map_open(struct inode *inode, struct file *file)
2878{
2879        return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2880}
2881
2882static const struct file_operations proc_uid_map_operations = {
2883        .open           = proc_uid_map_open,
2884        .write          = proc_uid_map_write,
2885        .read           = seq_read,
2886        .llseek         = seq_lseek,
2887        .release        = proc_id_map_release,
2888};
2889
2890static const struct file_operations proc_gid_map_operations = {
2891        .open           = proc_gid_map_open,
2892        .write          = proc_gid_map_write,
2893        .read           = seq_read,
2894        .llseek         = seq_lseek,
2895        .release        = proc_id_map_release,
2896};
2897
2898static const struct file_operations proc_projid_map_operations = {
2899        .open           = proc_projid_map_open,
2900        .write          = proc_projid_map_write,
2901        .read           = seq_read,
2902        .llseek         = seq_lseek,
2903        .release        = proc_id_map_release,
2904};
2905
2906static int proc_setgroups_open(struct inode *inode, struct file *file)
2907{
2908        struct user_namespace *ns = NULL;
2909        struct task_struct *task;
2910        int ret;
2911
2912        ret = -ESRCH;
2913        task = get_proc_task(inode);
2914        if (task) {
2915                rcu_read_lock();
2916                ns = get_user_ns(task_cred_xxx(task, user_ns));
2917                rcu_read_unlock();
2918                put_task_struct(task);
2919        }
2920        if (!ns)
2921                goto err;
2922
2923        if (file->f_mode & FMODE_WRITE) {
2924                ret = -EACCES;
2925                if (!ns_capable(ns, CAP_SYS_ADMIN))
2926                        goto err_put_ns;
2927        }
2928
2929        ret = single_open(file, &proc_setgroups_show, ns);
2930        if (ret)
2931                goto err_put_ns;
2932
2933        return 0;
2934err_put_ns:
2935        put_user_ns(ns);
2936err:
2937        return ret;
2938}
2939
2940static int proc_setgroups_release(struct inode *inode, struct file *file)
2941{
2942        struct seq_file *seq = file->private_data;
2943        struct user_namespace *ns = seq->private;
2944        int ret = single_release(inode, file);
2945        put_user_ns(ns);
2946        return ret;
2947}
2948
2949static const struct file_operations proc_setgroups_operations = {
2950        .open           = proc_setgroups_open,
2951        .write          = proc_setgroups_write,
2952        .read           = seq_read,
2953        .llseek         = seq_lseek,
2954        .release        = proc_setgroups_release,
2955};
2956#endif /* CONFIG_USER_NS */
2957
2958static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2959                                struct pid *pid, struct task_struct *task)
2960{
2961        int err = lock_trace(task);
2962        if (!err) {
2963                seq_printf(m, "%08x\n", task->personality);
2964                unlock_trace(task);
2965        }
2966        return err;
2967}
2968
2969#ifdef CONFIG_LIVEPATCH
2970static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2971                                struct pid *pid, struct task_struct *task)
2972{
2973        seq_printf(m, "%d\n", task->patch_state);
2974        return 0;
2975}
2976#endif /* CONFIG_LIVEPATCH */
2977
2978#ifdef CONFIG_STACKLEAK_METRICS
2979static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
2980                                struct pid *pid, struct task_struct *task)
2981{
2982        unsigned long prev_depth = THREAD_SIZE -
2983                                (task->prev_lowest_stack & (THREAD_SIZE - 1));
2984        unsigned long depth = THREAD_SIZE -
2985                                (task->lowest_stack & (THREAD_SIZE - 1));
2986
2987        seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
2988                                                        prev_depth, depth);
2989        return 0;
2990}
2991#endif /* CONFIG_STACKLEAK_METRICS */
2992
2993/*
2994 * Thread groups
2995 */
2996static const struct file_operations proc_task_operations;
2997static const struct inode_operations proc_task_inode_operations;
2998
2999static const struct pid_entry tgid_base_stuff[] = {
3000        DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3001        DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3002        DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3003        DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3004        DIR("ns",         S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3005#ifdef CONFIG_NET
3006        DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3007#endif
3008        REG("environ",    S_IRUSR, proc_environ_operations),
3009        REG("auxv",       S_IRUSR, proc_auxv_operations),
3010        ONE("status",     S_IRUGO, proc_pid_status),
3011        ONE("personality", S_IRUSR, proc_pid_personality),
3012        ONE("limits",     S_IRUGO, proc_pid_limits),
3013#ifdef CONFIG_SCHED_DEBUG
3014        REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3015#endif
3016#ifdef CONFIG_SCHED_AUTOGROUP
3017        REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3018#endif
3019        REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3020#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3021        ONE("syscall",    S_IRUSR, proc_pid_syscall),
3022#endif
3023        REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3024        ONE("stat",       S_IRUGO, proc_tgid_stat),
3025        ONE("statm",      S_IRUGO, proc_pid_statm),
3026        REG("maps",       S_IRUGO, proc_pid_maps_operations),
3027#ifdef CONFIG_NUMA
3028        REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3029#endif
3030        REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3031        LNK("cwd",        proc_cwd_link),
3032        LNK("root",       proc_root_link),
3033        LNK("exe",        proc_exe_link),
3034        REG("mounts",     S_IRUGO, proc_mounts_operations),
3035        REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3036        REG("mountstats", S_IRUSR, proc_mountstats_operations),
3037#ifdef CONFIG_PROC_PAGE_MONITOR
3038        REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3039        REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3040        REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3041        REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3042#endif
3043#ifdef CONFIG_SECURITY
3044        DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3045#endif
3046#ifdef CONFIG_KALLSYMS
3047        ONE("wchan",      S_IRUGO, proc_pid_wchan),
3048#endif
3049#ifdef CONFIG_STACKTRACE
3050        ONE("stack",      S_IRUSR, proc_pid_stack),
3051#endif
3052#ifdef CONFIG_SCHED_INFO
3053        ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3054#endif
3055#ifdef CONFIG_LATENCYTOP
3056        REG("latency",  S_IRUGO, proc_lstats_operations),
3057#endif
3058#ifdef CONFIG_PROC_PID_CPUSET
3059        ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3060#endif
3061#ifdef CONFIG_CGROUPS
3062        ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3063#endif
3064        ONE("oom_score",  S_IRUGO, proc_oom_score),
3065        REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3066        REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3067#ifdef CONFIG_AUDIT
3068        REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3069        REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3070#endif
3071#ifdef CONFIG_FAULT_INJECTION
3072        REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3073        REG("fail-nth", 0644, proc_fail_nth_operations),
3074#endif
3075#ifdef CONFIG_ELF_CORE
3076        REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3077#endif
3078#ifdef CONFIG_TASK_IO_ACCOUNTING
3079        ONE("io",       S_IRUSR, proc_tgid_io_accounting),
3080#endif
3081#ifdef CONFIG_USER_NS
3082        REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3083        REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3084        REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3085        REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3086#endif
3087#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3088        REG("timers",     S_IRUGO, proc_timers_operations),
3089#endif
3090        REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3091#ifdef CONFIG_LIVEPATCH
3092        ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3093#endif
3094#ifdef CONFIG_STACKLEAK_METRICS
3095        ONE("stack_depth", S_IRUGO, proc_stack_depth),
3096#endif
3097#ifdef CONFIG_PROC_PID_ARCH_STATUS
3098        ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3099#endif
3100};
3101
3102static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3103{
3104        return proc_pident_readdir(file, ctx,
3105                                   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3106}
3107
3108static const struct file_operations proc_tgid_base_operations = {
3109        .read           = generic_read_dir,
3110        .iterate_shared = proc_tgid_base_readdir,
3111        .llseek         = generic_file_llseek,
3112};
3113
3114struct pid *tgid_pidfd_to_pid(const struct file *file)
3115{
3116        if (file->f_op != &proc_tgid_base_operations)
3117                return ERR_PTR(-EBADF);
3118
3119        return proc_pid(file_inode(file));
3120}
3121
3122static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3123{
3124        return proc_pident_lookup(dir, dentry,
3125                                  tgid_base_stuff,
3126                                  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3127}
3128
3129static const struct inode_operations proc_tgid_base_inode_operations = {
3130        .lookup         = proc_tgid_base_lookup,
3131        .getattr        = pid_getattr,
3132        .setattr        = proc_setattr,
3133        .permission     = proc_pid_permission,
3134};
3135
3136static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3137{
3138        struct dentry *dentry, *leader, *dir;
3139        char buf[10 + 1];
3140        struct qstr name;
3141
3142        name.name = buf;
3143        name.len = snprintf(buf, sizeof(buf), "%u", pid);
3144        /* no ->d_hash() rejects on procfs */
3145        dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3146        if (dentry) {
3147                d_invalidate(dentry);
3148                dput(dentry);
3149        }
3150
3151        if (pid == tgid)
3152                return;
3153
3154        name.name = buf;
3155        name.len = snprintf(buf, sizeof(buf), "%u", tgid);
3156        leader = d_hash_and_lookup(mnt->mnt_root, &name);
3157        if (!leader)
3158                goto out;
3159
3160        name.name = "task";
3161        name.len = strlen(name.name);
3162        dir = d_hash_and_lookup(leader, &name);
3163        if (!dir)
3164                goto out_put_leader;
3165
3166        name.name = buf;
3167        name.len = snprintf(buf, sizeof(buf), "%u", pid);
3168        dentry = d_hash_and_lookup(dir, &name);
3169        if (dentry) {
3170                d_invalidate(dentry);
3171                dput(dentry);
3172        }
3173
3174        dput(dir);
3175out_put_leader:
3176        dput(leader);
3177out:
3178        return;
3179}
3180
3181/**
3182 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3183 * @task: task that should be flushed.
3184 *
3185 * When flushing dentries from proc, one needs to flush them from global
3186 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3187 * in. This call is supposed to do all of this job.
3188 *
3189 * Looks in the dcache for
3190 * /proc/@pid
3191 * /proc/@tgid/task/@pid
3192 * if either directory is present flushes it and all of it'ts children
3193 * from the dcache.
3194 *
3195 * It is safe and reasonable to cache /proc entries for a task until
3196 * that task exits.  After that they just clog up the dcache with
3197 * useless entries, possibly causing useful dcache entries to be
3198 * flushed instead.  This routine is proved to flush those useless
3199 * dcache entries at process exit time.
3200 *
3201 * NOTE: This routine is just an optimization so it does not guarantee
3202 *       that no dcache entries will exist at process exit time it
3203 *       just makes it very unlikely that any will persist.
3204 */
3205
3206void proc_flush_task(struct task_struct *task)
3207{
3208        int i;
3209        struct pid *pid, *tgid;
3210        struct upid *upid;
3211
3212        pid = task_pid(task);
3213        tgid = task_tgid(task);
3214
3215        for (i = 0; i <= pid->level; i++) {
3216                upid = &pid->numbers[i];
3217                proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3218                                        tgid->numbers[i].nr);
3219        }
3220}
3221
3222static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3223                                   struct task_struct *task, const void *ptr)
3224{
3225        struct inode *inode;
3226
3227        inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3228        if (!inode)
3229                return ERR_PTR(-ENOENT);
3230
3231        inode->i_op = &proc_tgid_base_inode_operations;
3232        inode->i_fop = &proc_tgid_base_operations;
3233        inode->i_flags|=S_IMMUTABLE;
3234
3235        set_nlink(inode, nlink_tgid);
3236        pid_update_inode(task, inode);
3237
3238        d_set_d_op(dentry, &pid_dentry_operations);
3239        return d_splice_alias(inode, dentry);
3240}
3241
3242struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3243{
3244        struct task_struct *task;
3245        unsigned tgid;
3246        struct pid_namespace *ns;
3247        struct dentry *result = ERR_PTR(-ENOENT);
3248
3249        tgid = name_to_int(&dentry->d_name);
3250        if (tgid == ~0U)
3251                goto out;
3252
3253        ns = dentry->d_sb->s_fs_info;
3254        rcu_read_lock();
3255        task = find_task_by_pid_ns(tgid, ns);
3256        if (task)
3257                get_task_struct(task);
3258        rcu_read_unlock();
3259        if (!task)
3260                goto out;
3261
3262        result = proc_pid_instantiate(dentry, task, NULL);
3263        put_task_struct(task);
3264out:
3265        return result;
3266}
3267
3268/*
3269 * Find the first task with tgid >= tgid
3270 *
3271 */
3272struct tgid_iter {
3273        unsigned int tgid;
3274        struct task_struct *task;
3275};
3276static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3277{
3278        struct pid *pid;
3279
3280        if (iter.task)
3281                put_task_struct(iter.task);
3282        rcu_read_lock();
3283retry:
3284        iter.task = NULL;
3285        pid = find_ge_pid(iter.tgid, ns);
3286        if (pid) {
3287                iter.tgid = pid_nr_ns(pid, ns);
3288                iter.task = pid_task(pid, PIDTYPE_PID);
3289                /* What we to know is if the pid we have find is the
3290                 * pid of a thread_group_leader.  Testing for task
3291                 * being a thread_group_leader is the obvious thing
3292                 * todo but there is a window when it fails, due to
3293                 * the pid transfer logic in de_thread.
3294                 *
3295                 * So we perform the straight forward test of seeing
3296                 * if the pid we have found is the pid of a thread
3297                 * group leader, and don't worry if the task we have
3298                 * found doesn't happen to be a thread group leader.
3299                 * As we don't care in the case of readdir.
3300                 */
3301                if (!iter.task || !has_group_leader_pid(iter.task)) {
3302                        iter.tgid += 1;
3303                        goto retry;
3304                }
3305                get_task_struct(iter.task);
3306        }
3307        rcu_read_unlock();
3308        return iter;
3309}
3310
3311#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3312
3313/* for the /proc/ directory itself, after non-process stuff has been done */
3314int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3315{
3316        struct tgid_iter iter;
3317        struct pid_namespace *ns = proc_pid_ns(file_inode(file));
3318        loff_t pos = ctx->pos;
3319
3320        if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3321                return 0;
3322
3323        if (pos == TGID_OFFSET - 2) {
3324                struct inode *inode = d_inode(ns->proc_self);
3325                if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3326                        return 0;
3327                ctx->pos = pos = pos + 1;
3328        }
3329        if (pos == TGID_OFFSET - 1) {
3330                struct inode *inode = d_inode(ns->proc_thread_self);
3331                if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3332                        return 0;
3333                ctx->pos = pos = pos + 1;
3334        }
3335        iter.tgid = pos - TGID_OFFSET;
3336        iter.task = NULL;
3337        for (iter = next_tgid(ns, iter);
3338             iter.task;
3339             iter.tgid += 1, iter = next_tgid(ns, iter)) {
3340                char name[10 + 1];
3341                unsigned int len;
3342
3343                cond_resched();
3344                if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3345                        continue;
3346
3347                len = snprintf(name, sizeof(name), "%u", iter.tgid);
3348                ctx->pos = iter.tgid + TGID_OFFSET;
3349                if (!proc_fill_cache(file, ctx, name, len,
3350                                     proc_pid_instantiate, iter.task, NULL)) {
3351                        put_task_struct(iter.task);
3352                        return 0;
3353                }
3354        }
3355        ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3356        return 0;
3357}
3358
3359/*
3360 * proc_tid_comm_permission is a special permission function exclusively
3361 * used for the node /proc/<pid>/task/<tid>/comm.
3362 * It bypasses generic permission checks in the case where a task of the same
3363 * task group attempts to access the node.
3364 * The rationale behind this is that glibc and bionic access this node for
3365 * cross thread naming (pthread_set/getname_np(!self)). However, if
3366 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3367 * which locks out the cross thread naming implementation.
3368 * This function makes sure that the node is always accessible for members of
3369 * same thread group.
3370 */
3371static int proc_tid_comm_permission(struct inode *inode, int mask)
3372{
3373        bool is_same_tgroup;
3374        struct task_struct *task;
3375
3376        task = get_proc_task(inode);
3377        if (!task)
3378                return -ESRCH;
3379        is_same_tgroup = same_thread_group(current, task);
3380        put_task_struct(task);
3381
3382        if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3383                /* This file (/proc/<pid>/task/<tid>/comm) can always be
3384                 * read or written by the members of the corresponding
3385                 * thread group.
3386                 */
3387                return 0;
3388        }
3389
3390        return generic_permission(inode, mask);
3391}
3392
3393static const struct inode_operations proc_tid_comm_inode_operations = {
3394                .permission = proc_tid_comm_permission,
3395};
3396
3397/*
3398 * Tasks
3399 */
3400static const struct pid_entry tid_base_stuff[] = {
3401        DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3402        DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3403        DIR("ns",        S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3404#ifdef CONFIG_NET
3405        DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3406#endif
3407        REG("environ",   S_IRUSR, proc_environ_operations),
3408        REG("auxv",      S_IRUSR, proc_auxv_operations),
3409        ONE("status",    S_IRUGO, proc_pid_status),
3410        ONE("personality", S_IRUSR, proc_pid_personality),
3411        ONE("limits",    S_IRUGO, proc_pid_limits),
3412#ifdef CONFIG_SCHED_DEBUG
3413        REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3414#endif
3415        NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3416                         &proc_tid_comm_inode_operations,
3417                         &proc_pid_set_comm_operations, {}),
3418#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3419        ONE("syscall",   S_IRUSR, proc_pid_syscall),
3420#endif
3421        REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3422        ONE("stat",      S_IRUGO, proc_tid_stat),
3423        ONE("statm",     S_IRUGO, proc_pid_statm),
3424        REG("maps",      S_IRUGO, proc_pid_maps_operations),
3425#ifdef CONFIG_PROC_CHILDREN
3426        REG("children",  S_IRUGO, proc_tid_children_operations),
3427#endif
3428#ifdef CONFIG_NUMA
3429        REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3430#endif
3431        REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3432        LNK("cwd",       proc_cwd_link),
3433        LNK("root",      proc_root_link),
3434        LNK("exe",       proc_exe_link),
3435        REG("mounts",    S_IRUGO, proc_mounts_operations),
3436        REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3437#ifdef CONFIG_PROC_PAGE_MONITOR
3438        REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3439        REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3440        REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3441        REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3442#endif
3443#ifdef CONFIG_SECURITY
3444        DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3445#endif
3446#ifdef CONFIG_KALLSYMS
3447        ONE("wchan",     S_IRUGO, proc_pid_wchan),
3448#endif
3449#ifdef CONFIG_STACKTRACE
3450        ONE("stack",      S_IRUSR, proc_pid_stack),
3451#endif
3452#ifdef CONFIG_SCHED_INFO
3453        ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3454#endif
3455#ifdef CONFIG_LATENCYTOP
3456        REG("latency",  S_IRUGO, proc_lstats_operations),
3457#endif
3458#ifdef CONFIG_PROC_PID_CPUSET
3459        ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3460#endif
3461#ifdef CONFIG_CGROUPS
3462        ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3463#endif
3464        ONE("oom_score", S_IRUGO, proc_oom_score),
3465        REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3466        REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3467#ifdef CONFIG_AUDIT
3468        REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3469        REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3470#endif
3471#ifdef CONFIG_FAULT_INJECTION
3472        REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3473        REG("fail-nth", 0644, proc_fail_nth_operations),
3474#endif
3475#ifdef CONFIG_TASK_IO_ACCOUNTING
3476        ONE("io",       S_IRUSR, proc_tid_io_accounting),
3477#endif
3478#ifdef CONFIG_USER_NS
3479        REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3480        REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3481        REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3482        REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3483#endif
3484#ifdef CONFIG_LIVEPATCH
3485        ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3486#endif
3487#ifdef CONFIG_PROC_PID_ARCH_STATUS
3488        ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3489#endif
3490};
3491
3492static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3493{
3494        return proc_pident_readdir(file, ctx,
3495                                   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3496}
3497
3498static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3499{
3500        return proc_pident_lookup(dir, dentry,
3501                                  tid_base_stuff,
3502                                  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3503}
3504
3505static const struct file_operations proc_tid_base_operations = {
3506        .read           = generic_read_dir,
3507        .iterate_shared = proc_tid_base_readdir,
3508        .llseek         = generic_file_llseek,
3509};
3510
3511static const struct inode_operations proc_tid_base_inode_operations = {
3512        .lookup         = proc_tid_base_lookup,
3513        .getattr        = pid_getattr,
3514        .setattr        = proc_setattr,
3515};
3516
3517static struct dentry *proc_task_instantiate(struct dentry *dentry,
3518        struct task_struct *task, const void *ptr)
3519{
3520        struct inode *inode;
3521        inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3522        if (!inode)
3523                return ERR_PTR(-ENOENT);
3524
3525        inode->i_op = &proc_tid_base_inode_operations;
3526        inode->i_fop = &proc_tid_base_operations;
3527        inode->i_flags |= S_IMMUTABLE;
3528
3529        set_nlink(inode, nlink_tid);
3530        pid_update_inode(task, inode);
3531
3532        d_set_d_op(dentry, &pid_dentry_operations);
3533        return d_splice_alias(inode, dentry);
3534}
3535
3536static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3537{
3538        struct task_struct *task;
3539        struct task_struct *leader = get_proc_task(dir);
3540        unsigned tid;
3541        struct pid_namespace *ns;
3542        struct dentry *result = ERR_PTR(-ENOENT);
3543
3544        if (!leader)
3545                goto out_no_task;
3546
3547        tid = name_to_int(&dentry->d_name);
3548        if (tid == ~0U)
3549                goto out;
3550
3551        ns = dentry->d_sb->s_fs_info;
3552        rcu_read_lock();
3553        task = find_task_by_pid_ns(tid, ns);
3554        if (task)
3555                get_task_struct(task);
3556        rcu_read_unlock();
3557        if (!task)
3558                goto out;
3559        if (!same_thread_group(leader, task))
3560                goto out_drop_task;
3561
3562        result = proc_task_instantiate(dentry, task, NULL);
3563out_drop_task:
3564        put_task_struct(task);
3565out:
3566        put_task_struct(leader);
3567out_no_task:
3568        return result;
3569}
3570
3571/*
3572 * Find the first tid of a thread group to return to user space.
3573 *
3574 * Usually this is just the thread group leader, but if the users
3575 * buffer was too small or there was a seek into the middle of the
3576 * directory we have more work todo.
3577 *
3578 * In the case of a short read we start with find_task_by_pid.
3579 *
3580 * In the case of a seek we start with the leader and walk nr
3581 * threads past it.
3582 */
3583static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3584                                        struct pid_namespace *ns)
3585{
3586        struct task_struct *pos, *task;
3587        unsigned long nr = f_pos;
3588
3589        if (nr != f_pos)        /* 32bit overflow? */
3590                return NULL;
3591
3592        rcu_read_lock();
3593        task = pid_task(pid, PIDTYPE_PID);
3594        if (!task)
3595                goto fail;
3596
3597        /* Attempt to start with the tid of a thread */
3598        if (tid && nr) {
3599                pos = find_task_by_pid_ns(tid, ns);
3600                if (pos && same_thread_group(pos, task))
3601                        goto found;
3602        }
3603
3604        /* If nr exceeds the number of threads there is nothing todo */
3605        if (nr >= get_nr_threads(task))
3606                goto fail;
3607
3608        /* If we haven't found our starting place yet start
3609         * with the leader and walk nr threads forward.
3610         */
3611        pos = task = task->group_leader;
3612        do {
3613                if (!nr--)
3614                        goto found;
3615        } while_each_thread(task, pos);
3616fail:
3617        pos = NULL;
3618        goto out;
3619found:
3620        get_task_struct(pos);
3621out:
3622        rcu_read_unlock();
3623        return pos;
3624}
3625
3626/*
3627 * Find the next thread in the thread list.
3628 * Return NULL if there is an error or no next thread.
3629 *
3630 * The reference to the input task_struct is released.
3631 */
3632static struct task_struct *next_tid(struct task_struct *start)
3633{
3634        struct task_struct *pos = NULL;
3635        rcu_read_lock();
3636        if (pid_alive(start)) {
3637                pos = next_thread(start);
3638                if (thread_group_leader(pos))
3639                        pos = NULL;
3640                else
3641                        get_task_struct(pos);
3642        }
3643        rcu_read_unlock();
3644        put_task_struct(start);
3645        return pos;
3646}
3647
3648/* for the /proc/TGID/task/ directories */
3649static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3650{
3651        struct inode *inode = file_inode(file);
3652        struct task_struct *task;
3653        struct pid_namespace *ns;
3654        int tid;
3655
3656        if (proc_inode_is_dead(inode))
3657                return -ENOENT;
3658
3659        if (!dir_emit_dots(file, ctx))
3660                return 0;
3661
3662        /* f_version caches the tgid value that the last readdir call couldn't
3663         * return. lseek aka telldir automagically resets f_version to 0.
3664         */
3665        ns = proc_pid_ns(inode);
3666        tid = (int)file->f_version;
3667        file->f_version = 0;
3668        for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3669             task;
3670             task = next_tid(task), ctx->pos++) {
3671                char name[10 + 1];
3672                unsigned int len;
3673                tid = task_pid_nr_ns(task, ns);
3674                len = snprintf(name, sizeof(name), "%u", tid);
3675                if (!proc_fill_cache(file, ctx, name, len,
3676                                proc_task_instantiate, task, NULL)) {
3677                        /* returning this tgid failed, save it as the first
3678                         * pid for the next readir call */
3679                        file->f_version = (u64)tid;
3680                        put_task_struct(task);
3681                        break;
3682                }
3683        }
3684
3685        return 0;
3686}
3687
3688static int proc_task_getattr(const struct path *path, struct kstat *stat,
3689                             u32 request_mask, unsigned int query_flags)
3690{
3691        struct inode *inode = d_inode(path->dentry);
3692        struct task_struct *p = get_proc_task(inode);
3693        generic_fillattr(inode, stat);
3694
3695        if (p) {
3696                stat->nlink += get_nr_threads(p);
3697                put_task_struct(p);
3698        }
3699
3700        return 0;
3701}
3702
3703static const struct inode_operations proc_task_inode_operations = {
3704        .lookup         = proc_task_lookup,
3705        .getattr        = proc_task_getattr,
3706        .setattr        = proc_setattr,
3707        .permission     = proc_pid_permission,
3708};
3709
3710static const struct file_operations proc_task_operations = {
3711        .read           = generic_read_dir,
3712        .iterate_shared = proc_task_readdir,
3713        .llseek         = generic_file_llseek,
3714};
3715
3716void __init set_proc_pid_nlink(void)
3717{
3718        nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3719        nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3720}
3721