linux/include/linux/uaccess.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef __LINUX_UACCESS_H__
   3#define __LINUX_UACCESS_H__
   4
   5#include <linux/sched.h>
   6#include <linux/thread_info.h>
   7#include <linux/kasan-checks.h>
   8
   9#define uaccess_kernel() segment_eq(get_fs(), KERNEL_DS)
  10
  11#include <asm/uaccess.h>
  12
  13/*
  14 * Architectures should provide two primitives (raw_copy_{to,from}_user())
  15 * and get rid of their private instances of copy_{to,from}_user() and
  16 * __copy_{to,from}_user{,_inatomic}().
  17 *
  18 * raw_copy_{to,from}_user(to, from, size) should copy up to size bytes and
  19 * return the amount left to copy.  They should assume that access_ok() has
  20 * already been checked (and succeeded); they should *not* zero-pad anything.
  21 * No KASAN or object size checks either - those belong here.
  22 *
  23 * Both of these functions should attempt to copy size bytes starting at from
  24 * into the area starting at to.  They must not fetch or store anything
  25 * outside of those areas.  Return value must be between 0 (everything
  26 * copied successfully) and size (nothing copied).
  27 *
  28 * If raw_copy_{to,from}_user(to, from, size) returns N, size - N bytes starting
  29 * at to must become equal to the bytes fetched from the corresponding area
  30 * starting at from.  All data past to + size - N must be left unmodified.
  31 *
  32 * If copying succeeds, the return value must be 0.  If some data cannot be
  33 * fetched, it is permitted to copy less than had been fetched; the only
  34 * hard requirement is that not storing anything at all (i.e. returning size)
  35 * should happen only when nothing could be copied.  In other words, you don't
  36 * have to squeeze as much as possible - it is allowed, but not necessary.
  37 *
  38 * For raw_copy_from_user() to always points to kernel memory and no faults
  39 * on store should happen.  Interpretation of from is affected by set_fs().
  40 * For raw_copy_to_user() it's the other way round.
  41 *
  42 * Both can be inlined - it's up to architectures whether it wants to bother
  43 * with that.  They should not be used directly; they are used to implement
  44 * the 6 functions (copy_{to,from}_user(), __copy_{to,from}_user_inatomic())
  45 * that are used instead.  Out of those, __... ones are inlined.  Plain
  46 * copy_{to,from}_user() might or might not be inlined.  If you want them
  47 * inlined, have asm/uaccess.h define INLINE_COPY_{TO,FROM}_USER.
  48 *
  49 * NOTE: only copy_from_user() zero-pads the destination in case of short copy.
  50 * Neither __copy_from_user() nor __copy_from_user_inatomic() zero anything
  51 * at all; their callers absolutely must check the return value.
  52 *
  53 * Biarch ones should also provide raw_copy_in_user() - similar to the above,
  54 * but both source and destination are __user pointers (affected by set_fs()
  55 * as usual) and both source and destination can trigger faults.
  56 */
  57
  58static __always_inline __must_check unsigned long
  59__copy_from_user_inatomic(void *to, const void __user *from, unsigned long n)
  60{
  61        kasan_check_write(to, n);
  62        check_object_size(to, n, false);
  63        return raw_copy_from_user(to, from, n);
  64}
  65
  66static __always_inline __must_check unsigned long
  67__copy_from_user(void *to, const void __user *from, unsigned long n)
  68{
  69        might_fault();
  70        kasan_check_write(to, n);
  71        check_object_size(to, n, false);
  72        return raw_copy_from_user(to, from, n);
  73}
  74
  75/**
  76 * __copy_to_user_inatomic: - Copy a block of data into user space, with less checking.
  77 * @to:   Destination address, in user space.
  78 * @from: Source address, in kernel space.
  79 * @n:    Number of bytes to copy.
  80 *
  81 * Context: User context only.
  82 *
  83 * Copy data from kernel space to user space.  Caller must check
  84 * the specified block with access_ok() before calling this function.
  85 * The caller should also make sure he pins the user space address
  86 * so that we don't result in page fault and sleep.
  87 */
  88static __always_inline __must_check unsigned long
  89__copy_to_user_inatomic(void __user *to, const void *from, unsigned long n)
  90{
  91        kasan_check_read(from, n);
  92        check_object_size(from, n, true);
  93        return raw_copy_to_user(to, from, n);
  94}
  95
  96static __always_inline __must_check unsigned long
  97__copy_to_user(void __user *to, const void *from, unsigned long n)
  98{
  99        might_fault();
 100        kasan_check_read(from, n);
 101        check_object_size(from, n, true);
 102        return raw_copy_to_user(to, from, n);
 103}
 104
 105#ifdef INLINE_COPY_FROM_USER
 106static inline __must_check unsigned long
 107_copy_from_user(void *to, const void __user *from, unsigned long n)
 108{
 109        unsigned long res = n;
 110        might_fault();
 111        if (likely(access_ok(from, n))) {
 112                kasan_check_write(to, n);
 113                res = raw_copy_from_user(to, from, n);
 114        }
 115        if (unlikely(res))
 116                memset(to + (n - res), 0, res);
 117        return res;
 118}
 119#else
 120extern __must_check unsigned long
 121_copy_from_user(void *, const void __user *, unsigned long);
 122#endif
 123
 124#ifdef INLINE_COPY_TO_USER
 125static inline __must_check unsigned long
 126_copy_to_user(void __user *to, const void *from, unsigned long n)
 127{
 128        might_fault();
 129        if (access_ok(to, n)) {
 130                kasan_check_read(from, n);
 131                n = raw_copy_to_user(to, from, n);
 132        }
 133        return n;
 134}
 135#else
 136extern __must_check unsigned long
 137_copy_to_user(void __user *, const void *, unsigned long);
 138#endif
 139
 140static __always_inline unsigned long __must_check
 141copy_from_user(void *to, const void __user *from, unsigned long n)
 142{
 143        if (likely(check_copy_size(to, n, false)))
 144                n = _copy_from_user(to, from, n);
 145        return n;
 146}
 147
 148static __always_inline unsigned long __must_check
 149copy_to_user(void __user *to, const void *from, unsigned long n)
 150{
 151        if (likely(check_copy_size(from, n, true)))
 152                n = _copy_to_user(to, from, n);
 153        return n;
 154}
 155#ifdef CONFIG_COMPAT
 156static __always_inline unsigned long __must_check
 157copy_in_user(void __user *to, const void __user *from, unsigned long n)
 158{
 159        might_fault();
 160        if (access_ok(to, n) && access_ok(from, n))
 161                n = raw_copy_in_user(to, from, n);
 162        return n;
 163}
 164#endif
 165
 166static __always_inline void pagefault_disabled_inc(void)
 167{
 168        current->pagefault_disabled++;
 169}
 170
 171static __always_inline void pagefault_disabled_dec(void)
 172{
 173        current->pagefault_disabled--;
 174}
 175
 176/*
 177 * These routines enable/disable the pagefault handler. If disabled, it will
 178 * not take any locks and go straight to the fixup table.
 179 *
 180 * User access methods will not sleep when called from a pagefault_disabled()
 181 * environment.
 182 */
 183static inline void pagefault_disable(void)
 184{
 185        pagefault_disabled_inc();
 186        /*
 187         * make sure to have issued the store before a pagefault
 188         * can hit.
 189         */
 190        barrier();
 191}
 192
 193static inline void pagefault_enable(void)
 194{
 195        /*
 196         * make sure to issue those last loads/stores before enabling
 197         * the pagefault handler again.
 198         */
 199        barrier();
 200        pagefault_disabled_dec();
 201}
 202
 203/*
 204 * Is the pagefault handler disabled? If so, user access methods will not sleep.
 205 */
 206static inline bool pagefault_disabled(void)
 207{
 208        return current->pagefault_disabled != 0;
 209}
 210
 211/*
 212 * The pagefault handler is in general disabled by pagefault_disable() or
 213 * when in irq context (via in_atomic()).
 214 *
 215 * This function should only be used by the fault handlers. Other users should
 216 * stick to pagefault_disabled().
 217 * Please NEVER use preempt_disable() to disable the fault handler. With
 218 * !CONFIG_PREEMPT_COUNT, this is like a NOP. So the handler won't be disabled.
 219 * in_atomic() will report different values based on !CONFIG_PREEMPT_COUNT.
 220 */
 221#define faulthandler_disabled() (pagefault_disabled() || in_atomic())
 222
 223#ifndef ARCH_HAS_NOCACHE_UACCESS
 224
 225static inline __must_check unsigned long
 226__copy_from_user_inatomic_nocache(void *to, const void __user *from,
 227                                  unsigned long n)
 228{
 229        return __copy_from_user_inatomic(to, from, n);
 230}
 231
 232#endif          /* ARCH_HAS_NOCACHE_UACCESS */
 233
 234extern __must_check int check_zeroed_user(const void __user *from, size_t size);
 235
 236/**
 237 * copy_struct_from_user: copy a struct from userspace
 238 * @dst:   Destination address, in kernel space. This buffer must be @ksize
 239 *         bytes long.
 240 * @ksize: Size of @dst struct.
 241 * @src:   Source address, in userspace.
 242 * @usize: (Alleged) size of @src struct.
 243 *
 244 * Copies a struct from userspace to kernel space, in a way that guarantees
 245 * backwards-compatibility for struct syscall arguments (as long as future
 246 * struct extensions are made such that all new fields are *appended* to the
 247 * old struct, and zeroed-out new fields have the same meaning as the old
 248 * struct).
 249 *
 250 * @ksize is just sizeof(*dst), and @usize should've been passed by userspace.
 251 * The recommended usage is something like the following:
 252 *
 253 *   SYSCALL_DEFINE2(foobar, const struct foo __user *, uarg, size_t, usize)
 254 *   {
 255 *      int err;
 256 *      struct foo karg = {};
 257 *
 258 *      if (usize > PAGE_SIZE)
 259 *        return -E2BIG;
 260 *      if (usize < FOO_SIZE_VER0)
 261 *        return -EINVAL;
 262 *
 263 *      err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize);
 264 *      if (err)
 265 *        return err;
 266 *
 267 *      // ...
 268 *   }
 269 *
 270 * There are three cases to consider:
 271 *  * If @usize == @ksize, then it's copied verbatim.
 272 *  * If @usize < @ksize, then the userspace has passed an old struct to a
 273 *    newer kernel. The rest of the trailing bytes in @dst (@ksize - @usize)
 274 *    are to be zero-filled.
 275 *  * If @usize > @ksize, then the userspace has passed a new struct to an
 276 *    older kernel. The trailing bytes unknown to the kernel (@usize - @ksize)
 277 *    are checked to ensure they are zeroed, otherwise -E2BIG is returned.
 278 *
 279 * Returns (in all cases, some data may have been copied):
 280 *  * -E2BIG:  (@usize > @ksize) and there are non-zero trailing bytes in @src.
 281 *  * -EFAULT: access to userspace failed.
 282 */
 283static __always_inline __must_check int
 284copy_struct_from_user(void *dst, size_t ksize, const void __user *src,
 285                      size_t usize)
 286{
 287        size_t size = min(ksize, usize);
 288        size_t rest = max(ksize, usize) - size;
 289
 290        /* Deal with trailing bytes. */
 291        if (usize < ksize) {
 292                memset(dst + size, 0, rest);
 293        } else if (usize > ksize) {
 294                int ret = check_zeroed_user(src + size, rest);
 295                if (ret <= 0)
 296                        return ret ?: -E2BIG;
 297        }
 298        /* Copy the interoperable parts of the struct. */
 299        if (copy_from_user(dst, src, size))
 300                return -EFAULT;
 301        return 0;
 302}
 303
 304/*
 305 * probe_kernel_read(): safely attempt to read from a location
 306 * @dst: pointer to the buffer that shall take the data
 307 * @src: address to read from
 308 * @size: size of the data chunk
 309 *
 310 * Safely read from address @src to the buffer at @dst.  If a kernel fault
 311 * happens, handle that and return -EFAULT.
 312 */
 313extern long probe_kernel_read(void *dst, const void *src, size_t size);
 314extern long __probe_kernel_read(void *dst, const void *src, size_t size);
 315
 316/*
 317 * probe_user_read(): safely attempt to read from a location in user space
 318 * @dst: pointer to the buffer that shall take the data
 319 * @src: address to read from
 320 * @size: size of the data chunk
 321 *
 322 * Safely read from address @src to the buffer at @dst.  If a kernel fault
 323 * happens, handle that and return -EFAULT.
 324 */
 325extern long probe_user_read(void *dst, const void __user *src, size_t size);
 326extern long __probe_user_read(void *dst, const void __user *src, size_t size);
 327
 328/*
 329 * probe_kernel_write(): safely attempt to write to a location
 330 * @dst: address to write to
 331 * @src: pointer to the data that shall be written
 332 * @size: size of the data chunk
 333 *
 334 * Safely write to address @dst from the buffer at @src.  If a kernel fault
 335 * happens, handle that and return -EFAULT.
 336 */
 337extern long notrace probe_kernel_write(void *dst, const void *src, size_t size);
 338extern long notrace __probe_kernel_write(void *dst, const void *src, size_t size);
 339
 340extern long strncpy_from_unsafe(char *dst, const void *unsafe_addr, long count);
 341extern long strncpy_from_unsafe_user(char *dst, const void __user *unsafe_addr,
 342                                     long count);
 343extern long strnlen_unsafe_user(const void __user *unsafe_addr, long count);
 344
 345/**
 346 * probe_kernel_address(): safely attempt to read from a location
 347 * @addr: address to read from
 348 * @retval: read into this variable
 349 *
 350 * Returns 0 on success, or -EFAULT.
 351 */
 352#define probe_kernel_address(addr, retval)              \
 353        probe_kernel_read(&retval, addr, sizeof(retval))
 354
 355#ifndef user_access_begin
 356#define user_access_begin(ptr,len) access_ok(ptr, len)
 357#define user_access_end() do { } while (0)
 358#define unsafe_op_wrap(op, err) do { if (unlikely(op)) goto err; } while (0)
 359#define unsafe_get_user(x,p,e) unsafe_op_wrap(__get_user(x,p),e)
 360#define unsafe_put_user(x,p,e) unsafe_op_wrap(__put_user(x,p),e)
 361#define unsafe_copy_to_user(d,s,l,e) unsafe_op_wrap(__copy_to_user(d,s,l),e)
 362static inline unsigned long user_access_save(void) { return 0UL; }
 363static inline void user_access_restore(unsigned long flags) { }
 364#endif
 365
 366#ifdef CONFIG_HARDENED_USERCOPY
 367void usercopy_warn(const char *name, const char *detail, bool to_user,
 368                   unsigned long offset, unsigned long len);
 369void __noreturn usercopy_abort(const char *name, const char *detail,
 370                               bool to_user, unsigned long offset,
 371                               unsigned long len);
 372#endif
 373
 374#endif          /* __LINUX_UACCESS_H__ */
 375