linux/include/linux/kernel.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_KERNEL_H
   3#define _LINUX_KERNEL_H
   4
   5
   6#include <stdarg.h>
   7#include <linux/limits.h>
   8#include <linux/linkage.h>
   9#include <linux/stddef.h>
  10#include <linux/types.h>
  11#include <linux/compiler.h>
  12#include <linux/bitops.h>
  13#include <linux/log2.h>
  14#include <linux/typecheck.h>
  15#include <linux/printk.h>
  16#include <linux/build_bug.h>
  17#include <asm/byteorder.h>
  18#include <asm/div64.h>
  19#include <uapi/linux/kernel.h>
  20#include <asm/div64.h>
  21
  22#define STACK_MAGIC     0xdeadbeef
  23
  24/**
  25 * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value
  26 * @x: value to repeat
  27 *
  28 * NOTE: @x is not checked for > 0xff; larger values produce odd results.
  29 */
  30#define REPEAT_BYTE(x)  ((~0ul / 0xff) * (x))
  31
  32/* @a is a power of 2 value */
  33#define ALIGN(x, a)             __ALIGN_KERNEL((x), (a))
  34#define ALIGN_DOWN(x, a)        __ALIGN_KERNEL((x) - ((a) - 1), (a))
  35#define __ALIGN_MASK(x, mask)   __ALIGN_KERNEL_MASK((x), (mask))
  36#define PTR_ALIGN(p, a)         ((typeof(p))ALIGN((unsigned long)(p), (a)))
  37#define IS_ALIGNED(x, a)                (((x) & ((typeof(x))(a) - 1)) == 0)
  38
  39/* generic data direction definitions */
  40#define READ                    0
  41#define WRITE                   1
  42
  43/**
  44 * ARRAY_SIZE - get the number of elements in array @arr
  45 * @arr: array to be sized
  46 */
  47#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
  48
  49#define u64_to_user_ptr(x) (            \
  50{                                       \
  51        typecheck(u64, (x));            \
  52        (void __user *)(uintptr_t)(x);  \
  53}                                       \
  54)
  55
  56/*
  57 * This looks more complex than it should be. But we need to
  58 * get the type for the ~ right in round_down (it needs to be
  59 * as wide as the result!), and we want to evaluate the macro
  60 * arguments just once each.
  61 */
  62#define __round_mask(x, y) ((__typeof__(x))((y)-1))
  63/**
  64 * round_up - round up to next specified power of 2
  65 * @x: the value to round
  66 * @y: multiple to round up to (must be a power of 2)
  67 *
  68 * Rounds @x up to next multiple of @y (which must be a power of 2).
  69 * To perform arbitrary rounding up, use roundup() below.
  70 */
  71#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
  72/**
  73 * round_down - round down to next specified power of 2
  74 * @x: the value to round
  75 * @y: multiple to round down to (must be a power of 2)
  76 *
  77 * Rounds @x down to next multiple of @y (which must be a power of 2).
  78 * To perform arbitrary rounding down, use rounddown() below.
  79 */
  80#define round_down(x, y) ((x) & ~__round_mask(x, y))
  81
  82/**
  83 * FIELD_SIZEOF - get the size of a struct's field
  84 * @t: the target struct
  85 * @f: the target struct's field
  86 * Return: the size of @f in the struct definition without having a
  87 * declared instance of @t.
  88 */
  89#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
  90
  91#define typeof_member(T, m)     typeof(((T*)0)->m)
  92
  93#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
  94
  95#define DIV_ROUND_DOWN_ULL(ll, d) \
  96        ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
  97
  98#define DIV_ROUND_UP_ULL(ll, d) \
  99        DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d))
 100
 101#if BITS_PER_LONG == 32
 102# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
 103#else
 104# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
 105#endif
 106
 107/**
 108 * roundup - round up to the next specified multiple
 109 * @x: the value to up
 110 * @y: multiple to round up to
 111 *
 112 * Rounds @x up to next multiple of @y. If @y will always be a power
 113 * of 2, consider using the faster round_up().
 114 */
 115#define roundup(x, y) (                                 \
 116{                                                       \
 117        typeof(y) __y = y;                              \
 118        (((x) + (__y - 1)) / __y) * __y;                \
 119}                                                       \
 120)
 121/**
 122 * rounddown - round down to next specified multiple
 123 * @x: the value to round
 124 * @y: multiple to round down to
 125 *
 126 * Rounds @x down to next multiple of @y. If @y will always be a power
 127 * of 2, consider using the faster round_down().
 128 */
 129#define rounddown(x, y) (                               \
 130{                                                       \
 131        typeof(x) __x = (x);                            \
 132        __x - (__x % (y));                              \
 133}                                                       \
 134)
 135
 136/*
 137 * Divide positive or negative dividend by positive or negative divisor
 138 * and round to closest integer. Result is undefined for negative
 139 * divisors if the dividend variable type is unsigned and for negative
 140 * dividends if the divisor variable type is unsigned.
 141 */
 142#define DIV_ROUND_CLOSEST(x, divisor)(                  \
 143{                                                       \
 144        typeof(x) __x = x;                              \
 145        typeof(divisor) __d = divisor;                  \
 146        (((typeof(x))-1) > 0 ||                         \
 147         ((typeof(divisor))-1) > 0 ||                   \
 148         (((__x) > 0) == ((__d) > 0))) ?                \
 149                (((__x) + ((__d) / 2)) / (__d)) :       \
 150                (((__x) - ((__d) / 2)) / (__d));        \
 151}                                                       \
 152)
 153/*
 154 * Same as above but for u64 dividends. divisor must be a 32-bit
 155 * number.
 156 */
 157#define DIV_ROUND_CLOSEST_ULL(x, divisor)(              \
 158{                                                       \
 159        typeof(divisor) __d = divisor;                  \
 160        unsigned long long _tmp = (x) + (__d) / 2;      \
 161        do_div(_tmp, __d);                              \
 162        _tmp;                                           \
 163}                                                       \
 164)
 165
 166/*
 167 * Multiplies an integer by a fraction, while avoiding unnecessary
 168 * overflow or loss of precision.
 169 */
 170#define mult_frac(x, numer, denom)(                     \
 171{                                                       \
 172        typeof(x) quot = (x) / (denom);                 \
 173        typeof(x) rem  = (x) % (denom);                 \
 174        (quot * (numer)) + ((rem * (numer)) / (denom)); \
 175}                                                       \
 176)
 177
 178
 179#define _RET_IP_                (unsigned long)__builtin_return_address(0)
 180#define _THIS_IP_  ({ __label__ __here; __here: (unsigned long)&&__here; })
 181
 182#define sector_div(a, b) do_div(a, b)
 183
 184/**
 185 * upper_32_bits - return bits 32-63 of a number
 186 * @n: the number we're accessing
 187 *
 188 * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
 189 * the "right shift count >= width of type" warning when that quantity is
 190 * 32-bits.
 191 */
 192#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
 193
 194/**
 195 * lower_32_bits - return bits 0-31 of a number
 196 * @n: the number we're accessing
 197 */
 198#define lower_32_bits(n) ((u32)(n))
 199
 200struct completion;
 201struct pt_regs;
 202struct user;
 203
 204#ifdef CONFIG_PREEMPT_VOLUNTARY
 205extern int _cond_resched(void);
 206# define might_resched() _cond_resched()
 207#else
 208# define might_resched() do { } while (0)
 209#endif
 210
 211#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 212extern void ___might_sleep(const char *file, int line, int preempt_offset);
 213extern void __might_sleep(const char *file, int line, int preempt_offset);
 214extern void __cant_sleep(const char *file, int line, int preempt_offset);
 215
 216/**
 217 * might_sleep - annotation for functions that can sleep
 218 *
 219 * this macro will print a stack trace if it is executed in an atomic
 220 * context (spinlock, irq-handler, ...). Additional sections where blocking is
 221 * not allowed can be annotated with non_block_start() and non_block_end()
 222 * pairs.
 223 *
 224 * This is a useful debugging help to be able to catch problems early and not
 225 * be bitten later when the calling function happens to sleep when it is not
 226 * supposed to.
 227 */
 228# define might_sleep() \
 229        do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
 230/**
 231 * cant_sleep - annotation for functions that cannot sleep
 232 *
 233 * this macro will print a stack trace if it is executed with preemption enabled
 234 */
 235# define cant_sleep() \
 236        do { __cant_sleep(__FILE__, __LINE__, 0); } while (0)
 237# define sched_annotate_sleep() (current->task_state_change = 0)
 238/**
 239 * non_block_start - annotate the start of section where sleeping is prohibited
 240 *
 241 * This is on behalf of the oom reaper, specifically when it is calling the mmu
 242 * notifiers. The problem is that if the notifier were to block on, for example,
 243 * mutex_lock() and if the process which holds that mutex were to perform a
 244 * sleeping memory allocation, the oom reaper is now blocked on completion of
 245 * that memory allocation. Other blocking calls like wait_event() pose similar
 246 * issues.
 247 */
 248# define non_block_start() (current->non_block_count++)
 249/**
 250 * non_block_end - annotate the end of section where sleeping is prohibited
 251 *
 252 * Closes a section opened by non_block_start().
 253 */
 254# define non_block_end() WARN_ON(current->non_block_count-- == 0)
 255#else
 256  static inline void ___might_sleep(const char *file, int line,
 257                                   int preempt_offset) { }
 258  static inline void __might_sleep(const char *file, int line,
 259                                   int preempt_offset) { }
 260# define might_sleep() do { might_resched(); } while (0)
 261# define cant_sleep() do { } while (0)
 262# define sched_annotate_sleep() do { } while (0)
 263# define non_block_start() do { } while (0)
 264# define non_block_end() do { } while (0)
 265#endif
 266
 267#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
 268
 269/**
 270 * abs - return absolute value of an argument
 271 * @x: the value.  If it is unsigned type, it is converted to signed type first.
 272 *     char is treated as if it was signed (regardless of whether it really is)
 273 *     but the macro's return type is preserved as char.
 274 *
 275 * Return: an absolute value of x.
 276 */
 277#define abs(x)  __abs_choose_expr(x, long long,                         \
 278                __abs_choose_expr(x, long,                              \
 279                __abs_choose_expr(x, int,                               \
 280                __abs_choose_expr(x, short,                             \
 281                __abs_choose_expr(x, char,                              \
 282                __builtin_choose_expr(                                  \
 283                        __builtin_types_compatible_p(typeof(x), char),  \
 284                        (char)({ signed char __x = (x); __x<0?-__x:__x; }), \
 285                        ((void)0)))))))
 286
 287#define __abs_choose_expr(x, type, other) __builtin_choose_expr(        \
 288        __builtin_types_compatible_p(typeof(x),   signed type) ||       \
 289        __builtin_types_compatible_p(typeof(x), unsigned type),         \
 290        ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
 291
 292/**
 293 * reciprocal_scale - "scale" a value into range [0, ep_ro)
 294 * @val: value
 295 * @ep_ro: right open interval endpoint
 296 *
 297 * Perform a "reciprocal multiplication" in order to "scale" a value into
 298 * range [0, @ep_ro), where the upper interval endpoint is right-open.
 299 * This is useful, e.g. for accessing a index of an array containing
 300 * @ep_ro elements, for example. Think of it as sort of modulus, only that
 301 * the result isn't that of modulo. ;) Note that if initial input is a
 302 * small value, then result will return 0.
 303 *
 304 * Return: a result based on @val in interval [0, @ep_ro).
 305 */
 306static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
 307{
 308        return (u32)(((u64) val * ep_ro) >> 32);
 309}
 310
 311#if defined(CONFIG_MMU) && \
 312        (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
 313#define might_fault() __might_fault(__FILE__, __LINE__)
 314void __might_fault(const char *file, int line);
 315#else
 316static inline void might_fault(void) { }
 317#endif
 318
 319extern struct atomic_notifier_head panic_notifier_list;
 320extern long (*panic_blink)(int state);
 321__printf(1, 2)
 322void panic(const char *fmt, ...) __noreturn __cold;
 323void nmi_panic(struct pt_regs *regs, const char *msg);
 324extern void oops_enter(void);
 325extern void oops_exit(void);
 326void print_oops_end_marker(void);
 327extern int oops_may_print(void);
 328void do_exit(long error_code) __noreturn;
 329void complete_and_exit(struct completion *, long) __noreturn;
 330
 331#ifdef CONFIG_ARCH_HAS_REFCOUNT
 332void refcount_error_report(struct pt_regs *regs, const char *err);
 333#else
 334static inline void refcount_error_report(struct pt_regs *regs, const char *err)
 335{ }
 336#endif
 337
 338/* Internal, do not use. */
 339int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
 340int __must_check _kstrtol(const char *s, unsigned int base, long *res);
 341
 342int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
 343int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
 344
 345/**
 346 * kstrtoul - convert a string to an unsigned long
 347 * @s: The start of the string. The string must be null-terminated, and may also
 348 *  include a single newline before its terminating null. The first character
 349 *  may also be a plus sign, but not a minus sign.
 350 * @base: The number base to use. The maximum supported base is 16. If base is
 351 *  given as 0, then the base of the string is automatically detected with the
 352 *  conventional semantics - If it begins with 0x the number will be parsed as a
 353 *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
 354 *  parsed as an octal number. Otherwise it will be parsed as a decimal.
 355 * @res: Where to write the result of the conversion on success.
 356 *
 357 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
 358 * Used as a replacement for the obsolete simple_strtoull. Return code must
 359 * be checked.
 360*/
 361static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
 362{
 363        /*
 364         * We want to shortcut function call, but
 365         * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
 366         */
 367        if (sizeof(unsigned long) == sizeof(unsigned long long) &&
 368            __alignof__(unsigned long) == __alignof__(unsigned long long))
 369                return kstrtoull(s, base, (unsigned long long *)res);
 370        else
 371                return _kstrtoul(s, base, res);
 372}
 373
 374/**
 375 * kstrtol - convert a string to a long
 376 * @s: The start of the string. The string must be null-terminated, and may also
 377 *  include a single newline before its terminating null. The first character
 378 *  may also be a plus sign or a minus sign.
 379 * @base: The number base to use. The maximum supported base is 16. If base is
 380 *  given as 0, then the base of the string is automatically detected with the
 381 *  conventional semantics - If it begins with 0x the number will be parsed as a
 382 *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
 383 *  parsed as an octal number. Otherwise it will be parsed as a decimal.
 384 * @res: Where to write the result of the conversion on success.
 385 *
 386 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
 387 * Used as a replacement for the obsolete simple_strtoull. Return code must
 388 * be checked.
 389 */
 390static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
 391{
 392        /*
 393         * We want to shortcut function call, but
 394         * __builtin_types_compatible_p(long, long long) = 0.
 395         */
 396        if (sizeof(long) == sizeof(long long) &&
 397            __alignof__(long) == __alignof__(long long))
 398                return kstrtoll(s, base, (long long *)res);
 399        else
 400                return _kstrtol(s, base, res);
 401}
 402
 403int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
 404int __must_check kstrtoint(const char *s, unsigned int base, int *res);
 405
 406static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
 407{
 408        return kstrtoull(s, base, res);
 409}
 410
 411static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
 412{
 413        return kstrtoll(s, base, res);
 414}
 415
 416static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
 417{
 418        return kstrtouint(s, base, res);
 419}
 420
 421static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
 422{
 423        return kstrtoint(s, base, res);
 424}
 425
 426int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
 427int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
 428int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
 429int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
 430int __must_check kstrtobool(const char *s, bool *res);
 431
 432int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
 433int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
 434int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
 435int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
 436int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
 437int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
 438int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
 439int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
 440int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
 441int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
 442int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
 443
 444static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
 445{
 446        return kstrtoull_from_user(s, count, base, res);
 447}
 448
 449static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
 450{
 451        return kstrtoll_from_user(s, count, base, res);
 452}
 453
 454static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
 455{
 456        return kstrtouint_from_user(s, count, base, res);
 457}
 458
 459static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
 460{
 461        return kstrtoint_from_user(s, count, base, res);
 462}
 463
 464/* Obsolete, do not use.  Use kstrto<foo> instead */
 465
 466extern unsigned long simple_strtoul(const char *,char **,unsigned int);
 467extern long simple_strtol(const char *,char **,unsigned int);
 468extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
 469extern long long simple_strtoll(const char *,char **,unsigned int);
 470
 471extern int num_to_str(char *buf, int size,
 472                      unsigned long long num, unsigned int width);
 473
 474/* lib/printf utilities */
 475
 476extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
 477extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
 478extern __printf(3, 4)
 479int snprintf(char *buf, size_t size, const char *fmt, ...);
 480extern __printf(3, 0)
 481int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
 482extern __printf(3, 4)
 483int scnprintf(char *buf, size_t size, const char *fmt, ...);
 484extern __printf(3, 0)
 485int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
 486extern __printf(2, 3) __malloc
 487char *kasprintf(gfp_t gfp, const char *fmt, ...);
 488extern __printf(2, 0) __malloc
 489char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
 490extern __printf(2, 0)
 491const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
 492
 493extern __scanf(2, 3)
 494int sscanf(const char *, const char *, ...);
 495extern __scanf(2, 0)
 496int vsscanf(const char *, const char *, va_list);
 497
 498extern int get_option(char **str, int *pint);
 499extern char *get_options(const char *str, int nints, int *ints);
 500extern unsigned long long memparse(const char *ptr, char **retptr);
 501extern bool parse_option_str(const char *str, const char *option);
 502extern char *next_arg(char *args, char **param, char **val);
 503
 504extern int core_kernel_text(unsigned long addr);
 505extern int init_kernel_text(unsigned long addr);
 506extern int core_kernel_data(unsigned long addr);
 507extern int __kernel_text_address(unsigned long addr);
 508extern int kernel_text_address(unsigned long addr);
 509extern int func_ptr_is_kernel_text(void *ptr);
 510
 511u64 int_pow(u64 base, unsigned int exp);
 512unsigned long int_sqrt(unsigned long);
 513
 514#if BITS_PER_LONG < 64
 515u32 int_sqrt64(u64 x);
 516#else
 517static inline u32 int_sqrt64(u64 x)
 518{
 519        return (u32)int_sqrt(x);
 520}
 521#endif
 522
 523extern void bust_spinlocks(int yes);
 524extern int oops_in_progress;            /* If set, an oops, panic(), BUG() or die() is in progress */
 525extern int panic_timeout;
 526extern unsigned long panic_print;
 527extern int panic_on_oops;
 528extern int panic_on_unrecovered_nmi;
 529extern int panic_on_io_nmi;
 530extern int panic_on_warn;
 531extern int sysctl_panic_on_rcu_stall;
 532extern int sysctl_panic_on_stackoverflow;
 533
 534extern bool crash_kexec_post_notifiers;
 535
 536/*
 537 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
 538 * holds a CPU number which is executing panic() currently. A value of
 539 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
 540 */
 541extern atomic_t panic_cpu;
 542#define PANIC_CPU_INVALID       -1
 543
 544/*
 545 * Only to be used by arch init code. If the user over-wrote the default
 546 * CONFIG_PANIC_TIMEOUT, honor it.
 547 */
 548static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
 549{
 550        if (panic_timeout == arch_default_timeout)
 551                panic_timeout = timeout;
 552}
 553extern const char *print_tainted(void);
 554enum lockdep_ok {
 555        LOCKDEP_STILL_OK,
 556        LOCKDEP_NOW_UNRELIABLE
 557};
 558extern void add_taint(unsigned flag, enum lockdep_ok);
 559extern int test_taint(unsigned flag);
 560extern unsigned long get_taint(void);
 561extern int root_mountflags;
 562
 563extern bool early_boot_irqs_disabled;
 564
 565/*
 566 * Values used for system_state. Ordering of the states must not be changed
 567 * as code checks for <, <=, >, >= STATE.
 568 */
 569extern enum system_states {
 570        SYSTEM_BOOTING,
 571        SYSTEM_SCHEDULING,
 572        SYSTEM_RUNNING,
 573        SYSTEM_HALT,
 574        SYSTEM_POWER_OFF,
 575        SYSTEM_RESTART,
 576        SYSTEM_SUSPEND,
 577} system_state;
 578
 579/* This cannot be an enum because some may be used in assembly source. */
 580#define TAINT_PROPRIETARY_MODULE        0
 581#define TAINT_FORCED_MODULE             1
 582#define TAINT_CPU_OUT_OF_SPEC           2
 583#define TAINT_FORCED_RMMOD              3
 584#define TAINT_MACHINE_CHECK             4
 585#define TAINT_BAD_PAGE                  5
 586#define TAINT_USER                      6
 587#define TAINT_DIE                       7
 588#define TAINT_OVERRIDDEN_ACPI_TABLE     8
 589#define TAINT_WARN                      9
 590#define TAINT_CRAP                      10
 591#define TAINT_FIRMWARE_WORKAROUND       11
 592#define TAINT_OOT_MODULE                12
 593#define TAINT_UNSIGNED_MODULE           13
 594#define TAINT_SOFTLOCKUP                14
 595#define TAINT_LIVEPATCH                 15
 596#define TAINT_AUX                       16
 597#define TAINT_RANDSTRUCT                17
 598#define TAINT_FLAGS_COUNT               18
 599
 600struct taint_flag {
 601        char c_true;    /* character printed when tainted */
 602        char c_false;   /* character printed when not tainted */
 603        bool module;    /* also show as a per-module taint flag */
 604};
 605
 606extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
 607
 608extern const char hex_asc[];
 609#define hex_asc_lo(x)   hex_asc[((x) & 0x0f)]
 610#define hex_asc_hi(x)   hex_asc[((x) & 0xf0) >> 4]
 611
 612static inline char *hex_byte_pack(char *buf, u8 byte)
 613{
 614        *buf++ = hex_asc_hi(byte);
 615        *buf++ = hex_asc_lo(byte);
 616        return buf;
 617}
 618
 619extern const char hex_asc_upper[];
 620#define hex_asc_upper_lo(x)     hex_asc_upper[((x) & 0x0f)]
 621#define hex_asc_upper_hi(x)     hex_asc_upper[((x) & 0xf0) >> 4]
 622
 623static inline char *hex_byte_pack_upper(char *buf, u8 byte)
 624{
 625        *buf++ = hex_asc_upper_hi(byte);
 626        *buf++ = hex_asc_upper_lo(byte);
 627        return buf;
 628}
 629
 630extern int hex_to_bin(char ch);
 631extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
 632extern char *bin2hex(char *dst, const void *src, size_t count);
 633
 634bool mac_pton(const char *s, u8 *mac);
 635
 636/*
 637 * General tracing related utility functions - trace_printk(),
 638 * tracing_on/tracing_off and tracing_start()/tracing_stop
 639 *
 640 * Use tracing_on/tracing_off when you want to quickly turn on or off
 641 * tracing. It simply enables or disables the recording of the trace events.
 642 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
 643 * file, which gives a means for the kernel and userspace to interact.
 644 * Place a tracing_off() in the kernel where you want tracing to end.
 645 * From user space, examine the trace, and then echo 1 > tracing_on
 646 * to continue tracing.
 647 *
 648 * tracing_stop/tracing_start has slightly more overhead. It is used
 649 * by things like suspend to ram where disabling the recording of the
 650 * trace is not enough, but tracing must actually stop because things
 651 * like calling smp_processor_id() may crash the system.
 652 *
 653 * Most likely, you want to use tracing_on/tracing_off.
 654 */
 655
 656enum ftrace_dump_mode {
 657        DUMP_NONE,
 658        DUMP_ALL,
 659        DUMP_ORIG,
 660};
 661
 662#ifdef CONFIG_TRACING
 663void tracing_on(void);
 664void tracing_off(void);
 665int tracing_is_on(void);
 666void tracing_snapshot(void);
 667void tracing_snapshot_alloc(void);
 668
 669extern void tracing_start(void);
 670extern void tracing_stop(void);
 671
 672static inline __printf(1, 2)
 673void ____trace_printk_check_format(const char *fmt, ...)
 674{
 675}
 676#define __trace_printk_check_format(fmt, args...)                       \
 677do {                                                                    \
 678        if (0)                                                          \
 679                ____trace_printk_check_format(fmt, ##args);             \
 680} while (0)
 681
 682/**
 683 * trace_printk - printf formatting in the ftrace buffer
 684 * @fmt: the printf format for printing
 685 *
 686 * Note: __trace_printk is an internal function for trace_printk() and
 687 *       the @ip is passed in via the trace_printk() macro.
 688 *
 689 * This function allows a kernel developer to debug fast path sections
 690 * that printk is not appropriate for. By scattering in various
 691 * printk like tracing in the code, a developer can quickly see
 692 * where problems are occurring.
 693 *
 694 * This is intended as a debugging tool for the developer only.
 695 * Please refrain from leaving trace_printks scattered around in
 696 * your code. (Extra memory is used for special buffers that are
 697 * allocated when trace_printk() is used.)
 698 *
 699 * A little optimization trick is done here. If there's only one
 700 * argument, there's no need to scan the string for printf formats.
 701 * The trace_puts() will suffice. But how can we take advantage of
 702 * using trace_puts() when trace_printk() has only one argument?
 703 * By stringifying the args and checking the size we can tell
 704 * whether or not there are args. __stringify((__VA_ARGS__)) will
 705 * turn into "()\0" with a size of 3 when there are no args, anything
 706 * else will be bigger. All we need to do is define a string to this,
 707 * and then take its size and compare to 3. If it's bigger, use
 708 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
 709 * let gcc optimize the rest.
 710 */
 711
 712#define trace_printk(fmt, ...)                          \
 713do {                                                    \
 714        char _______STR[] = __stringify((__VA_ARGS__)); \
 715        if (sizeof(_______STR) > 3)                     \
 716                do_trace_printk(fmt, ##__VA_ARGS__);    \
 717        else                                            \
 718                trace_puts(fmt);                        \
 719} while (0)
 720
 721#define do_trace_printk(fmt, args...)                                   \
 722do {                                                                    \
 723        static const char *trace_printk_fmt __used                      \
 724                __attribute__((section("__trace_printk_fmt"))) =        \
 725                __builtin_constant_p(fmt) ? fmt : NULL;                 \
 726                                                                        \
 727        __trace_printk_check_format(fmt, ##args);                       \
 728                                                                        \
 729        if (__builtin_constant_p(fmt))                                  \
 730                __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args);   \
 731        else                                                            \
 732                __trace_printk(_THIS_IP_, fmt, ##args);                 \
 733} while (0)
 734
 735extern __printf(2, 3)
 736int __trace_bprintk(unsigned long ip, const char *fmt, ...);
 737
 738extern __printf(2, 3)
 739int __trace_printk(unsigned long ip, const char *fmt, ...);
 740
 741/**
 742 * trace_puts - write a string into the ftrace buffer
 743 * @str: the string to record
 744 *
 745 * Note: __trace_bputs is an internal function for trace_puts and
 746 *       the @ip is passed in via the trace_puts macro.
 747 *
 748 * This is similar to trace_printk() but is made for those really fast
 749 * paths that a developer wants the least amount of "Heisenbug" effects,
 750 * where the processing of the print format is still too much.
 751 *
 752 * This function allows a kernel developer to debug fast path sections
 753 * that printk is not appropriate for. By scattering in various
 754 * printk like tracing in the code, a developer can quickly see
 755 * where problems are occurring.
 756 *
 757 * This is intended as a debugging tool for the developer only.
 758 * Please refrain from leaving trace_puts scattered around in
 759 * your code. (Extra memory is used for special buffers that are
 760 * allocated when trace_puts() is used.)
 761 *
 762 * Returns: 0 if nothing was written, positive # if string was.
 763 *  (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
 764 */
 765
 766#define trace_puts(str) ({                                              \
 767        static const char *trace_printk_fmt __used                      \
 768                __attribute__((section("__trace_printk_fmt"))) =        \
 769                __builtin_constant_p(str) ? str : NULL;                 \
 770                                                                        \
 771        if (__builtin_constant_p(str))                                  \
 772                __trace_bputs(_THIS_IP_, trace_printk_fmt);             \
 773        else                                                            \
 774                __trace_puts(_THIS_IP_, str, strlen(str));              \
 775})
 776extern int __trace_bputs(unsigned long ip, const char *str);
 777extern int __trace_puts(unsigned long ip, const char *str, int size);
 778
 779extern void trace_dump_stack(int skip);
 780
 781/*
 782 * The double __builtin_constant_p is because gcc will give us an error
 783 * if we try to allocate the static variable to fmt if it is not a
 784 * constant. Even with the outer if statement.
 785 */
 786#define ftrace_vprintk(fmt, vargs)                                      \
 787do {                                                                    \
 788        if (__builtin_constant_p(fmt)) {                                \
 789                static const char *trace_printk_fmt __used              \
 790                  __attribute__((section("__trace_printk_fmt"))) =      \
 791                        __builtin_constant_p(fmt) ? fmt : NULL;         \
 792                                                                        \
 793                __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs);  \
 794        } else                                                          \
 795                __ftrace_vprintk(_THIS_IP_, fmt, vargs);                \
 796} while (0)
 797
 798extern __printf(2, 0) int
 799__ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
 800
 801extern __printf(2, 0) int
 802__ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
 803
 804extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
 805#else
 806static inline void tracing_start(void) { }
 807static inline void tracing_stop(void) { }
 808static inline void trace_dump_stack(int skip) { }
 809
 810static inline void tracing_on(void) { }
 811static inline void tracing_off(void) { }
 812static inline int tracing_is_on(void) { return 0; }
 813static inline void tracing_snapshot(void) { }
 814static inline void tracing_snapshot_alloc(void) { }
 815
 816static inline __printf(1, 2)
 817int trace_printk(const char *fmt, ...)
 818{
 819        return 0;
 820}
 821static __printf(1, 0) inline int
 822ftrace_vprintk(const char *fmt, va_list ap)
 823{
 824        return 0;
 825}
 826static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
 827#endif /* CONFIG_TRACING */
 828
 829/*
 830 * min()/max()/clamp() macros must accomplish three things:
 831 *
 832 * - avoid multiple evaluations of the arguments (so side-effects like
 833 *   "x++" happen only once) when non-constant.
 834 * - perform strict type-checking (to generate warnings instead of
 835 *   nasty runtime surprises). See the "unnecessary" pointer comparison
 836 *   in __typecheck().
 837 * - retain result as a constant expressions when called with only
 838 *   constant expressions (to avoid tripping VLA warnings in stack
 839 *   allocation usage).
 840 */
 841#define __typecheck(x, y) \
 842                (!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
 843
 844/*
 845 * This returns a constant expression while determining if an argument is
 846 * a constant expression, most importantly without evaluating the argument.
 847 * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de>
 848 */
 849#define __is_constexpr(x) \
 850        (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
 851
 852#define __no_side_effects(x, y) \
 853                (__is_constexpr(x) && __is_constexpr(y))
 854
 855#define __safe_cmp(x, y) \
 856                (__typecheck(x, y) && __no_side_effects(x, y))
 857
 858#define __cmp(x, y, op) ((x) op (y) ? (x) : (y))
 859
 860#define __cmp_once(x, y, unique_x, unique_y, op) ({     \
 861                typeof(x) unique_x = (x);               \
 862                typeof(y) unique_y = (y);               \
 863                __cmp(unique_x, unique_y, op); })
 864
 865#define __careful_cmp(x, y, op) \
 866        __builtin_choose_expr(__safe_cmp(x, y), \
 867                __cmp(x, y, op), \
 868                __cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op))
 869
 870/**
 871 * min - return minimum of two values of the same or compatible types
 872 * @x: first value
 873 * @y: second value
 874 */
 875#define min(x, y)       __careful_cmp(x, y, <)
 876
 877/**
 878 * max - return maximum of two values of the same or compatible types
 879 * @x: first value
 880 * @y: second value
 881 */
 882#define max(x, y)       __careful_cmp(x, y, >)
 883
 884/**
 885 * min3 - return minimum of three values
 886 * @x: first value
 887 * @y: second value
 888 * @z: third value
 889 */
 890#define min3(x, y, z) min((typeof(x))min(x, y), z)
 891
 892/**
 893 * max3 - return maximum of three values
 894 * @x: first value
 895 * @y: second value
 896 * @z: third value
 897 */
 898#define max3(x, y, z) max((typeof(x))max(x, y), z)
 899
 900/**
 901 * min_not_zero - return the minimum that is _not_ zero, unless both are zero
 902 * @x: value1
 903 * @y: value2
 904 */
 905#define min_not_zero(x, y) ({                   \
 906        typeof(x) __x = (x);                    \
 907        typeof(y) __y = (y);                    \
 908        __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
 909
 910/**
 911 * clamp - return a value clamped to a given range with strict typechecking
 912 * @val: current value
 913 * @lo: lowest allowable value
 914 * @hi: highest allowable value
 915 *
 916 * This macro does strict typechecking of @lo/@hi to make sure they are of the
 917 * same type as @val.  See the unnecessary pointer comparisons.
 918 */
 919#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
 920
 921/*
 922 * ..and if you can't take the strict
 923 * types, you can specify one yourself.
 924 *
 925 * Or not use min/max/clamp at all, of course.
 926 */
 927
 928/**
 929 * min_t - return minimum of two values, using the specified type
 930 * @type: data type to use
 931 * @x: first value
 932 * @y: second value
 933 */
 934#define min_t(type, x, y)       __careful_cmp((type)(x), (type)(y), <)
 935
 936/**
 937 * max_t - return maximum of two values, using the specified type
 938 * @type: data type to use
 939 * @x: first value
 940 * @y: second value
 941 */
 942#define max_t(type, x, y)       __careful_cmp((type)(x), (type)(y), >)
 943
 944/**
 945 * clamp_t - return a value clamped to a given range using a given type
 946 * @type: the type of variable to use
 947 * @val: current value
 948 * @lo: minimum allowable value
 949 * @hi: maximum allowable value
 950 *
 951 * This macro does no typechecking and uses temporary variables of type
 952 * @type to make all the comparisons.
 953 */
 954#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
 955
 956/**
 957 * clamp_val - return a value clamped to a given range using val's type
 958 * @val: current value
 959 * @lo: minimum allowable value
 960 * @hi: maximum allowable value
 961 *
 962 * This macro does no typechecking and uses temporary variables of whatever
 963 * type the input argument @val is.  This is useful when @val is an unsigned
 964 * type and @lo and @hi are literals that will otherwise be assigned a signed
 965 * integer type.
 966 */
 967#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
 968
 969
 970/**
 971 * swap - swap values of @a and @b
 972 * @a: first value
 973 * @b: second value
 974 */
 975#define swap(a, b) \
 976        do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
 977
 978/* This counts to 12. Any more, it will return 13th argument. */
 979#define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n
 980#define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
 981
 982#define __CONCAT(a, b) a ## b
 983#define CONCATENATE(a, b) __CONCAT(a, b)
 984
 985/**
 986 * container_of - cast a member of a structure out to the containing structure
 987 * @ptr:        the pointer to the member.
 988 * @type:       the type of the container struct this is embedded in.
 989 * @member:     the name of the member within the struct.
 990 *
 991 */
 992#define container_of(ptr, type, member) ({                              \
 993        void *__mptr = (void *)(ptr);                                   \
 994        BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&   \
 995                         !__same_type(*(ptr), void),                    \
 996                         "pointer type mismatch in container_of()");    \
 997        ((type *)(__mptr - offsetof(type, member))); })
 998
 999/**
1000 * container_of_safe - cast a member of a structure out to the containing structure
1001 * @ptr:        the pointer to the member.
1002 * @type:       the type of the container struct this is embedded in.
1003 * @member:     the name of the member within the struct.
1004 *
1005 * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged.
1006 */
1007#define container_of_safe(ptr, type, member) ({                         \
1008        void *__mptr = (void *)(ptr);                                   \
1009        BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&   \
1010                         !__same_type(*(ptr), void),                    \
1011                         "pointer type mismatch in container_of()");    \
1012        IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) :                     \
1013                ((type *)(__mptr - offsetof(type, member))); })
1014
1015/* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
1016#ifdef CONFIG_FTRACE_MCOUNT_RECORD
1017# define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
1018#endif
1019
1020/* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
1021#define VERIFY_OCTAL_PERMISSIONS(perms)                                         \
1022        (BUILD_BUG_ON_ZERO((perms) < 0) +                                       \
1023         BUILD_BUG_ON_ZERO((perms) > 0777) +                                    \
1024         /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */                \
1025         BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) +       \
1026         BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) +              \
1027         /* USER_WRITABLE >= GROUP_WRITABLE */                                  \
1028         BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) +       \
1029         /* OTHER_WRITABLE?  Generally considered a bad idea. */                \
1030         BUILD_BUG_ON_ZERO((perms) & 2) +                                       \
1031         (perms))
1032#endif
1033