linux/include/linux/sched.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_SCHED_H
   3#define _LINUX_SCHED_H
   4
   5/*
   6 * Define 'struct task_struct' and provide the main scheduler
   7 * APIs (schedule(), wakeup variants, etc.)
   8 */
   9
  10#include <uapi/linux/sched.h>
  11
  12#include <asm/current.h>
  13
  14#include <linux/pid.h>
  15#include <linux/sem.h>
  16#include <linux/shm.h>
  17#include <linux/kcov.h>
  18#include <linux/mutex.h>
  19#include <linux/plist.h>
  20#include <linux/hrtimer.h>
  21#include <linux/seccomp.h>
  22#include <linux/nodemask.h>
  23#include <linux/rcupdate.h>
  24#include <linux/refcount.h>
  25#include <linux/resource.h>
  26#include <linux/latencytop.h>
  27#include <linux/sched/prio.h>
  28#include <linux/sched/types.h>
  29#include <linux/signal_types.h>
  30#include <linux/mm_types_task.h>
  31#include <linux/task_io_accounting.h>
  32#include <linux/posix-timers.h>
  33#include <linux/rseq.h>
  34
  35/* task_struct member predeclarations (sorted alphabetically): */
  36struct audit_context;
  37struct backing_dev_info;
  38struct bio_list;
  39struct blk_plug;
  40struct capture_control;
  41struct cfs_rq;
  42struct fs_struct;
  43struct futex_pi_state;
  44struct io_context;
  45struct mempolicy;
  46struct nameidata;
  47struct nsproxy;
  48struct perf_event_context;
  49struct pid_namespace;
  50struct pipe_inode_info;
  51struct rcu_node;
  52struct reclaim_state;
  53struct robust_list_head;
  54struct root_domain;
  55struct rq;
  56struct sched_attr;
  57struct sched_param;
  58struct seq_file;
  59struct sighand_struct;
  60struct signal_struct;
  61struct task_delay_info;
  62struct task_group;
  63
  64/*
  65 * Task state bitmask. NOTE! These bits are also
  66 * encoded in fs/proc/array.c: get_task_state().
  67 *
  68 * We have two separate sets of flags: task->state
  69 * is about runnability, while task->exit_state are
  70 * about the task exiting. Confusing, but this way
  71 * modifying one set can't modify the other one by
  72 * mistake.
  73 */
  74
  75/* Used in tsk->state: */
  76#define TASK_RUNNING                    0x0000
  77#define TASK_INTERRUPTIBLE              0x0001
  78#define TASK_UNINTERRUPTIBLE            0x0002
  79#define __TASK_STOPPED                  0x0004
  80#define __TASK_TRACED                   0x0008
  81/* Used in tsk->exit_state: */
  82#define EXIT_DEAD                       0x0010
  83#define EXIT_ZOMBIE                     0x0020
  84#define EXIT_TRACE                      (EXIT_ZOMBIE | EXIT_DEAD)
  85/* Used in tsk->state again: */
  86#define TASK_PARKED                     0x0040
  87#define TASK_DEAD                       0x0080
  88#define TASK_WAKEKILL                   0x0100
  89#define TASK_WAKING                     0x0200
  90#define TASK_NOLOAD                     0x0400
  91#define TASK_NEW                        0x0800
  92#define TASK_STATE_MAX                  0x1000
  93
  94/* Convenience macros for the sake of set_current_state: */
  95#define TASK_KILLABLE                   (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
  96#define TASK_STOPPED                    (TASK_WAKEKILL | __TASK_STOPPED)
  97#define TASK_TRACED                     (TASK_WAKEKILL | __TASK_TRACED)
  98
  99#define TASK_IDLE                       (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
 100
 101/* Convenience macros for the sake of wake_up(): */
 102#define TASK_NORMAL                     (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 103
 104/* get_task_state(): */
 105#define TASK_REPORT                     (TASK_RUNNING | TASK_INTERRUPTIBLE | \
 106                                         TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 107                                         __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
 108                                         TASK_PARKED)
 109
 110#define task_is_traced(task)            ((task->state & __TASK_TRACED) != 0)
 111
 112#define task_is_stopped(task)           ((task->state & __TASK_STOPPED) != 0)
 113
 114#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
 115
 116#define task_contributes_to_load(task)  ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
 117                                         (task->flags & PF_FROZEN) == 0 && \
 118                                         (task->state & TASK_NOLOAD) == 0)
 119
 120#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 121
 122/*
 123 * Special states are those that do not use the normal wait-loop pattern. See
 124 * the comment with set_special_state().
 125 */
 126#define is_special_task_state(state)                            \
 127        ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
 128
 129#define __set_current_state(state_value)                        \
 130        do {                                                    \
 131                WARN_ON_ONCE(is_special_task_state(state_value));\
 132                current->task_state_change = _THIS_IP_;         \
 133                current->state = (state_value);                 \
 134        } while (0)
 135
 136#define set_current_state(state_value)                          \
 137        do {                                                    \
 138                WARN_ON_ONCE(is_special_task_state(state_value));\
 139                current->task_state_change = _THIS_IP_;         \
 140                smp_store_mb(current->state, (state_value));    \
 141        } while (0)
 142
 143#define set_special_state(state_value)                                  \
 144        do {                                                            \
 145                unsigned long flags; /* may shadow */                   \
 146                WARN_ON_ONCE(!is_special_task_state(state_value));      \
 147                raw_spin_lock_irqsave(&current->pi_lock, flags);        \
 148                current->task_state_change = _THIS_IP_;                 \
 149                current->state = (state_value);                         \
 150                raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
 151        } while (0)
 152#else
 153/*
 154 * set_current_state() includes a barrier so that the write of current->state
 155 * is correctly serialised wrt the caller's subsequent test of whether to
 156 * actually sleep:
 157 *
 158 *   for (;;) {
 159 *      set_current_state(TASK_UNINTERRUPTIBLE);
 160 *      if (!need_sleep)
 161 *              break;
 162 *
 163 *      schedule();
 164 *   }
 165 *   __set_current_state(TASK_RUNNING);
 166 *
 167 * If the caller does not need such serialisation (because, for instance, the
 168 * condition test and condition change and wakeup are under the same lock) then
 169 * use __set_current_state().
 170 *
 171 * The above is typically ordered against the wakeup, which does:
 172 *
 173 *   need_sleep = false;
 174 *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
 175 *
 176 * where wake_up_state() executes a full memory barrier before accessing the
 177 * task state.
 178 *
 179 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
 180 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
 181 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
 182 *
 183 * However, with slightly different timing the wakeup TASK_RUNNING store can
 184 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
 185 * a problem either because that will result in one extra go around the loop
 186 * and our @cond test will save the day.
 187 *
 188 * Also see the comments of try_to_wake_up().
 189 */
 190#define __set_current_state(state_value)                                \
 191        current->state = (state_value)
 192
 193#define set_current_state(state_value)                                  \
 194        smp_store_mb(current->state, (state_value))
 195
 196/*
 197 * set_special_state() should be used for those states when the blocking task
 198 * can not use the regular condition based wait-loop. In that case we must
 199 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
 200 * will not collide with our state change.
 201 */
 202#define set_special_state(state_value)                                  \
 203        do {                                                            \
 204                unsigned long flags; /* may shadow */                   \
 205                raw_spin_lock_irqsave(&current->pi_lock, flags);        \
 206                current->state = (state_value);                         \
 207                raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
 208        } while (0)
 209
 210#endif
 211
 212/* Task command name length: */
 213#define TASK_COMM_LEN                   16
 214
 215extern void scheduler_tick(void);
 216
 217#define MAX_SCHEDULE_TIMEOUT            LONG_MAX
 218
 219extern long schedule_timeout(long timeout);
 220extern long schedule_timeout_interruptible(long timeout);
 221extern long schedule_timeout_killable(long timeout);
 222extern long schedule_timeout_uninterruptible(long timeout);
 223extern long schedule_timeout_idle(long timeout);
 224asmlinkage void schedule(void);
 225extern void schedule_preempt_disabled(void);
 226asmlinkage void preempt_schedule_irq(void);
 227
 228extern int __must_check io_schedule_prepare(void);
 229extern void io_schedule_finish(int token);
 230extern long io_schedule_timeout(long timeout);
 231extern void io_schedule(void);
 232
 233/**
 234 * struct prev_cputime - snapshot of system and user cputime
 235 * @utime: time spent in user mode
 236 * @stime: time spent in system mode
 237 * @lock: protects the above two fields
 238 *
 239 * Stores previous user/system time values such that we can guarantee
 240 * monotonicity.
 241 */
 242struct prev_cputime {
 243#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 244        u64                             utime;
 245        u64                             stime;
 246        raw_spinlock_t                  lock;
 247#endif
 248};
 249
 250enum vtime_state {
 251        /* Task is sleeping or running in a CPU with VTIME inactive: */
 252        VTIME_INACTIVE = 0,
 253        /* Task runs in userspace in a CPU with VTIME active: */
 254        VTIME_USER,
 255        /* Task runs in kernelspace in a CPU with VTIME active: */
 256        VTIME_SYS,
 257};
 258
 259struct vtime {
 260        seqcount_t              seqcount;
 261        unsigned long long      starttime;
 262        enum vtime_state        state;
 263        u64                     utime;
 264        u64                     stime;
 265        u64                     gtime;
 266};
 267
 268/*
 269 * Utilization clamp constraints.
 270 * @UCLAMP_MIN: Minimum utilization
 271 * @UCLAMP_MAX: Maximum utilization
 272 * @UCLAMP_CNT: Utilization clamp constraints count
 273 */
 274enum uclamp_id {
 275        UCLAMP_MIN = 0,
 276        UCLAMP_MAX,
 277        UCLAMP_CNT
 278};
 279
 280#ifdef CONFIG_SMP
 281extern struct root_domain def_root_domain;
 282extern struct mutex sched_domains_mutex;
 283#endif
 284
 285struct sched_info {
 286#ifdef CONFIG_SCHED_INFO
 287        /* Cumulative counters: */
 288
 289        /* # of times we have run on this CPU: */
 290        unsigned long                   pcount;
 291
 292        /* Time spent waiting on a runqueue: */
 293        unsigned long long              run_delay;
 294
 295        /* Timestamps: */
 296
 297        /* When did we last run on a CPU? */
 298        unsigned long long              last_arrival;
 299
 300        /* When were we last queued to run? */
 301        unsigned long long              last_queued;
 302
 303#endif /* CONFIG_SCHED_INFO */
 304};
 305
 306/*
 307 * Integer metrics need fixed point arithmetic, e.g., sched/fair
 308 * has a few: load, load_avg, util_avg, freq, and capacity.
 309 *
 310 * We define a basic fixed point arithmetic range, and then formalize
 311 * all these metrics based on that basic range.
 312 */
 313# define SCHED_FIXEDPOINT_SHIFT         10
 314# define SCHED_FIXEDPOINT_SCALE         (1L << SCHED_FIXEDPOINT_SHIFT)
 315
 316/* Increase resolution of cpu_capacity calculations */
 317# define SCHED_CAPACITY_SHIFT           SCHED_FIXEDPOINT_SHIFT
 318# define SCHED_CAPACITY_SCALE           (1L << SCHED_CAPACITY_SHIFT)
 319
 320struct load_weight {
 321        unsigned long                   weight;
 322        u32                             inv_weight;
 323};
 324
 325/**
 326 * struct util_est - Estimation utilization of FAIR tasks
 327 * @enqueued: instantaneous estimated utilization of a task/cpu
 328 * @ewma:     the Exponential Weighted Moving Average (EWMA)
 329 *            utilization of a task
 330 *
 331 * Support data structure to track an Exponential Weighted Moving Average
 332 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
 333 * average each time a task completes an activation. Sample's weight is chosen
 334 * so that the EWMA will be relatively insensitive to transient changes to the
 335 * task's workload.
 336 *
 337 * The enqueued attribute has a slightly different meaning for tasks and cpus:
 338 * - task:   the task's util_avg at last task dequeue time
 339 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
 340 * Thus, the util_est.enqueued of a task represents the contribution on the
 341 * estimated utilization of the CPU where that task is currently enqueued.
 342 *
 343 * Only for tasks we track a moving average of the past instantaneous
 344 * estimated utilization. This allows to absorb sporadic drops in utilization
 345 * of an otherwise almost periodic task.
 346 */
 347struct util_est {
 348        unsigned int                    enqueued;
 349        unsigned int                    ewma;
 350#define UTIL_EST_WEIGHT_SHIFT           2
 351} __attribute__((__aligned__(sizeof(u64))));
 352
 353/*
 354 * The load_avg/util_avg accumulates an infinite geometric series
 355 * (see __update_load_avg() in kernel/sched/fair.c).
 356 *
 357 * [load_avg definition]
 358 *
 359 *   load_avg = runnable% * scale_load_down(load)
 360 *
 361 * where runnable% is the time ratio that a sched_entity is runnable.
 362 * For cfs_rq, it is the aggregated load_avg of all runnable and
 363 * blocked sched_entities.
 364 *
 365 * [util_avg definition]
 366 *
 367 *   util_avg = running% * SCHED_CAPACITY_SCALE
 368 *
 369 * where running% is the time ratio that a sched_entity is running on
 370 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
 371 * and blocked sched_entities.
 372 *
 373 * load_avg and util_avg don't direcly factor frequency scaling and CPU
 374 * capacity scaling. The scaling is done through the rq_clock_pelt that
 375 * is used for computing those signals (see update_rq_clock_pelt())
 376 *
 377 * N.B., the above ratios (runnable% and running%) themselves are in the
 378 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
 379 * to as large a range as necessary. This is for example reflected by
 380 * util_avg's SCHED_CAPACITY_SCALE.
 381 *
 382 * [Overflow issue]
 383 *
 384 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
 385 * with the highest load (=88761), always runnable on a single cfs_rq,
 386 * and should not overflow as the number already hits PID_MAX_LIMIT.
 387 *
 388 * For all other cases (including 32-bit kernels), struct load_weight's
 389 * weight will overflow first before we do, because:
 390 *
 391 *    Max(load_avg) <= Max(load.weight)
 392 *
 393 * Then it is the load_weight's responsibility to consider overflow
 394 * issues.
 395 */
 396struct sched_avg {
 397        u64                             last_update_time;
 398        u64                             load_sum;
 399        u64                             runnable_load_sum;
 400        u32                             util_sum;
 401        u32                             period_contrib;
 402        unsigned long                   load_avg;
 403        unsigned long                   runnable_load_avg;
 404        unsigned long                   util_avg;
 405        struct util_est                 util_est;
 406} ____cacheline_aligned;
 407
 408struct sched_statistics {
 409#ifdef CONFIG_SCHEDSTATS
 410        u64                             wait_start;
 411        u64                             wait_max;
 412        u64                             wait_count;
 413        u64                             wait_sum;
 414        u64                             iowait_count;
 415        u64                             iowait_sum;
 416
 417        u64                             sleep_start;
 418        u64                             sleep_max;
 419        s64                             sum_sleep_runtime;
 420
 421        u64                             block_start;
 422        u64                             block_max;
 423        u64                             exec_max;
 424        u64                             slice_max;
 425
 426        u64                             nr_migrations_cold;
 427        u64                             nr_failed_migrations_affine;
 428        u64                             nr_failed_migrations_running;
 429        u64                             nr_failed_migrations_hot;
 430        u64                             nr_forced_migrations;
 431
 432        u64                             nr_wakeups;
 433        u64                             nr_wakeups_sync;
 434        u64                             nr_wakeups_migrate;
 435        u64                             nr_wakeups_local;
 436        u64                             nr_wakeups_remote;
 437        u64                             nr_wakeups_affine;
 438        u64                             nr_wakeups_affine_attempts;
 439        u64                             nr_wakeups_passive;
 440        u64                             nr_wakeups_idle;
 441#endif
 442};
 443
 444struct sched_entity {
 445        /* For load-balancing: */
 446        struct load_weight              load;
 447        unsigned long                   runnable_weight;
 448        struct rb_node                  run_node;
 449        struct list_head                group_node;
 450        unsigned int                    on_rq;
 451
 452        u64                             exec_start;
 453        u64                             sum_exec_runtime;
 454        u64                             vruntime;
 455        u64                             prev_sum_exec_runtime;
 456
 457        u64                             nr_migrations;
 458
 459        struct sched_statistics         statistics;
 460
 461#ifdef CONFIG_FAIR_GROUP_SCHED
 462        int                             depth;
 463        struct sched_entity             *parent;
 464        /* rq on which this entity is (to be) queued: */
 465        struct cfs_rq                   *cfs_rq;
 466        /* rq "owned" by this entity/group: */
 467        struct cfs_rq                   *my_q;
 468#endif
 469
 470#ifdef CONFIG_SMP
 471        /*
 472         * Per entity load average tracking.
 473         *
 474         * Put into separate cache line so it does not
 475         * collide with read-mostly values above.
 476         */
 477        struct sched_avg                avg;
 478#endif
 479};
 480
 481struct sched_rt_entity {
 482        struct list_head                run_list;
 483        unsigned long                   timeout;
 484        unsigned long                   watchdog_stamp;
 485        unsigned int                    time_slice;
 486        unsigned short                  on_rq;
 487        unsigned short                  on_list;
 488
 489        struct sched_rt_entity          *back;
 490#ifdef CONFIG_RT_GROUP_SCHED
 491        struct sched_rt_entity          *parent;
 492        /* rq on which this entity is (to be) queued: */
 493        struct rt_rq                    *rt_rq;
 494        /* rq "owned" by this entity/group: */
 495        struct rt_rq                    *my_q;
 496#endif
 497} __randomize_layout;
 498
 499struct sched_dl_entity {
 500        struct rb_node                  rb_node;
 501
 502        /*
 503         * Original scheduling parameters. Copied here from sched_attr
 504         * during sched_setattr(), they will remain the same until
 505         * the next sched_setattr().
 506         */
 507        u64                             dl_runtime;     /* Maximum runtime for each instance    */
 508        u64                             dl_deadline;    /* Relative deadline of each instance   */
 509        u64                             dl_period;      /* Separation of two instances (period) */
 510        u64                             dl_bw;          /* dl_runtime / dl_period               */
 511        u64                             dl_density;     /* dl_runtime / dl_deadline             */
 512
 513        /*
 514         * Actual scheduling parameters. Initialized with the values above,
 515         * they are continuously updated during task execution. Note that
 516         * the remaining runtime could be < 0 in case we are in overrun.
 517         */
 518        s64                             runtime;        /* Remaining runtime for this instance  */
 519        u64                             deadline;       /* Absolute deadline for this instance  */
 520        unsigned int                    flags;          /* Specifying the scheduler behaviour   */
 521
 522        /*
 523         * Some bool flags:
 524         *
 525         * @dl_throttled tells if we exhausted the runtime. If so, the
 526         * task has to wait for a replenishment to be performed at the
 527         * next firing of dl_timer.
 528         *
 529         * @dl_boosted tells if we are boosted due to DI. If so we are
 530         * outside bandwidth enforcement mechanism (but only until we
 531         * exit the critical section);
 532         *
 533         * @dl_yielded tells if task gave up the CPU before consuming
 534         * all its available runtime during the last job.
 535         *
 536         * @dl_non_contending tells if the task is inactive while still
 537         * contributing to the active utilization. In other words, it
 538         * indicates if the inactive timer has been armed and its handler
 539         * has not been executed yet. This flag is useful to avoid race
 540         * conditions between the inactive timer handler and the wakeup
 541         * code.
 542         *
 543         * @dl_overrun tells if the task asked to be informed about runtime
 544         * overruns.
 545         */
 546        unsigned int                    dl_throttled      : 1;
 547        unsigned int                    dl_boosted        : 1;
 548        unsigned int                    dl_yielded        : 1;
 549        unsigned int                    dl_non_contending : 1;
 550        unsigned int                    dl_overrun        : 1;
 551
 552        /*
 553         * Bandwidth enforcement timer. Each -deadline task has its
 554         * own bandwidth to be enforced, thus we need one timer per task.
 555         */
 556        struct hrtimer                  dl_timer;
 557
 558        /*
 559         * Inactive timer, responsible for decreasing the active utilization
 560         * at the "0-lag time". When a -deadline task blocks, it contributes
 561         * to GRUB's active utilization until the "0-lag time", hence a
 562         * timer is needed to decrease the active utilization at the correct
 563         * time.
 564         */
 565        struct hrtimer inactive_timer;
 566};
 567
 568#ifdef CONFIG_UCLAMP_TASK
 569/* Number of utilization clamp buckets (shorter alias) */
 570#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
 571
 572/*
 573 * Utilization clamp for a scheduling entity
 574 * @value:              clamp value "assigned" to a se
 575 * @bucket_id:          bucket index corresponding to the "assigned" value
 576 * @active:             the se is currently refcounted in a rq's bucket
 577 * @user_defined:       the requested clamp value comes from user-space
 578 *
 579 * The bucket_id is the index of the clamp bucket matching the clamp value
 580 * which is pre-computed and stored to avoid expensive integer divisions from
 581 * the fast path.
 582 *
 583 * The active bit is set whenever a task has got an "effective" value assigned,
 584 * which can be different from the clamp value "requested" from user-space.
 585 * This allows to know a task is refcounted in the rq's bucket corresponding
 586 * to the "effective" bucket_id.
 587 *
 588 * The user_defined bit is set whenever a task has got a task-specific clamp
 589 * value requested from userspace, i.e. the system defaults apply to this task
 590 * just as a restriction. This allows to relax default clamps when a less
 591 * restrictive task-specific value has been requested, thus allowing to
 592 * implement a "nice" semantic. For example, a task running with a 20%
 593 * default boost can still drop its own boosting to 0%.
 594 */
 595struct uclamp_se {
 596        unsigned int value              : bits_per(SCHED_CAPACITY_SCALE);
 597        unsigned int bucket_id          : bits_per(UCLAMP_BUCKETS);
 598        unsigned int active             : 1;
 599        unsigned int user_defined       : 1;
 600};
 601#endif /* CONFIG_UCLAMP_TASK */
 602
 603union rcu_special {
 604        struct {
 605                u8                      blocked;
 606                u8                      need_qs;
 607                u8                      exp_hint; /* Hint for performance. */
 608                u8                      deferred_qs;
 609        } b; /* Bits. */
 610        u32 s; /* Set of bits. */
 611};
 612
 613enum perf_event_task_context {
 614        perf_invalid_context = -1,
 615        perf_hw_context = 0,
 616        perf_sw_context,
 617        perf_nr_task_contexts,
 618};
 619
 620struct wake_q_node {
 621        struct wake_q_node *next;
 622};
 623
 624struct task_struct {
 625#ifdef CONFIG_THREAD_INFO_IN_TASK
 626        /*
 627         * For reasons of header soup (see current_thread_info()), this
 628         * must be the first element of task_struct.
 629         */
 630        struct thread_info              thread_info;
 631#endif
 632        /* -1 unrunnable, 0 runnable, >0 stopped: */
 633        volatile long                   state;
 634
 635        /*
 636         * This begins the randomizable portion of task_struct. Only
 637         * scheduling-critical items should be added above here.
 638         */
 639        randomized_struct_fields_start
 640
 641        void                            *stack;
 642        refcount_t                      usage;
 643        /* Per task flags (PF_*), defined further below: */
 644        unsigned int                    flags;
 645        unsigned int                    ptrace;
 646
 647#ifdef CONFIG_SMP
 648        struct llist_node               wake_entry;
 649        int                             on_cpu;
 650#ifdef CONFIG_THREAD_INFO_IN_TASK
 651        /* Current CPU: */
 652        unsigned int                    cpu;
 653#endif
 654        unsigned int                    wakee_flips;
 655        unsigned long                   wakee_flip_decay_ts;
 656        struct task_struct              *last_wakee;
 657
 658        /*
 659         * recent_used_cpu is initially set as the last CPU used by a task
 660         * that wakes affine another task. Waker/wakee relationships can
 661         * push tasks around a CPU where each wakeup moves to the next one.
 662         * Tracking a recently used CPU allows a quick search for a recently
 663         * used CPU that may be idle.
 664         */
 665        int                             recent_used_cpu;
 666        int                             wake_cpu;
 667#endif
 668        int                             on_rq;
 669
 670        int                             prio;
 671        int                             static_prio;
 672        int                             normal_prio;
 673        unsigned int                    rt_priority;
 674
 675        const struct sched_class        *sched_class;
 676        struct sched_entity             se;
 677        struct sched_rt_entity          rt;
 678#ifdef CONFIG_CGROUP_SCHED
 679        struct task_group               *sched_task_group;
 680#endif
 681        struct sched_dl_entity          dl;
 682
 683#ifdef CONFIG_UCLAMP_TASK
 684        /* Clamp values requested for a scheduling entity */
 685        struct uclamp_se                uclamp_req[UCLAMP_CNT];
 686        /* Effective clamp values used for a scheduling entity */
 687        struct uclamp_se                uclamp[UCLAMP_CNT];
 688#endif
 689
 690#ifdef CONFIG_PREEMPT_NOTIFIERS
 691        /* List of struct preempt_notifier: */
 692        struct hlist_head               preempt_notifiers;
 693#endif
 694
 695#ifdef CONFIG_BLK_DEV_IO_TRACE
 696        unsigned int                    btrace_seq;
 697#endif
 698
 699        unsigned int                    policy;
 700        int                             nr_cpus_allowed;
 701        const cpumask_t                 *cpus_ptr;
 702        cpumask_t                       cpus_mask;
 703
 704#ifdef CONFIG_PREEMPT_RCU
 705        int                             rcu_read_lock_nesting;
 706        union rcu_special               rcu_read_unlock_special;
 707        struct list_head                rcu_node_entry;
 708        struct rcu_node                 *rcu_blocked_node;
 709#endif /* #ifdef CONFIG_PREEMPT_RCU */
 710
 711#ifdef CONFIG_TASKS_RCU
 712        unsigned long                   rcu_tasks_nvcsw;
 713        u8                              rcu_tasks_holdout;
 714        u8                              rcu_tasks_idx;
 715        int                             rcu_tasks_idle_cpu;
 716        struct list_head                rcu_tasks_holdout_list;
 717#endif /* #ifdef CONFIG_TASKS_RCU */
 718
 719        struct sched_info               sched_info;
 720
 721        struct list_head                tasks;
 722#ifdef CONFIG_SMP
 723        struct plist_node               pushable_tasks;
 724        struct rb_node                  pushable_dl_tasks;
 725#endif
 726
 727        struct mm_struct                *mm;
 728        struct mm_struct                *active_mm;
 729
 730        /* Per-thread vma caching: */
 731        struct vmacache                 vmacache;
 732
 733#ifdef SPLIT_RSS_COUNTING
 734        struct task_rss_stat            rss_stat;
 735#endif
 736        int                             exit_state;
 737        int                             exit_code;
 738        int                             exit_signal;
 739        /* The signal sent when the parent dies: */
 740        int                             pdeath_signal;
 741        /* JOBCTL_*, siglock protected: */
 742        unsigned long                   jobctl;
 743
 744        /* Used for emulating ABI behavior of previous Linux versions: */
 745        unsigned int                    personality;
 746
 747        /* Scheduler bits, serialized by scheduler locks: */
 748        unsigned                        sched_reset_on_fork:1;
 749        unsigned                        sched_contributes_to_load:1;
 750        unsigned                        sched_migrated:1;
 751        unsigned                        sched_remote_wakeup:1;
 752#ifdef CONFIG_PSI
 753        unsigned                        sched_psi_wake_requeue:1;
 754#endif
 755
 756        /* Force alignment to the next boundary: */
 757        unsigned                        :0;
 758
 759        /* Unserialized, strictly 'current' */
 760
 761        /* Bit to tell LSMs we're in execve(): */
 762        unsigned                        in_execve:1;
 763        unsigned                        in_iowait:1;
 764#ifndef TIF_RESTORE_SIGMASK
 765        unsigned                        restore_sigmask:1;
 766#endif
 767#ifdef CONFIG_MEMCG
 768        unsigned                        in_user_fault:1;
 769#endif
 770#ifdef CONFIG_COMPAT_BRK
 771        unsigned                        brk_randomized:1;
 772#endif
 773#ifdef CONFIG_CGROUPS
 774        /* disallow userland-initiated cgroup migration */
 775        unsigned                        no_cgroup_migration:1;
 776        /* task is frozen/stopped (used by the cgroup freezer) */
 777        unsigned                        frozen:1;
 778#endif
 779#ifdef CONFIG_BLK_CGROUP
 780        /* to be used once the psi infrastructure lands upstream. */
 781        unsigned                        use_memdelay:1;
 782#endif
 783
 784        unsigned long                   atomic_flags; /* Flags requiring atomic access. */
 785
 786        struct restart_block            restart_block;
 787
 788        pid_t                           pid;
 789        pid_t                           tgid;
 790
 791#ifdef CONFIG_STACKPROTECTOR
 792        /* Canary value for the -fstack-protector GCC feature: */
 793        unsigned long                   stack_canary;
 794#endif
 795        /*
 796         * Pointers to the (original) parent process, youngest child, younger sibling,
 797         * older sibling, respectively.  (p->father can be replaced with
 798         * p->real_parent->pid)
 799         */
 800
 801        /* Real parent process: */
 802        struct task_struct __rcu        *real_parent;
 803
 804        /* Recipient of SIGCHLD, wait4() reports: */
 805        struct task_struct __rcu        *parent;
 806
 807        /*
 808         * Children/sibling form the list of natural children:
 809         */
 810        struct list_head                children;
 811        struct list_head                sibling;
 812        struct task_struct              *group_leader;
 813
 814        /*
 815         * 'ptraced' is the list of tasks this task is using ptrace() on.
 816         *
 817         * This includes both natural children and PTRACE_ATTACH targets.
 818         * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
 819         */
 820        struct list_head                ptraced;
 821        struct list_head                ptrace_entry;
 822
 823        /* PID/PID hash table linkage. */
 824        struct pid                      *thread_pid;
 825        struct hlist_node               pid_links[PIDTYPE_MAX];
 826        struct list_head                thread_group;
 827        struct list_head                thread_node;
 828
 829        struct completion               *vfork_done;
 830
 831        /* CLONE_CHILD_SETTID: */
 832        int __user                      *set_child_tid;
 833
 834        /* CLONE_CHILD_CLEARTID: */
 835        int __user                      *clear_child_tid;
 836
 837        u64                             utime;
 838        u64                             stime;
 839#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 840        u64                             utimescaled;
 841        u64                             stimescaled;
 842#endif
 843        u64                             gtime;
 844        struct prev_cputime             prev_cputime;
 845#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
 846        struct vtime                    vtime;
 847#endif
 848
 849#ifdef CONFIG_NO_HZ_FULL
 850        atomic_t                        tick_dep_mask;
 851#endif
 852        /* Context switch counts: */
 853        unsigned long                   nvcsw;
 854        unsigned long                   nivcsw;
 855
 856        /* Monotonic time in nsecs: */
 857        u64                             start_time;
 858
 859        /* Boot based time in nsecs: */
 860        u64                             real_start_time;
 861
 862        /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
 863        unsigned long                   min_flt;
 864        unsigned long                   maj_flt;
 865
 866        /* Empty if CONFIG_POSIX_CPUTIMERS=n */
 867        struct posix_cputimers          posix_cputimers;
 868
 869        /* Process credentials: */
 870
 871        /* Tracer's credentials at attach: */
 872        const struct cred __rcu         *ptracer_cred;
 873
 874        /* Objective and real subjective task credentials (COW): */
 875        const struct cred __rcu         *real_cred;
 876
 877        /* Effective (overridable) subjective task credentials (COW): */
 878        const struct cred __rcu         *cred;
 879
 880#ifdef CONFIG_KEYS
 881        /* Cached requested key. */
 882        struct key                      *cached_requested_key;
 883#endif
 884
 885        /*
 886         * executable name, excluding path.
 887         *
 888         * - normally initialized setup_new_exec()
 889         * - access it with [gs]et_task_comm()
 890         * - lock it with task_lock()
 891         */
 892        char                            comm[TASK_COMM_LEN];
 893
 894        struct nameidata                *nameidata;
 895
 896#ifdef CONFIG_SYSVIPC
 897        struct sysv_sem                 sysvsem;
 898        struct sysv_shm                 sysvshm;
 899#endif
 900#ifdef CONFIG_DETECT_HUNG_TASK
 901        unsigned long                   last_switch_count;
 902        unsigned long                   last_switch_time;
 903#endif
 904        /* Filesystem information: */
 905        struct fs_struct                *fs;
 906
 907        /* Open file information: */
 908        struct files_struct             *files;
 909
 910        /* Namespaces: */
 911        struct nsproxy                  *nsproxy;
 912
 913        /* Signal handlers: */
 914        struct signal_struct            *signal;
 915        struct sighand_struct           *sighand;
 916        sigset_t                        blocked;
 917        sigset_t                        real_blocked;
 918        /* Restored if set_restore_sigmask() was used: */
 919        sigset_t                        saved_sigmask;
 920        struct sigpending               pending;
 921        unsigned long                   sas_ss_sp;
 922        size_t                          sas_ss_size;
 923        unsigned int                    sas_ss_flags;
 924
 925        struct callback_head            *task_works;
 926
 927#ifdef CONFIG_AUDIT
 928#ifdef CONFIG_AUDITSYSCALL
 929        struct audit_context            *audit_context;
 930#endif
 931        kuid_t                          loginuid;
 932        unsigned int                    sessionid;
 933#endif
 934        struct seccomp                  seccomp;
 935
 936        /* Thread group tracking: */
 937        u32                             parent_exec_id;
 938        u32                             self_exec_id;
 939
 940        /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
 941        spinlock_t                      alloc_lock;
 942
 943        /* Protection of the PI data structures: */
 944        raw_spinlock_t                  pi_lock;
 945
 946        struct wake_q_node              wake_q;
 947
 948#ifdef CONFIG_RT_MUTEXES
 949        /* PI waiters blocked on a rt_mutex held by this task: */
 950        struct rb_root_cached           pi_waiters;
 951        /* Updated under owner's pi_lock and rq lock */
 952        struct task_struct              *pi_top_task;
 953        /* Deadlock detection and priority inheritance handling: */
 954        struct rt_mutex_waiter          *pi_blocked_on;
 955#endif
 956
 957#ifdef CONFIG_DEBUG_MUTEXES
 958        /* Mutex deadlock detection: */
 959        struct mutex_waiter             *blocked_on;
 960#endif
 961
 962#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 963        int                             non_block_count;
 964#endif
 965
 966#ifdef CONFIG_TRACE_IRQFLAGS
 967        unsigned int                    irq_events;
 968        unsigned long                   hardirq_enable_ip;
 969        unsigned long                   hardirq_disable_ip;
 970        unsigned int                    hardirq_enable_event;
 971        unsigned int                    hardirq_disable_event;
 972        int                             hardirqs_enabled;
 973        int                             hardirq_context;
 974        unsigned long                   softirq_disable_ip;
 975        unsigned long                   softirq_enable_ip;
 976        unsigned int                    softirq_disable_event;
 977        unsigned int                    softirq_enable_event;
 978        int                             softirqs_enabled;
 979        int                             softirq_context;
 980#endif
 981
 982#ifdef CONFIG_LOCKDEP
 983# define MAX_LOCK_DEPTH                 48UL
 984        u64                             curr_chain_key;
 985        int                             lockdep_depth;
 986        unsigned int                    lockdep_recursion;
 987        struct held_lock                held_locks[MAX_LOCK_DEPTH];
 988#endif
 989
 990#ifdef CONFIG_UBSAN
 991        unsigned int                    in_ubsan;
 992#endif
 993
 994        /* Journalling filesystem info: */
 995        void                            *journal_info;
 996
 997        /* Stacked block device info: */
 998        struct bio_list                 *bio_list;
 999
1000#ifdef CONFIG_BLOCK
1001        /* Stack plugging: */
1002        struct blk_plug                 *plug;
1003#endif
1004
1005        /* VM state: */
1006        struct reclaim_state            *reclaim_state;
1007
1008        struct backing_dev_info         *backing_dev_info;
1009
1010        struct io_context               *io_context;
1011
1012#ifdef CONFIG_COMPACTION
1013        struct capture_control          *capture_control;
1014#endif
1015        /* Ptrace state: */
1016        unsigned long                   ptrace_message;
1017        kernel_siginfo_t                *last_siginfo;
1018
1019        struct task_io_accounting       ioac;
1020#ifdef CONFIG_PSI
1021        /* Pressure stall state */
1022        unsigned int                    psi_flags;
1023#endif
1024#ifdef CONFIG_TASK_XACCT
1025        /* Accumulated RSS usage: */
1026        u64                             acct_rss_mem1;
1027        /* Accumulated virtual memory usage: */
1028        u64                             acct_vm_mem1;
1029        /* stime + utime since last update: */
1030        u64                             acct_timexpd;
1031#endif
1032#ifdef CONFIG_CPUSETS
1033        /* Protected by ->alloc_lock: */
1034        nodemask_t                      mems_allowed;
1035        /* Seqence number to catch updates: */
1036        seqcount_t                      mems_allowed_seq;
1037        int                             cpuset_mem_spread_rotor;
1038        int                             cpuset_slab_spread_rotor;
1039#endif
1040#ifdef CONFIG_CGROUPS
1041        /* Control Group info protected by css_set_lock: */
1042        struct css_set __rcu            *cgroups;
1043        /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1044        struct list_head                cg_list;
1045#endif
1046#ifdef CONFIG_X86_CPU_RESCTRL
1047        u32                             closid;
1048        u32                             rmid;
1049#endif
1050#ifdef CONFIG_FUTEX
1051        struct robust_list_head __user  *robust_list;
1052#ifdef CONFIG_COMPAT
1053        struct compat_robust_list_head __user *compat_robust_list;
1054#endif
1055        struct list_head                pi_state_list;
1056        struct futex_pi_state           *pi_state_cache;
1057#endif
1058#ifdef CONFIG_PERF_EVENTS
1059        struct perf_event_context       *perf_event_ctxp[perf_nr_task_contexts];
1060        struct mutex                    perf_event_mutex;
1061        struct list_head                perf_event_list;
1062#endif
1063#ifdef CONFIG_DEBUG_PREEMPT
1064        unsigned long                   preempt_disable_ip;
1065#endif
1066#ifdef CONFIG_NUMA
1067        /* Protected by alloc_lock: */
1068        struct mempolicy                *mempolicy;
1069        short                           il_prev;
1070        short                           pref_node_fork;
1071#endif
1072#ifdef CONFIG_NUMA_BALANCING
1073        int                             numa_scan_seq;
1074        unsigned int                    numa_scan_period;
1075        unsigned int                    numa_scan_period_max;
1076        int                             numa_preferred_nid;
1077        unsigned long                   numa_migrate_retry;
1078        /* Migration stamp: */
1079        u64                             node_stamp;
1080        u64                             last_task_numa_placement;
1081        u64                             last_sum_exec_runtime;
1082        struct callback_head            numa_work;
1083
1084        /*
1085         * This pointer is only modified for current in syscall and
1086         * pagefault context (and for tasks being destroyed), so it can be read
1087         * from any of the following contexts:
1088         *  - RCU read-side critical section
1089         *  - current->numa_group from everywhere
1090         *  - task's runqueue locked, task not running
1091         */
1092        struct numa_group __rcu         *numa_group;
1093
1094        /*
1095         * numa_faults is an array split into four regions:
1096         * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1097         * in this precise order.
1098         *
1099         * faults_memory: Exponential decaying average of faults on a per-node
1100         * basis. Scheduling placement decisions are made based on these
1101         * counts. The values remain static for the duration of a PTE scan.
1102         * faults_cpu: Track the nodes the process was running on when a NUMA
1103         * hinting fault was incurred.
1104         * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1105         * during the current scan window. When the scan completes, the counts
1106         * in faults_memory and faults_cpu decay and these values are copied.
1107         */
1108        unsigned long                   *numa_faults;
1109        unsigned long                   total_numa_faults;
1110
1111        /*
1112         * numa_faults_locality tracks if faults recorded during the last
1113         * scan window were remote/local or failed to migrate. The task scan
1114         * period is adapted based on the locality of the faults with different
1115         * weights depending on whether they were shared or private faults
1116         */
1117        unsigned long                   numa_faults_locality[3];
1118
1119        unsigned long                   numa_pages_migrated;
1120#endif /* CONFIG_NUMA_BALANCING */
1121
1122#ifdef CONFIG_RSEQ
1123        struct rseq __user *rseq;
1124        u32 rseq_sig;
1125        /*
1126         * RmW on rseq_event_mask must be performed atomically
1127         * with respect to preemption.
1128         */
1129        unsigned long rseq_event_mask;
1130#endif
1131
1132        struct tlbflush_unmap_batch     tlb_ubc;
1133
1134        union {
1135                refcount_t              rcu_users;
1136                struct rcu_head         rcu;
1137        };
1138
1139        /* Cache last used pipe for splice(): */
1140        struct pipe_inode_info          *splice_pipe;
1141
1142        struct page_frag                task_frag;
1143
1144#ifdef CONFIG_TASK_DELAY_ACCT
1145        struct task_delay_info          *delays;
1146#endif
1147
1148#ifdef CONFIG_FAULT_INJECTION
1149        int                             make_it_fail;
1150        unsigned int                    fail_nth;
1151#endif
1152        /*
1153         * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1154         * balance_dirty_pages() for a dirty throttling pause:
1155         */
1156        int                             nr_dirtied;
1157        int                             nr_dirtied_pause;
1158        /* Start of a write-and-pause period: */
1159        unsigned long                   dirty_paused_when;
1160
1161#ifdef CONFIG_LATENCYTOP
1162        int                             latency_record_count;
1163        struct latency_record           latency_record[LT_SAVECOUNT];
1164#endif
1165        /*
1166         * Time slack values; these are used to round up poll() and
1167         * select() etc timeout values. These are in nanoseconds.
1168         */
1169        u64                             timer_slack_ns;
1170        u64                             default_timer_slack_ns;
1171
1172#ifdef CONFIG_KASAN
1173        unsigned int                    kasan_depth;
1174#endif
1175
1176#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1177        /* Index of current stored address in ret_stack: */
1178        int                             curr_ret_stack;
1179        int                             curr_ret_depth;
1180
1181        /* Stack of return addresses for return function tracing: */
1182        struct ftrace_ret_stack         *ret_stack;
1183
1184        /* Timestamp for last schedule: */
1185        unsigned long long              ftrace_timestamp;
1186
1187        /*
1188         * Number of functions that haven't been traced
1189         * because of depth overrun:
1190         */
1191        atomic_t                        trace_overrun;
1192
1193        /* Pause tracing: */
1194        atomic_t                        tracing_graph_pause;
1195#endif
1196
1197#ifdef CONFIG_TRACING
1198        /* State flags for use by tracers: */
1199        unsigned long                   trace;
1200
1201        /* Bitmask and counter of trace recursion: */
1202        unsigned long                   trace_recursion;
1203#endif /* CONFIG_TRACING */
1204
1205#ifdef CONFIG_KCOV
1206        /* Coverage collection mode enabled for this task (0 if disabled): */
1207        unsigned int                    kcov_mode;
1208
1209        /* Size of the kcov_area: */
1210        unsigned int                    kcov_size;
1211
1212        /* Buffer for coverage collection: */
1213        void                            *kcov_area;
1214
1215        /* KCOV descriptor wired with this task or NULL: */
1216        struct kcov                     *kcov;
1217#endif
1218
1219#ifdef CONFIG_MEMCG
1220        struct mem_cgroup               *memcg_in_oom;
1221        gfp_t                           memcg_oom_gfp_mask;
1222        int                             memcg_oom_order;
1223
1224        /* Number of pages to reclaim on returning to userland: */
1225        unsigned int                    memcg_nr_pages_over_high;
1226
1227        /* Used by memcontrol for targeted memcg charge: */
1228        struct mem_cgroup               *active_memcg;
1229#endif
1230
1231#ifdef CONFIG_BLK_CGROUP
1232        struct request_queue            *throttle_queue;
1233#endif
1234
1235#ifdef CONFIG_UPROBES
1236        struct uprobe_task              *utask;
1237#endif
1238#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1239        unsigned int                    sequential_io;
1240        unsigned int                    sequential_io_avg;
1241#endif
1242#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1243        unsigned long                   task_state_change;
1244#endif
1245        int                             pagefault_disabled;
1246#ifdef CONFIG_MMU
1247        struct task_struct              *oom_reaper_list;
1248#endif
1249#ifdef CONFIG_VMAP_STACK
1250        struct vm_struct                *stack_vm_area;
1251#endif
1252#ifdef CONFIG_THREAD_INFO_IN_TASK
1253        /* A live task holds one reference: */
1254        refcount_t                      stack_refcount;
1255#endif
1256#ifdef CONFIG_LIVEPATCH
1257        int patch_state;
1258#endif
1259#ifdef CONFIG_SECURITY
1260        /* Used by LSM modules for access restriction: */
1261        void                            *security;
1262#endif
1263
1264#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1265        unsigned long                   lowest_stack;
1266        unsigned long                   prev_lowest_stack;
1267#endif
1268
1269        /*
1270         * New fields for task_struct should be added above here, so that
1271         * they are included in the randomized portion of task_struct.
1272         */
1273        randomized_struct_fields_end
1274
1275        /* CPU-specific state of this task: */
1276        struct thread_struct            thread;
1277
1278        /*
1279         * WARNING: on x86, 'thread_struct' contains a variable-sized
1280         * structure.  It *MUST* be at the end of 'task_struct'.
1281         *
1282         * Do not put anything below here!
1283         */
1284};
1285
1286static inline struct pid *task_pid(struct task_struct *task)
1287{
1288        return task->thread_pid;
1289}
1290
1291/*
1292 * the helpers to get the task's different pids as they are seen
1293 * from various namespaces
1294 *
1295 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1296 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1297 *                     current.
1298 * task_xid_nr_ns()  : id seen from the ns specified;
1299 *
1300 * see also pid_nr() etc in include/linux/pid.h
1301 */
1302pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1303
1304static inline pid_t task_pid_nr(struct task_struct *tsk)
1305{
1306        return tsk->pid;
1307}
1308
1309static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1310{
1311        return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1312}
1313
1314static inline pid_t task_pid_vnr(struct task_struct *tsk)
1315{
1316        return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1317}
1318
1319
1320static inline pid_t task_tgid_nr(struct task_struct *tsk)
1321{
1322        return tsk->tgid;
1323}
1324
1325/**
1326 * pid_alive - check that a task structure is not stale
1327 * @p: Task structure to be checked.
1328 *
1329 * Test if a process is not yet dead (at most zombie state)
1330 * If pid_alive fails, then pointers within the task structure
1331 * can be stale and must not be dereferenced.
1332 *
1333 * Return: 1 if the process is alive. 0 otherwise.
1334 */
1335static inline int pid_alive(const struct task_struct *p)
1336{
1337        return p->thread_pid != NULL;
1338}
1339
1340static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1341{
1342        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1343}
1344
1345static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1346{
1347        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1348}
1349
1350
1351static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1352{
1353        return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1354}
1355
1356static inline pid_t task_session_vnr(struct task_struct *tsk)
1357{
1358        return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1359}
1360
1361static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1362{
1363        return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1364}
1365
1366static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1367{
1368        return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1369}
1370
1371static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1372{
1373        pid_t pid = 0;
1374
1375        rcu_read_lock();
1376        if (pid_alive(tsk))
1377                pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1378        rcu_read_unlock();
1379
1380        return pid;
1381}
1382
1383static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1384{
1385        return task_ppid_nr_ns(tsk, &init_pid_ns);
1386}
1387
1388/* Obsolete, do not use: */
1389static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1390{
1391        return task_pgrp_nr_ns(tsk, &init_pid_ns);
1392}
1393
1394#define TASK_REPORT_IDLE        (TASK_REPORT + 1)
1395#define TASK_REPORT_MAX         (TASK_REPORT_IDLE << 1)
1396
1397static inline unsigned int task_state_index(struct task_struct *tsk)
1398{
1399        unsigned int tsk_state = READ_ONCE(tsk->state);
1400        unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1401
1402        BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1403
1404        if (tsk_state == TASK_IDLE)
1405                state = TASK_REPORT_IDLE;
1406
1407        return fls(state);
1408}
1409
1410static inline char task_index_to_char(unsigned int state)
1411{
1412        static const char state_char[] = "RSDTtXZPI";
1413
1414        BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1415
1416        return state_char[state];
1417}
1418
1419static inline char task_state_to_char(struct task_struct *tsk)
1420{
1421        return task_index_to_char(task_state_index(tsk));
1422}
1423
1424/**
1425 * is_global_init - check if a task structure is init. Since init
1426 * is free to have sub-threads we need to check tgid.
1427 * @tsk: Task structure to be checked.
1428 *
1429 * Check if a task structure is the first user space task the kernel created.
1430 *
1431 * Return: 1 if the task structure is init. 0 otherwise.
1432 */
1433static inline int is_global_init(struct task_struct *tsk)
1434{
1435        return task_tgid_nr(tsk) == 1;
1436}
1437
1438extern struct pid *cad_pid;
1439
1440/*
1441 * Per process flags
1442 */
1443#define PF_IDLE                 0x00000002      /* I am an IDLE thread */
1444#define PF_EXITING              0x00000004      /* Getting shut down */
1445#define PF_EXITPIDONE           0x00000008      /* PI exit done on shut down */
1446#define PF_VCPU                 0x00000010      /* I'm a virtual CPU */
1447#define PF_WQ_WORKER            0x00000020      /* I'm a workqueue worker */
1448#define PF_FORKNOEXEC           0x00000040      /* Forked but didn't exec */
1449#define PF_MCE_PROCESS          0x00000080      /* Process policy on mce errors */
1450#define PF_SUPERPRIV            0x00000100      /* Used super-user privileges */
1451#define PF_DUMPCORE             0x00000200      /* Dumped core */
1452#define PF_SIGNALED             0x00000400      /* Killed by a signal */
1453#define PF_MEMALLOC             0x00000800      /* Allocating memory */
1454#define PF_NPROC_EXCEEDED       0x00001000      /* set_user() noticed that RLIMIT_NPROC was exceeded */
1455#define PF_USED_MATH            0x00002000      /* If unset the fpu must be initialized before use */
1456#define PF_USED_ASYNC           0x00004000      /* Used async_schedule*(), used by module init */
1457#define PF_NOFREEZE             0x00008000      /* This thread should not be frozen */
1458#define PF_FROZEN               0x00010000      /* Frozen for system suspend */
1459#define PF_KSWAPD               0x00020000      /* I am kswapd */
1460#define PF_MEMALLOC_NOFS        0x00040000      /* All allocation requests will inherit GFP_NOFS */
1461#define PF_MEMALLOC_NOIO        0x00080000      /* All allocation requests will inherit GFP_NOIO */
1462#define PF_LESS_THROTTLE        0x00100000      /* Throttle me less: I clean memory */
1463#define PF_KTHREAD              0x00200000      /* I am a kernel thread */
1464#define PF_RANDOMIZE            0x00400000      /* Randomize virtual address space */
1465#define PF_SWAPWRITE            0x00800000      /* Allowed to write to swap */
1466#define PF_MEMSTALL             0x01000000      /* Stalled due to lack of memory */
1467#define PF_UMH                  0x02000000      /* I'm an Usermodehelper process */
1468#define PF_NO_SETAFFINITY       0x04000000      /* Userland is not allowed to meddle with cpus_mask */
1469#define PF_MCE_EARLY            0x08000000      /* Early kill for mce process policy */
1470#define PF_MEMALLOC_NOCMA       0x10000000      /* All allocation request will have _GFP_MOVABLE cleared */
1471#define PF_FREEZER_SKIP         0x40000000      /* Freezer should not count it as freezable */
1472#define PF_SUSPEND_TASK         0x80000000      /* This thread called freeze_processes() and should not be frozen */
1473
1474/*
1475 * Only the _current_ task can read/write to tsk->flags, but other
1476 * tasks can access tsk->flags in readonly mode for example
1477 * with tsk_used_math (like during threaded core dumping).
1478 * There is however an exception to this rule during ptrace
1479 * or during fork: the ptracer task is allowed to write to the
1480 * child->flags of its traced child (same goes for fork, the parent
1481 * can write to the child->flags), because we're guaranteed the
1482 * child is not running and in turn not changing child->flags
1483 * at the same time the parent does it.
1484 */
1485#define clear_stopped_child_used_math(child)    do { (child)->flags &= ~PF_USED_MATH; } while (0)
1486#define set_stopped_child_used_math(child)      do { (child)->flags |= PF_USED_MATH; } while (0)
1487#define clear_used_math()                       clear_stopped_child_used_math(current)
1488#define set_used_math()                         set_stopped_child_used_math(current)
1489
1490#define conditional_stopped_child_used_math(condition, child) \
1491        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1492
1493#define conditional_used_math(condition)        conditional_stopped_child_used_math(condition, current)
1494
1495#define copy_to_stopped_child_used_math(child) \
1496        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1497
1498/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1499#define tsk_used_math(p)                        ((p)->flags & PF_USED_MATH)
1500#define used_math()                             tsk_used_math(current)
1501
1502static inline bool is_percpu_thread(void)
1503{
1504#ifdef CONFIG_SMP
1505        return (current->flags & PF_NO_SETAFFINITY) &&
1506                (current->nr_cpus_allowed  == 1);
1507#else
1508        return true;
1509#endif
1510}
1511
1512/* Per-process atomic flags. */
1513#define PFA_NO_NEW_PRIVS                0       /* May not gain new privileges. */
1514#define PFA_SPREAD_PAGE                 1       /* Spread page cache over cpuset */
1515#define PFA_SPREAD_SLAB                 2       /* Spread some slab caches over cpuset */
1516#define PFA_SPEC_SSB_DISABLE            3       /* Speculative Store Bypass disabled */
1517#define PFA_SPEC_SSB_FORCE_DISABLE      4       /* Speculative Store Bypass force disabled*/
1518#define PFA_SPEC_IB_DISABLE             5       /* Indirect branch speculation restricted */
1519#define PFA_SPEC_IB_FORCE_DISABLE       6       /* Indirect branch speculation permanently restricted */
1520#define PFA_SPEC_SSB_NOEXEC             7       /* Speculative Store Bypass clear on execve() */
1521
1522#define TASK_PFA_TEST(name, func)                                       \
1523        static inline bool task_##func(struct task_struct *p)           \
1524        { return test_bit(PFA_##name, &p->atomic_flags); }
1525
1526#define TASK_PFA_SET(name, func)                                        \
1527        static inline void task_set_##func(struct task_struct *p)       \
1528        { set_bit(PFA_##name, &p->atomic_flags); }
1529
1530#define TASK_PFA_CLEAR(name, func)                                      \
1531        static inline void task_clear_##func(struct task_struct *p)     \
1532        { clear_bit(PFA_##name, &p->atomic_flags); }
1533
1534TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1535TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1536
1537TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1538TASK_PFA_SET(SPREAD_PAGE, spread_page)
1539TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1540
1541TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1542TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1543TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1544
1545TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1546TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1547TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1548
1549TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1550TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1551TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1552
1553TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1554TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1555
1556TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1557TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1558TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1559
1560TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1561TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1562
1563static inline void
1564current_restore_flags(unsigned long orig_flags, unsigned long flags)
1565{
1566        current->flags &= ~flags;
1567        current->flags |= orig_flags & flags;
1568}
1569
1570extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1571extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1572#ifdef CONFIG_SMP
1573extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1574extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1575#else
1576static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1577{
1578}
1579static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1580{
1581        if (!cpumask_test_cpu(0, new_mask))
1582                return -EINVAL;
1583        return 0;
1584}
1585#endif
1586
1587extern int yield_to(struct task_struct *p, bool preempt);
1588extern void set_user_nice(struct task_struct *p, long nice);
1589extern int task_prio(const struct task_struct *p);
1590
1591/**
1592 * task_nice - return the nice value of a given task.
1593 * @p: the task in question.
1594 *
1595 * Return: The nice value [ -20 ... 0 ... 19 ].
1596 */
1597static inline int task_nice(const struct task_struct *p)
1598{
1599        return PRIO_TO_NICE((p)->static_prio);
1600}
1601
1602extern int can_nice(const struct task_struct *p, const int nice);
1603extern int task_curr(const struct task_struct *p);
1604extern int idle_cpu(int cpu);
1605extern int available_idle_cpu(int cpu);
1606extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1607extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1608extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1609extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1610extern struct task_struct *idle_task(int cpu);
1611
1612/**
1613 * is_idle_task - is the specified task an idle task?
1614 * @p: the task in question.
1615 *
1616 * Return: 1 if @p is an idle task. 0 otherwise.
1617 */
1618static inline bool is_idle_task(const struct task_struct *p)
1619{
1620        return !!(p->flags & PF_IDLE);
1621}
1622
1623extern struct task_struct *curr_task(int cpu);
1624extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1625
1626void yield(void);
1627
1628union thread_union {
1629#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1630        struct task_struct task;
1631#endif
1632#ifndef CONFIG_THREAD_INFO_IN_TASK
1633        struct thread_info thread_info;
1634#endif
1635        unsigned long stack[THREAD_SIZE/sizeof(long)];
1636};
1637
1638#ifndef CONFIG_THREAD_INFO_IN_TASK
1639extern struct thread_info init_thread_info;
1640#endif
1641
1642extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1643
1644#ifdef CONFIG_THREAD_INFO_IN_TASK
1645static inline struct thread_info *task_thread_info(struct task_struct *task)
1646{
1647        return &task->thread_info;
1648}
1649#elif !defined(__HAVE_THREAD_FUNCTIONS)
1650# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1651#endif
1652
1653/*
1654 * find a task by one of its numerical ids
1655 *
1656 * find_task_by_pid_ns():
1657 *      finds a task by its pid in the specified namespace
1658 * find_task_by_vpid():
1659 *      finds a task by its virtual pid
1660 *
1661 * see also find_vpid() etc in include/linux/pid.h
1662 */
1663
1664extern struct task_struct *find_task_by_vpid(pid_t nr);
1665extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1666
1667/*
1668 * find a task by its virtual pid and get the task struct
1669 */
1670extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1671
1672extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1673extern int wake_up_process(struct task_struct *tsk);
1674extern void wake_up_new_task(struct task_struct *tsk);
1675
1676#ifdef CONFIG_SMP
1677extern void kick_process(struct task_struct *tsk);
1678#else
1679static inline void kick_process(struct task_struct *tsk) { }
1680#endif
1681
1682extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1683
1684static inline void set_task_comm(struct task_struct *tsk, const char *from)
1685{
1686        __set_task_comm(tsk, from, false);
1687}
1688
1689extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1690#define get_task_comm(buf, tsk) ({                      \
1691        BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);     \
1692        __get_task_comm(buf, sizeof(buf), tsk);         \
1693})
1694
1695#ifdef CONFIG_SMP
1696void scheduler_ipi(void);
1697extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1698#else
1699static inline void scheduler_ipi(void) { }
1700static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1701{
1702        return 1;
1703}
1704#endif
1705
1706/*
1707 * Set thread flags in other task's structures.
1708 * See asm/thread_info.h for TIF_xxxx flags available:
1709 */
1710static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1711{
1712        set_ti_thread_flag(task_thread_info(tsk), flag);
1713}
1714
1715static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1716{
1717        clear_ti_thread_flag(task_thread_info(tsk), flag);
1718}
1719
1720static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1721                                          bool value)
1722{
1723        update_ti_thread_flag(task_thread_info(tsk), flag, value);
1724}
1725
1726static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1727{
1728        return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1729}
1730
1731static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1732{
1733        return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1734}
1735
1736static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1737{
1738        return test_ti_thread_flag(task_thread_info(tsk), flag);
1739}
1740
1741static inline void set_tsk_need_resched(struct task_struct *tsk)
1742{
1743        set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1744}
1745
1746static inline void clear_tsk_need_resched(struct task_struct *tsk)
1747{
1748        clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1749}
1750
1751static inline int test_tsk_need_resched(struct task_struct *tsk)
1752{
1753        return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1754}
1755
1756/*
1757 * cond_resched() and cond_resched_lock(): latency reduction via
1758 * explicit rescheduling in places that are safe. The return
1759 * value indicates whether a reschedule was done in fact.
1760 * cond_resched_lock() will drop the spinlock before scheduling,
1761 */
1762#ifndef CONFIG_PREEMPTION
1763extern int _cond_resched(void);
1764#else
1765static inline int _cond_resched(void) { return 0; }
1766#endif
1767
1768#define cond_resched() ({                       \
1769        ___might_sleep(__FILE__, __LINE__, 0);  \
1770        _cond_resched();                        \
1771})
1772
1773extern int __cond_resched_lock(spinlock_t *lock);
1774
1775#define cond_resched_lock(lock) ({                              \
1776        ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1777        __cond_resched_lock(lock);                              \
1778})
1779
1780static inline void cond_resched_rcu(void)
1781{
1782#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1783        rcu_read_unlock();
1784        cond_resched();
1785        rcu_read_lock();
1786#endif
1787}
1788
1789/*
1790 * Does a critical section need to be broken due to another
1791 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
1792 * but a general need for low latency)
1793 */
1794static inline int spin_needbreak(spinlock_t *lock)
1795{
1796#ifdef CONFIG_PREEMPTION
1797        return spin_is_contended(lock);
1798#else
1799        return 0;
1800#endif
1801}
1802
1803static __always_inline bool need_resched(void)
1804{
1805        return unlikely(tif_need_resched());
1806}
1807
1808/*
1809 * Wrappers for p->thread_info->cpu access. No-op on UP.
1810 */
1811#ifdef CONFIG_SMP
1812
1813static inline unsigned int task_cpu(const struct task_struct *p)
1814{
1815#ifdef CONFIG_THREAD_INFO_IN_TASK
1816        return READ_ONCE(p->cpu);
1817#else
1818        return READ_ONCE(task_thread_info(p)->cpu);
1819#endif
1820}
1821
1822extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1823
1824#else
1825
1826static inline unsigned int task_cpu(const struct task_struct *p)
1827{
1828        return 0;
1829}
1830
1831static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1832{
1833}
1834
1835#endif /* CONFIG_SMP */
1836
1837/*
1838 * In order to reduce various lock holder preemption latencies provide an
1839 * interface to see if a vCPU is currently running or not.
1840 *
1841 * This allows us to terminate optimistic spin loops and block, analogous to
1842 * the native optimistic spin heuristic of testing if the lock owner task is
1843 * running or not.
1844 */
1845#ifndef vcpu_is_preempted
1846static inline bool vcpu_is_preempted(int cpu)
1847{
1848        return false;
1849}
1850#endif
1851
1852extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1853extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1854
1855#ifndef TASK_SIZE_OF
1856#define TASK_SIZE_OF(tsk)       TASK_SIZE
1857#endif
1858
1859#ifdef CONFIG_RSEQ
1860
1861/*
1862 * Map the event mask on the user-space ABI enum rseq_cs_flags
1863 * for direct mask checks.
1864 */
1865enum rseq_event_mask_bits {
1866        RSEQ_EVENT_PREEMPT_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1867        RSEQ_EVENT_SIGNAL_BIT   = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1868        RSEQ_EVENT_MIGRATE_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1869};
1870
1871enum rseq_event_mask {
1872        RSEQ_EVENT_PREEMPT      = (1U << RSEQ_EVENT_PREEMPT_BIT),
1873        RSEQ_EVENT_SIGNAL       = (1U << RSEQ_EVENT_SIGNAL_BIT),
1874        RSEQ_EVENT_MIGRATE      = (1U << RSEQ_EVENT_MIGRATE_BIT),
1875};
1876
1877static inline void rseq_set_notify_resume(struct task_struct *t)
1878{
1879        if (t->rseq)
1880                set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1881}
1882
1883void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1884
1885static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1886                                             struct pt_regs *regs)
1887{
1888        if (current->rseq)
1889                __rseq_handle_notify_resume(ksig, regs);
1890}
1891
1892static inline void rseq_signal_deliver(struct ksignal *ksig,
1893                                       struct pt_regs *regs)
1894{
1895        preempt_disable();
1896        __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1897        preempt_enable();
1898        rseq_handle_notify_resume(ksig, regs);
1899}
1900
1901/* rseq_preempt() requires preemption to be disabled. */
1902static inline void rseq_preempt(struct task_struct *t)
1903{
1904        __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1905        rseq_set_notify_resume(t);
1906}
1907
1908/* rseq_migrate() requires preemption to be disabled. */
1909static inline void rseq_migrate(struct task_struct *t)
1910{
1911        __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1912        rseq_set_notify_resume(t);
1913}
1914
1915/*
1916 * If parent process has a registered restartable sequences area, the
1917 * child inherits. Only applies when forking a process, not a thread.
1918 */
1919static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1920{
1921        if (clone_flags & CLONE_THREAD) {
1922                t->rseq = NULL;
1923                t->rseq_sig = 0;
1924                t->rseq_event_mask = 0;
1925        } else {
1926                t->rseq = current->rseq;
1927                t->rseq_sig = current->rseq_sig;
1928                t->rseq_event_mask = current->rseq_event_mask;
1929        }
1930}
1931
1932static inline void rseq_execve(struct task_struct *t)
1933{
1934        t->rseq = NULL;
1935        t->rseq_sig = 0;
1936        t->rseq_event_mask = 0;
1937}
1938
1939#else
1940
1941static inline void rseq_set_notify_resume(struct task_struct *t)
1942{
1943}
1944static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1945                                             struct pt_regs *regs)
1946{
1947}
1948static inline void rseq_signal_deliver(struct ksignal *ksig,
1949                                       struct pt_regs *regs)
1950{
1951}
1952static inline void rseq_preempt(struct task_struct *t)
1953{
1954}
1955static inline void rseq_migrate(struct task_struct *t)
1956{
1957}
1958static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1959{
1960}
1961static inline void rseq_execve(struct task_struct *t)
1962{
1963}
1964
1965#endif
1966
1967void __exit_umh(struct task_struct *tsk);
1968
1969static inline void exit_umh(struct task_struct *tsk)
1970{
1971        if (unlikely(tsk->flags & PF_UMH))
1972                __exit_umh(tsk);
1973}
1974
1975#ifdef CONFIG_DEBUG_RSEQ
1976
1977void rseq_syscall(struct pt_regs *regs);
1978
1979#else
1980
1981static inline void rseq_syscall(struct pt_regs *regs)
1982{
1983}
1984
1985#endif
1986
1987const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
1988char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
1989int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
1990
1991const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
1992const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
1993const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
1994
1995int sched_trace_rq_cpu(struct rq *rq);
1996
1997const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
1998
1999#endif
2000