linux/fs/xfs/xfs_log_recover.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_sb.h"
  14#include "xfs_mount.h"
  15#include "xfs_defer.h"
  16#include "xfs_inode.h"
  17#include "xfs_trans.h"
  18#include "xfs_log.h"
  19#include "xfs_log_priv.h"
  20#include "xfs_log_recover.h"
  21#include "xfs_inode_item.h"
  22#include "xfs_extfree_item.h"
  23#include "xfs_trans_priv.h"
  24#include "xfs_alloc.h"
  25#include "xfs_ialloc.h"
  26#include "xfs_quota.h"
  27#include "xfs_trace.h"
  28#include "xfs_icache.h"
  29#include "xfs_bmap_btree.h"
  30#include "xfs_error.h"
  31#include "xfs_dir2.h"
  32#include "xfs_rmap_item.h"
  33#include "xfs_buf_item.h"
  34#include "xfs_refcount_item.h"
  35#include "xfs_bmap_item.h"
  36
  37#define BLK_AVG(blk1, blk2)     ((blk1+blk2) >> 1)
  38
  39STATIC int
  40xlog_find_zeroed(
  41        struct xlog     *,
  42        xfs_daddr_t     *);
  43STATIC int
  44xlog_clear_stale_blocks(
  45        struct xlog     *,
  46        xfs_lsn_t);
  47#if defined(DEBUG)
  48STATIC void
  49xlog_recover_check_summary(
  50        struct xlog *);
  51#else
  52#define xlog_recover_check_summary(log)
  53#endif
  54STATIC int
  55xlog_do_recovery_pass(
  56        struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
  57
  58/*
  59 * This structure is used during recovery to record the buf log items which
  60 * have been canceled and should not be replayed.
  61 */
  62struct xfs_buf_cancel {
  63        xfs_daddr_t             bc_blkno;
  64        uint                    bc_len;
  65        int                     bc_refcount;
  66        struct list_head        bc_list;
  67};
  68
  69/*
  70 * Sector aligned buffer routines for buffer create/read/write/access
  71 */
  72
  73/*
  74 * Verify the log-relative block number and length in basic blocks are valid for
  75 * an operation involving the given XFS log buffer. Returns true if the fields
  76 * are valid, false otherwise.
  77 */
  78static inline bool
  79xlog_verify_bno(
  80        struct xlog     *log,
  81        xfs_daddr_t     blk_no,
  82        int             bbcount)
  83{
  84        if (blk_no < 0 || blk_no >= log->l_logBBsize)
  85                return false;
  86        if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
  87                return false;
  88        return true;
  89}
  90
  91/*
  92 * Allocate a buffer to hold log data.  The buffer needs to be able to map to
  93 * a range of nbblks basic blocks at any valid offset within the log.
  94 */
  95static char *
  96xlog_alloc_buffer(
  97        struct xlog     *log,
  98        int             nbblks)
  99{
 100        int align_mask = xfs_buftarg_dma_alignment(log->l_targ);
 101
 102        /*
 103         * Pass log block 0 since we don't have an addr yet, buffer will be
 104         * verified on read.
 105         */
 106        if (!xlog_verify_bno(log, 0, nbblks)) {
 107                xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 108                        nbblks);
 109                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 110                return NULL;
 111        }
 112
 113        /*
 114         * We do log I/O in units of log sectors (a power-of-2 multiple of the
 115         * basic block size), so we round up the requested size to accommodate
 116         * the basic blocks required for complete log sectors.
 117         *
 118         * In addition, the buffer may be used for a non-sector-aligned block
 119         * offset, in which case an I/O of the requested size could extend
 120         * beyond the end of the buffer.  If the requested size is only 1 basic
 121         * block it will never straddle a sector boundary, so this won't be an
 122         * issue.  Nor will this be a problem if the log I/O is done in basic
 123         * blocks (sector size 1).  But otherwise we extend the buffer by one
 124         * extra log sector to ensure there's space to accommodate this
 125         * possibility.
 126         */
 127        if (nbblks > 1 && log->l_sectBBsize > 1)
 128                nbblks += log->l_sectBBsize;
 129        nbblks = round_up(nbblks, log->l_sectBBsize);
 130        return kmem_alloc_io(BBTOB(nbblks), align_mask, KM_MAYFAIL | KM_ZERO);
 131}
 132
 133/*
 134 * Return the address of the start of the given block number's data
 135 * in a log buffer.  The buffer covers a log sector-aligned region.
 136 */
 137static inline unsigned int
 138xlog_align(
 139        struct xlog     *log,
 140        xfs_daddr_t     blk_no)
 141{
 142        return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1));
 143}
 144
 145static int
 146xlog_do_io(
 147        struct xlog             *log,
 148        xfs_daddr_t             blk_no,
 149        unsigned int            nbblks,
 150        char                    *data,
 151        unsigned int            op)
 152{
 153        int                     error;
 154
 155        if (!xlog_verify_bno(log, blk_no, nbblks)) {
 156                xfs_warn(log->l_mp,
 157                         "Invalid log block/length (0x%llx, 0x%x) for buffer",
 158                         blk_no, nbblks);
 159                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 160                return -EFSCORRUPTED;
 161        }
 162
 163        blk_no = round_down(blk_no, log->l_sectBBsize);
 164        nbblks = round_up(nbblks, log->l_sectBBsize);
 165        ASSERT(nbblks > 0);
 166
 167        error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no,
 168                        BBTOB(nbblks), data, op);
 169        if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) {
 170                xfs_alert(log->l_mp,
 171                          "log recovery %s I/O error at daddr 0x%llx len %d error %d",
 172                          op == REQ_OP_WRITE ? "write" : "read",
 173                          blk_no, nbblks, error);
 174        }
 175        return error;
 176}
 177
 178STATIC int
 179xlog_bread_noalign(
 180        struct xlog     *log,
 181        xfs_daddr_t     blk_no,
 182        int             nbblks,
 183        char            *data)
 184{
 185        return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
 186}
 187
 188STATIC int
 189xlog_bread(
 190        struct xlog     *log,
 191        xfs_daddr_t     blk_no,
 192        int             nbblks,
 193        char            *data,
 194        char            **offset)
 195{
 196        int             error;
 197
 198        error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
 199        if (!error)
 200                *offset = data + xlog_align(log, blk_no);
 201        return error;
 202}
 203
 204STATIC int
 205xlog_bwrite(
 206        struct xlog     *log,
 207        xfs_daddr_t     blk_no,
 208        int             nbblks,
 209        char            *data)
 210{
 211        return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE);
 212}
 213
 214#ifdef DEBUG
 215/*
 216 * dump debug superblock and log record information
 217 */
 218STATIC void
 219xlog_header_check_dump(
 220        xfs_mount_t             *mp,
 221        xlog_rec_header_t       *head)
 222{
 223        xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
 224                __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
 225        xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
 226                &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
 227}
 228#else
 229#define xlog_header_check_dump(mp, head)
 230#endif
 231
 232/*
 233 * check log record header for recovery
 234 */
 235STATIC int
 236xlog_header_check_recover(
 237        xfs_mount_t             *mp,
 238        xlog_rec_header_t       *head)
 239{
 240        ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 241
 242        /*
 243         * IRIX doesn't write the h_fmt field and leaves it zeroed
 244         * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
 245         * a dirty log created in IRIX.
 246         */
 247        if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
 248                xfs_warn(mp,
 249        "dirty log written in incompatible format - can't recover");
 250                xlog_header_check_dump(mp, head);
 251                XFS_ERROR_REPORT("xlog_header_check_recover(1)",
 252                                 XFS_ERRLEVEL_HIGH, mp);
 253                return -EFSCORRUPTED;
 254        } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 255                xfs_warn(mp,
 256        "dirty log entry has mismatched uuid - can't recover");
 257                xlog_header_check_dump(mp, head);
 258                XFS_ERROR_REPORT("xlog_header_check_recover(2)",
 259                                 XFS_ERRLEVEL_HIGH, mp);
 260                return -EFSCORRUPTED;
 261        }
 262        return 0;
 263}
 264
 265/*
 266 * read the head block of the log and check the header
 267 */
 268STATIC int
 269xlog_header_check_mount(
 270        xfs_mount_t             *mp,
 271        xlog_rec_header_t       *head)
 272{
 273        ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 274
 275        if (uuid_is_null(&head->h_fs_uuid)) {
 276                /*
 277                 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
 278                 * h_fs_uuid is null, we assume this log was last mounted
 279                 * by IRIX and continue.
 280                 */
 281                xfs_warn(mp, "null uuid in log - IRIX style log");
 282        } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 283                xfs_warn(mp, "log has mismatched uuid - can't recover");
 284                xlog_header_check_dump(mp, head);
 285                XFS_ERROR_REPORT("xlog_header_check_mount",
 286                                 XFS_ERRLEVEL_HIGH, mp);
 287                return -EFSCORRUPTED;
 288        }
 289        return 0;
 290}
 291
 292STATIC void
 293xlog_recover_iodone(
 294        struct xfs_buf  *bp)
 295{
 296        if (bp->b_error) {
 297                /*
 298                 * We're not going to bother about retrying
 299                 * this during recovery. One strike!
 300                 */
 301                if (!XFS_FORCED_SHUTDOWN(bp->b_mount)) {
 302                        xfs_buf_ioerror_alert(bp, __func__);
 303                        xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
 304                }
 305        }
 306
 307        /*
 308         * On v5 supers, a bli could be attached to update the metadata LSN.
 309         * Clean it up.
 310         */
 311        if (bp->b_log_item)
 312                xfs_buf_item_relse(bp);
 313        ASSERT(bp->b_log_item == NULL);
 314
 315        bp->b_iodone = NULL;
 316        xfs_buf_ioend(bp);
 317}
 318
 319/*
 320 * This routine finds (to an approximation) the first block in the physical
 321 * log which contains the given cycle.  It uses a binary search algorithm.
 322 * Note that the algorithm can not be perfect because the disk will not
 323 * necessarily be perfect.
 324 */
 325STATIC int
 326xlog_find_cycle_start(
 327        struct xlog     *log,
 328        char            *buffer,
 329        xfs_daddr_t     first_blk,
 330        xfs_daddr_t     *last_blk,
 331        uint            cycle)
 332{
 333        char            *offset;
 334        xfs_daddr_t     mid_blk;
 335        xfs_daddr_t     end_blk;
 336        uint            mid_cycle;
 337        int             error;
 338
 339        end_blk = *last_blk;
 340        mid_blk = BLK_AVG(first_blk, end_blk);
 341        while (mid_blk != first_blk && mid_blk != end_blk) {
 342                error = xlog_bread(log, mid_blk, 1, buffer, &offset);
 343                if (error)
 344                        return error;
 345                mid_cycle = xlog_get_cycle(offset);
 346                if (mid_cycle == cycle)
 347                        end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
 348                else
 349                        first_blk = mid_blk; /* first_half_cycle == mid_cycle */
 350                mid_blk = BLK_AVG(first_blk, end_blk);
 351        }
 352        ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
 353               (mid_blk == end_blk && mid_blk-1 == first_blk));
 354
 355        *last_blk = end_blk;
 356
 357        return 0;
 358}
 359
 360/*
 361 * Check that a range of blocks does not contain stop_on_cycle_no.
 362 * Fill in *new_blk with the block offset where such a block is
 363 * found, or with -1 (an invalid block number) if there is no such
 364 * block in the range.  The scan needs to occur from front to back
 365 * and the pointer into the region must be updated since a later
 366 * routine will need to perform another test.
 367 */
 368STATIC int
 369xlog_find_verify_cycle(
 370        struct xlog     *log,
 371        xfs_daddr_t     start_blk,
 372        int             nbblks,
 373        uint            stop_on_cycle_no,
 374        xfs_daddr_t     *new_blk)
 375{
 376        xfs_daddr_t     i, j;
 377        uint            cycle;
 378        char            *buffer;
 379        xfs_daddr_t     bufblks;
 380        char            *buf = NULL;
 381        int             error = 0;
 382
 383        /*
 384         * Greedily allocate a buffer big enough to handle the full
 385         * range of basic blocks we'll be examining.  If that fails,
 386         * try a smaller size.  We need to be able to read at least
 387         * a log sector, or we're out of luck.
 388         */
 389        bufblks = 1 << ffs(nbblks);
 390        while (bufblks > log->l_logBBsize)
 391                bufblks >>= 1;
 392        while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
 393                bufblks >>= 1;
 394                if (bufblks < log->l_sectBBsize)
 395                        return -ENOMEM;
 396        }
 397
 398        for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
 399                int     bcount;
 400
 401                bcount = min(bufblks, (start_blk + nbblks - i));
 402
 403                error = xlog_bread(log, i, bcount, buffer, &buf);
 404                if (error)
 405                        goto out;
 406
 407                for (j = 0; j < bcount; j++) {
 408                        cycle = xlog_get_cycle(buf);
 409                        if (cycle == stop_on_cycle_no) {
 410                                *new_blk = i+j;
 411                                goto out;
 412                        }
 413
 414                        buf += BBSIZE;
 415                }
 416        }
 417
 418        *new_blk = -1;
 419
 420out:
 421        kmem_free(buffer);
 422        return error;
 423}
 424
 425/*
 426 * Potentially backup over partial log record write.
 427 *
 428 * In the typical case, last_blk is the number of the block directly after
 429 * a good log record.  Therefore, we subtract one to get the block number
 430 * of the last block in the given buffer.  extra_bblks contains the number
 431 * of blocks we would have read on a previous read.  This happens when the
 432 * last log record is split over the end of the physical log.
 433 *
 434 * extra_bblks is the number of blocks potentially verified on a previous
 435 * call to this routine.
 436 */
 437STATIC int
 438xlog_find_verify_log_record(
 439        struct xlog             *log,
 440        xfs_daddr_t             start_blk,
 441        xfs_daddr_t             *last_blk,
 442        int                     extra_bblks)
 443{
 444        xfs_daddr_t             i;
 445        char                    *buffer;
 446        char                    *offset = NULL;
 447        xlog_rec_header_t       *head = NULL;
 448        int                     error = 0;
 449        int                     smallmem = 0;
 450        int                     num_blks = *last_blk - start_blk;
 451        int                     xhdrs;
 452
 453        ASSERT(start_blk != 0 || *last_blk != start_blk);
 454
 455        buffer = xlog_alloc_buffer(log, num_blks);
 456        if (!buffer) {
 457                buffer = xlog_alloc_buffer(log, 1);
 458                if (!buffer)
 459                        return -ENOMEM;
 460                smallmem = 1;
 461        } else {
 462                error = xlog_bread(log, start_blk, num_blks, buffer, &offset);
 463                if (error)
 464                        goto out;
 465                offset += ((num_blks - 1) << BBSHIFT);
 466        }
 467
 468        for (i = (*last_blk) - 1; i >= 0; i--) {
 469                if (i < start_blk) {
 470                        /* valid log record not found */
 471                        xfs_warn(log->l_mp,
 472                "Log inconsistent (didn't find previous header)");
 473                        ASSERT(0);
 474                        error = -EIO;
 475                        goto out;
 476                }
 477
 478                if (smallmem) {
 479                        error = xlog_bread(log, i, 1, buffer, &offset);
 480                        if (error)
 481                                goto out;
 482                }
 483
 484                head = (xlog_rec_header_t *)offset;
 485
 486                if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
 487                        break;
 488
 489                if (!smallmem)
 490                        offset -= BBSIZE;
 491        }
 492
 493        /*
 494         * We hit the beginning of the physical log & still no header.  Return
 495         * to caller.  If caller can handle a return of -1, then this routine
 496         * will be called again for the end of the physical log.
 497         */
 498        if (i == -1) {
 499                error = 1;
 500                goto out;
 501        }
 502
 503        /*
 504         * We have the final block of the good log (the first block
 505         * of the log record _before_ the head. So we check the uuid.
 506         */
 507        if ((error = xlog_header_check_mount(log->l_mp, head)))
 508                goto out;
 509
 510        /*
 511         * We may have found a log record header before we expected one.
 512         * last_blk will be the 1st block # with a given cycle #.  We may end
 513         * up reading an entire log record.  In this case, we don't want to
 514         * reset last_blk.  Only when last_blk points in the middle of a log
 515         * record do we update last_blk.
 516         */
 517        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 518                uint    h_size = be32_to_cpu(head->h_size);
 519
 520                xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
 521                if (h_size % XLOG_HEADER_CYCLE_SIZE)
 522                        xhdrs++;
 523        } else {
 524                xhdrs = 1;
 525        }
 526
 527        if (*last_blk - i + extra_bblks !=
 528            BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
 529                *last_blk = i;
 530
 531out:
 532        kmem_free(buffer);
 533        return error;
 534}
 535
 536/*
 537 * Head is defined to be the point of the log where the next log write
 538 * could go.  This means that incomplete LR writes at the end are
 539 * eliminated when calculating the head.  We aren't guaranteed that previous
 540 * LR have complete transactions.  We only know that a cycle number of
 541 * current cycle number -1 won't be present in the log if we start writing
 542 * from our current block number.
 543 *
 544 * last_blk contains the block number of the first block with a given
 545 * cycle number.
 546 *
 547 * Return: zero if normal, non-zero if error.
 548 */
 549STATIC int
 550xlog_find_head(
 551        struct xlog     *log,
 552        xfs_daddr_t     *return_head_blk)
 553{
 554        char            *buffer;
 555        char            *offset;
 556        xfs_daddr_t     new_blk, first_blk, start_blk, last_blk, head_blk;
 557        int             num_scan_bblks;
 558        uint            first_half_cycle, last_half_cycle;
 559        uint            stop_on_cycle;
 560        int             error, log_bbnum = log->l_logBBsize;
 561
 562        /* Is the end of the log device zeroed? */
 563        error = xlog_find_zeroed(log, &first_blk);
 564        if (error < 0) {
 565                xfs_warn(log->l_mp, "empty log check failed");
 566                return error;
 567        }
 568        if (error == 1) {
 569                *return_head_blk = first_blk;
 570
 571                /* Is the whole lot zeroed? */
 572                if (!first_blk) {
 573                        /* Linux XFS shouldn't generate totally zeroed logs -
 574                         * mkfs etc write a dummy unmount record to a fresh
 575                         * log so we can store the uuid in there
 576                         */
 577                        xfs_warn(log->l_mp, "totally zeroed log");
 578                }
 579
 580                return 0;
 581        }
 582
 583        first_blk = 0;                  /* get cycle # of 1st block */
 584        buffer = xlog_alloc_buffer(log, 1);
 585        if (!buffer)
 586                return -ENOMEM;
 587
 588        error = xlog_bread(log, 0, 1, buffer, &offset);
 589        if (error)
 590                goto out_free_buffer;
 591
 592        first_half_cycle = xlog_get_cycle(offset);
 593
 594        last_blk = head_blk = log_bbnum - 1;    /* get cycle # of last block */
 595        error = xlog_bread(log, last_blk, 1, buffer, &offset);
 596        if (error)
 597                goto out_free_buffer;
 598
 599        last_half_cycle = xlog_get_cycle(offset);
 600        ASSERT(last_half_cycle != 0);
 601
 602        /*
 603         * If the 1st half cycle number is equal to the last half cycle number,
 604         * then the entire log is stamped with the same cycle number.  In this
 605         * case, head_blk can't be set to zero (which makes sense).  The below
 606         * math doesn't work out properly with head_blk equal to zero.  Instead,
 607         * we set it to log_bbnum which is an invalid block number, but this
 608         * value makes the math correct.  If head_blk doesn't changed through
 609         * all the tests below, *head_blk is set to zero at the very end rather
 610         * than log_bbnum.  In a sense, log_bbnum and zero are the same block
 611         * in a circular file.
 612         */
 613        if (first_half_cycle == last_half_cycle) {
 614                /*
 615                 * In this case we believe that the entire log should have
 616                 * cycle number last_half_cycle.  We need to scan backwards
 617                 * from the end verifying that there are no holes still
 618                 * containing last_half_cycle - 1.  If we find such a hole,
 619                 * then the start of that hole will be the new head.  The
 620                 * simple case looks like
 621                 *        x | x ... | x - 1 | x
 622                 * Another case that fits this picture would be
 623                 *        x | x + 1 | x ... | x
 624                 * In this case the head really is somewhere at the end of the
 625                 * log, as one of the latest writes at the beginning was
 626                 * incomplete.
 627                 * One more case is
 628                 *        x | x + 1 | x ... | x - 1 | x
 629                 * This is really the combination of the above two cases, and
 630                 * the head has to end up at the start of the x-1 hole at the
 631                 * end of the log.
 632                 *
 633                 * In the 256k log case, we will read from the beginning to the
 634                 * end of the log and search for cycle numbers equal to x-1.
 635                 * We don't worry about the x+1 blocks that we encounter,
 636                 * because we know that they cannot be the head since the log
 637                 * started with x.
 638                 */
 639                head_blk = log_bbnum;
 640                stop_on_cycle = last_half_cycle - 1;
 641        } else {
 642                /*
 643                 * In this case we want to find the first block with cycle
 644                 * number matching last_half_cycle.  We expect the log to be
 645                 * some variation on
 646                 *        x + 1 ... | x ... | x
 647                 * The first block with cycle number x (last_half_cycle) will
 648                 * be where the new head belongs.  First we do a binary search
 649                 * for the first occurrence of last_half_cycle.  The binary
 650                 * search may not be totally accurate, so then we scan back
 651                 * from there looking for occurrences of last_half_cycle before
 652                 * us.  If that backwards scan wraps around the beginning of
 653                 * the log, then we look for occurrences of last_half_cycle - 1
 654                 * at the end of the log.  The cases we're looking for look
 655                 * like
 656                 *                               v binary search stopped here
 657                 *        x + 1 ... | x | x + 1 | x ... | x
 658                 *                   ^ but we want to locate this spot
 659                 * or
 660                 *        <---------> less than scan distance
 661                 *        x + 1 ... | x ... | x - 1 | x
 662                 *                           ^ we want to locate this spot
 663                 */
 664                stop_on_cycle = last_half_cycle;
 665                error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk,
 666                                last_half_cycle);
 667                if (error)
 668                        goto out_free_buffer;
 669        }
 670
 671        /*
 672         * Now validate the answer.  Scan back some number of maximum possible
 673         * blocks and make sure each one has the expected cycle number.  The
 674         * maximum is determined by the total possible amount of buffering
 675         * in the in-core log.  The following number can be made tighter if
 676         * we actually look at the block size of the filesystem.
 677         */
 678        num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
 679        if (head_blk >= num_scan_bblks) {
 680                /*
 681                 * We are guaranteed that the entire check can be performed
 682                 * in one buffer.
 683                 */
 684                start_blk = head_blk - num_scan_bblks;
 685                if ((error = xlog_find_verify_cycle(log,
 686                                                start_blk, num_scan_bblks,
 687                                                stop_on_cycle, &new_blk)))
 688                        goto out_free_buffer;
 689                if (new_blk != -1)
 690                        head_blk = new_blk;
 691        } else {                /* need to read 2 parts of log */
 692                /*
 693                 * We are going to scan backwards in the log in two parts.
 694                 * First we scan the physical end of the log.  In this part
 695                 * of the log, we are looking for blocks with cycle number
 696                 * last_half_cycle - 1.
 697                 * If we find one, then we know that the log starts there, as
 698                 * we've found a hole that didn't get written in going around
 699                 * the end of the physical log.  The simple case for this is
 700                 *        x + 1 ... | x ... | x - 1 | x
 701                 *        <---------> less than scan distance
 702                 * If all of the blocks at the end of the log have cycle number
 703                 * last_half_cycle, then we check the blocks at the start of
 704                 * the log looking for occurrences of last_half_cycle.  If we
 705                 * find one, then our current estimate for the location of the
 706                 * first occurrence of last_half_cycle is wrong and we move
 707                 * back to the hole we've found.  This case looks like
 708                 *        x + 1 ... | x | x + 1 | x ...
 709                 *                               ^ binary search stopped here
 710                 * Another case we need to handle that only occurs in 256k
 711                 * logs is
 712                 *        x + 1 ... | x ... | x+1 | x ...
 713                 *                   ^ binary search stops here
 714                 * In a 256k log, the scan at the end of the log will see the
 715                 * x + 1 blocks.  We need to skip past those since that is
 716                 * certainly not the head of the log.  By searching for
 717                 * last_half_cycle-1 we accomplish that.
 718                 */
 719                ASSERT(head_blk <= INT_MAX &&
 720                        (xfs_daddr_t) num_scan_bblks >= head_blk);
 721                start_blk = log_bbnum - (num_scan_bblks - head_blk);
 722                if ((error = xlog_find_verify_cycle(log, start_blk,
 723                                        num_scan_bblks - (int)head_blk,
 724                                        (stop_on_cycle - 1), &new_blk)))
 725                        goto out_free_buffer;
 726                if (new_blk != -1) {
 727                        head_blk = new_blk;
 728                        goto validate_head;
 729                }
 730
 731                /*
 732                 * Scan beginning of log now.  The last part of the physical
 733                 * log is good.  This scan needs to verify that it doesn't find
 734                 * the last_half_cycle.
 735                 */
 736                start_blk = 0;
 737                ASSERT(head_blk <= INT_MAX);
 738                if ((error = xlog_find_verify_cycle(log,
 739                                        start_blk, (int)head_blk,
 740                                        stop_on_cycle, &new_blk)))
 741                        goto out_free_buffer;
 742                if (new_blk != -1)
 743                        head_blk = new_blk;
 744        }
 745
 746validate_head:
 747        /*
 748         * Now we need to make sure head_blk is not pointing to a block in
 749         * the middle of a log record.
 750         */
 751        num_scan_bblks = XLOG_REC_SHIFT(log);
 752        if (head_blk >= num_scan_bblks) {
 753                start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
 754
 755                /* start ptr at last block ptr before head_blk */
 756                error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
 757                if (error == 1)
 758                        error = -EIO;
 759                if (error)
 760                        goto out_free_buffer;
 761        } else {
 762                start_blk = 0;
 763                ASSERT(head_blk <= INT_MAX);
 764                error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
 765                if (error < 0)
 766                        goto out_free_buffer;
 767                if (error == 1) {
 768                        /* We hit the beginning of the log during our search */
 769                        start_blk = log_bbnum - (num_scan_bblks - head_blk);
 770                        new_blk = log_bbnum;
 771                        ASSERT(start_blk <= INT_MAX &&
 772                                (xfs_daddr_t) log_bbnum-start_blk >= 0);
 773                        ASSERT(head_blk <= INT_MAX);
 774                        error = xlog_find_verify_log_record(log, start_blk,
 775                                                        &new_blk, (int)head_blk);
 776                        if (error == 1)
 777                                error = -EIO;
 778                        if (error)
 779                                goto out_free_buffer;
 780                        if (new_blk != log_bbnum)
 781                                head_blk = new_blk;
 782                } else if (error)
 783                        goto out_free_buffer;
 784        }
 785
 786        kmem_free(buffer);
 787        if (head_blk == log_bbnum)
 788                *return_head_blk = 0;
 789        else
 790                *return_head_blk = head_blk;
 791        /*
 792         * When returning here, we have a good block number.  Bad block
 793         * means that during a previous crash, we didn't have a clean break
 794         * from cycle number N to cycle number N-1.  In this case, we need
 795         * to find the first block with cycle number N-1.
 796         */
 797        return 0;
 798
 799out_free_buffer:
 800        kmem_free(buffer);
 801        if (error)
 802                xfs_warn(log->l_mp, "failed to find log head");
 803        return error;
 804}
 805
 806/*
 807 * Seek backwards in the log for log record headers.
 808 *
 809 * Given a starting log block, walk backwards until we find the provided number
 810 * of records or hit the provided tail block. The return value is the number of
 811 * records encountered or a negative error code. The log block and buffer
 812 * pointer of the last record seen are returned in rblk and rhead respectively.
 813 */
 814STATIC int
 815xlog_rseek_logrec_hdr(
 816        struct xlog             *log,
 817        xfs_daddr_t             head_blk,
 818        xfs_daddr_t             tail_blk,
 819        int                     count,
 820        char                    *buffer,
 821        xfs_daddr_t             *rblk,
 822        struct xlog_rec_header  **rhead,
 823        bool                    *wrapped)
 824{
 825        int                     i;
 826        int                     error;
 827        int                     found = 0;
 828        char                    *offset = NULL;
 829        xfs_daddr_t             end_blk;
 830
 831        *wrapped = false;
 832
 833        /*
 834         * Walk backwards from the head block until we hit the tail or the first
 835         * block in the log.
 836         */
 837        end_blk = head_blk > tail_blk ? tail_blk : 0;
 838        for (i = (int) head_blk - 1; i >= end_blk; i--) {
 839                error = xlog_bread(log, i, 1, buffer, &offset);
 840                if (error)
 841                        goto out_error;
 842
 843                if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 844                        *rblk = i;
 845                        *rhead = (struct xlog_rec_header *) offset;
 846                        if (++found == count)
 847                                break;
 848                }
 849        }
 850
 851        /*
 852         * If we haven't hit the tail block or the log record header count,
 853         * start looking again from the end of the physical log. Note that
 854         * callers can pass head == tail if the tail is not yet known.
 855         */
 856        if (tail_blk >= head_blk && found != count) {
 857                for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
 858                        error = xlog_bread(log, i, 1, buffer, &offset);
 859                        if (error)
 860                                goto out_error;
 861
 862                        if (*(__be32 *)offset ==
 863                            cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 864                                *wrapped = true;
 865                                *rblk = i;
 866                                *rhead = (struct xlog_rec_header *) offset;
 867                                if (++found == count)
 868                                        break;
 869                        }
 870                }
 871        }
 872
 873        return found;
 874
 875out_error:
 876        return error;
 877}
 878
 879/*
 880 * Seek forward in the log for log record headers.
 881 *
 882 * Given head and tail blocks, walk forward from the tail block until we find
 883 * the provided number of records or hit the head block. The return value is the
 884 * number of records encountered or a negative error code. The log block and
 885 * buffer pointer of the last record seen are returned in rblk and rhead
 886 * respectively.
 887 */
 888STATIC int
 889xlog_seek_logrec_hdr(
 890        struct xlog             *log,
 891        xfs_daddr_t             head_blk,
 892        xfs_daddr_t             tail_blk,
 893        int                     count,
 894        char                    *buffer,
 895        xfs_daddr_t             *rblk,
 896        struct xlog_rec_header  **rhead,
 897        bool                    *wrapped)
 898{
 899        int                     i;
 900        int                     error;
 901        int                     found = 0;
 902        char                    *offset = NULL;
 903        xfs_daddr_t             end_blk;
 904
 905        *wrapped = false;
 906
 907        /*
 908         * Walk forward from the tail block until we hit the head or the last
 909         * block in the log.
 910         */
 911        end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
 912        for (i = (int) tail_blk; i <= end_blk; i++) {
 913                error = xlog_bread(log, i, 1, buffer, &offset);
 914                if (error)
 915                        goto out_error;
 916
 917                if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 918                        *rblk = i;
 919                        *rhead = (struct xlog_rec_header *) offset;
 920                        if (++found == count)
 921                                break;
 922                }
 923        }
 924
 925        /*
 926         * If we haven't hit the head block or the log record header count,
 927         * start looking again from the start of the physical log.
 928         */
 929        if (tail_blk > head_blk && found != count) {
 930                for (i = 0; i < (int) head_blk; i++) {
 931                        error = xlog_bread(log, i, 1, buffer, &offset);
 932                        if (error)
 933                                goto out_error;
 934
 935                        if (*(__be32 *)offset ==
 936                            cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 937                                *wrapped = true;
 938                                *rblk = i;
 939                                *rhead = (struct xlog_rec_header *) offset;
 940                                if (++found == count)
 941                                        break;
 942                        }
 943                }
 944        }
 945
 946        return found;
 947
 948out_error:
 949        return error;
 950}
 951
 952/*
 953 * Calculate distance from head to tail (i.e., unused space in the log).
 954 */
 955static inline int
 956xlog_tail_distance(
 957        struct xlog     *log,
 958        xfs_daddr_t     head_blk,
 959        xfs_daddr_t     tail_blk)
 960{
 961        if (head_blk < tail_blk)
 962                return tail_blk - head_blk;
 963
 964        return tail_blk + (log->l_logBBsize - head_blk);
 965}
 966
 967/*
 968 * Verify the log tail. This is particularly important when torn or incomplete
 969 * writes have been detected near the front of the log and the head has been
 970 * walked back accordingly.
 971 *
 972 * We also have to handle the case where the tail was pinned and the head
 973 * blocked behind the tail right before a crash. If the tail had been pushed
 974 * immediately prior to the crash and the subsequent checkpoint was only
 975 * partially written, it's possible it overwrote the last referenced tail in the
 976 * log with garbage. This is not a coherency problem because the tail must have
 977 * been pushed before it can be overwritten, but appears as log corruption to
 978 * recovery because we have no way to know the tail was updated if the
 979 * subsequent checkpoint didn't write successfully.
 980 *
 981 * Therefore, CRC check the log from tail to head. If a failure occurs and the
 982 * offending record is within max iclog bufs from the head, walk the tail
 983 * forward and retry until a valid tail is found or corruption is detected out
 984 * of the range of a possible overwrite.
 985 */
 986STATIC int
 987xlog_verify_tail(
 988        struct xlog             *log,
 989        xfs_daddr_t             head_blk,
 990        xfs_daddr_t             *tail_blk,
 991        int                     hsize)
 992{
 993        struct xlog_rec_header  *thead;
 994        char                    *buffer;
 995        xfs_daddr_t             first_bad;
 996        int                     error = 0;
 997        bool                    wrapped;
 998        xfs_daddr_t             tmp_tail;
 999        xfs_daddr_t             orig_tail = *tail_blk;
1000
1001        buffer = xlog_alloc_buffer(log, 1);
1002        if (!buffer)
1003                return -ENOMEM;
1004
1005        /*
1006         * Make sure the tail points to a record (returns positive count on
1007         * success).
1008         */
1009        error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer,
1010                        &tmp_tail, &thead, &wrapped);
1011        if (error < 0)
1012                goto out;
1013        if (*tail_blk != tmp_tail)
1014                *tail_blk = tmp_tail;
1015
1016        /*
1017         * Run a CRC check from the tail to the head. We can't just check
1018         * MAX_ICLOGS records past the tail because the tail may point to stale
1019         * blocks cleared during the search for the head/tail. These blocks are
1020         * overwritten with zero-length records and thus record count is not a
1021         * reliable indicator of the iclog state before a crash.
1022         */
1023        first_bad = 0;
1024        error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1025                                      XLOG_RECOVER_CRCPASS, &first_bad);
1026        while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1027                int     tail_distance;
1028
1029                /*
1030                 * Is corruption within range of the head? If so, retry from
1031                 * the next record. Otherwise return an error.
1032                 */
1033                tail_distance = xlog_tail_distance(log, head_blk, first_bad);
1034                if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
1035                        break;
1036
1037                /* skip to the next record; returns positive count on success */
1038                error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2,
1039                                buffer, &tmp_tail, &thead, &wrapped);
1040                if (error < 0)
1041                        goto out;
1042
1043                *tail_blk = tmp_tail;
1044                first_bad = 0;
1045                error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1046                                              XLOG_RECOVER_CRCPASS, &first_bad);
1047        }
1048
1049        if (!error && *tail_blk != orig_tail)
1050                xfs_warn(log->l_mp,
1051                "Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1052                         orig_tail, *tail_blk);
1053out:
1054        kmem_free(buffer);
1055        return error;
1056}
1057
1058/*
1059 * Detect and trim torn writes from the head of the log.
1060 *
1061 * Storage without sector atomicity guarantees can result in torn writes in the
1062 * log in the event of a crash. Our only means to detect this scenario is via
1063 * CRC verification. While we can't always be certain that CRC verification
1064 * failure is due to a torn write vs. an unrelated corruption, we do know that
1065 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1066 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1067 * the log and treat failures in this range as torn writes as a matter of
1068 * policy. In the event of CRC failure, the head is walked back to the last good
1069 * record in the log and the tail is updated from that record and verified.
1070 */
1071STATIC int
1072xlog_verify_head(
1073        struct xlog             *log,
1074        xfs_daddr_t             *head_blk,      /* in/out: unverified head */
1075        xfs_daddr_t             *tail_blk,      /* out: tail block */
1076        char                    *buffer,
1077        xfs_daddr_t             *rhead_blk,     /* start blk of last record */
1078        struct xlog_rec_header  **rhead,        /* ptr to last record */
1079        bool                    *wrapped)       /* last rec. wraps phys. log */
1080{
1081        struct xlog_rec_header  *tmp_rhead;
1082        char                    *tmp_buffer;
1083        xfs_daddr_t             first_bad;
1084        xfs_daddr_t             tmp_rhead_blk;
1085        int                     found;
1086        int                     error;
1087        bool                    tmp_wrapped;
1088
1089        /*
1090         * Check the head of the log for torn writes. Search backwards from the
1091         * head until we hit the tail or the maximum number of log record I/Os
1092         * that could have been in flight at one time. Use a temporary buffer so
1093         * we don't trash the rhead/buffer pointers from the caller.
1094         */
1095        tmp_buffer = xlog_alloc_buffer(log, 1);
1096        if (!tmp_buffer)
1097                return -ENOMEM;
1098        error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1099                                      XLOG_MAX_ICLOGS, tmp_buffer,
1100                                      &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped);
1101        kmem_free(tmp_buffer);
1102        if (error < 0)
1103                return error;
1104
1105        /*
1106         * Now run a CRC verification pass over the records starting at the
1107         * block found above to the current head. If a CRC failure occurs, the
1108         * log block of the first bad record is saved in first_bad.
1109         */
1110        error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1111                                      XLOG_RECOVER_CRCPASS, &first_bad);
1112        if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1113                /*
1114                 * We've hit a potential torn write. Reset the error and warn
1115                 * about it.
1116                 */
1117                error = 0;
1118                xfs_warn(log->l_mp,
1119"Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1120                         first_bad, *head_blk);
1121
1122                /*
1123                 * Get the header block and buffer pointer for the last good
1124                 * record before the bad record.
1125                 *
1126                 * Note that xlog_find_tail() clears the blocks at the new head
1127                 * (i.e., the records with invalid CRC) if the cycle number
1128                 * matches the the current cycle.
1129                 */
1130                found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1,
1131                                buffer, rhead_blk, rhead, wrapped);
1132                if (found < 0)
1133                        return found;
1134                if (found == 0)         /* XXX: right thing to do here? */
1135                        return -EIO;
1136
1137                /*
1138                 * Reset the head block to the starting block of the first bad
1139                 * log record and set the tail block based on the last good
1140                 * record.
1141                 *
1142                 * Bail out if the updated head/tail match as this indicates
1143                 * possible corruption outside of the acceptable
1144                 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1145                 */
1146                *head_blk = first_bad;
1147                *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1148                if (*head_blk == *tail_blk) {
1149                        ASSERT(0);
1150                        return 0;
1151                }
1152        }
1153        if (error)
1154                return error;
1155
1156        return xlog_verify_tail(log, *head_blk, tail_blk,
1157                                be32_to_cpu((*rhead)->h_size));
1158}
1159
1160/*
1161 * We need to make sure we handle log wrapping properly, so we can't use the
1162 * calculated logbno directly. Make sure it wraps to the correct bno inside the
1163 * log.
1164 *
1165 * The log is limited to 32 bit sizes, so we use the appropriate modulus
1166 * operation here and cast it back to a 64 bit daddr on return.
1167 */
1168static inline xfs_daddr_t
1169xlog_wrap_logbno(
1170        struct xlog             *log,
1171        xfs_daddr_t             bno)
1172{
1173        int                     mod;
1174
1175        div_s64_rem(bno, log->l_logBBsize, &mod);
1176        return mod;
1177}
1178
1179/*
1180 * Check whether the head of the log points to an unmount record. In other
1181 * words, determine whether the log is clean. If so, update the in-core state
1182 * appropriately.
1183 */
1184static int
1185xlog_check_unmount_rec(
1186        struct xlog             *log,
1187        xfs_daddr_t             *head_blk,
1188        xfs_daddr_t             *tail_blk,
1189        struct xlog_rec_header  *rhead,
1190        xfs_daddr_t             rhead_blk,
1191        char                    *buffer,
1192        bool                    *clean)
1193{
1194        struct xlog_op_header   *op_head;
1195        xfs_daddr_t             umount_data_blk;
1196        xfs_daddr_t             after_umount_blk;
1197        int                     hblks;
1198        int                     error;
1199        char                    *offset;
1200
1201        *clean = false;
1202
1203        /*
1204         * Look for unmount record. If we find it, then we know there was a
1205         * clean unmount. Since 'i' could be the last block in the physical
1206         * log, we convert to a log block before comparing to the head_blk.
1207         *
1208         * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1209         * below. We won't want to clear the unmount record if there is one, so
1210         * we pass the lsn of the unmount record rather than the block after it.
1211         */
1212        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1213                int     h_size = be32_to_cpu(rhead->h_size);
1214                int     h_version = be32_to_cpu(rhead->h_version);
1215
1216                if ((h_version & XLOG_VERSION_2) &&
1217                    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1218                        hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1219                        if (h_size % XLOG_HEADER_CYCLE_SIZE)
1220                                hblks++;
1221                } else {
1222                        hblks = 1;
1223                }
1224        } else {
1225                hblks = 1;
1226        }
1227
1228        after_umount_blk = xlog_wrap_logbno(log,
1229                        rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
1230
1231        if (*head_blk == after_umount_blk &&
1232            be32_to_cpu(rhead->h_num_logops) == 1) {
1233                umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
1234                error = xlog_bread(log, umount_data_blk, 1, buffer, &offset);
1235                if (error)
1236                        return error;
1237
1238                op_head = (struct xlog_op_header *)offset;
1239                if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1240                        /*
1241                         * Set tail and last sync so that newly written log
1242                         * records will point recovery to after the current
1243                         * unmount record.
1244                         */
1245                        xlog_assign_atomic_lsn(&log->l_tail_lsn,
1246                                        log->l_curr_cycle, after_umount_blk);
1247                        xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1248                                        log->l_curr_cycle, after_umount_blk);
1249                        *tail_blk = after_umount_blk;
1250
1251                        *clean = true;
1252                }
1253        }
1254
1255        return 0;
1256}
1257
1258static void
1259xlog_set_state(
1260        struct xlog             *log,
1261        xfs_daddr_t             head_blk,
1262        struct xlog_rec_header  *rhead,
1263        xfs_daddr_t             rhead_blk,
1264        bool                    bump_cycle)
1265{
1266        /*
1267         * Reset log values according to the state of the log when we
1268         * crashed.  In the case where head_blk == 0, we bump curr_cycle
1269         * one because the next write starts a new cycle rather than
1270         * continuing the cycle of the last good log record.  At this
1271         * point we have guaranteed that all partial log records have been
1272         * accounted for.  Therefore, we know that the last good log record
1273         * written was complete and ended exactly on the end boundary
1274         * of the physical log.
1275         */
1276        log->l_prev_block = rhead_blk;
1277        log->l_curr_block = (int)head_blk;
1278        log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1279        if (bump_cycle)
1280                log->l_curr_cycle++;
1281        atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1282        atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1283        xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1284                                        BBTOB(log->l_curr_block));
1285        xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1286                                        BBTOB(log->l_curr_block));
1287}
1288
1289/*
1290 * Find the sync block number or the tail of the log.
1291 *
1292 * This will be the block number of the last record to have its
1293 * associated buffers synced to disk.  Every log record header has
1294 * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
1295 * to get a sync block number.  The only concern is to figure out which
1296 * log record header to believe.
1297 *
1298 * The following algorithm uses the log record header with the largest
1299 * lsn.  The entire log record does not need to be valid.  We only care
1300 * that the header is valid.
1301 *
1302 * We could speed up search by using current head_blk buffer, but it is not
1303 * available.
1304 */
1305STATIC int
1306xlog_find_tail(
1307        struct xlog             *log,
1308        xfs_daddr_t             *head_blk,
1309        xfs_daddr_t             *tail_blk)
1310{
1311        xlog_rec_header_t       *rhead;
1312        char                    *offset = NULL;
1313        char                    *buffer;
1314        int                     error;
1315        xfs_daddr_t             rhead_blk;
1316        xfs_lsn_t               tail_lsn;
1317        bool                    wrapped = false;
1318        bool                    clean = false;
1319
1320        /*
1321         * Find previous log record
1322         */
1323        if ((error = xlog_find_head(log, head_blk)))
1324                return error;
1325        ASSERT(*head_blk < INT_MAX);
1326
1327        buffer = xlog_alloc_buffer(log, 1);
1328        if (!buffer)
1329                return -ENOMEM;
1330        if (*head_blk == 0) {                           /* special case */
1331                error = xlog_bread(log, 0, 1, buffer, &offset);
1332                if (error)
1333                        goto done;
1334
1335                if (xlog_get_cycle(offset) == 0) {
1336                        *tail_blk = 0;
1337                        /* leave all other log inited values alone */
1338                        goto done;
1339                }
1340        }
1341
1342        /*
1343         * Search backwards through the log looking for the log record header
1344         * block. This wraps all the way back around to the head so something is
1345         * seriously wrong if we can't find it.
1346         */
1347        error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer,
1348                                      &rhead_blk, &rhead, &wrapped);
1349        if (error < 0)
1350                return error;
1351        if (!error) {
1352                xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1353                return -EIO;
1354        }
1355        *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1356
1357        /*
1358         * Set the log state based on the current head record.
1359         */
1360        xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1361        tail_lsn = atomic64_read(&log->l_tail_lsn);
1362
1363        /*
1364         * Look for an unmount record at the head of the log. This sets the log
1365         * state to determine whether recovery is necessary.
1366         */
1367        error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1368                                       rhead_blk, buffer, &clean);
1369        if (error)
1370                goto done;
1371
1372        /*
1373         * Verify the log head if the log is not clean (e.g., we have anything
1374         * but an unmount record at the head). This uses CRC verification to
1375         * detect and trim torn writes. If discovered, CRC failures are
1376         * considered torn writes and the log head is trimmed accordingly.
1377         *
1378         * Note that we can only run CRC verification when the log is dirty
1379         * because there's no guarantee that the log data behind an unmount
1380         * record is compatible with the current architecture.
1381         */
1382        if (!clean) {
1383                xfs_daddr_t     orig_head = *head_blk;
1384
1385                error = xlog_verify_head(log, head_blk, tail_blk, buffer,
1386                                         &rhead_blk, &rhead, &wrapped);
1387                if (error)
1388                        goto done;
1389
1390                /* update in-core state again if the head changed */
1391                if (*head_blk != orig_head) {
1392                        xlog_set_state(log, *head_blk, rhead, rhead_blk,
1393                                       wrapped);
1394                        tail_lsn = atomic64_read(&log->l_tail_lsn);
1395                        error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1396                                                       rhead, rhead_blk, buffer,
1397                                                       &clean);
1398                        if (error)
1399                                goto done;
1400                }
1401        }
1402
1403        /*
1404         * Note that the unmount was clean. If the unmount was not clean, we
1405         * need to know this to rebuild the superblock counters from the perag
1406         * headers if we have a filesystem using non-persistent counters.
1407         */
1408        if (clean)
1409                log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1410
1411        /*
1412         * Make sure that there are no blocks in front of the head
1413         * with the same cycle number as the head.  This can happen
1414         * because we allow multiple outstanding log writes concurrently,
1415         * and the later writes might make it out before earlier ones.
1416         *
1417         * We use the lsn from before modifying it so that we'll never
1418         * overwrite the unmount record after a clean unmount.
1419         *
1420         * Do this only if we are going to recover the filesystem
1421         *
1422         * NOTE: This used to say "if (!readonly)"
1423         * However on Linux, we can & do recover a read-only filesystem.
1424         * We only skip recovery if NORECOVERY is specified on mount,
1425         * in which case we would not be here.
1426         *
1427         * But... if the -device- itself is readonly, just skip this.
1428         * We can't recover this device anyway, so it won't matter.
1429         */
1430        if (!xfs_readonly_buftarg(log->l_targ))
1431                error = xlog_clear_stale_blocks(log, tail_lsn);
1432
1433done:
1434        kmem_free(buffer);
1435
1436        if (error)
1437                xfs_warn(log->l_mp, "failed to locate log tail");
1438        return error;
1439}
1440
1441/*
1442 * Is the log zeroed at all?
1443 *
1444 * The last binary search should be changed to perform an X block read
1445 * once X becomes small enough.  You can then search linearly through
1446 * the X blocks.  This will cut down on the number of reads we need to do.
1447 *
1448 * If the log is partially zeroed, this routine will pass back the blkno
1449 * of the first block with cycle number 0.  It won't have a complete LR
1450 * preceding it.
1451 *
1452 * Return:
1453 *      0  => the log is completely written to
1454 *      1 => use *blk_no as the first block of the log
1455 *      <0 => error has occurred
1456 */
1457STATIC int
1458xlog_find_zeroed(
1459        struct xlog     *log,
1460        xfs_daddr_t     *blk_no)
1461{
1462        char            *buffer;
1463        char            *offset;
1464        uint            first_cycle, last_cycle;
1465        xfs_daddr_t     new_blk, last_blk, start_blk;
1466        xfs_daddr_t     num_scan_bblks;
1467        int             error, log_bbnum = log->l_logBBsize;
1468
1469        *blk_no = 0;
1470
1471        /* check totally zeroed log */
1472        buffer = xlog_alloc_buffer(log, 1);
1473        if (!buffer)
1474                return -ENOMEM;
1475        error = xlog_bread(log, 0, 1, buffer, &offset);
1476        if (error)
1477                goto out_free_buffer;
1478
1479        first_cycle = xlog_get_cycle(offset);
1480        if (first_cycle == 0) {         /* completely zeroed log */
1481                *blk_no = 0;
1482                kmem_free(buffer);
1483                return 1;
1484        }
1485
1486        /* check partially zeroed log */
1487        error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset);
1488        if (error)
1489                goto out_free_buffer;
1490
1491        last_cycle = xlog_get_cycle(offset);
1492        if (last_cycle != 0) {          /* log completely written to */
1493                kmem_free(buffer);
1494                return 0;
1495        }
1496
1497        /* we have a partially zeroed log */
1498        last_blk = log_bbnum-1;
1499        error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0);
1500        if (error)
1501                goto out_free_buffer;
1502
1503        /*
1504         * Validate the answer.  Because there is no way to guarantee that
1505         * the entire log is made up of log records which are the same size,
1506         * we scan over the defined maximum blocks.  At this point, the maximum
1507         * is not chosen to mean anything special.   XXXmiken
1508         */
1509        num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1510        ASSERT(num_scan_bblks <= INT_MAX);
1511
1512        if (last_blk < num_scan_bblks)
1513                num_scan_bblks = last_blk;
1514        start_blk = last_blk - num_scan_bblks;
1515
1516        /*
1517         * We search for any instances of cycle number 0 that occur before
1518         * our current estimate of the head.  What we're trying to detect is
1519         *        1 ... | 0 | 1 | 0...
1520         *                       ^ binary search ends here
1521         */
1522        if ((error = xlog_find_verify_cycle(log, start_blk,
1523                                         (int)num_scan_bblks, 0, &new_blk)))
1524                goto out_free_buffer;
1525        if (new_blk != -1)
1526                last_blk = new_blk;
1527
1528        /*
1529         * Potentially backup over partial log record write.  We don't need
1530         * to search the end of the log because we know it is zero.
1531         */
1532        error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1533        if (error == 1)
1534                error = -EIO;
1535        if (error)
1536                goto out_free_buffer;
1537
1538        *blk_no = last_blk;
1539out_free_buffer:
1540        kmem_free(buffer);
1541        if (error)
1542                return error;
1543        return 1;
1544}
1545
1546/*
1547 * These are simple subroutines used by xlog_clear_stale_blocks() below
1548 * to initialize a buffer full of empty log record headers and write
1549 * them into the log.
1550 */
1551STATIC void
1552xlog_add_record(
1553        struct xlog             *log,
1554        char                    *buf,
1555        int                     cycle,
1556        int                     block,
1557        int                     tail_cycle,
1558        int                     tail_block)
1559{
1560        xlog_rec_header_t       *recp = (xlog_rec_header_t *)buf;
1561
1562        memset(buf, 0, BBSIZE);
1563        recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1564        recp->h_cycle = cpu_to_be32(cycle);
1565        recp->h_version = cpu_to_be32(
1566                        xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1567        recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1568        recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1569        recp->h_fmt = cpu_to_be32(XLOG_FMT);
1570        memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1571}
1572
1573STATIC int
1574xlog_write_log_records(
1575        struct xlog     *log,
1576        int             cycle,
1577        int             start_block,
1578        int             blocks,
1579        int             tail_cycle,
1580        int             tail_block)
1581{
1582        char            *offset;
1583        char            *buffer;
1584        int             balign, ealign;
1585        int             sectbb = log->l_sectBBsize;
1586        int             end_block = start_block + blocks;
1587        int             bufblks;
1588        int             error = 0;
1589        int             i, j = 0;
1590
1591        /*
1592         * Greedily allocate a buffer big enough to handle the full
1593         * range of basic blocks to be written.  If that fails, try
1594         * a smaller size.  We need to be able to write at least a
1595         * log sector, or we're out of luck.
1596         */
1597        bufblks = 1 << ffs(blocks);
1598        while (bufblks > log->l_logBBsize)
1599                bufblks >>= 1;
1600        while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
1601                bufblks >>= 1;
1602                if (bufblks < sectbb)
1603                        return -ENOMEM;
1604        }
1605
1606        /* We may need to do a read at the start to fill in part of
1607         * the buffer in the starting sector not covered by the first
1608         * write below.
1609         */
1610        balign = round_down(start_block, sectbb);
1611        if (balign != start_block) {
1612                error = xlog_bread_noalign(log, start_block, 1, buffer);
1613                if (error)
1614                        goto out_free_buffer;
1615
1616                j = start_block - balign;
1617        }
1618
1619        for (i = start_block; i < end_block; i += bufblks) {
1620                int             bcount, endcount;
1621
1622                bcount = min(bufblks, end_block - start_block);
1623                endcount = bcount - j;
1624
1625                /* We may need to do a read at the end to fill in part of
1626                 * the buffer in the final sector not covered by the write.
1627                 * If this is the same sector as the above read, skip it.
1628                 */
1629                ealign = round_down(end_block, sectbb);
1630                if (j == 0 && (start_block + endcount > ealign)) {
1631                        error = xlog_bread_noalign(log, ealign, sectbb,
1632                                        buffer + BBTOB(ealign - start_block));
1633                        if (error)
1634                                break;
1635
1636                }
1637
1638                offset = buffer + xlog_align(log, start_block);
1639                for (; j < endcount; j++) {
1640                        xlog_add_record(log, offset, cycle, i+j,
1641                                        tail_cycle, tail_block);
1642                        offset += BBSIZE;
1643                }
1644                error = xlog_bwrite(log, start_block, endcount, buffer);
1645                if (error)
1646                        break;
1647                start_block += endcount;
1648                j = 0;
1649        }
1650
1651out_free_buffer:
1652        kmem_free(buffer);
1653        return error;
1654}
1655
1656/*
1657 * This routine is called to blow away any incomplete log writes out
1658 * in front of the log head.  We do this so that we won't become confused
1659 * if we come up, write only a little bit more, and then crash again.
1660 * If we leave the partial log records out there, this situation could
1661 * cause us to think those partial writes are valid blocks since they
1662 * have the current cycle number.  We get rid of them by overwriting them
1663 * with empty log records with the old cycle number rather than the
1664 * current one.
1665 *
1666 * The tail lsn is passed in rather than taken from
1667 * the log so that we will not write over the unmount record after a
1668 * clean unmount in a 512 block log.  Doing so would leave the log without
1669 * any valid log records in it until a new one was written.  If we crashed
1670 * during that time we would not be able to recover.
1671 */
1672STATIC int
1673xlog_clear_stale_blocks(
1674        struct xlog     *log,
1675        xfs_lsn_t       tail_lsn)
1676{
1677        int             tail_cycle, head_cycle;
1678        int             tail_block, head_block;
1679        int             tail_distance, max_distance;
1680        int             distance;
1681        int             error;
1682
1683        tail_cycle = CYCLE_LSN(tail_lsn);
1684        tail_block = BLOCK_LSN(tail_lsn);
1685        head_cycle = log->l_curr_cycle;
1686        head_block = log->l_curr_block;
1687
1688        /*
1689         * Figure out the distance between the new head of the log
1690         * and the tail.  We want to write over any blocks beyond the
1691         * head that we may have written just before the crash, but
1692         * we don't want to overwrite the tail of the log.
1693         */
1694        if (head_cycle == tail_cycle) {
1695                /*
1696                 * The tail is behind the head in the physical log,
1697                 * so the distance from the head to the tail is the
1698                 * distance from the head to the end of the log plus
1699                 * the distance from the beginning of the log to the
1700                 * tail.
1701                 */
1702                if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1703                        XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1704                                         XFS_ERRLEVEL_LOW, log->l_mp);
1705                        return -EFSCORRUPTED;
1706                }
1707                tail_distance = tail_block + (log->l_logBBsize - head_block);
1708        } else {
1709                /*
1710                 * The head is behind the tail in the physical log,
1711                 * so the distance from the head to the tail is just
1712                 * the tail block minus the head block.
1713                 */
1714                if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1715                        XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1716                                         XFS_ERRLEVEL_LOW, log->l_mp);
1717                        return -EFSCORRUPTED;
1718                }
1719                tail_distance = tail_block - head_block;
1720        }
1721
1722        /*
1723         * If the head is right up against the tail, we can't clear
1724         * anything.
1725         */
1726        if (tail_distance <= 0) {
1727                ASSERT(tail_distance == 0);
1728                return 0;
1729        }
1730
1731        max_distance = XLOG_TOTAL_REC_SHIFT(log);
1732        /*
1733         * Take the smaller of the maximum amount of outstanding I/O
1734         * we could have and the distance to the tail to clear out.
1735         * We take the smaller so that we don't overwrite the tail and
1736         * we don't waste all day writing from the head to the tail
1737         * for no reason.
1738         */
1739        max_distance = min(max_distance, tail_distance);
1740
1741        if ((head_block + max_distance) <= log->l_logBBsize) {
1742                /*
1743                 * We can stomp all the blocks we need to without
1744                 * wrapping around the end of the log.  Just do it
1745                 * in a single write.  Use the cycle number of the
1746                 * current cycle minus one so that the log will look like:
1747                 *     n ... | n - 1 ...
1748                 */
1749                error = xlog_write_log_records(log, (head_cycle - 1),
1750                                head_block, max_distance, tail_cycle,
1751                                tail_block);
1752                if (error)
1753                        return error;
1754        } else {
1755                /*
1756                 * We need to wrap around the end of the physical log in
1757                 * order to clear all the blocks.  Do it in two separate
1758                 * I/Os.  The first write should be from the head to the
1759                 * end of the physical log, and it should use the current
1760                 * cycle number minus one just like above.
1761                 */
1762                distance = log->l_logBBsize - head_block;
1763                error = xlog_write_log_records(log, (head_cycle - 1),
1764                                head_block, distance, tail_cycle,
1765                                tail_block);
1766
1767                if (error)
1768                        return error;
1769
1770                /*
1771                 * Now write the blocks at the start of the physical log.
1772                 * This writes the remainder of the blocks we want to clear.
1773                 * It uses the current cycle number since we're now on the
1774                 * same cycle as the head so that we get:
1775                 *    n ... n ... | n - 1 ...
1776                 *    ^^^^^ blocks we're writing
1777                 */
1778                distance = max_distance - (log->l_logBBsize - head_block);
1779                error = xlog_write_log_records(log, head_cycle, 0, distance,
1780                                tail_cycle, tail_block);
1781                if (error)
1782                        return error;
1783        }
1784
1785        return 0;
1786}
1787
1788/******************************************************************************
1789 *
1790 *              Log recover routines
1791 *
1792 ******************************************************************************
1793 */
1794
1795/*
1796 * Sort the log items in the transaction.
1797 *
1798 * The ordering constraints are defined by the inode allocation and unlink
1799 * behaviour. The rules are:
1800 *
1801 *      1. Every item is only logged once in a given transaction. Hence it
1802 *         represents the last logged state of the item. Hence ordering is
1803 *         dependent on the order in which operations need to be performed so
1804 *         required initial conditions are always met.
1805 *
1806 *      2. Cancelled buffers are recorded in pass 1 in a separate table and
1807 *         there's nothing to replay from them so we can simply cull them
1808 *         from the transaction. However, we can't do that until after we've
1809 *         replayed all the other items because they may be dependent on the
1810 *         cancelled buffer and replaying the cancelled buffer can remove it
1811 *         form the cancelled buffer table. Hence they have tobe done last.
1812 *
1813 *      3. Inode allocation buffers must be replayed before inode items that
1814 *         read the buffer and replay changes into it. For filesystems using the
1815 *         ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1816 *         treated the same as inode allocation buffers as they create and
1817 *         initialise the buffers directly.
1818 *
1819 *      4. Inode unlink buffers must be replayed after inode items are replayed.
1820 *         This ensures that inodes are completely flushed to the inode buffer
1821 *         in a "free" state before we remove the unlinked inode list pointer.
1822 *
1823 * Hence the ordering needs to be inode allocation buffers first, inode items
1824 * second, inode unlink buffers third and cancelled buffers last.
1825 *
1826 * But there's a problem with that - we can't tell an inode allocation buffer
1827 * apart from a regular buffer, so we can't separate them. We can, however,
1828 * tell an inode unlink buffer from the others, and so we can separate them out
1829 * from all the other buffers and move them to last.
1830 *
1831 * Hence, 4 lists, in order from head to tail:
1832 *      - buffer_list for all buffers except cancelled/inode unlink buffers
1833 *      - item_list for all non-buffer items
1834 *      - inode_buffer_list for inode unlink buffers
1835 *      - cancel_list for the cancelled buffers
1836 *
1837 * Note that we add objects to the tail of the lists so that first-to-last
1838 * ordering is preserved within the lists. Adding objects to the head of the
1839 * list means when we traverse from the head we walk them in last-to-first
1840 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1841 * but for all other items there may be specific ordering that we need to
1842 * preserve.
1843 */
1844STATIC int
1845xlog_recover_reorder_trans(
1846        struct xlog             *log,
1847        struct xlog_recover     *trans,
1848        int                     pass)
1849{
1850        xlog_recover_item_t     *item, *n;
1851        int                     error = 0;
1852        LIST_HEAD(sort_list);
1853        LIST_HEAD(cancel_list);
1854        LIST_HEAD(buffer_list);
1855        LIST_HEAD(inode_buffer_list);
1856        LIST_HEAD(inode_list);
1857
1858        list_splice_init(&trans->r_itemq, &sort_list);
1859        list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1860                xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
1861
1862                switch (ITEM_TYPE(item)) {
1863                case XFS_LI_ICREATE:
1864                        list_move_tail(&item->ri_list, &buffer_list);
1865                        break;
1866                case XFS_LI_BUF:
1867                        if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1868                                trace_xfs_log_recover_item_reorder_head(log,
1869                                                        trans, item, pass);
1870                                list_move(&item->ri_list, &cancel_list);
1871                                break;
1872                        }
1873                        if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1874                                list_move(&item->ri_list, &inode_buffer_list);
1875                                break;
1876                        }
1877                        list_move_tail(&item->ri_list, &buffer_list);
1878                        break;
1879                case XFS_LI_INODE:
1880                case XFS_LI_DQUOT:
1881                case XFS_LI_QUOTAOFF:
1882                case XFS_LI_EFD:
1883                case XFS_LI_EFI:
1884                case XFS_LI_RUI:
1885                case XFS_LI_RUD:
1886                case XFS_LI_CUI:
1887                case XFS_LI_CUD:
1888                case XFS_LI_BUI:
1889                case XFS_LI_BUD:
1890                        trace_xfs_log_recover_item_reorder_tail(log,
1891                                                        trans, item, pass);
1892                        list_move_tail(&item->ri_list, &inode_list);
1893                        break;
1894                default:
1895                        xfs_warn(log->l_mp,
1896                                "%s: unrecognized type of log operation",
1897                                __func__);
1898                        ASSERT(0);
1899                        /*
1900                         * return the remaining items back to the transaction
1901                         * item list so they can be freed in caller.
1902                         */
1903                        if (!list_empty(&sort_list))
1904                                list_splice_init(&sort_list, &trans->r_itemq);
1905                        error = -EIO;
1906                        goto out;
1907                }
1908        }
1909out:
1910        ASSERT(list_empty(&sort_list));
1911        if (!list_empty(&buffer_list))
1912                list_splice(&buffer_list, &trans->r_itemq);
1913        if (!list_empty(&inode_list))
1914                list_splice_tail(&inode_list, &trans->r_itemq);
1915        if (!list_empty(&inode_buffer_list))
1916                list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1917        if (!list_empty(&cancel_list))
1918                list_splice_tail(&cancel_list, &trans->r_itemq);
1919        return error;
1920}
1921
1922/*
1923 * Build up the table of buf cancel records so that we don't replay
1924 * cancelled data in the second pass.  For buffer records that are
1925 * not cancel records, there is nothing to do here so we just return.
1926 *
1927 * If we get a cancel record which is already in the table, this indicates
1928 * that the buffer was cancelled multiple times.  In order to ensure
1929 * that during pass 2 we keep the record in the table until we reach its
1930 * last occurrence in the log, we keep a reference count in the cancel
1931 * record in the table to tell us how many times we expect to see this
1932 * record during the second pass.
1933 */
1934STATIC int
1935xlog_recover_buffer_pass1(
1936        struct xlog                     *log,
1937        struct xlog_recover_item        *item)
1938{
1939        xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
1940        struct list_head        *bucket;
1941        struct xfs_buf_cancel   *bcp;
1942
1943        /*
1944         * If this isn't a cancel buffer item, then just return.
1945         */
1946        if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1947                trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1948                return 0;
1949        }
1950
1951        /*
1952         * Insert an xfs_buf_cancel record into the hash table of them.
1953         * If there is already an identical record, bump its reference count.
1954         */
1955        bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1956        list_for_each_entry(bcp, bucket, bc_list) {
1957                if (bcp->bc_blkno == buf_f->blf_blkno &&
1958                    bcp->bc_len == buf_f->blf_len) {
1959                        bcp->bc_refcount++;
1960                        trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1961                        return 0;
1962                }
1963        }
1964
1965        bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), 0);
1966        bcp->bc_blkno = buf_f->blf_blkno;
1967        bcp->bc_len = buf_f->blf_len;
1968        bcp->bc_refcount = 1;
1969        list_add_tail(&bcp->bc_list, bucket);
1970
1971        trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1972        return 0;
1973}
1974
1975/*
1976 * Check to see whether the buffer being recovered has a corresponding
1977 * entry in the buffer cancel record table. If it is, return the cancel
1978 * buffer structure to the caller.
1979 */
1980STATIC struct xfs_buf_cancel *
1981xlog_peek_buffer_cancelled(
1982        struct xlog             *log,
1983        xfs_daddr_t             blkno,
1984        uint                    len,
1985        unsigned short                  flags)
1986{
1987        struct list_head        *bucket;
1988        struct xfs_buf_cancel   *bcp;
1989
1990        if (!log->l_buf_cancel_table) {
1991                /* empty table means no cancelled buffers in the log */
1992                ASSERT(!(flags & XFS_BLF_CANCEL));
1993                return NULL;
1994        }
1995
1996        bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1997        list_for_each_entry(bcp, bucket, bc_list) {
1998                if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1999                        return bcp;
2000        }
2001
2002        /*
2003         * We didn't find a corresponding entry in the table, so return 0 so
2004         * that the buffer is NOT cancelled.
2005         */
2006        ASSERT(!(flags & XFS_BLF_CANCEL));
2007        return NULL;
2008}
2009
2010/*
2011 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2012 * otherwise return 0.  If the buffer is actually a buffer cancel item
2013 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2014 * table and remove it from the table if this is the last reference.
2015 *
2016 * We remove the cancel record from the table when we encounter its last
2017 * occurrence in the log so that if the same buffer is re-used again after its
2018 * last cancellation we actually replay the changes made at that point.
2019 */
2020STATIC int
2021xlog_check_buffer_cancelled(
2022        struct xlog             *log,
2023        xfs_daddr_t             blkno,
2024        uint                    len,
2025        unsigned short                  flags)
2026{
2027        struct xfs_buf_cancel   *bcp;
2028
2029        bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2030        if (!bcp)
2031                return 0;
2032
2033        /*
2034         * We've go a match, so return 1 so that the recovery of this buffer
2035         * is cancelled.  If this buffer is actually a buffer cancel log
2036         * item, then decrement the refcount on the one in the table and
2037         * remove it if this is the last reference.
2038         */
2039        if (flags & XFS_BLF_CANCEL) {
2040                if (--bcp->bc_refcount == 0) {
2041                        list_del(&bcp->bc_list);
2042                        kmem_free(bcp);
2043                }
2044        }
2045        return 1;
2046}
2047
2048/*
2049 * Perform recovery for a buffer full of inodes.  In these buffers, the only
2050 * data which should be recovered is that which corresponds to the
2051 * di_next_unlinked pointers in the on disk inode structures.  The rest of the
2052 * data for the inodes is always logged through the inodes themselves rather
2053 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2054 *
2055 * The only time when buffers full of inodes are fully recovered is when the
2056 * buffer is full of newly allocated inodes.  In this case the buffer will
2057 * not be marked as an inode buffer and so will be sent to
2058 * xlog_recover_do_reg_buffer() below during recovery.
2059 */
2060STATIC int
2061xlog_recover_do_inode_buffer(
2062        struct xfs_mount        *mp,
2063        xlog_recover_item_t     *item,
2064        struct xfs_buf          *bp,
2065        xfs_buf_log_format_t    *buf_f)
2066{
2067        int                     i;
2068        int                     item_index = 0;
2069        int                     bit = 0;
2070        int                     nbits = 0;
2071        int                     reg_buf_offset = 0;
2072        int                     reg_buf_bytes = 0;
2073        int                     next_unlinked_offset;
2074        int                     inodes_per_buf;
2075        xfs_agino_t             *logged_nextp;
2076        xfs_agino_t             *buffer_nextp;
2077
2078        trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2079
2080        /*
2081         * Post recovery validation only works properly on CRC enabled
2082         * filesystems.
2083         */
2084        if (xfs_sb_version_hascrc(&mp->m_sb))
2085                bp->b_ops = &xfs_inode_buf_ops;
2086
2087        inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog;
2088        for (i = 0; i < inodes_per_buf; i++) {
2089                next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2090                        offsetof(xfs_dinode_t, di_next_unlinked);
2091
2092                while (next_unlinked_offset >=
2093                       (reg_buf_offset + reg_buf_bytes)) {
2094                        /*
2095                         * The next di_next_unlinked field is beyond
2096                         * the current logged region.  Find the next
2097                         * logged region that contains or is beyond
2098                         * the current di_next_unlinked field.
2099                         */
2100                        bit += nbits;
2101                        bit = xfs_next_bit(buf_f->blf_data_map,
2102                                           buf_f->blf_map_size, bit);
2103
2104                        /*
2105                         * If there are no more logged regions in the
2106                         * buffer, then we're done.
2107                         */
2108                        if (bit == -1)
2109                                return 0;
2110
2111                        nbits = xfs_contig_bits(buf_f->blf_data_map,
2112                                                buf_f->blf_map_size, bit);
2113                        ASSERT(nbits > 0);
2114                        reg_buf_offset = bit << XFS_BLF_SHIFT;
2115                        reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2116                        item_index++;
2117                }
2118
2119                /*
2120                 * If the current logged region starts after the current
2121                 * di_next_unlinked field, then move on to the next
2122                 * di_next_unlinked field.
2123                 */
2124                if (next_unlinked_offset < reg_buf_offset)
2125                        continue;
2126
2127                ASSERT(item->ri_buf[item_index].i_addr != NULL);
2128                ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2129                ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length));
2130
2131                /*
2132                 * The current logged region contains a copy of the
2133                 * current di_next_unlinked field.  Extract its value
2134                 * and copy it to the buffer copy.
2135                 */
2136                logged_nextp = item->ri_buf[item_index].i_addr +
2137                                next_unlinked_offset - reg_buf_offset;
2138                if (unlikely(*logged_nextp == 0)) {
2139                        xfs_alert(mp,
2140                "Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
2141                "Trying to replay bad (0) inode di_next_unlinked field.",
2142                                item, bp);
2143                        XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2144                                         XFS_ERRLEVEL_LOW, mp);
2145                        return -EFSCORRUPTED;
2146                }
2147
2148                buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2149                *buffer_nextp = *logged_nextp;
2150
2151                /*
2152                 * If necessary, recalculate the CRC in the on-disk inode. We
2153                 * have to leave the inode in a consistent state for whoever
2154                 * reads it next....
2155                 */
2156                xfs_dinode_calc_crc(mp,
2157                                xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2158
2159        }
2160
2161        return 0;
2162}
2163
2164/*
2165 * V5 filesystems know the age of the buffer on disk being recovered. We can
2166 * have newer objects on disk than we are replaying, and so for these cases we
2167 * don't want to replay the current change as that will make the buffer contents
2168 * temporarily invalid on disk.
2169 *
2170 * The magic number might not match the buffer type we are going to recover
2171 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
2172 * extract the LSN of the existing object in the buffer based on it's current
2173 * magic number.  If we don't recognise the magic number in the buffer, then
2174 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2175 * so can recover the buffer.
2176 *
2177 * Note: we cannot rely solely on magic number matches to determine that the
2178 * buffer has a valid LSN - we also need to verify that it belongs to this
2179 * filesystem, so we need to extract the object's LSN and compare it to that
2180 * which we read from the superblock. If the UUIDs don't match, then we've got a
2181 * stale metadata block from an old filesystem instance that we need to recover
2182 * over the top of.
2183 */
2184static xfs_lsn_t
2185xlog_recover_get_buf_lsn(
2186        struct xfs_mount        *mp,
2187        struct xfs_buf          *bp)
2188{
2189        uint32_t                magic32;
2190        uint16_t                magic16;
2191        uint16_t                magicda;
2192        void                    *blk = bp->b_addr;
2193        uuid_t                  *uuid;
2194        xfs_lsn_t               lsn = -1;
2195
2196        /* v4 filesystems always recover immediately */
2197        if (!xfs_sb_version_hascrc(&mp->m_sb))
2198                goto recover_immediately;
2199
2200        magic32 = be32_to_cpu(*(__be32 *)blk);
2201        switch (magic32) {
2202        case XFS_ABTB_CRC_MAGIC:
2203        case XFS_ABTC_CRC_MAGIC:
2204        case XFS_ABTB_MAGIC:
2205        case XFS_ABTC_MAGIC:
2206        case XFS_RMAP_CRC_MAGIC:
2207        case XFS_REFC_CRC_MAGIC:
2208        case XFS_IBT_CRC_MAGIC:
2209        case XFS_IBT_MAGIC: {
2210                struct xfs_btree_block *btb = blk;
2211
2212                lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2213                uuid = &btb->bb_u.s.bb_uuid;
2214                break;
2215        }
2216        case XFS_BMAP_CRC_MAGIC:
2217        case XFS_BMAP_MAGIC: {
2218                struct xfs_btree_block *btb = blk;
2219
2220                lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2221                uuid = &btb->bb_u.l.bb_uuid;
2222                break;
2223        }
2224        case XFS_AGF_MAGIC:
2225                lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2226                uuid = &((struct xfs_agf *)blk)->agf_uuid;
2227                break;
2228        case XFS_AGFL_MAGIC:
2229                lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2230                uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2231                break;
2232        case XFS_AGI_MAGIC:
2233                lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2234                uuid = &((struct xfs_agi *)blk)->agi_uuid;
2235                break;
2236        case XFS_SYMLINK_MAGIC:
2237                lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2238                uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2239                break;
2240        case XFS_DIR3_BLOCK_MAGIC:
2241        case XFS_DIR3_DATA_MAGIC:
2242        case XFS_DIR3_FREE_MAGIC:
2243                lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2244                uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2245                break;
2246        case XFS_ATTR3_RMT_MAGIC:
2247                /*
2248                 * Remote attr blocks are written synchronously, rather than
2249                 * being logged. That means they do not contain a valid LSN
2250                 * (i.e. transactionally ordered) in them, and hence any time we
2251                 * see a buffer to replay over the top of a remote attribute
2252                 * block we should simply do so.
2253                 */
2254                goto recover_immediately;
2255        case XFS_SB_MAGIC:
2256                /*
2257                 * superblock uuids are magic. We may or may not have a
2258                 * sb_meta_uuid on disk, but it will be set in the in-core
2259                 * superblock. We set the uuid pointer for verification
2260                 * according to the superblock feature mask to ensure we check
2261                 * the relevant UUID in the superblock.
2262                 */
2263                lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2264                if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2265                        uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2266                else
2267                        uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2268                break;
2269        default:
2270                break;
2271        }
2272
2273        if (lsn != (xfs_lsn_t)-1) {
2274                if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2275                        goto recover_immediately;
2276                return lsn;
2277        }
2278
2279        magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2280        switch (magicda) {
2281        case XFS_DIR3_LEAF1_MAGIC:
2282        case XFS_DIR3_LEAFN_MAGIC:
2283        case XFS_DA3_NODE_MAGIC:
2284                lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2285                uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2286                break;
2287        default:
2288                break;
2289        }
2290
2291        if (lsn != (xfs_lsn_t)-1) {
2292                if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2293                        goto recover_immediately;
2294                return lsn;
2295        }
2296
2297        /*
2298         * We do individual object checks on dquot and inode buffers as they
2299         * have their own individual LSN records. Also, we could have a stale
2300         * buffer here, so we have to at least recognise these buffer types.
2301         *
2302         * A notd complexity here is inode unlinked list processing - it logs
2303         * the inode directly in the buffer, but we don't know which inodes have
2304         * been modified, and there is no global buffer LSN. Hence we need to
2305         * recover all inode buffer types immediately. This problem will be
2306         * fixed by logical logging of the unlinked list modifications.
2307         */
2308        magic16 = be16_to_cpu(*(__be16 *)blk);
2309        switch (magic16) {
2310        case XFS_DQUOT_MAGIC:
2311        case XFS_DINODE_MAGIC:
2312                goto recover_immediately;
2313        default:
2314                break;
2315        }
2316
2317        /* unknown buffer contents, recover immediately */
2318
2319recover_immediately:
2320        return (xfs_lsn_t)-1;
2321
2322}
2323
2324/*
2325 * Validate the recovered buffer is of the correct type and attach the
2326 * appropriate buffer operations to them for writeback. Magic numbers are in a
2327 * few places:
2328 *      the first 16 bits of the buffer (inode buffer, dquot buffer),
2329 *      the first 32 bits of the buffer (most blocks),
2330 *      inside a struct xfs_da_blkinfo at the start of the buffer.
2331 */
2332static void
2333xlog_recover_validate_buf_type(
2334        struct xfs_mount        *mp,
2335        struct xfs_buf          *bp,
2336        xfs_buf_log_format_t    *buf_f,
2337        xfs_lsn_t               current_lsn)
2338{
2339        struct xfs_da_blkinfo   *info = bp->b_addr;
2340        uint32_t                magic32;
2341        uint16_t                magic16;
2342        uint16_t                magicda;
2343        char                    *warnmsg = NULL;
2344
2345        /*
2346         * We can only do post recovery validation on items on CRC enabled
2347         * fielsystems as we need to know when the buffer was written to be able
2348         * to determine if we should have replayed the item. If we replay old
2349         * metadata over a newer buffer, then it will enter a temporarily
2350         * inconsistent state resulting in verification failures. Hence for now
2351         * just avoid the verification stage for non-crc filesystems
2352         */
2353        if (!xfs_sb_version_hascrc(&mp->m_sb))
2354                return;
2355
2356        magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2357        magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2358        magicda = be16_to_cpu(info->magic);
2359        switch (xfs_blft_from_flags(buf_f)) {
2360        case XFS_BLFT_BTREE_BUF:
2361                switch (magic32) {
2362                case XFS_ABTB_CRC_MAGIC:
2363                case XFS_ABTB_MAGIC:
2364                        bp->b_ops = &xfs_bnobt_buf_ops;
2365                        break;
2366                case XFS_ABTC_CRC_MAGIC:
2367                case XFS_ABTC_MAGIC:
2368                        bp->b_ops = &xfs_cntbt_buf_ops;
2369                        break;
2370                case XFS_IBT_CRC_MAGIC:
2371                case XFS_IBT_MAGIC:
2372                        bp->b_ops = &xfs_inobt_buf_ops;
2373                        break;
2374                case XFS_FIBT_CRC_MAGIC:
2375                case XFS_FIBT_MAGIC:
2376                        bp->b_ops = &xfs_finobt_buf_ops;
2377                        break;
2378                case XFS_BMAP_CRC_MAGIC:
2379                case XFS_BMAP_MAGIC:
2380                        bp->b_ops = &xfs_bmbt_buf_ops;
2381                        break;
2382                case XFS_RMAP_CRC_MAGIC:
2383                        bp->b_ops = &xfs_rmapbt_buf_ops;
2384                        break;
2385                case XFS_REFC_CRC_MAGIC:
2386                        bp->b_ops = &xfs_refcountbt_buf_ops;
2387                        break;
2388                default:
2389                        warnmsg = "Bad btree block magic!";
2390                        break;
2391                }
2392                break;
2393        case XFS_BLFT_AGF_BUF:
2394                if (magic32 != XFS_AGF_MAGIC) {
2395                        warnmsg = "Bad AGF block magic!";
2396                        break;
2397                }
2398                bp->b_ops = &xfs_agf_buf_ops;
2399                break;
2400        case XFS_BLFT_AGFL_BUF:
2401                if (magic32 != XFS_AGFL_MAGIC) {
2402                        warnmsg = "Bad AGFL block magic!";
2403                        break;
2404                }
2405                bp->b_ops = &xfs_agfl_buf_ops;
2406                break;
2407        case XFS_BLFT_AGI_BUF:
2408                if (magic32 != XFS_AGI_MAGIC) {
2409                        warnmsg = "Bad AGI block magic!";
2410                        break;
2411                }
2412                bp->b_ops = &xfs_agi_buf_ops;
2413                break;
2414        case XFS_BLFT_UDQUOT_BUF:
2415        case XFS_BLFT_PDQUOT_BUF:
2416        case XFS_BLFT_GDQUOT_BUF:
2417#ifdef CONFIG_XFS_QUOTA
2418                if (magic16 != XFS_DQUOT_MAGIC) {
2419                        warnmsg = "Bad DQUOT block magic!";
2420                        break;
2421                }
2422                bp->b_ops = &xfs_dquot_buf_ops;
2423#else
2424                xfs_alert(mp,
2425        "Trying to recover dquots without QUOTA support built in!");
2426                ASSERT(0);
2427#endif
2428                break;
2429        case XFS_BLFT_DINO_BUF:
2430                if (magic16 != XFS_DINODE_MAGIC) {
2431                        warnmsg = "Bad INODE block magic!";
2432                        break;
2433                }
2434                bp->b_ops = &xfs_inode_buf_ops;
2435                break;
2436        case XFS_BLFT_SYMLINK_BUF:
2437                if (magic32 != XFS_SYMLINK_MAGIC) {
2438                        warnmsg = "Bad symlink block magic!";
2439                        break;
2440                }
2441                bp->b_ops = &xfs_symlink_buf_ops;
2442                break;
2443        case XFS_BLFT_DIR_BLOCK_BUF:
2444                if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2445                    magic32 != XFS_DIR3_BLOCK_MAGIC) {
2446                        warnmsg = "Bad dir block magic!";
2447                        break;
2448                }
2449                bp->b_ops = &xfs_dir3_block_buf_ops;
2450                break;
2451        case XFS_BLFT_DIR_DATA_BUF:
2452                if (magic32 != XFS_DIR2_DATA_MAGIC &&
2453                    magic32 != XFS_DIR3_DATA_MAGIC) {
2454                        warnmsg = "Bad dir data magic!";
2455                        break;
2456                }
2457                bp->b_ops = &xfs_dir3_data_buf_ops;
2458                break;
2459        case XFS_BLFT_DIR_FREE_BUF:
2460                if (magic32 != XFS_DIR2_FREE_MAGIC &&
2461                    magic32 != XFS_DIR3_FREE_MAGIC) {
2462                        warnmsg = "Bad dir3 free magic!";
2463                        break;
2464                }
2465                bp->b_ops = &xfs_dir3_free_buf_ops;
2466                break;
2467        case XFS_BLFT_DIR_LEAF1_BUF:
2468                if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2469                    magicda != XFS_DIR3_LEAF1_MAGIC) {
2470                        warnmsg = "Bad dir leaf1 magic!";
2471                        break;
2472                }
2473                bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2474                break;
2475        case XFS_BLFT_DIR_LEAFN_BUF:
2476                if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2477                    magicda != XFS_DIR3_LEAFN_MAGIC) {
2478                        warnmsg = "Bad dir leafn magic!";
2479                        break;
2480                }
2481                bp->b_ops = &xfs_dir3_leafn_buf_ops;
2482                break;
2483        case XFS_BLFT_DA_NODE_BUF:
2484                if (magicda != XFS_DA_NODE_MAGIC &&
2485                    magicda != XFS_DA3_NODE_MAGIC) {
2486                        warnmsg = "Bad da node magic!";
2487                        break;
2488                }
2489                bp->b_ops = &xfs_da3_node_buf_ops;
2490                break;
2491        case XFS_BLFT_ATTR_LEAF_BUF:
2492                if (magicda != XFS_ATTR_LEAF_MAGIC &&
2493                    magicda != XFS_ATTR3_LEAF_MAGIC) {
2494                        warnmsg = "Bad attr leaf magic!";
2495                        break;
2496                }
2497                bp->b_ops = &xfs_attr3_leaf_buf_ops;
2498                break;
2499        case XFS_BLFT_ATTR_RMT_BUF:
2500                if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2501                        warnmsg = "Bad attr remote magic!";
2502                        break;
2503                }
2504                bp->b_ops = &xfs_attr3_rmt_buf_ops;
2505                break;
2506        case XFS_BLFT_SB_BUF:
2507                if (magic32 != XFS_SB_MAGIC) {
2508                        warnmsg = "Bad SB block magic!";
2509                        break;
2510                }
2511                bp->b_ops = &xfs_sb_buf_ops;
2512                break;
2513#ifdef CONFIG_XFS_RT
2514        case XFS_BLFT_RTBITMAP_BUF:
2515        case XFS_BLFT_RTSUMMARY_BUF:
2516                /* no magic numbers for verification of RT buffers */
2517                bp->b_ops = &xfs_rtbuf_ops;
2518                break;
2519#endif /* CONFIG_XFS_RT */
2520        default:
2521                xfs_warn(mp, "Unknown buffer type %d!",
2522                         xfs_blft_from_flags(buf_f));
2523                break;
2524        }
2525
2526        /*
2527         * Nothing else to do in the case of a NULL current LSN as this means
2528         * the buffer is more recent than the change in the log and will be
2529         * skipped.
2530         */
2531        if (current_lsn == NULLCOMMITLSN)
2532                return;
2533
2534        if (warnmsg) {
2535                xfs_warn(mp, warnmsg);
2536                ASSERT(0);
2537        }
2538
2539        /*
2540         * We must update the metadata LSN of the buffer as it is written out to
2541         * ensure that older transactions never replay over this one and corrupt
2542         * the buffer. This can occur if log recovery is interrupted at some
2543         * point after the current transaction completes, at which point a
2544         * subsequent mount starts recovery from the beginning.
2545         *
2546         * Write verifiers update the metadata LSN from log items attached to
2547         * the buffer. Therefore, initialize a bli purely to carry the LSN to
2548         * the verifier. We'll clean it up in our ->iodone() callback.
2549         */
2550        if (bp->b_ops) {
2551                struct xfs_buf_log_item *bip;
2552
2553                ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
2554                bp->b_iodone = xlog_recover_iodone;
2555                xfs_buf_item_init(bp, mp);
2556                bip = bp->b_log_item;
2557                bip->bli_item.li_lsn = current_lsn;
2558        }
2559}
2560
2561/*
2562 * Perform a 'normal' buffer recovery.  Each logged region of the
2563 * buffer should be copied over the corresponding region in the
2564 * given buffer.  The bitmap in the buf log format structure indicates
2565 * where to place the logged data.
2566 */
2567STATIC void
2568xlog_recover_do_reg_buffer(
2569        struct xfs_mount        *mp,
2570        xlog_recover_item_t     *item,
2571        struct xfs_buf          *bp,
2572        xfs_buf_log_format_t    *buf_f,
2573        xfs_lsn_t               current_lsn)
2574{
2575        int                     i;
2576        int                     bit;
2577        int                     nbits;
2578        xfs_failaddr_t          fa;
2579
2580        trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2581
2582        bit = 0;
2583        i = 1;  /* 0 is the buf format structure */
2584        while (1) {
2585                bit = xfs_next_bit(buf_f->blf_data_map,
2586                                   buf_f->blf_map_size, bit);
2587                if (bit == -1)
2588                        break;
2589                nbits = xfs_contig_bits(buf_f->blf_data_map,
2590                                        buf_f->blf_map_size, bit);
2591                ASSERT(nbits > 0);
2592                ASSERT(item->ri_buf[i].i_addr != NULL);
2593                ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2594                ASSERT(BBTOB(bp->b_length) >=
2595                       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2596
2597                /*
2598                 * The dirty regions logged in the buffer, even though
2599                 * contiguous, may span multiple chunks. This is because the
2600                 * dirty region may span a physical page boundary in a buffer
2601                 * and hence be split into two separate vectors for writing into
2602                 * the log. Hence we need to trim nbits back to the length of
2603                 * the current region being copied out of the log.
2604                 */
2605                if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2606                        nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2607
2608                /*
2609                 * Do a sanity check if this is a dquot buffer. Just checking
2610                 * the first dquot in the buffer should do. XXXThis is
2611                 * probably a good thing to do for other buf types also.
2612                 */
2613                fa = NULL;
2614                if (buf_f->blf_flags &
2615                   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2616                        if (item->ri_buf[i].i_addr == NULL) {
2617                                xfs_alert(mp,
2618                                        "XFS: NULL dquot in %s.", __func__);
2619                                goto next;
2620                        }
2621                        if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2622                                xfs_alert(mp,
2623                                        "XFS: dquot too small (%d) in %s.",
2624                                        item->ri_buf[i].i_len, __func__);
2625                                goto next;
2626                        }
2627                        fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr,
2628                                               -1, 0);
2629                        if (fa) {
2630                                xfs_alert(mp,
2631        "dquot corrupt at %pS trying to replay into block 0x%llx",
2632                                        fa, bp->b_bn);
2633                                goto next;
2634                        }
2635                }
2636
2637                memcpy(xfs_buf_offset(bp,
2638                        (uint)bit << XFS_BLF_SHIFT),    /* dest */
2639                        item->ri_buf[i].i_addr,         /* source */
2640                        nbits<<XFS_BLF_SHIFT);          /* length */
2641 next:
2642                i++;
2643                bit += nbits;
2644        }
2645
2646        /* Shouldn't be any more regions */
2647        ASSERT(i == item->ri_total);
2648
2649        xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
2650}
2651
2652/*
2653 * Perform a dquot buffer recovery.
2654 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2655 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2656 * Else, treat it as a regular buffer and do recovery.
2657 *
2658 * Return false if the buffer was tossed and true if we recovered the buffer to
2659 * indicate to the caller if the buffer needs writing.
2660 */
2661STATIC bool
2662xlog_recover_do_dquot_buffer(
2663        struct xfs_mount                *mp,
2664        struct xlog                     *log,
2665        struct xlog_recover_item        *item,
2666        struct xfs_buf                  *bp,
2667        struct xfs_buf_log_format       *buf_f)
2668{
2669        uint                    type;
2670
2671        trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2672
2673        /*
2674         * Filesystems are required to send in quota flags at mount time.
2675         */
2676        if (!mp->m_qflags)
2677                return false;
2678
2679        type = 0;
2680        if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2681                type |= XFS_DQ_USER;
2682        if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2683                type |= XFS_DQ_PROJ;
2684        if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2685                type |= XFS_DQ_GROUP;
2686        /*
2687         * This type of quotas was turned off, so ignore this buffer
2688         */
2689        if (log->l_quotaoffs_flag & type)
2690                return false;
2691
2692        xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
2693        return true;
2694}
2695
2696/*
2697 * This routine replays a modification made to a buffer at runtime.
2698 * There are actually two types of buffer, regular and inode, which
2699 * are handled differently.  Inode buffers are handled differently
2700 * in that we only recover a specific set of data from them, namely
2701 * the inode di_next_unlinked fields.  This is because all other inode
2702 * data is actually logged via inode records and any data we replay
2703 * here which overlaps that may be stale.
2704 *
2705 * When meta-data buffers are freed at run time we log a buffer item
2706 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2707 * of the buffer in the log should not be replayed at recovery time.
2708 * This is so that if the blocks covered by the buffer are reused for
2709 * file data before we crash we don't end up replaying old, freed
2710 * meta-data into a user's file.
2711 *
2712 * To handle the cancellation of buffer log items, we make two passes
2713 * over the log during recovery.  During the first we build a table of
2714 * those buffers which have been cancelled, and during the second we
2715 * only replay those buffers which do not have corresponding cancel
2716 * records in the table.  See xlog_recover_buffer_pass[1,2] above
2717 * for more details on the implementation of the table of cancel records.
2718 */
2719STATIC int
2720xlog_recover_buffer_pass2(
2721        struct xlog                     *log,
2722        struct list_head                *buffer_list,
2723        struct xlog_recover_item        *item,
2724        xfs_lsn_t                       current_lsn)
2725{
2726        xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
2727        xfs_mount_t             *mp = log->l_mp;
2728        xfs_buf_t               *bp;
2729        int                     error;
2730        uint                    buf_flags;
2731        xfs_lsn_t               lsn;
2732
2733        /*
2734         * In this pass we only want to recover all the buffers which have
2735         * not been cancelled and are not cancellation buffers themselves.
2736         */
2737        if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2738                        buf_f->blf_len, buf_f->blf_flags)) {
2739                trace_xfs_log_recover_buf_cancel(log, buf_f);
2740                return 0;
2741        }
2742
2743        trace_xfs_log_recover_buf_recover(log, buf_f);
2744
2745        buf_flags = 0;
2746        if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2747                buf_flags |= XBF_UNMAPPED;
2748
2749        bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2750                          buf_flags, NULL);
2751        if (!bp)
2752                return -ENOMEM;
2753        error = bp->b_error;
2754        if (error) {
2755                xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2756                goto out_release;
2757        }
2758
2759        /*
2760         * Recover the buffer only if we get an LSN from it and it's less than
2761         * the lsn of the transaction we are replaying.
2762         *
2763         * Note that we have to be extremely careful of readahead here.
2764         * Readahead does not attach verfiers to the buffers so if we don't
2765         * actually do any replay after readahead because of the LSN we found
2766         * in the buffer if more recent than that current transaction then we
2767         * need to attach the verifier directly. Failure to do so can lead to
2768         * future recovery actions (e.g. EFI and unlinked list recovery) can
2769         * operate on the buffers and they won't get the verifier attached. This
2770         * can lead to blocks on disk having the correct content but a stale
2771         * CRC.
2772         *
2773         * It is safe to assume these clean buffers are currently up to date.
2774         * If the buffer is dirtied by a later transaction being replayed, then
2775         * the verifier will be reset to match whatever recover turns that
2776         * buffer into.
2777         */
2778        lsn = xlog_recover_get_buf_lsn(mp, bp);
2779        if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2780                trace_xfs_log_recover_buf_skip(log, buf_f);
2781                xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
2782                goto out_release;
2783        }
2784
2785        if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2786                error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2787                if (error)
2788                        goto out_release;
2789        } else if (buf_f->blf_flags &
2790                  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2791                bool    dirty;
2792
2793                dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2794                if (!dirty)
2795                        goto out_release;
2796        } else {
2797                xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
2798        }
2799
2800        /*
2801         * Perform delayed write on the buffer.  Asynchronous writes will be
2802         * slower when taking into account all the buffers to be flushed.
2803         *
2804         * Also make sure that only inode buffers with good sizes stay in
2805         * the buffer cache.  The kernel moves inodes in buffers of 1 block
2806         * or inode_cluster_size bytes, whichever is bigger.  The inode
2807         * buffers in the log can be a different size if the log was generated
2808         * by an older kernel using unclustered inode buffers or a newer kernel
2809         * running with a different inode cluster size.  Regardless, if the
2810         * the inode buffer size isn't max(blocksize, inode_cluster_size)
2811         * for *our* value of inode_cluster_size, then we need to keep
2812         * the buffer out of the buffer cache so that the buffer won't
2813         * overlap with future reads of those inodes.
2814         */
2815        if (XFS_DINODE_MAGIC ==
2816            be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2817            (BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) {
2818                xfs_buf_stale(bp);
2819                error = xfs_bwrite(bp);
2820        } else {
2821                ASSERT(bp->b_mount == mp);
2822                bp->b_iodone = xlog_recover_iodone;
2823                xfs_buf_delwri_queue(bp, buffer_list);
2824        }
2825
2826out_release:
2827        xfs_buf_relse(bp);
2828        return error;
2829}
2830
2831/*
2832 * Inode fork owner changes
2833 *
2834 * If we have been told that we have to reparent the inode fork, it's because an
2835 * extent swap operation on a CRC enabled filesystem has been done and we are
2836 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2837 * owners of it.
2838 *
2839 * The complexity here is that we don't have an inode context to work with, so
2840 * after we've replayed the inode we need to instantiate one.  This is where the
2841 * fun begins.
2842 *
2843 * We are in the middle of log recovery, so we can't run transactions. That
2844 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2845 * that will result in the corresponding iput() running the inode through
2846 * xfs_inactive(). If we've just replayed an inode core that changes the link
2847 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2848 * transactions (bad!).
2849 *
2850 * So, to avoid this, we instantiate an inode directly from the inode core we've
2851 * just recovered. We have the buffer still locked, and all we really need to
2852 * instantiate is the inode core and the forks being modified. We can do this
2853 * manually, then run the inode btree owner change, and then tear down the
2854 * xfs_inode without having to run any transactions at all.
2855 *
2856 * Also, because we don't have a transaction context available here but need to
2857 * gather all the buffers we modify for writeback so we pass the buffer_list
2858 * instead for the operation to use.
2859 */
2860
2861STATIC int
2862xfs_recover_inode_owner_change(
2863        struct xfs_mount        *mp,
2864        struct xfs_dinode       *dip,
2865        struct xfs_inode_log_format *in_f,
2866        struct list_head        *buffer_list)
2867{
2868        struct xfs_inode        *ip;
2869        int                     error;
2870
2871        ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2872
2873        ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2874        if (!ip)
2875                return -ENOMEM;
2876
2877        /* instantiate the inode */
2878        xfs_inode_from_disk(ip, dip);
2879        ASSERT(ip->i_d.di_version >= 3);
2880
2881        error = xfs_iformat_fork(ip, dip);
2882        if (error)
2883                goto out_free_ip;
2884
2885        if (!xfs_inode_verify_forks(ip)) {
2886                error = -EFSCORRUPTED;
2887                goto out_free_ip;
2888        }
2889
2890        if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2891                ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2892                error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2893                                              ip->i_ino, buffer_list);
2894                if (error)
2895                        goto out_free_ip;
2896        }
2897
2898        if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2899                ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2900                error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2901                                              ip->i_ino, buffer_list);
2902                if (error)
2903                        goto out_free_ip;
2904        }
2905
2906out_free_ip:
2907        xfs_inode_free(ip);
2908        return error;
2909}
2910
2911STATIC int
2912xlog_recover_inode_pass2(
2913        struct xlog                     *log,
2914        struct list_head                *buffer_list,
2915        struct xlog_recover_item        *item,
2916        xfs_lsn_t                       current_lsn)
2917{
2918        struct xfs_inode_log_format     *in_f;
2919        xfs_mount_t             *mp = log->l_mp;
2920        xfs_buf_t               *bp;
2921        xfs_dinode_t            *dip;
2922        int                     len;
2923        char                    *src;
2924        char                    *dest;
2925        int                     error;
2926        int                     attr_index;
2927        uint                    fields;
2928        struct xfs_log_dinode   *ldip;
2929        uint                    isize;
2930        int                     need_free = 0;
2931
2932        if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
2933                in_f = item->ri_buf[0].i_addr;
2934        } else {
2935                in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), 0);
2936                need_free = 1;
2937                error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2938                if (error)
2939                        goto error;
2940        }
2941
2942        /*
2943         * Inode buffers can be freed, look out for it,
2944         * and do not replay the inode.
2945         */
2946        if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2947                                        in_f->ilf_len, 0)) {
2948                error = 0;
2949                trace_xfs_log_recover_inode_cancel(log, in_f);
2950                goto error;
2951        }
2952        trace_xfs_log_recover_inode_recover(log, in_f);
2953
2954        bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2955                          &xfs_inode_buf_ops);
2956        if (!bp) {
2957                error = -ENOMEM;
2958                goto error;
2959        }
2960        error = bp->b_error;
2961        if (error) {
2962                xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2963                goto out_release;
2964        }
2965        ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2966        dip = xfs_buf_offset(bp, in_f->ilf_boffset);
2967
2968        /*
2969         * Make sure the place we're flushing out to really looks
2970         * like an inode!
2971         */
2972        if (unlikely(!xfs_verify_magic16(bp, dip->di_magic))) {
2973                xfs_alert(mp,
2974        "%s: Bad inode magic number, dip = "PTR_FMT", dino bp = "PTR_FMT", ino = %Ld",
2975                        __func__, dip, bp, in_f->ilf_ino);
2976                XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2977                                 XFS_ERRLEVEL_LOW, mp);
2978                error = -EFSCORRUPTED;
2979                goto out_release;
2980        }
2981        ldip = item->ri_buf[1].i_addr;
2982        if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
2983                xfs_alert(mp,
2984                        "%s: Bad inode log record, rec ptr "PTR_FMT", ino %Ld",
2985                        __func__, item, in_f->ilf_ino);
2986                XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2987                                 XFS_ERRLEVEL_LOW, mp);
2988                error = -EFSCORRUPTED;
2989                goto out_release;
2990        }
2991
2992        /*
2993         * If the inode has an LSN in it, recover the inode only if it's less
2994         * than the lsn of the transaction we are replaying. Note: we still
2995         * need to replay an owner change even though the inode is more recent
2996         * than the transaction as there is no guarantee that all the btree
2997         * blocks are more recent than this transaction, too.
2998         */
2999        if (dip->di_version >= 3) {
3000                xfs_lsn_t       lsn = be64_to_cpu(dip->di_lsn);
3001
3002                if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3003                        trace_xfs_log_recover_inode_skip(log, in_f);
3004                        error = 0;
3005                        goto out_owner_change;
3006                }
3007        }
3008
3009        /*
3010         * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3011         * are transactional and if ordering is necessary we can determine that
3012         * more accurately by the LSN field in the V3 inode core. Don't trust
3013         * the inode versions we might be changing them here - use the
3014         * superblock flag to determine whether we need to look at di_flushiter
3015         * to skip replay when the on disk inode is newer than the log one
3016         */
3017        if (!xfs_sb_version_hascrc(&mp->m_sb) &&
3018            ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
3019                /*
3020                 * Deal with the wrap case, DI_MAX_FLUSH is less
3021                 * than smaller numbers
3022                 */
3023                if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3024                    ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3025                        /* do nothing */
3026                } else {
3027                        trace_xfs_log_recover_inode_skip(log, in_f);
3028                        error = 0;
3029                        goto out_release;
3030                }
3031        }
3032
3033        /* Take the opportunity to reset the flush iteration count */
3034        ldip->di_flushiter = 0;
3035
3036        if (unlikely(S_ISREG(ldip->di_mode))) {
3037                if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3038                    (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
3039                        XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3040                                         XFS_ERRLEVEL_LOW, mp, ldip,
3041                                         sizeof(*ldip));
3042                        xfs_alert(mp,
3043                "%s: Bad regular inode log record, rec ptr "PTR_FMT", "
3044                "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
3045                                __func__, item, dip, bp, in_f->ilf_ino);
3046                        error = -EFSCORRUPTED;
3047                        goto out_release;
3048                }
3049        } else if (unlikely(S_ISDIR(ldip->di_mode))) {
3050                if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3051                    (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3052                    (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
3053                        XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3054                                             XFS_ERRLEVEL_LOW, mp, ldip,
3055                                             sizeof(*ldip));
3056                        xfs_alert(mp,
3057                "%s: Bad dir inode log record, rec ptr "PTR_FMT", "
3058                "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
3059                                __func__, item, dip, bp, in_f->ilf_ino);
3060                        error = -EFSCORRUPTED;
3061                        goto out_release;
3062                }
3063        }
3064        if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
3065                XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3066                                     XFS_ERRLEVEL_LOW, mp, ldip,
3067                                     sizeof(*ldip));
3068                xfs_alert(mp,
3069        "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3070        "dino bp "PTR_FMT", ino %Ld, total extents = %d, nblocks = %Ld",
3071                        __func__, item, dip, bp, in_f->ilf_ino,
3072                        ldip->di_nextents + ldip->di_anextents,
3073                        ldip->di_nblocks);
3074                error = -EFSCORRUPTED;
3075                goto out_release;
3076        }
3077        if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
3078                XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3079                                     XFS_ERRLEVEL_LOW, mp, ldip,
3080                                     sizeof(*ldip));
3081                xfs_alert(mp,
3082        "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3083        "dino bp "PTR_FMT", ino %Ld, forkoff 0x%x", __func__,
3084                        item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
3085                error = -EFSCORRUPTED;
3086                goto out_release;
3087        }
3088        isize = xfs_log_dinode_size(ldip->di_version);
3089        if (unlikely(item->ri_buf[1].i_len > isize)) {
3090                XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3091                                     XFS_ERRLEVEL_LOW, mp, ldip,
3092                                     sizeof(*ldip));
3093                xfs_alert(mp,
3094                        "%s: Bad inode log record length %d, rec ptr "PTR_FMT,
3095                        __func__, item->ri_buf[1].i_len, item);
3096                error = -EFSCORRUPTED;
3097                goto out_release;
3098        }
3099
3100        /* recover the log dinode inode into the on disk inode */
3101        xfs_log_dinode_to_disk(ldip, dip);
3102
3103        fields = in_f->ilf_fields;
3104        if (fields & XFS_ILOG_DEV)
3105                xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3106
3107        if (in_f->ilf_size == 2)
3108                goto out_owner_change;
3109        len = item->ri_buf[2].i_len;
3110        src = item->ri_buf[2].i_addr;
3111        ASSERT(in_f->ilf_size <= 4);
3112        ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3113        ASSERT(!(fields & XFS_ILOG_DFORK) ||
3114               (len == in_f->ilf_dsize));
3115
3116        switch (fields & XFS_ILOG_DFORK) {
3117        case XFS_ILOG_DDATA:
3118        case XFS_ILOG_DEXT:
3119                memcpy(XFS_DFORK_DPTR(dip), src, len);
3120                break;
3121
3122        case XFS_ILOG_DBROOT:
3123                xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3124                                 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3125                                 XFS_DFORK_DSIZE(dip, mp));
3126                break;
3127
3128        default:
3129                /*
3130                 * There are no data fork flags set.
3131                 */
3132                ASSERT((fields & XFS_ILOG_DFORK) == 0);
3133                break;
3134        }
3135
3136        /*
3137         * If we logged any attribute data, recover it.  There may or
3138         * may not have been any other non-core data logged in this
3139         * transaction.
3140         */
3141        if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3142                if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3143                        attr_index = 3;
3144                } else {
3145                        attr_index = 2;
3146                }
3147                len = item->ri_buf[attr_index].i_len;
3148                src = item->ri_buf[attr_index].i_addr;
3149                ASSERT(len == in_f->ilf_asize);
3150
3151                switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3152                case XFS_ILOG_ADATA:
3153                case XFS_ILOG_AEXT:
3154                        dest = XFS_DFORK_APTR(dip);
3155                        ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3156                        memcpy(dest, src, len);
3157                        break;
3158
3159                case XFS_ILOG_ABROOT:
3160                        dest = XFS_DFORK_APTR(dip);
3161                        xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3162                                         len, (xfs_bmdr_block_t*)dest,
3163                                         XFS_DFORK_ASIZE(dip, mp));
3164                        break;
3165
3166                default:
3167                        xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3168                        ASSERT(0);
3169                        error = -EIO;
3170                        goto out_release;
3171                }
3172        }
3173
3174out_owner_change:
3175        /* Recover the swapext owner change unless inode has been deleted */
3176        if ((in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) &&
3177            (dip->di_mode != 0))
3178                error = xfs_recover_inode_owner_change(mp, dip, in_f,
3179                                                       buffer_list);
3180        /* re-generate the checksum. */
3181        xfs_dinode_calc_crc(log->l_mp, dip);
3182
3183        ASSERT(bp->b_mount == mp);
3184        bp->b_iodone = xlog_recover_iodone;
3185        xfs_buf_delwri_queue(bp, buffer_list);
3186
3187out_release:
3188        xfs_buf_relse(bp);
3189error:
3190        if (need_free)
3191                kmem_free(in_f);
3192        return error;
3193}
3194
3195/*
3196 * Recover QUOTAOFF records. We simply make a note of it in the xlog
3197 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3198 * of that type.
3199 */
3200STATIC int
3201xlog_recover_quotaoff_pass1(
3202        struct xlog                     *log,
3203        struct xlog_recover_item        *item)
3204{
3205        xfs_qoff_logformat_t    *qoff_f = item->ri_buf[0].i_addr;
3206        ASSERT(qoff_f);
3207
3208        /*
3209         * The logitem format's flag tells us if this was user quotaoff,
3210         * group/project quotaoff or both.
3211         */
3212        if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3213                log->l_quotaoffs_flag |= XFS_DQ_USER;
3214        if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3215                log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3216        if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3217                log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3218
3219        return 0;
3220}
3221
3222/*
3223 * Recover a dquot record
3224 */
3225STATIC int
3226xlog_recover_dquot_pass2(
3227        struct xlog                     *log,
3228        struct list_head                *buffer_list,
3229        struct xlog_recover_item        *item,
3230        xfs_lsn_t                       current_lsn)
3231{
3232        xfs_mount_t             *mp = log->l_mp;
3233        xfs_buf_t               *bp;
3234        struct xfs_disk_dquot   *ddq, *recddq;
3235        xfs_failaddr_t          fa;
3236        int                     error;
3237        xfs_dq_logformat_t      *dq_f;
3238        uint                    type;
3239
3240
3241        /*
3242         * Filesystems are required to send in quota flags at mount time.
3243         */
3244        if (mp->m_qflags == 0)
3245                return 0;
3246
3247        recddq = item->ri_buf[1].i_addr;
3248        if (recddq == NULL) {
3249                xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3250                return -EIO;
3251        }
3252        if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3253                xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3254                        item->ri_buf[1].i_len, __func__);
3255                return -EIO;
3256        }
3257
3258        /*
3259         * This type of quotas was turned off, so ignore this record.
3260         */
3261        type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3262        ASSERT(type);
3263        if (log->l_quotaoffs_flag & type)
3264                return 0;
3265
3266        /*
3267         * At this point we know that quota was _not_ turned off.
3268         * Since the mount flags are not indicating to us otherwise, this
3269         * must mean that quota is on, and the dquot needs to be replayed.
3270         * Remember that we may not have fully recovered the superblock yet,
3271         * so we can't do the usual trick of looking at the SB quota bits.
3272         *
3273         * The other possibility, of course, is that the quota subsystem was
3274         * removed since the last mount - ENOSYS.
3275         */
3276        dq_f = item->ri_buf[0].i_addr;
3277        ASSERT(dq_f);
3278        fa = xfs_dquot_verify(mp, recddq, dq_f->qlf_id, 0);
3279        if (fa) {
3280                xfs_alert(mp, "corrupt dquot ID 0x%x in log at %pS",
3281                                dq_f->qlf_id, fa);
3282                return -EIO;
3283        }
3284        ASSERT(dq_f->qlf_len == 1);
3285
3286        /*
3287         * At this point we are assuming that the dquots have been allocated
3288         * and hence the buffer has valid dquots stamped in it. It should,
3289         * therefore, pass verifier validation. If the dquot is bad, then the
3290         * we'll return an error here, so we don't need to specifically check
3291         * the dquot in the buffer after the verifier has run.
3292         */
3293        error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3294                                   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3295                                   &xfs_dquot_buf_ops);
3296        if (error)
3297                return error;
3298
3299        ASSERT(bp);
3300        ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3301
3302        /*
3303         * If the dquot has an LSN in it, recover the dquot only if it's less
3304         * than the lsn of the transaction we are replaying.
3305         */
3306        if (xfs_sb_version_hascrc(&mp->m_sb)) {
3307                struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3308                xfs_lsn_t       lsn = be64_to_cpu(dqb->dd_lsn);
3309
3310                if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3311                        goto out_release;
3312                }
3313        }
3314
3315        memcpy(ddq, recddq, item->ri_buf[1].i_len);
3316        if (xfs_sb_version_hascrc(&mp->m_sb)) {
3317                xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3318                                 XFS_DQUOT_CRC_OFF);
3319        }
3320
3321        ASSERT(dq_f->qlf_size == 2);
3322        ASSERT(bp->b_mount == mp);
3323        bp->b_iodone = xlog_recover_iodone;
3324        xfs_buf_delwri_queue(bp, buffer_list);
3325
3326out_release:
3327        xfs_buf_relse(bp);
3328        return 0;
3329}
3330
3331/*
3332 * This routine is called to create an in-core extent free intent
3333 * item from the efi format structure which was logged on disk.
3334 * It allocates an in-core efi, copies the extents from the format
3335 * structure into it, and adds the efi to the AIL with the given
3336 * LSN.
3337 */
3338STATIC int
3339xlog_recover_efi_pass2(
3340        struct xlog                     *log,
3341        struct xlog_recover_item        *item,
3342        xfs_lsn_t                       lsn)
3343{
3344        int                             error;
3345        struct xfs_mount                *mp = log->l_mp;
3346        struct xfs_efi_log_item         *efip;
3347        struct xfs_efi_log_format       *efi_formatp;
3348
3349        efi_formatp = item->ri_buf[0].i_addr;
3350
3351        efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3352        error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3353        if (error) {
3354                xfs_efi_item_free(efip);
3355                return error;
3356        }
3357        atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3358
3359        spin_lock(&log->l_ailp->ail_lock);
3360        /*
3361         * The EFI has two references. One for the EFD and one for EFI to ensure
3362         * it makes it into the AIL. Insert the EFI into the AIL directly and
3363         * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3364         * AIL lock.
3365         */
3366        xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3367        xfs_efi_release(efip);
3368        return 0;
3369}
3370
3371
3372/*
3373 * This routine is called when an EFD format structure is found in a committed
3374 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3375 * was still in the log. To do this it searches the AIL for the EFI with an id
3376 * equal to that in the EFD format structure. If we find it we drop the EFD
3377 * reference, which removes the EFI from the AIL and frees it.
3378 */
3379STATIC int
3380xlog_recover_efd_pass2(
3381        struct xlog                     *log,
3382        struct xlog_recover_item        *item)
3383{
3384        xfs_efd_log_format_t    *efd_formatp;
3385        xfs_efi_log_item_t      *efip = NULL;
3386        struct xfs_log_item     *lip;
3387        uint64_t                efi_id;
3388        struct xfs_ail_cursor   cur;
3389        struct xfs_ail          *ailp = log->l_ailp;
3390
3391        efd_formatp = item->ri_buf[0].i_addr;
3392        ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3393                ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3394               (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3395                ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3396        efi_id = efd_formatp->efd_efi_id;
3397
3398        /*
3399         * Search for the EFI with the id in the EFD format structure in the
3400         * AIL.
3401         */
3402        spin_lock(&ailp->ail_lock);
3403        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3404        while (lip != NULL) {
3405                if (lip->li_type == XFS_LI_EFI) {
3406                        efip = (xfs_efi_log_item_t *)lip;
3407                        if (efip->efi_format.efi_id == efi_id) {
3408                                /*
3409                                 * Drop the EFD reference to the EFI. This
3410                                 * removes the EFI from the AIL and frees it.
3411                                 */
3412                                spin_unlock(&ailp->ail_lock);
3413                                xfs_efi_release(efip);
3414                                spin_lock(&ailp->ail_lock);
3415                                break;
3416                        }
3417                }
3418                lip = xfs_trans_ail_cursor_next(ailp, &cur);
3419        }
3420
3421        xfs_trans_ail_cursor_done(&cur);
3422        spin_unlock(&ailp->ail_lock);
3423
3424        return 0;
3425}
3426
3427/*
3428 * This routine is called to create an in-core extent rmap update
3429 * item from the rui format structure which was logged on disk.
3430 * It allocates an in-core rui, copies the extents from the format
3431 * structure into it, and adds the rui to the AIL with the given
3432 * LSN.
3433 */
3434STATIC int
3435xlog_recover_rui_pass2(
3436        struct xlog                     *log,
3437        struct xlog_recover_item        *item,
3438        xfs_lsn_t                       lsn)
3439{
3440        int                             error;
3441        struct xfs_mount                *mp = log->l_mp;
3442        struct xfs_rui_log_item         *ruip;
3443        struct xfs_rui_log_format       *rui_formatp;
3444
3445        rui_formatp = item->ri_buf[0].i_addr;
3446
3447        ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3448        error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3449        if (error) {
3450                xfs_rui_item_free(ruip);
3451                return error;
3452        }
3453        atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3454
3455        spin_lock(&log->l_ailp->ail_lock);
3456        /*
3457         * The RUI has two references. One for the RUD and one for RUI to ensure
3458         * it makes it into the AIL. Insert the RUI into the AIL directly and
3459         * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3460         * AIL lock.
3461         */
3462        xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3463        xfs_rui_release(ruip);
3464        return 0;
3465}
3466
3467
3468/*
3469 * This routine is called when an RUD format structure is found in a committed
3470 * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3471 * was still in the log. To do this it searches the AIL for the RUI with an id
3472 * equal to that in the RUD format structure. If we find it we drop the RUD
3473 * reference, which removes the RUI from the AIL and frees it.
3474 */
3475STATIC int
3476xlog_recover_rud_pass2(
3477        struct xlog                     *log,
3478        struct xlog_recover_item        *item)
3479{
3480        struct xfs_rud_log_format       *rud_formatp;
3481        struct xfs_rui_log_item         *ruip = NULL;
3482        struct xfs_log_item             *lip;
3483        uint64_t                        rui_id;
3484        struct xfs_ail_cursor           cur;
3485        struct xfs_ail                  *ailp = log->l_ailp;
3486
3487        rud_formatp = item->ri_buf[0].i_addr;
3488        ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
3489        rui_id = rud_formatp->rud_rui_id;
3490
3491        /*
3492         * Search for the RUI with the id in the RUD format structure in the
3493         * AIL.
3494         */
3495        spin_lock(&ailp->ail_lock);
3496        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3497        while (lip != NULL) {
3498                if (lip->li_type == XFS_LI_RUI) {
3499                        ruip = (struct xfs_rui_log_item *)lip;
3500                        if (ruip->rui_format.rui_id == rui_id) {
3501                                /*
3502                                 * Drop the RUD reference to the RUI. This
3503                                 * removes the RUI from the AIL and frees it.
3504                                 */
3505                                spin_unlock(&ailp->ail_lock);
3506                                xfs_rui_release(ruip);
3507                                spin_lock(&ailp->ail_lock);
3508                                break;
3509                        }
3510                }
3511                lip = xfs_trans_ail_cursor_next(ailp, &cur);
3512        }
3513
3514        xfs_trans_ail_cursor_done(&cur);
3515        spin_unlock(&ailp->ail_lock);
3516
3517        return 0;
3518}
3519
3520/*
3521 * Copy an CUI format buffer from the given buf, and into the destination
3522 * CUI format structure.  The CUI/CUD items were designed not to need any
3523 * special alignment handling.
3524 */
3525static int
3526xfs_cui_copy_format(
3527        struct xfs_log_iovec            *buf,
3528        struct xfs_cui_log_format       *dst_cui_fmt)
3529{
3530        struct xfs_cui_log_format       *src_cui_fmt;
3531        uint                            len;
3532
3533        src_cui_fmt = buf->i_addr;
3534        len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents);
3535
3536        if (buf->i_len == len) {
3537                memcpy(dst_cui_fmt, src_cui_fmt, len);
3538                return 0;
3539        }
3540        return -EFSCORRUPTED;
3541}
3542
3543/*
3544 * This routine is called to create an in-core extent refcount update
3545 * item from the cui format structure which was logged on disk.
3546 * It allocates an in-core cui, copies the extents from the format
3547 * structure into it, and adds the cui to the AIL with the given
3548 * LSN.
3549 */
3550STATIC int
3551xlog_recover_cui_pass2(
3552        struct xlog                     *log,
3553        struct xlog_recover_item        *item,
3554        xfs_lsn_t                       lsn)
3555{
3556        int                             error;
3557        struct xfs_mount                *mp = log->l_mp;
3558        struct xfs_cui_log_item         *cuip;
3559        struct xfs_cui_log_format       *cui_formatp;
3560
3561        cui_formatp = item->ri_buf[0].i_addr;
3562
3563        cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
3564        error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format);
3565        if (error) {
3566                xfs_cui_item_free(cuip);
3567                return error;
3568        }
3569        atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
3570
3571        spin_lock(&log->l_ailp->ail_lock);
3572        /*
3573         * The CUI has two references. One for the CUD and one for CUI to ensure
3574         * it makes it into the AIL. Insert the CUI into the AIL directly and
3575         * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3576         * AIL lock.
3577         */
3578        xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn);
3579        xfs_cui_release(cuip);
3580        return 0;
3581}
3582
3583
3584/*
3585 * This routine is called when an CUD format structure is found in a committed
3586 * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3587 * was still in the log. To do this it searches the AIL for the CUI with an id
3588 * equal to that in the CUD format structure. If we find it we drop the CUD
3589 * reference, which removes the CUI from the AIL and frees it.
3590 */
3591STATIC int
3592xlog_recover_cud_pass2(
3593        struct xlog                     *log,
3594        struct xlog_recover_item        *item)
3595{
3596        struct xfs_cud_log_format       *cud_formatp;
3597        struct xfs_cui_log_item         *cuip = NULL;
3598        struct xfs_log_item             *lip;
3599        uint64_t                        cui_id;
3600        struct xfs_ail_cursor           cur;
3601        struct xfs_ail                  *ailp = log->l_ailp;
3602
3603        cud_formatp = item->ri_buf[0].i_addr;
3604        if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format))
3605                return -EFSCORRUPTED;
3606        cui_id = cud_formatp->cud_cui_id;
3607
3608        /*
3609         * Search for the CUI with the id in the CUD format structure in the
3610         * AIL.
3611         */
3612        spin_lock(&ailp->ail_lock);
3613        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3614        while (lip != NULL) {
3615                if (lip->li_type == XFS_LI_CUI) {
3616                        cuip = (struct xfs_cui_log_item *)lip;
3617                        if (cuip->cui_format.cui_id == cui_id) {
3618                                /*
3619                                 * Drop the CUD reference to the CUI. This
3620                                 * removes the CUI from the AIL and frees it.
3621                                 */
3622                                spin_unlock(&ailp->ail_lock);
3623                                xfs_cui_release(cuip);
3624                                spin_lock(&ailp->ail_lock);
3625                                break;
3626                        }
3627                }
3628                lip = xfs_trans_ail_cursor_next(ailp, &cur);
3629        }
3630
3631        xfs_trans_ail_cursor_done(&cur);
3632        spin_unlock(&ailp->ail_lock);
3633
3634        return 0;
3635}
3636
3637/*
3638 * Copy an BUI format buffer from the given buf, and into the destination
3639 * BUI format structure.  The BUI/BUD items were designed not to need any
3640 * special alignment handling.
3641 */
3642static int
3643xfs_bui_copy_format(
3644        struct xfs_log_iovec            *buf,
3645        struct xfs_bui_log_format       *dst_bui_fmt)
3646{
3647        struct xfs_bui_log_format       *src_bui_fmt;
3648        uint                            len;
3649
3650        src_bui_fmt = buf->i_addr;
3651        len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents);
3652
3653        if (buf->i_len == len) {
3654                memcpy(dst_bui_fmt, src_bui_fmt, len);
3655                return 0;
3656        }
3657        return -EFSCORRUPTED;
3658}
3659
3660/*
3661 * This routine is called to create an in-core extent bmap update
3662 * item from the bui format structure which was logged on disk.
3663 * It allocates an in-core bui, copies the extents from the format
3664 * structure into it, and adds the bui to the AIL with the given
3665 * LSN.
3666 */
3667STATIC int
3668xlog_recover_bui_pass2(
3669        struct xlog                     *log,
3670        struct xlog_recover_item        *item,
3671        xfs_lsn_t                       lsn)
3672{
3673        int                             error;
3674        struct xfs_mount                *mp = log->l_mp;
3675        struct xfs_bui_log_item         *buip;
3676        struct xfs_bui_log_format       *bui_formatp;
3677
3678        bui_formatp = item->ri_buf[0].i_addr;
3679
3680        if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS)
3681                return -EFSCORRUPTED;
3682        buip = xfs_bui_init(mp);
3683        error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format);
3684        if (error) {
3685                xfs_bui_item_free(buip);
3686                return error;
3687        }
3688        atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents);
3689
3690        spin_lock(&log->l_ailp->ail_lock);
3691        /*
3692         * The RUI has two references. One for the RUD and one for RUI to ensure
3693         * it makes it into the AIL. Insert the RUI into the AIL directly and
3694         * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3695         * AIL lock.
3696         */
3697        xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn);
3698        xfs_bui_release(buip);
3699        return 0;
3700}
3701
3702
3703/*
3704 * This routine is called when an BUD format structure is found in a committed
3705 * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3706 * was still in the log. To do this it searches the AIL for the BUI with an id
3707 * equal to that in the BUD format structure. If we find it we drop the BUD
3708 * reference, which removes the BUI from the AIL and frees it.
3709 */
3710STATIC int
3711xlog_recover_bud_pass2(
3712        struct xlog                     *log,
3713        struct xlog_recover_item        *item)
3714{
3715        struct xfs_bud_log_format       *bud_formatp;
3716        struct xfs_bui_log_item         *buip = NULL;
3717        struct xfs_log_item             *lip;
3718        uint64_t                        bui_id;
3719        struct xfs_ail_cursor           cur;
3720        struct xfs_ail                  *ailp = log->l_ailp;
3721
3722        bud_formatp = item->ri_buf[0].i_addr;
3723        if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format))
3724                return -EFSCORRUPTED;
3725        bui_id = bud_formatp->bud_bui_id;
3726
3727        /*
3728         * Search for the BUI with the id in the BUD format structure in the
3729         * AIL.
3730         */
3731        spin_lock(&ailp->ail_lock);
3732        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3733        while (lip != NULL) {
3734                if (lip->li_type == XFS_LI_BUI) {
3735                        buip = (struct xfs_bui_log_item *)lip;
3736                        if (buip->bui_format.bui_id == bui_id) {
3737                                /*
3738                                 * Drop the BUD reference to the BUI. This
3739                                 * removes the BUI from the AIL and frees it.
3740                                 */
3741                                spin_unlock(&ailp->ail_lock);
3742                                xfs_bui_release(buip);
3743                                spin_lock(&ailp->ail_lock);
3744                                break;
3745                        }
3746                }
3747                lip = xfs_trans_ail_cursor_next(ailp, &cur);
3748        }
3749
3750        xfs_trans_ail_cursor_done(&cur);
3751        spin_unlock(&ailp->ail_lock);
3752
3753        return 0;
3754}
3755
3756/*
3757 * This routine is called when an inode create format structure is found in a
3758 * committed transaction in the log.  It's purpose is to initialise the inodes
3759 * being allocated on disk. This requires us to get inode cluster buffers that
3760 * match the range to be initialised, stamped with inode templates and written
3761 * by delayed write so that subsequent modifications will hit the cached buffer
3762 * and only need writing out at the end of recovery.
3763 */
3764STATIC int
3765xlog_recover_do_icreate_pass2(
3766        struct xlog             *log,
3767        struct list_head        *buffer_list,
3768        xlog_recover_item_t     *item)
3769{
3770        struct xfs_mount        *mp = log->l_mp;
3771        struct xfs_icreate_log  *icl;
3772        struct xfs_ino_geometry *igeo = M_IGEO(mp);
3773        xfs_agnumber_t          agno;
3774        xfs_agblock_t           agbno;
3775        unsigned int            count;
3776        unsigned int            isize;
3777        xfs_agblock_t           length;
3778        int                     bb_per_cluster;
3779        int                     cancel_count;
3780        int                     nbufs;
3781        int                     i;
3782
3783        icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3784        if (icl->icl_type != XFS_LI_ICREATE) {
3785                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3786                return -EINVAL;
3787        }
3788
3789        if (icl->icl_size != 1) {
3790                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3791                return -EINVAL;
3792        }
3793
3794        agno = be32_to_cpu(icl->icl_ag);
3795        if (agno >= mp->m_sb.sb_agcount) {
3796                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3797                return -EINVAL;
3798        }
3799        agbno = be32_to_cpu(icl->icl_agbno);
3800        if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3801                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3802                return -EINVAL;
3803        }
3804        isize = be32_to_cpu(icl->icl_isize);
3805        if (isize != mp->m_sb.sb_inodesize) {
3806                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3807                return -EINVAL;
3808        }
3809        count = be32_to_cpu(icl->icl_count);
3810        if (!count) {
3811                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3812                return -EINVAL;
3813        }
3814        length = be32_to_cpu(icl->icl_length);
3815        if (!length || length >= mp->m_sb.sb_agblocks) {
3816                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3817                return -EINVAL;
3818        }
3819
3820        /*
3821         * The inode chunk is either full or sparse and we only support
3822         * m_ino_geo.ialloc_min_blks sized sparse allocations at this time.
3823         */
3824        if (length != igeo->ialloc_blks &&
3825            length != igeo->ialloc_min_blks) {
3826                xfs_warn(log->l_mp,
3827                         "%s: unsupported chunk length", __FUNCTION__);
3828                return -EINVAL;
3829        }
3830
3831        /* verify inode count is consistent with extent length */
3832        if ((count >> mp->m_sb.sb_inopblog) != length) {
3833                xfs_warn(log->l_mp,
3834                         "%s: inconsistent inode count and chunk length",
3835                         __FUNCTION__);
3836                return -EINVAL;
3837        }
3838
3839        /*
3840         * The icreate transaction can cover multiple cluster buffers and these
3841         * buffers could have been freed and reused. Check the individual
3842         * buffers for cancellation so we don't overwrite anything written after
3843         * a cancellation.
3844         */
3845        bb_per_cluster = XFS_FSB_TO_BB(mp, igeo->blocks_per_cluster);
3846        nbufs = length / igeo->blocks_per_cluster;
3847        for (i = 0, cancel_count = 0; i < nbufs; i++) {
3848                xfs_daddr_t     daddr;
3849
3850                daddr = XFS_AGB_TO_DADDR(mp, agno,
3851                                agbno + i * igeo->blocks_per_cluster);
3852                if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3853                        cancel_count++;
3854        }
3855
3856        /*
3857         * We currently only use icreate for a single allocation at a time. This
3858         * means we should expect either all or none of the buffers to be
3859         * cancelled. Be conservative and skip replay if at least one buffer is
3860         * cancelled, but warn the user that something is awry if the buffers
3861         * are not consistent.
3862         *
3863         * XXX: This must be refined to only skip cancelled clusters once we use
3864         * icreate for multiple chunk allocations.
3865         */
3866        ASSERT(!cancel_count || cancel_count == nbufs);
3867        if (cancel_count) {
3868                if (cancel_count != nbufs)
3869                        xfs_warn(mp,
3870        "WARNING: partial inode chunk cancellation, skipped icreate.");
3871                trace_xfs_log_recover_icreate_cancel(log, icl);
3872                return 0;
3873        }
3874
3875        trace_xfs_log_recover_icreate_recover(log, icl);
3876        return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3877                                     length, be32_to_cpu(icl->icl_gen));
3878}
3879
3880STATIC void
3881xlog_recover_buffer_ra_pass2(
3882        struct xlog                     *log,
3883        struct xlog_recover_item        *item)
3884{
3885        struct xfs_buf_log_format       *buf_f = item->ri_buf[0].i_addr;
3886        struct xfs_mount                *mp = log->l_mp;
3887
3888        if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3889                        buf_f->blf_len, buf_f->blf_flags)) {
3890                return;
3891        }
3892
3893        xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3894                                buf_f->blf_len, NULL);
3895}
3896
3897STATIC void
3898xlog_recover_inode_ra_pass2(
3899        struct xlog                     *log,
3900        struct xlog_recover_item        *item)
3901{
3902        struct xfs_inode_log_format     ilf_buf;
3903        struct xfs_inode_log_format     *ilfp;
3904        struct xfs_mount                *mp = log->l_mp;
3905        int                     error;
3906
3907        if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3908                ilfp = item->ri_buf[0].i_addr;
3909        } else {
3910                ilfp = &ilf_buf;
3911                memset(ilfp, 0, sizeof(*ilfp));
3912                error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3913                if (error)
3914                        return;
3915        }
3916
3917        if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3918                return;
3919
3920        xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3921                                ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3922}
3923
3924STATIC void
3925xlog_recover_dquot_ra_pass2(
3926        struct xlog                     *log,
3927        struct xlog_recover_item        *item)
3928{
3929        struct xfs_mount        *mp = log->l_mp;
3930        struct xfs_disk_dquot   *recddq;
3931        struct xfs_dq_logformat *dq_f;
3932        uint                    type;
3933        int                     len;
3934
3935
3936        if (mp->m_qflags == 0)
3937                return;
3938
3939        recddq = item->ri_buf[1].i_addr;
3940        if (recddq == NULL)
3941                return;
3942        if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3943                return;
3944
3945        type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3946        ASSERT(type);
3947        if (log->l_quotaoffs_flag & type)
3948                return;
3949
3950        dq_f = item->ri_buf[0].i_addr;
3951        ASSERT(dq_f);
3952        ASSERT(dq_f->qlf_len == 1);
3953
3954        len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
3955        if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
3956                return;
3957
3958        xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
3959                          &xfs_dquot_buf_ra_ops);
3960}
3961
3962STATIC void
3963xlog_recover_ra_pass2(
3964        struct xlog                     *log,
3965        struct xlog_recover_item        *item)
3966{
3967        switch (ITEM_TYPE(item)) {
3968        case XFS_LI_BUF:
3969                xlog_recover_buffer_ra_pass2(log, item);
3970                break;
3971        case XFS_LI_INODE:
3972                xlog_recover_inode_ra_pass2(log, item);
3973                break;
3974        case XFS_LI_DQUOT:
3975                xlog_recover_dquot_ra_pass2(log, item);
3976                break;
3977        case XFS_LI_EFI:
3978        case XFS_LI_EFD:
3979        case XFS_LI_QUOTAOFF:
3980        case XFS_LI_RUI:
3981        case XFS_LI_RUD:
3982        case XFS_LI_CUI:
3983        case XFS_LI_CUD:
3984        case XFS_LI_BUI:
3985        case XFS_LI_BUD:
3986        default:
3987                break;
3988        }
3989}
3990
3991STATIC int
3992xlog_recover_commit_pass1(
3993        struct xlog                     *log,
3994        struct xlog_recover             *trans,
3995        struct xlog_recover_item        *item)
3996{
3997        trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3998
3999        switch (ITEM_TYPE(item)) {
4000        case XFS_LI_BUF:
4001                return xlog_recover_buffer_pass1(log, item);
4002        case XFS_LI_QUOTAOFF:
4003                return xlog_recover_quotaoff_pass1(log, item);
4004        case XFS_LI_INODE:
4005        case XFS_LI_EFI:
4006        case XFS_LI_EFD:
4007        case XFS_LI_DQUOT:
4008        case XFS_LI_ICREATE:
4009        case XFS_LI_RUI:
4010        case XFS_LI_RUD:
4011        case XFS_LI_CUI:
4012        case XFS_LI_CUD:
4013        case XFS_LI_BUI:
4014        case XFS_LI_BUD:
4015                /* nothing to do in pass 1 */
4016                return 0;
4017        default:
4018                xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4019                        __func__, ITEM_TYPE(item));
4020                ASSERT(0);
4021                return -EIO;
4022        }
4023}
4024
4025STATIC int
4026xlog_recover_commit_pass2(
4027        struct xlog                     *log,
4028        struct xlog_recover             *trans,
4029        struct list_head                *buffer_list,
4030        struct xlog_recover_item        *item)
4031{
4032        trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
4033
4034        switch (ITEM_TYPE(item)) {
4035        case XFS_LI_BUF:
4036                return xlog_recover_buffer_pass2(log, buffer_list, item,
4037                                                 trans->r_lsn);
4038        case XFS_LI_INODE:
4039                return xlog_recover_inode_pass2(log, buffer_list, item,
4040                                                 trans->r_lsn);
4041        case XFS_LI_EFI:
4042                return xlog_recover_efi_pass2(log, item, trans->r_lsn);
4043        case XFS_LI_EFD:
4044                return xlog_recover_efd_pass2(log, item);
4045        case XFS_LI_RUI:
4046                return xlog_recover_rui_pass2(log, item, trans->r_lsn);
4047        case XFS_LI_RUD:
4048                return xlog_recover_rud_pass2(log, item);
4049        case XFS_LI_CUI:
4050                return xlog_recover_cui_pass2(log, item, trans->r_lsn);
4051        case XFS_LI_CUD:
4052                return xlog_recover_cud_pass2(log, item);
4053        case XFS_LI_BUI:
4054                return xlog_recover_bui_pass2(log, item, trans->r_lsn);
4055        case XFS_LI_BUD:
4056                return xlog_recover_bud_pass2(log, item);
4057        case XFS_LI_DQUOT:
4058                return xlog_recover_dquot_pass2(log, buffer_list, item,
4059                                                trans->r_lsn);
4060        case XFS_LI_ICREATE:
4061                return xlog_recover_do_icreate_pass2(log, buffer_list, item);
4062        case XFS_LI_QUOTAOFF:
4063                /* nothing to do in pass2 */
4064                return 0;
4065        default:
4066                xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4067                        __func__, ITEM_TYPE(item));
4068                ASSERT(0);
4069                return -EIO;
4070        }
4071}
4072
4073STATIC int
4074xlog_recover_items_pass2(
4075        struct xlog                     *log,
4076        struct xlog_recover             *trans,
4077        struct list_head                *buffer_list,
4078        struct list_head                *item_list)
4079{
4080        struct xlog_recover_item        *item;
4081        int                             error = 0;
4082
4083        list_for_each_entry(item, item_list, ri_list) {
4084                error = xlog_recover_commit_pass2(log, trans,
4085                                          buffer_list, item);
4086                if (error)
4087                        return error;
4088        }
4089
4090        return error;
4091}
4092
4093/*
4094 * Perform the transaction.
4095 *
4096 * If the transaction modifies a buffer or inode, do it now.  Otherwise,
4097 * EFIs and EFDs get queued up by adding entries into the AIL for them.
4098 */
4099STATIC int
4100xlog_recover_commit_trans(
4101        struct xlog             *log,
4102        struct xlog_recover     *trans,
4103        int                     pass,
4104        struct list_head        *buffer_list)
4105{
4106        int                             error = 0;
4107        int                             items_queued = 0;
4108        struct xlog_recover_item        *item;
4109        struct xlog_recover_item        *next;
4110        LIST_HEAD                       (ra_list);
4111        LIST_HEAD                       (done_list);
4112
4113        #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
4114
4115        hlist_del_init(&trans->r_list);
4116
4117        error = xlog_recover_reorder_trans(log, trans, pass);
4118        if (error)
4119                return error;
4120
4121        list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
4122                switch (pass) {
4123                case XLOG_RECOVER_PASS1:
4124                        error = xlog_recover_commit_pass1(log, trans, item);
4125                        break;
4126                case XLOG_RECOVER_PASS2:
4127                        xlog_recover_ra_pass2(log, item);
4128                        list_move_tail(&item->ri_list, &ra_list);
4129                        items_queued++;
4130                        if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
4131                                error = xlog_recover_items_pass2(log, trans,
4132                                                buffer_list, &ra_list);
4133                                list_splice_tail_init(&ra_list, &done_list);
4134                                items_queued = 0;
4135                        }
4136
4137                        break;
4138                default:
4139                        ASSERT(0);
4140                }
4141
4142                if (error)
4143                        goto out;
4144        }
4145
4146out:
4147        if (!list_empty(&ra_list)) {
4148                if (!error)
4149                        error = xlog_recover_items_pass2(log, trans,
4150                                        buffer_list, &ra_list);
4151                list_splice_tail_init(&ra_list, &done_list);
4152        }
4153
4154        if (!list_empty(&done_list))
4155                list_splice_init(&done_list, &trans->r_itemq);
4156
4157        return error;
4158}
4159
4160STATIC void
4161xlog_recover_add_item(
4162        struct list_head        *head)
4163{
4164        xlog_recover_item_t     *item;
4165
4166        item = kmem_zalloc(sizeof(xlog_recover_item_t), 0);
4167        INIT_LIST_HEAD(&item->ri_list);
4168        list_add_tail(&item->ri_list, head);
4169}
4170
4171STATIC int
4172xlog_recover_add_to_cont_trans(
4173        struct xlog             *log,
4174        struct xlog_recover     *trans,
4175        char                    *dp,
4176        int                     len)
4177{
4178        xlog_recover_item_t     *item;
4179        char                    *ptr, *old_ptr;
4180        int                     old_len;
4181
4182        /*
4183         * If the transaction is empty, the header was split across this and the
4184         * previous record. Copy the rest of the header.
4185         */
4186        if (list_empty(&trans->r_itemq)) {
4187                ASSERT(len <= sizeof(struct xfs_trans_header));
4188                if (len > sizeof(struct xfs_trans_header)) {
4189                        xfs_warn(log->l_mp, "%s: bad header length", __func__);
4190                        return -EIO;
4191                }
4192
4193                xlog_recover_add_item(&trans->r_itemq);
4194                ptr = (char *)&trans->r_theader +
4195                                sizeof(struct xfs_trans_header) - len;
4196                memcpy(ptr, dp, len);
4197                return 0;
4198        }
4199
4200        /* take the tail entry */
4201        item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4202
4203        old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
4204        old_len = item->ri_buf[item->ri_cnt-1].i_len;
4205
4206        ptr = kmem_realloc(old_ptr, len + old_len, 0);
4207        memcpy(&ptr[old_len], dp, len);
4208        item->ri_buf[item->ri_cnt-1].i_len += len;
4209        item->ri_buf[item->ri_cnt-1].i_addr = ptr;
4210        trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
4211        return 0;
4212}
4213
4214/*
4215 * The next region to add is the start of a new region.  It could be
4216 * a whole region or it could be the first part of a new region.  Because
4217 * of this, the assumption here is that the type and size fields of all
4218 * format structures fit into the first 32 bits of the structure.
4219 *
4220 * This works because all regions must be 32 bit aligned.  Therefore, we
4221 * either have both fields or we have neither field.  In the case we have
4222 * neither field, the data part of the region is zero length.  We only have
4223 * a log_op_header and can throw away the header since a new one will appear
4224 * later.  If we have at least 4 bytes, then we can determine how many regions
4225 * will appear in the current log item.
4226 */
4227STATIC int
4228xlog_recover_add_to_trans(
4229        struct xlog             *log,
4230        struct xlog_recover     *trans,
4231        char                    *dp,
4232        int                     len)
4233{
4234        struct xfs_inode_log_format     *in_f;                  /* any will do */
4235        xlog_recover_item_t     *item;
4236        char                    *ptr;
4237
4238        if (!len)
4239                return 0;
4240        if (list_empty(&trans->r_itemq)) {
4241                /* we need to catch log corruptions here */
4242                if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
4243                        xfs_warn(log->l_mp, "%s: bad header magic number",
4244                                __func__);
4245                        ASSERT(0);
4246                        return -EIO;
4247                }
4248
4249                if (len > sizeof(struct xfs_trans_header)) {
4250                        xfs_warn(log->l_mp, "%s: bad header length", __func__);
4251                        ASSERT(0);
4252                        return -EIO;
4253                }
4254
4255                /*
4256                 * The transaction header can be arbitrarily split across op
4257                 * records. If we don't have the whole thing here, copy what we
4258                 * do have and handle the rest in the next record.
4259                 */
4260                if (len == sizeof(struct xfs_trans_header))
4261                        xlog_recover_add_item(&trans->r_itemq);
4262                memcpy(&trans->r_theader, dp, len);
4263                return 0;
4264        }
4265
4266        ptr = kmem_alloc(len, 0);
4267        memcpy(ptr, dp, len);
4268        in_f = (struct xfs_inode_log_format *)ptr;
4269
4270        /* take the tail entry */
4271        item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4272        if (item->ri_total != 0 &&
4273             item->ri_total == item->ri_cnt) {
4274                /* tail item is in use, get a new one */
4275                xlog_recover_add_item(&trans->r_itemq);
4276                item = list_entry(trans->r_itemq.prev,
4277                                        xlog_recover_item_t, ri_list);
4278        }
4279
4280        if (item->ri_total == 0) {              /* first region to be added */
4281                if (in_f->ilf_size == 0 ||
4282                    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4283                        xfs_warn(log->l_mp,
4284                "bad number of regions (%d) in inode log format",
4285                                  in_f->ilf_size);
4286                        ASSERT(0);
4287                        kmem_free(ptr);
4288                        return -EIO;
4289                }
4290
4291                item->ri_total = in_f->ilf_size;
4292                item->ri_buf =
4293                        kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4294                                    0);
4295        }
4296        ASSERT(item->ri_total > item->ri_cnt);
4297        /* Description region is ri_buf[0] */
4298        item->ri_buf[item->ri_cnt].i_addr = ptr;
4299        item->ri_buf[item->ri_cnt].i_len  = len;
4300        item->ri_cnt++;
4301        trace_xfs_log_recover_item_add(log, trans, item, 0);
4302        return 0;
4303}
4304
4305/*
4306 * Free up any resources allocated by the transaction
4307 *
4308 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4309 */
4310STATIC void
4311xlog_recover_free_trans(
4312        struct xlog_recover     *trans)
4313{
4314        xlog_recover_item_t     *item, *n;
4315        int                     i;
4316
4317        hlist_del_init(&trans->r_list);
4318
4319        list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4320                /* Free the regions in the item. */
4321                list_del(&item->ri_list);
4322                for (i = 0; i < item->ri_cnt; i++)
4323                        kmem_free(item->ri_buf[i].i_addr);
4324                /* Free the item itself */
4325                kmem_free(item->ri_buf);
4326                kmem_free(item);
4327        }
4328        /* Free the transaction recover structure */
4329        kmem_free(trans);
4330}
4331
4332/*
4333 * On error or completion, trans is freed.
4334 */
4335STATIC int
4336xlog_recovery_process_trans(
4337        struct xlog             *log,
4338        struct xlog_recover     *trans,
4339        char                    *dp,
4340        unsigned int            len,
4341        unsigned int            flags,
4342        int                     pass,
4343        struct list_head        *buffer_list)
4344{
4345        int                     error = 0;
4346        bool                    freeit = false;
4347
4348        /* mask off ophdr transaction container flags */
4349        flags &= ~XLOG_END_TRANS;
4350        if (flags & XLOG_WAS_CONT_TRANS)
4351                flags &= ~XLOG_CONTINUE_TRANS;
4352
4353        /*
4354         * Callees must not free the trans structure. We'll decide if we need to
4355         * free it or not based on the operation being done and it's result.
4356         */
4357        switch (flags) {
4358        /* expected flag values */
4359        case 0:
4360        case XLOG_CONTINUE_TRANS:
4361                error = xlog_recover_add_to_trans(log, trans, dp, len);
4362                break;
4363        case XLOG_WAS_CONT_TRANS:
4364                error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4365                break;
4366        case XLOG_COMMIT_TRANS:
4367                error = xlog_recover_commit_trans(log, trans, pass,
4368                                                  buffer_list);
4369                /* success or fail, we are now done with this transaction. */
4370                freeit = true;
4371                break;
4372
4373        /* unexpected flag values */
4374        case XLOG_UNMOUNT_TRANS:
4375                /* just skip trans */
4376                xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4377                freeit = true;
4378                break;
4379        case XLOG_START_TRANS:
4380        default:
4381                xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4382                ASSERT(0);
4383                error = -EIO;
4384                break;
4385        }
4386        if (error || freeit)
4387                xlog_recover_free_trans(trans);
4388        return error;
4389}
4390
4391/*
4392 * Lookup the transaction recovery structure associated with the ID in the
4393 * current ophdr. If the transaction doesn't exist and the start flag is set in
4394 * the ophdr, then allocate a new transaction for future ID matches to find.
4395 * Either way, return what we found during the lookup - an existing transaction
4396 * or nothing.
4397 */
4398STATIC struct xlog_recover *
4399xlog_recover_ophdr_to_trans(
4400        struct hlist_head       rhash[],
4401        struct xlog_rec_header  *rhead,
4402        struct xlog_op_header   *ohead)
4403{
4404        struct xlog_recover     *trans;
4405        xlog_tid_t              tid;
4406        struct hlist_head       *rhp;
4407
4408        tid = be32_to_cpu(ohead->oh_tid);
4409        rhp = &rhash[XLOG_RHASH(tid)];
4410        hlist_for_each_entry(trans, rhp, r_list) {
4411                if (trans->r_log_tid == tid)
4412                        return trans;
4413        }
4414
4415        /*
4416         * skip over non-start transaction headers - we could be
4417         * processing slack space before the next transaction starts
4418         */
4419        if (!(ohead->oh_flags & XLOG_START_TRANS))
4420                return NULL;
4421
4422        ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4423
4424        /*
4425         * This is a new transaction so allocate a new recovery container to
4426         * hold the recovery ops that will follow.
4427         */
4428        trans = kmem_zalloc(sizeof(struct xlog_recover), 0);
4429        trans->r_log_tid = tid;
4430        trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4431        INIT_LIST_HEAD(&trans->r_itemq);
4432        INIT_HLIST_NODE(&trans->r_list);
4433        hlist_add_head(&trans->r_list, rhp);
4434
4435        /*
4436         * Nothing more to do for this ophdr. Items to be added to this new
4437         * transaction will be in subsequent ophdr containers.
4438         */
4439        return NULL;
4440}
4441
4442STATIC int
4443xlog_recover_process_ophdr(
4444        struct xlog             *log,
4445        struct hlist_head       rhash[],
4446        struct xlog_rec_header  *rhead,
4447        struct xlog_op_header   *ohead,
4448        char                    *dp,
4449        char                    *end,
4450        int                     pass,
4451        struct list_head        *buffer_list)
4452{
4453        struct xlog_recover     *trans;
4454        unsigned int            len;
4455        int                     error;
4456
4457        /* Do we understand who wrote this op? */
4458        if (ohead->oh_clientid != XFS_TRANSACTION &&
4459            ohead->oh_clientid != XFS_LOG) {
4460                xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4461                        __func__, ohead->oh_clientid);
4462                ASSERT(0);
4463                return -EIO;
4464        }
4465
4466        /*
4467         * Check the ophdr contains all the data it is supposed to contain.
4468         */
4469        len = be32_to_cpu(ohead->oh_len);
4470        if (dp + len > end) {
4471                xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4472                WARN_ON(1);
4473                return -EIO;
4474        }
4475
4476        trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4477        if (!trans) {
4478                /* nothing to do, so skip over this ophdr */
4479                return 0;
4480        }
4481
4482        /*
4483         * The recovered buffer queue is drained only once we know that all
4484         * recovery items for the current LSN have been processed. This is
4485         * required because:
4486         *
4487         * - Buffer write submission updates the metadata LSN of the buffer.
4488         * - Log recovery skips items with a metadata LSN >= the current LSN of
4489         *   the recovery item.
4490         * - Separate recovery items against the same metadata buffer can share
4491         *   a current LSN. I.e., consider that the LSN of a recovery item is
4492         *   defined as the starting LSN of the first record in which its
4493         *   transaction appears, that a record can hold multiple transactions,
4494         *   and/or that a transaction can span multiple records.
4495         *
4496         * In other words, we are allowed to submit a buffer from log recovery
4497         * once per current LSN. Otherwise, we may incorrectly skip recovery
4498         * items and cause corruption.
4499         *
4500         * We don't know up front whether buffers are updated multiple times per
4501         * LSN. Therefore, track the current LSN of each commit log record as it
4502         * is processed and drain the queue when it changes. Use commit records
4503         * because they are ordered correctly by the logging code.
4504         */
4505        if (log->l_recovery_lsn != trans->r_lsn &&
4506            ohead->oh_flags & XLOG_COMMIT_TRANS) {
4507                error = xfs_buf_delwri_submit(buffer_list);
4508                if (error)
4509                        return error;
4510                log->l_recovery_lsn = trans->r_lsn;
4511        }
4512
4513        return xlog_recovery_process_trans(log, trans, dp, len,
4514                                           ohead->oh_flags, pass, buffer_list);
4515}
4516
4517/*
4518 * There are two valid states of the r_state field.  0 indicates that the
4519 * transaction structure is in a normal state.  We have either seen the
4520 * start of the transaction or the last operation we added was not a partial
4521 * operation.  If the last operation we added to the transaction was a
4522 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4523 *
4524 * NOTE: skip LRs with 0 data length.
4525 */
4526STATIC int
4527xlog_recover_process_data(
4528        struct xlog             *log,
4529        struct hlist_head       rhash[],
4530        struct xlog_rec_header  *rhead,
4531        char                    *dp,
4532        int                     pass,
4533        struct list_head        *buffer_list)
4534{
4535        struct xlog_op_header   *ohead;
4536        char                    *end;
4537        int                     num_logops;
4538        int                     error;
4539
4540        end = dp + be32_to_cpu(rhead->h_len);
4541        num_logops = be32_to_cpu(rhead->h_num_logops);
4542
4543        /* check the log format matches our own - else we can't recover */
4544        if (xlog_header_check_recover(log->l_mp, rhead))
4545                return -EIO;
4546
4547        trace_xfs_log_recover_record(log, rhead, pass);
4548        while ((dp < end) && num_logops) {
4549
4550                ohead = (struct xlog_op_header *)dp;
4551                dp += sizeof(*ohead);
4552                ASSERT(dp <= end);
4553
4554                /* errors will abort recovery */
4555                error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4556                                                   dp, end, pass, buffer_list);
4557                if (error)
4558                        return error;
4559
4560                dp += be32_to_cpu(ohead->oh_len);
4561                num_logops--;
4562        }
4563        return 0;
4564}
4565
4566/* Recover the EFI if necessary. */
4567STATIC int
4568xlog_recover_process_efi(
4569        struct xfs_mount                *mp,
4570        struct xfs_ail                  *ailp,
4571        struct xfs_log_item             *lip)
4572{
4573        struct xfs_efi_log_item         *efip;
4574        int                             error;
4575
4576        /*
4577         * Skip EFIs that we've already processed.
4578         */
4579        efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4580        if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4581                return 0;
4582
4583        spin_unlock(&ailp->ail_lock);
4584        error = xfs_efi_recover(mp, efip);
4585        spin_lock(&ailp->ail_lock);
4586
4587        return error;
4588}
4589
4590/* Release the EFI since we're cancelling everything. */
4591STATIC void
4592xlog_recover_cancel_efi(
4593        struct xfs_mount                *mp,
4594        struct xfs_ail                  *ailp,
4595        struct xfs_log_item             *lip)
4596{
4597        struct xfs_efi_log_item         *efip;
4598
4599        efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4600
4601        spin_unlock(&ailp->ail_lock);
4602        xfs_efi_release(efip);
4603        spin_lock(&ailp->ail_lock);
4604}
4605
4606/* Recover the RUI if necessary. */
4607STATIC int
4608xlog_recover_process_rui(
4609        struct xfs_mount                *mp,
4610        struct xfs_ail                  *ailp,
4611        struct xfs_log_item             *lip)
4612{
4613        struct xfs_rui_log_item         *ruip;
4614        int                             error;
4615
4616        /*
4617         * Skip RUIs that we've already processed.
4618         */
4619        ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4620        if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4621                return 0;
4622
4623        spin_unlock(&ailp->ail_lock);
4624        error = xfs_rui_recover(mp, ruip);
4625        spin_lock(&ailp->ail_lock);
4626
4627        return error;
4628}
4629
4630/* Release the RUI since we're cancelling everything. */
4631STATIC void
4632xlog_recover_cancel_rui(
4633        struct xfs_mount                *mp,
4634        struct xfs_ail                  *ailp,
4635        struct xfs_log_item             *lip)
4636{
4637        struct xfs_rui_log_item         *ruip;
4638
4639        ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4640
4641        spin_unlock(&ailp->ail_lock);
4642        xfs_rui_release(ruip);
4643        spin_lock(&ailp->ail_lock);
4644}
4645
4646/* Recover the CUI if necessary. */
4647STATIC int
4648xlog_recover_process_cui(
4649        struct xfs_trans                *parent_tp,
4650        struct xfs_ail                  *ailp,
4651        struct xfs_log_item             *lip)
4652{
4653        struct xfs_cui_log_item         *cuip;
4654        int                             error;
4655
4656        /*
4657         * Skip CUIs that we've already processed.
4658         */
4659        cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4660        if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags))
4661                return 0;
4662
4663        spin_unlock(&ailp->ail_lock);
4664        error = xfs_cui_recover(parent_tp, cuip);
4665        spin_lock(&ailp->ail_lock);
4666
4667        return error;
4668}
4669
4670/* Release the CUI since we're cancelling everything. */
4671STATIC void
4672xlog_recover_cancel_cui(
4673        struct xfs_mount                *mp,
4674        struct xfs_ail                  *ailp,
4675        struct xfs_log_item             *lip)
4676{
4677        struct xfs_cui_log_item         *cuip;
4678
4679        cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4680
4681        spin_unlock(&ailp->ail_lock);
4682        xfs_cui_release(cuip);
4683        spin_lock(&ailp->ail_lock);
4684}
4685
4686/* Recover the BUI if necessary. */
4687STATIC int
4688xlog_recover_process_bui(
4689        struct xfs_trans                *parent_tp,
4690        struct xfs_ail                  *ailp,
4691        struct xfs_log_item             *lip)
4692{
4693        struct xfs_bui_log_item         *buip;
4694        int                             error;
4695
4696        /*
4697         * Skip BUIs that we've already processed.
4698         */
4699        buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4700        if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags))
4701                return 0;
4702
4703        spin_unlock(&ailp->ail_lock);
4704        error = xfs_bui_recover(parent_tp, buip);
4705        spin_lock(&ailp->ail_lock);
4706
4707        return error;
4708}
4709
4710/* Release the BUI since we're cancelling everything. */
4711STATIC void
4712xlog_recover_cancel_bui(
4713        struct xfs_mount                *mp,
4714        struct xfs_ail                  *ailp,
4715        struct xfs_log_item             *lip)
4716{
4717        struct xfs_bui_log_item         *buip;
4718
4719        buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4720
4721        spin_unlock(&ailp->ail_lock);
4722        xfs_bui_release(buip);
4723        spin_lock(&ailp->ail_lock);
4724}
4725
4726/* Is this log item a deferred action intent? */
4727static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4728{
4729        switch (lip->li_type) {
4730        case XFS_LI_EFI:
4731        case XFS_LI_RUI:
4732        case XFS_LI_CUI:
4733        case XFS_LI_BUI:
4734                return true;
4735        default:
4736                return false;
4737        }
4738}
4739
4740/* Take all the collected deferred ops and finish them in order. */
4741static int
4742xlog_finish_defer_ops(
4743        struct xfs_trans        *parent_tp)
4744{
4745        struct xfs_mount        *mp = parent_tp->t_mountp;
4746        struct xfs_trans        *tp;
4747        int64_t                 freeblks;
4748        uint                    resblks;
4749        int                     error;
4750
4751        /*
4752         * We're finishing the defer_ops that accumulated as a result of
4753         * recovering unfinished intent items during log recovery.  We
4754         * reserve an itruncate transaction because it is the largest
4755         * permanent transaction type.  Since we're the only user of the fs
4756         * right now, take 93% (15/16) of the available free blocks.  Use
4757         * weird math to avoid a 64-bit division.
4758         */
4759        freeblks = percpu_counter_sum(&mp->m_fdblocks);
4760        if (freeblks <= 0)
4761                return -ENOSPC;
4762        resblks = min_t(int64_t, UINT_MAX, freeblks);
4763        resblks = (resblks * 15) >> 4;
4764        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks,
4765                        0, XFS_TRANS_RESERVE, &tp);
4766        if (error)
4767                return error;
4768        /* transfer all collected dfops to this transaction */
4769        xfs_defer_move(tp, parent_tp);
4770
4771        return xfs_trans_commit(tp);
4772}
4773
4774/*
4775 * When this is called, all of the log intent items which did not have
4776 * corresponding log done items should be in the AIL.  What we do now
4777 * is update the data structures associated with each one.
4778 *
4779 * Since we process the log intent items in normal transactions, they
4780 * will be removed at some point after the commit.  This prevents us
4781 * from just walking down the list processing each one.  We'll use a
4782 * flag in the intent item to skip those that we've already processed
4783 * and use the AIL iteration mechanism's generation count to try to
4784 * speed this up at least a bit.
4785 *
4786 * When we start, we know that the intents are the only things in the
4787 * AIL.  As we process them, however, other items are added to the
4788 * AIL.
4789 */
4790STATIC int
4791xlog_recover_process_intents(
4792        struct xlog             *log)
4793{
4794        struct xfs_trans        *parent_tp;
4795        struct xfs_ail_cursor   cur;
4796        struct xfs_log_item     *lip;
4797        struct xfs_ail          *ailp;
4798        int                     error;
4799#if defined(DEBUG) || defined(XFS_WARN)
4800        xfs_lsn_t               last_lsn;
4801#endif
4802
4803        /*
4804         * The intent recovery handlers commit transactions to complete recovery
4805         * for individual intents, but any new deferred operations that are
4806         * queued during that process are held off until the very end. The
4807         * purpose of this transaction is to serve as a container for deferred
4808         * operations. Each intent recovery handler must transfer dfops here
4809         * before its local transaction commits, and we'll finish the entire
4810         * list below.
4811         */
4812        error = xfs_trans_alloc_empty(log->l_mp, &parent_tp);
4813        if (error)
4814                return error;
4815
4816        ailp = log->l_ailp;
4817        spin_lock(&ailp->ail_lock);
4818        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4819#if defined(DEBUG) || defined(XFS_WARN)
4820        last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
4821#endif
4822        while (lip != NULL) {
4823                /*
4824                 * We're done when we see something other than an intent.
4825                 * There should be no intents left in the AIL now.
4826                 */
4827                if (!xlog_item_is_intent(lip)) {
4828#ifdef DEBUG
4829                        for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4830                                ASSERT(!xlog_item_is_intent(lip));
4831#endif
4832                        break;
4833                }
4834
4835                /*
4836                 * We should never see a redo item with a LSN higher than
4837                 * the last transaction we found in the log at the start
4838                 * of recovery.
4839                 */
4840                ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
4841
4842                /*
4843                 * NOTE: If your intent processing routine can create more
4844                 * deferred ops, you /must/ attach them to the dfops in this
4845                 * routine or else those subsequent intents will get
4846                 * replayed in the wrong order!
4847                 */
4848                switch (lip->li_type) {
4849                case XFS_LI_EFI:
4850                        error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4851                        break;
4852                case XFS_LI_RUI:
4853                        error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4854                        break;
4855                case XFS_LI_CUI:
4856                        error = xlog_recover_process_cui(parent_tp, ailp, lip);
4857                        break;
4858                case XFS_LI_BUI:
4859                        error = xlog_recover_process_bui(parent_tp, ailp, lip);
4860                        break;
4861                }
4862                if (error)
4863                        goto out;
4864                lip = xfs_trans_ail_cursor_next(ailp, &cur);
4865        }
4866out:
4867        xfs_trans_ail_cursor_done(&cur);
4868        spin_unlock(&ailp->ail_lock);
4869        if (!error)
4870                error = xlog_finish_defer_ops(parent_tp);
4871        xfs_trans_cancel(parent_tp);
4872
4873        return error;
4874}
4875
4876/*
4877 * A cancel occurs when the mount has failed and we're bailing out.
4878 * Release all pending log intent items so they don't pin the AIL.
4879 */
4880STATIC void
4881xlog_recover_cancel_intents(
4882        struct xlog             *log)
4883{
4884        struct xfs_log_item     *lip;
4885        struct xfs_ail_cursor   cur;
4886        struct xfs_ail          *ailp;
4887
4888        ailp = log->l_ailp;
4889        spin_lock(&ailp->ail_lock);
4890        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4891        while (lip != NULL) {
4892                /*
4893                 * We're done when we see something other than an intent.
4894                 * There should be no intents left in the AIL now.
4895                 */
4896                if (!xlog_item_is_intent(lip)) {
4897#ifdef DEBUG
4898                        for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4899                                ASSERT(!xlog_item_is_intent(lip));
4900#endif
4901                        break;
4902                }
4903
4904                switch (lip->li_type) {
4905                case XFS_LI_EFI:
4906                        xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4907                        break;
4908                case XFS_LI_RUI:
4909                        xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4910                        break;
4911                case XFS_LI_CUI:
4912                        xlog_recover_cancel_cui(log->l_mp, ailp, lip);
4913                        break;
4914                case XFS_LI_BUI:
4915                        xlog_recover_cancel_bui(log->l_mp, ailp, lip);
4916                        break;
4917                }
4918
4919                lip = xfs_trans_ail_cursor_next(ailp, &cur);
4920        }
4921
4922        xfs_trans_ail_cursor_done(&cur);
4923        spin_unlock(&ailp->ail_lock);
4924}
4925
4926/*
4927 * This routine performs a transaction to null out a bad inode pointer
4928 * in an agi unlinked inode hash bucket.
4929 */
4930STATIC void
4931xlog_recover_clear_agi_bucket(
4932        xfs_mount_t     *mp,
4933        xfs_agnumber_t  agno,
4934        int             bucket)
4935{
4936        xfs_trans_t     *tp;
4937        xfs_agi_t       *agi;
4938        xfs_buf_t       *agibp;
4939        int             offset;
4940        int             error;
4941
4942        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
4943        if (error)
4944                goto out_error;
4945
4946        error = xfs_read_agi(mp, tp, agno, &agibp);
4947        if (error)
4948                goto out_abort;
4949
4950        agi = XFS_BUF_TO_AGI(agibp);
4951        agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
4952        offset = offsetof(xfs_agi_t, agi_unlinked) +
4953                 (sizeof(xfs_agino_t) * bucket);
4954        xfs_trans_log_buf(tp, agibp, offset,
4955                          (offset + sizeof(xfs_agino_t) - 1));
4956
4957        error = xfs_trans_commit(tp);
4958        if (error)
4959                goto out_error;
4960        return;
4961
4962out_abort:
4963        xfs_trans_cancel(tp);
4964out_error:
4965        xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
4966        return;
4967}
4968
4969STATIC xfs_agino_t
4970xlog_recover_process_one_iunlink(
4971        struct xfs_mount                *mp,
4972        xfs_agnumber_t                  agno,
4973        xfs_agino_t                     agino,
4974        int                             bucket)
4975{
4976        struct xfs_buf                  *ibp;
4977        struct xfs_dinode               *dip;
4978        struct xfs_inode                *ip;
4979        xfs_ino_t                       ino;
4980        int                             error;
4981
4982        ino = XFS_AGINO_TO_INO(mp, agno, agino);
4983        error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
4984        if (error)
4985                goto fail;
4986
4987        /*
4988         * Get the on disk inode to find the next inode in the bucket.
4989         */
4990        error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
4991        if (error)
4992                goto fail_iput;
4993
4994        xfs_iflags_clear(ip, XFS_IRECOVERY);
4995        ASSERT(VFS_I(ip)->i_nlink == 0);
4996        ASSERT(VFS_I(ip)->i_mode != 0);
4997
4998        /* setup for the next pass */
4999        agino = be32_to_cpu(dip->di_next_unlinked);
5000        xfs_buf_relse(ibp);
5001
5002        /*
5003         * Prevent any DMAPI event from being sent when the reference on
5004         * the inode is dropped.
5005         */
5006        ip->i_d.di_dmevmask = 0;
5007
5008        xfs_irele(ip);
5009        return agino;
5010
5011 fail_iput:
5012        xfs_irele(ip);
5013 fail:
5014        /*
5015         * We can't read in the inode this bucket points to, or this inode
5016         * is messed up.  Just ditch this bucket of inodes.  We will lose
5017         * some inodes and space, but at least we won't hang.
5018         *
5019         * Call xlog_recover_clear_agi_bucket() to perform a transaction to
5020         * clear the inode pointer in the bucket.
5021         */
5022        xlog_recover_clear_agi_bucket(mp, agno, bucket);
5023        return NULLAGINO;
5024}
5025
5026/*
5027 * Recover AGI unlinked lists
5028 *
5029 * This is called during recovery to process any inodes which we unlinked but
5030 * not freed when the system crashed.  These inodes will be on the lists in the
5031 * AGI blocks. What we do here is scan all the AGIs and fully truncate and free
5032 * any inodes found on the lists. Each inode is removed from the lists when it
5033 * has been fully truncated and is freed. The freeing of the inode and its
5034 * removal from the list must be atomic.
5035 *
5036 * If everything we touch in the agi processing loop is already in memory, this
5037 * loop can hold the cpu for a long time. It runs without lock contention,
5038 * memory allocation contention, the need wait for IO, etc, and so will run
5039 * until we either run out of inodes to process, run low on memory or we run out
5040 * of log space.
5041 *
5042 * This behaviour is bad for latency on single CPU and non-preemptible kernels,
5043 * and can prevent other filesytem work (such as CIL pushes) from running. This
5044 * can lead to deadlocks if the recovery process runs out of log reservation
5045 * space. Hence we need to yield the CPU when there is other kernel work
5046 * scheduled on this CPU to ensure other scheduled work can run without undue
5047 * latency.
5048 */
5049STATIC void
5050xlog_recover_process_iunlinks(
5051        struct xlog     *log)
5052{
5053        xfs_mount_t     *mp;
5054        xfs_agnumber_t  agno;
5055        xfs_agi_t       *agi;
5056        xfs_buf_t       *agibp;
5057        xfs_agino_t     agino;
5058        int             bucket;
5059        int             error;
5060
5061        mp = log->l_mp;
5062
5063        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5064                /*
5065                 * Find the agi for this ag.
5066                 */
5067                error = xfs_read_agi(mp, NULL, agno, &agibp);
5068                if (error) {
5069                        /*
5070                         * AGI is b0rked. Don't process it.
5071                         *
5072                         * We should probably mark the filesystem as corrupt
5073                         * after we've recovered all the ag's we can....
5074                         */
5075                        continue;
5076                }
5077                /*
5078                 * Unlock the buffer so that it can be acquired in the normal
5079                 * course of the transaction to truncate and free each inode.
5080                 * Because we are not racing with anyone else here for the AGI
5081                 * buffer, we don't even need to hold it locked to read the
5082                 * initial unlinked bucket entries out of the buffer. We keep
5083                 * buffer reference though, so that it stays pinned in memory
5084                 * while we need the buffer.
5085                 */
5086                agi = XFS_BUF_TO_AGI(agibp);
5087                xfs_buf_unlock(agibp);
5088
5089                for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
5090                        agino = be32_to_cpu(agi->agi_unlinked[bucket]);
5091                        while (agino != NULLAGINO) {
5092                                agino = xlog_recover_process_one_iunlink(mp,
5093                                                        agno, agino, bucket);
5094                                cond_resched();
5095                        }
5096                }
5097                xfs_buf_rele(agibp);
5098        }
5099}
5100
5101STATIC void
5102xlog_unpack_data(
5103        struct xlog_rec_header  *rhead,
5104        char                    *dp,
5105        struct xlog             *log)
5106{
5107        int                     i, j, k;
5108
5109        for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
5110                  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
5111                *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
5112                dp += BBSIZE;
5113        }
5114
5115        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5116                xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
5117                for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
5118                        j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5119                        k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5120                        *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
5121                        dp += BBSIZE;
5122                }
5123        }
5124}
5125
5126/*
5127 * CRC check, unpack and process a log record.
5128 */
5129STATIC int
5130xlog_recover_process(
5131        struct xlog             *log,
5132        struct hlist_head       rhash[],
5133        struct xlog_rec_header  *rhead,
5134        char                    *dp,
5135        int                     pass,
5136        struct list_head        *buffer_list)
5137{
5138        __le32                  old_crc = rhead->h_crc;
5139        __le32                  crc;
5140
5141        crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
5142
5143        /*
5144         * Nothing else to do if this is a CRC verification pass. Just return
5145         * if this a record with a non-zero crc. Unfortunately, mkfs always
5146         * sets old_crc to 0 so we must consider this valid even on v5 supers.
5147         * Otherwise, return EFSBADCRC on failure so the callers up the stack
5148         * know precisely what failed.
5149         */
5150        if (pass == XLOG_RECOVER_CRCPASS) {
5151                if (old_crc && crc != old_crc)
5152                        return -EFSBADCRC;
5153                return 0;
5154        }
5155
5156        /*
5157         * We're in the normal recovery path. Issue a warning if and only if the
5158         * CRC in the header is non-zero. This is an advisory warning and the
5159         * zero CRC check prevents warnings from being emitted when upgrading
5160         * the kernel from one that does not add CRCs by default.
5161         */
5162        if (crc != old_crc) {
5163                if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
5164                        xfs_alert(log->l_mp,
5165                "log record CRC mismatch: found 0x%x, expected 0x%x.",
5166                                        le32_to_cpu(old_crc),
5167                                        le32_to_cpu(crc));
5168                        xfs_hex_dump(dp, 32);
5169                }
5170
5171                /*
5172                 * If the filesystem is CRC enabled, this mismatch becomes a
5173                 * fatal log corruption failure.
5174                 */
5175                if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
5176                        return -EFSCORRUPTED;
5177        }
5178
5179        xlog_unpack_data(rhead, dp, log);
5180
5181        return xlog_recover_process_data(log, rhash, rhead, dp, pass,
5182                                         buffer_list);
5183}
5184
5185STATIC int
5186xlog_valid_rec_header(
5187        struct xlog             *log,
5188        struct xlog_rec_header  *rhead,
5189        xfs_daddr_t             blkno)
5190{
5191        int                     hlen;
5192
5193        if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
5194                XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
5195                                XFS_ERRLEVEL_LOW, log->l_mp);
5196                return -EFSCORRUPTED;
5197        }
5198        if (unlikely(
5199            (!rhead->h_version ||
5200            (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
5201                xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
5202                        __func__, be32_to_cpu(rhead->h_version));
5203                return -EIO;
5204        }
5205
5206        /* LR body must have data or it wouldn't have been written */
5207        hlen = be32_to_cpu(rhead->h_len);
5208        if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
5209                XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
5210                                XFS_ERRLEVEL_LOW, log->l_mp);
5211                return -EFSCORRUPTED;
5212        }
5213        if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
5214                XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
5215                                XFS_ERRLEVEL_LOW, log->l_mp);
5216                return -EFSCORRUPTED;
5217        }
5218        return 0;
5219}
5220
5221/*
5222 * Read the log from tail to head and process the log records found.
5223 * Handle the two cases where the tail and head are in the same cycle
5224 * and where the active portion of the log wraps around the end of
5225 * the physical log separately.  The pass parameter is passed through
5226 * to the routines called to process the data and is not looked at
5227 * here.
5228 */
5229STATIC int
5230xlog_do_recovery_pass(
5231        struct xlog             *log,
5232        xfs_daddr_t             head_blk,
5233        xfs_daddr_t             tail_blk,
5234        int                     pass,
5235        xfs_daddr_t             *first_bad)     /* out: first bad log rec */
5236{
5237        xlog_rec_header_t       *rhead;
5238        xfs_daddr_t             blk_no, rblk_no;
5239        xfs_daddr_t             rhead_blk;
5240        char                    *offset;
5241        char                    *hbp, *dbp;
5242        int                     error = 0, h_size, h_len;
5243        int                     error2 = 0;
5244        int                     bblks, split_bblks;
5245        int                     hblks, split_hblks, wrapped_hblks;
5246        int                     i;
5247        struct hlist_head       rhash[XLOG_RHASH_SIZE];
5248        LIST_HEAD               (buffer_list);
5249
5250        ASSERT(head_blk != tail_blk);
5251        blk_no = rhead_blk = tail_blk;
5252
5253        for (i = 0; i < XLOG_RHASH_SIZE; i++)
5254                INIT_HLIST_HEAD(&rhash[i]);
5255
5256        /*
5257         * Read the header of the tail block and get the iclog buffer size from
5258         * h_size.  Use this to tell how many sectors make up the log header.
5259         */
5260        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5261                /*
5262                 * When using variable length iclogs, read first sector of
5263                 * iclog header and extract the header size from it.  Get a
5264                 * new hbp that is the correct size.
5265                 */
5266                hbp = xlog_alloc_buffer(log, 1);
5267                if (!hbp)
5268                        return -ENOMEM;
5269
5270                error = xlog_bread(log, tail_blk, 1, hbp, &offset);
5271                if (error)
5272                        goto bread_err1;
5273
5274                rhead = (xlog_rec_header_t *)offset;
5275                error = xlog_valid_rec_header(log, rhead, tail_blk);
5276                if (error)
5277                        goto bread_err1;
5278
5279                /*
5280                 * xfsprogs has a bug where record length is based on lsunit but
5281                 * h_size (iclog size) is hardcoded to 32k. Now that we
5282                 * unconditionally CRC verify the unmount record, this means the
5283                 * log buffer can be too small for the record and cause an
5284                 * overrun.
5285                 *
5286                 * Detect this condition here. Use lsunit for the buffer size as
5287                 * long as this looks like the mkfs case. Otherwise, return an
5288                 * error to avoid a buffer overrun.
5289                 */
5290                h_size = be32_to_cpu(rhead->h_size);
5291                h_len = be32_to_cpu(rhead->h_len);
5292                if (h_len > h_size) {
5293                        if (h_len <= log->l_mp->m_logbsize &&
5294                            be32_to_cpu(rhead->h_num_logops) == 1) {
5295                                xfs_warn(log->l_mp,
5296                "invalid iclog size (%d bytes), using lsunit (%d bytes)",
5297                                         h_size, log->l_mp->m_logbsize);
5298                                h_size = log->l_mp->m_logbsize;
5299                        } else
5300                                return -EFSCORRUPTED;
5301                }
5302
5303                if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
5304                    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
5305                        hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
5306                        if (h_size % XLOG_HEADER_CYCLE_SIZE)
5307                                hblks++;
5308                        kmem_free(hbp);
5309                        hbp = xlog_alloc_buffer(log, hblks);
5310                } else {
5311                        hblks = 1;
5312                }
5313        } else {
5314                ASSERT(log->l_sectBBsize == 1);
5315                hblks = 1;
5316                hbp = xlog_alloc_buffer(log, 1);
5317                h_size = XLOG_BIG_RECORD_BSIZE;
5318        }
5319
5320        if (!hbp)
5321                return -ENOMEM;
5322        dbp = xlog_alloc_buffer(log, BTOBB(h_size));
5323        if (!dbp) {
5324                kmem_free(hbp);
5325                return -ENOMEM;
5326        }
5327
5328        memset(rhash, 0, sizeof(rhash));
5329        if (tail_blk > head_blk) {
5330                /*
5331                 * Perform recovery around the end of the physical log.
5332                 * When the head is not on the same cycle number as the tail,
5333                 * we can't do a sequential recovery.
5334                 */
5335                while (blk_no < log->l_logBBsize) {
5336                        /*
5337                         * Check for header wrapping around physical end-of-log
5338                         */
5339                        offset = hbp;
5340                        split_hblks = 0;
5341                        wrapped_hblks = 0;
5342                        if (blk_no + hblks <= log->l_logBBsize) {
5343                                /* Read header in one read */
5344                                error = xlog_bread(log, blk_no, hblks, hbp,
5345                                                   &offset);
5346                                if (error)
5347                                        goto bread_err2;
5348                        } else {
5349                                /* This LR is split across physical log end */
5350                                if (blk_no != log->l_logBBsize) {
5351                                        /* some data before physical log end */
5352                                        ASSERT(blk_no <= INT_MAX);
5353                                        split_hblks = log->l_logBBsize - (int)blk_no;
5354                                        ASSERT(split_hblks > 0);
5355                                        error = xlog_bread(log, blk_no,
5356                                                           split_hblks, hbp,
5357                                                           &offset);
5358                                        if (error)
5359                                                goto bread_err2;
5360                                }
5361
5362                                /*
5363                                 * Note: this black magic still works with
5364                                 * large sector sizes (non-512) only because:
5365                                 * - we increased the buffer size originally
5366                                 *   by 1 sector giving us enough extra space
5367                                 *   for the second read;
5368                                 * - the log start is guaranteed to be sector
5369                                 *   aligned;
5370                                 * - we read the log end (LR header start)
5371                                 *   _first_, then the log start (LR header end)
5372                                 *   - order is important.
5373                                 */
5374                                wrapped_hblks = hblks - split_hblks;
5375                                error = xlog_bread_noalign(log, 0,
5376                                                wrapped_hblks,
5377                                                offset + BBTOB(split_hblks));
5378                                if (error)
5379                                        goto bread_err2;
5380                        }
5381                        rhead = (xlog_rec_header_t *)offset;
5382                        error = xlog_valid_rec_header(log, rhead,
5383                                                split_hblks ? blk_no : 0);
5384                        if (error)
5385                                goto bread_err2;
5386
5387                        bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5388                        blk_no += hblks;
5389
5390                        /*
5391                         * Read the log record data in multiple reads if it
5392                         * wraps around the end of the log. Note that if the
5393                         * header already wrapped, blk_no could point past the
5394                         * end of the log. The record data is contiguous in
5395                         * that case.
5396                         */
5397                        if (blk_no + bblks <= log->l_logBBsize ||
5398                            blk_no >= log->l_logBBsize) {
5399                                rblk_no = xlog_wrap_logbno(log, blk_no);
5400                                error = xlog_bread(log, rblk_no, bblks, dbp,
5401                                                   &offset);
5402                                if (error)
5403                                        goto bread_err2;
5404                        } else {
5405                                /* This log record is split across the
5406                                 * physical end of log */
5407                                offset = dbp;
5408                                split_bblks = 0;
5409                                if (blk_no != log->l_logBBsize) {
5410                                        /* some data is before the physical
5411                                         * end of log */
5412                                        ASSERT(!wrapped_hblks);
5413                                        ASSERT(blk_no <= INT_MAX);
5414                                        split_bblks =
5415                                                log->l_logBBsize - (int)blk_no;
5416                                        ASSERT(split_bblks > 0);
5417                                        error = xlog_bread(log, blk_no,
5418                                                        split_bblks, dbp,
5419                                                        &offset);
5420                                        if (error)
5421                                                goto bread_err2;
5422                                }
5423
5424                                /*
5425                                 * Note: this black magic still works with
5426                                 * large sector sizes (non-512) only because:
5427                                 * - we increased the buffer size originally
5428                                 *   by 1 sector giving us enough extra space
5429                                 *   for the second read;
5430                                 * - the log start is guaranteed to be sector
5431                                 *   aligned;
5432                                 * - we read the log end (LR header start)
5433                                 *   _first_, then the log start (LR header end)
5434                                 *   - order is important.
5435                                 */
5436                                error = xlog_bread_noalign(log, 0,
5437                                                bblks - split_bblks,
5438                                                offset + BBTOB(split_bblks));
5439                                if (error)
5440                                        goto bread_err2;
5441                        }
5442
5443                        error = xlog_recover_process(log, rhash, rhead, offset,
5444                                                     pass, &buffer_list);
5445                        if (error)
5446                                goto bread_err2;
5447
5448                        blk_no += bblks;
5449                        rhead_blk = blk_no;
5450                }
5451
5452                ASSERT(blk_no >= log->l_logBBsize);
5453                blk_no -= log->l_logBBsize;
5454                rhead_blk = blk_no;
5455        }
5456
5457        /* read first part of physical log */
5458        while (blk_no < head_blk) {
5459                error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5460                if (error)
5461                        goto bread_err2;
5462
5463                rhead = (xlog_rec_header_t *)offset;
5464                error = xlog_valid_rec_header(log, rhead, blk_no);
5465                if (error)
5466                        goto bread_err2;
5467
5468                /* blocks in data section */
5469                bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5470                error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5471                                   &offset);
5472                if (error)
5473                        goto bread_err2;
5474
5475                error = xlog_recover_process(log, rhash, rhead, offset, pass,
5476                                             &buffer_list);
5477                if (error)
5478                        goto bread_err2;
5479
5480                blk_no += bblks + hblks;
5481                rhead_blk = blk_no;
5482        }
5483
5484 bread_err2:
5485        kmem_free(dbp);
5486 bread_err1:
5487        kmem_free(hbp);
5488
5489        /*
5490         * Submit buffers that have been added from the last record processed,
5491         * regardless of error status.
5492         */
5493        if (!list_empty(&buffer_list))
5494                error2 = xfs_buf_delwri_submit(&buffer_list);
5495
5496        if (error && first_bad)
5497                *first_bad = rhead_blk;
5498
5499        /*
5500         * Transactions are freed at commit time but transactions without commit
5501         * records on disk are never committed. Free any that may be left in the
5502         * hash table.
5503         */
5504        for (i = 0; i < XLOG_RHASH_SIZE; i++) {
5505                struct hlist_node       *tmp;
5506                struct xlog_recover     *trans;
5507
5508                hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
5509                        xlog_recover_free_trans(trans);
5510        }
5511
5512        return error ? error : error2;
5513}
5514
5515/*
5516 * Do the recovery of the log.  We actually do this in two phases.
5517 * The two passes are necessary in order to implement the function
5518 * of cancelling a record written into the log.  The first pass
5519 * determines those things which have been cancelled, and the
5520 * second pass replays log items normally except for those which
5521 * have been cancelled.  The handling of the replay and cancellations
5522 * takes place in the log item type specific routines.
5523 *
5524 * The table of items which have cancel records in the log is allocated
5525 * and freed at this level, since only here do we know when all of
5526 * the log recovery has been completed.
5527 */
5528STATIC int
5529xlog_do_log_recovery(
5530        struct xlog     *log,
5531        xfs_daddr_t     head_blk,
5532        xfs_daddr_t     tail_blk)
5533{
5534        int             error, i;
5535
5536        ASSERT(head_blk != tail_blk);
5537
5538        /*
5539         * First do a pass to find all of the cancelled buf log items.
5540         * Store them in the buf_cancel_table for use in the second pass.
5541         */
5542        log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5543                                                 sizeof(struct list_head),
5544                                                 0);
5545        for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5546                INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5547
5548        error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5549                                      XLOG_RECOVER_PASS1, NULL);
5550        if (error != 0) {
5551                kmem_free(log->l_buf_cancel_table);
5552                log->l_buf_cancel_table = NULL;
5553                return error;
5554        }
5555        /*
5556         * Then do a second pass to actually recover the items in the log.
5557         * When it is complete free the table of buf cancel items.
5558         */
5559        error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5560                                      XLOG_RECOVER_PASS2, NULL);
5561#ifdef DEBUG
5562        if (!error) {
5563                int     i;
5564
5565                for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5566                        ASSERT(list_empty(&log->l_buf_cancel_table[i]));
5567        }
5568#endif  /* DEBUG */
5569
5570        kmem_free(log->l_buf_cancel_table);
5571        log->l_buf_cancel_table = NULL;
5572
5573        return error;
5574}
5575
5576/*
5577 * Do the actual recovery
5578 */
5579STATIC int
5580xlog_do_recover(
5581        struct xlog     *log,
5582        xfs_daddr_t     head_blk,
5583        xfs_daddr_t     tail_blk)
5584{
5585        struct xfs_mount *mp = log->l_mp;
5586        int             error;
5587        xfs_buf_t       *bp;
5588        xfs_sb_t        *sbp;
5589
5590        trace_xfs_log_recover(log, head_blk, tail_blk);
5591
5592        /*
5593         * First replay the images in the log.
5594         */
5595        error = xlog_do_log_recovery(log, head_blk, tail_blk);
5596        if (error)
5597                return error;
5598
5599        /*
5600         * If IO errors happened during recovery, bail out.
5601         */
5602        if (XFS_FORCED_SHUTDOWN(mp)) {
5603                return -EIO;
5604        }
5605
5606        /*
5607         * We now update the tail_lsn since much of the recovery has completed
5608         * and there may be space available to use.  If there were no extent
5609         * or iunlinks, we can free up the entire log and set the tail_lsn to
5610         * be the last_sync_lsn.  This was set in xlog_find_tail to be the
5611         * lsn of the last known good LR on disk.  If there are extent frees
5612         * or iunlinks they will have some entries in the AIL; so we look at
5613         * the AIL to determine how to set the tail_lsn.
5614         */
5615        xlog_assign_tail_lsn(mp);
5616
5617        /*
5618         * Now that we've finished replaying all buffer and inode
5619         * updates, re-read in the superblock and reverify it.
5620         */
5621        bp = xfs_getsb(mp);
5622        bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
5623        ASSERT(!(bp->b_flags & XBF_WRITE));
5624        bp->b_flags |= XBF_READ;
5625        bp->b_ops = &xfs_sb_buf_ops;
5626
5627        error = xfs_buf_submit(bp);
5628        if (error) {
5629                if (!XFS_FORCED_SHUTDOWN(mp)) {
5630                        xfs_buf_ioerror_alert(bp, __func__);
5631                        ASSERT(0);
5632                }
5633                xfs_buf_relse(bp);
5634                return error;
5635        }
5636
5637        /* Convert superblock from on-disk format */
5638        sbp = &mp->m_sb;
5639        xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
5640        xfs_buf_relse(bp);
5641
5642        /* re-initialise in-core superblock and geometry structures */
5643        xfs_reinit_percpu_counters(mp);
5644        error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5645        if (error) {
5646                xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5647                return error;
5648        }
5649        mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5650
5651        xlog_recover_check_summary(log);
5652
5653        /* Normal transactions can now occur */
5654        log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5655        return 0;
5656}
5657
5658/*
5659 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5660 *
5661 * Return error or zero.
5662 */
5663int
5664xlog_recover(
5665        struct xlog     *log)
5666{
5667        xfs_daddr_t     head_blk, tail_blk;
5668        int             error;
5669
5670        /* find the tail of the log */
5671        error = xlog_find_tail(log, &head_blk, &tail_blk);
5672        if (error)
5673                return error;
5674
5675        /*
5676         * The superblock was read before the log was available and thus the LSN
5677         * could not be verified. Check the superblock LSN against the current
5678         * LSN now that it's known.
5679         */
5680        if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5681            !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5682                return -EINVAL;
5683
5684        if (tail_blk != head_blk) {
5685                /* There used to be a comment here:
5686                 *
5687                 * disallow recovery on read-only mounts.  note -- mount
5688                 * checks for ENOSPC and turns it into an intelligent
5689                 * error message.
5690                 * ...but this is no longer true.  Now, unless you specify
5691                 * NORECOVERY (in which case this function would never be
5692                 * called), we just go ahead and recover.  We do this all
5693                 * under the vfs layer, so we can get away with it unless
5694                 * the device itself is read-only, in which case we fail.
5695                 */
5696                if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5697                        return error;
5698                }
5699
5700                /*
5701                 * Version 5 superblock log feature mask validation. We know the
5702                 * log is dirty so check if there are any unknown log features
5703                 * in what we need to recover. If there are unknown features
5704                 * (e.g. unsupported transactions, then simply reject the
5705                 * attempt at recovery before touching anything.
5706                 */
5707                if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5708                    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5709                                        XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5710                        xfs_warn(log->l_mp,
5711"Superblock has unknown incompatible log features (0x%x) enabled.",
5712                                (log->l_mp->m_sb.sb_features_log_incompat &
5713                                        XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5714                        xfs_warn(log->l_mp,
5715"The log can not be fully and/or safely recovered by this kernel.");
5716                        xfs_warn(log->l_mp,
5717"Please recover the log on a kernel that supports the unknown features.");
5718                        return -EINVAL;
5719                }
5720
5721                /*
5722                 * Delay log recovery if the debug hook is set. This is debug
5723                 * instrumention to coordinate simulation of I/O failures with
5724                 * log recovery.
5725                 */
5726                if (xfs_globals.log_recovery_delay) {
5727                        xfs_notice(log->l_mp,
5728                                "Delaying log recovery for %d seconds.",
5729                                xfs_globals.log_recovery_delay);
5730                        msleep(xfs_globals.log_recovery_delay * 1000);
5731                }
5732
5733                xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5734                                log->l_mp->m_logname ? log->l_mp->m_logname
5735                                                     : "internal");
5736
5737                error = xlog_do_recover(log, head_blk, tail_blk);
5738                log->l_flags |= XLOG_RECOVERY_NEEDED;
5739        }
5740        return error;
5741}
5742
5743/*
5744 * In the first part of recovery we replay inodes and buffers and build
5745 * up the list of extent free items which need to be processed.  Here
5746 * we process the extent free items and clean up the on disk unlinked
5747 * inode lists.  This is separated from the first part of recovery so
5748 * that the root and real-time bitmap inodes can be read in from disk in
5749 * between the two stages.  This is necessary so that we can free space
5750 * in the real-time portion of the file system.
5751 */
5752int
5753xlog_recover_finish(
5754        struct xlog     *log)
5755{
5756        /*
5757         * Now we're ready to do the transactions needed for the
5758         * rest of recovery.  Start with completing all the extent
5759         * free intent records and then process the unlinked inode
5760         * lists.  At this point, we essentially run in normal mode
5761         * except that we're still performing recovery actions
5762         * rather than accepting new requests.
5763         */
5764        if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5765                int     error;
5766                error = xlog_recover_process_intents(log);
5767                if (error) {
5768                        xfs_alert(log->l_mp, "Failed to recover intents");
5769                        return error;
5770                }
5771
5772                /*
5773                 * Sync the log to get all the intents out of the AIL.
5774                 * This isn't absolutely necessary, but it helps in
5775                 * case the unlink transactions would have problems
5776                 * pushing the intents out of the way.
5777                 */
5778                xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5779
5780                xlog_recover_process_iunlinks(log);
5781
5782                xlog_recover_check_summary(log);
5783
5784                xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5785                                log->l_mp->m_logname ? log->l_mp->m_logname
5786                                                     : "internal");
5787                log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5788        } else {
5789                xfs_info(log->l_mp, "Ending clean mount");
5790        }
5791        return 0;
5792}
5793
5794void
5795xlog_recover_cancel(
5796        struct xlog     *log)
5797{
5798        if (log->l_flags & XLOG_RECOVERY_NEEDED)
5799                xlog_recover_cancel_intents(log);
5800}
5801
5802#if defined(DEBUG)
5803/*
5804 * Read all of the agf and agi counters and check that they
5805 * are consistent with the superblock counters.
5806 */
5807STATIC void
5808xlog_recover_check_summary(
5809        struct xlog     *log)
5810{
5811        xfs_mount_t     *mp;
5812        xfs_agf_t       *agfp;
5813        xfs_buf_t       *agfbp;
5814        xfs_buf_t       *agibp;
5815        xfs_agnumber_t  agno;
5816        uint64_t        freeblks;
5817        uint64_t        itotal;
5818        uint64_t        ifree;
5819        int             error;
5820
5821        mp = log->l_mp;
5822
5823        freeblks = 0LL;
5824        itotal = 0LL;
5825        ifree = 0LL;
5826        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5827                error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5828                if (error) {
5829                        xfs_alert(mp, "%s agf read failed agno %d error %d",
5830                                                __func__, agno, error);
5831                } else {
5832                        agfp = XFS_BUF_TO_AGF(agfbp);
5833                        freeblks += be32_to_cpu(agfp->agf_freeblks) +
5834                                    be32_to_cpu(agfp->agf_flcount);
5835                        xfs_buf_relse(agfbp);
5836                }
5837
5838                error = xfs_read_agi(mp, NULL, agno, &agibp);
5839                if (error) {
5840                        xfs_alert(mp, "%s agi read failed agno %d error %d",
5841                                                __func__, agno, error);
5842                } else {
5843                        struct xfs_agi  *agi = XFS_BUF_TO_AGI(agibp);
5844
5845                        itotal += be32_to_cpu(agi->agi_count);
5846                        ifree += be32_to_cpu(agi->agi_freecount);
5847                        xfs_buf_relse(agibp);
5848                }
5849        }
5850}
5851#endif /* DEBUG */
5852