linux/include/rdma/ib_verbs.h
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
   3 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
   4 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
   5 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
   6 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
   7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   8 * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
   9 *
  10 * This software is available to you under a choice of one of two
  11 * licenses.  You may choose to be licensed under the terms of the GNU
  12 * General Public License (GPL) Version 2, available from the file
  13 * COPYING in the main directory of this source tree, or the
  14 * OpenIB.org BSD license below:
  15 *
  16 *     Redistribution and use in source and binary forms, with or
  17 *     without modification, are permitted provided that the following
  18 *     conditions are met:
  19 *
  20 *      - Redistributions of source code must retain the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer.
  23 *
  24 *      - Redistributions in binary form must reproduce the above
  25 *        copyright notice, this list of conditions and the following
  26 *        disclaimer in the documentation and/or other materials
  27 *        provided with the distribution.
  28 *
  29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36 * SOFTWARE.
  37 */
  38
  39#if !defined(IB_VERBS_H)
  40#define IB_VERBS_H
  41
  42#include <linux/types.h>
  43#include <linux/device.h>
  44#include <linux/dma-mapping.h>
  45#include <linux/kref.h>
  46#include <linux/list.h>
  47#include <linux/rwsem.h>
  48#include <linux/workqueue.h>
  49#include <linux/irq_poll.h>
  50#include <uapi/linux/if_ether.h>
  51#include <net/ipv6.h>
  52#include <net/ip.h>
  53#include <linux/string.h>
  54#include <linux/slab.h>
  55#include <linux/netdevice.h>
  56#include <linux/refcount.h>
  57#include <linux/if_link.h>
  58#include <linux/atomic.h>
  59#include <linux/mmu_notifier.h>
  60#include <linux/uaccess.h>
  61#include <linux/cgroup_rdma.h>
  62#include <linux/irqflags.h>
  63#include <linux/preempt.h>
  64#include <linux/dim.h>
  65#include <uapi/rdma/ib_user_verbs.h>
  66#include <rdma/rdma_counter.h>
  67#include <rdma/restrack.h>
  68#include <rdma/signature.h>
  69#include <uapi/rdma/rdma_user_ioctl.h>
  70#include <uapi/rdma/ib_user_ioctl_verbs.h>
  71
  72#define IB_FW_VERSION_NAME_MAX  ETHTOOL_FWVERS_LEN
  73
  74struct ib_umem_odp;
  75
  76extern struct workqueue_struct *ib_wq;
  77extern struct workqueue_struct *ib_comp_wq;
  78extern struct workqueue_struct *ib_comp_unbound_wq;
  79
  80__printf(3, 4) __cold
  81void ibdev_printk(const char *level, const struct ib_device *ibdev,
  82                  const char *format, ...);
  83__printf(2, 3) __cold
  84void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
  85__printf(2, 3) __cold
  86void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
  87__printf(2, 3) __cold
  88void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
  89__printf(2, 3) __cold
  90void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
  91__printf(2, 3) __cold
  92void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
  93__printf(2, 3) __cold
  94void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
  95__printf(2, 3) __cold
  96void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
  97
  98#if defined(CONFIG_DYNAMIC_DEBUG)
  99#define ibdev_dbg(__dev, format, args...)                       \
 100        dynamic_ibdev_dbg(__dev, format, ##args)
 101#else
 102__printf(2, 3) __cold
 103static inline
 104void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
 105#endif
 106
 107#define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...)           \
 108do {                                                                    \
 109        static DEFINE_RATELIMIT_STATE(_rs,                              \
 110                                      DEFAULT_RATELIMIT_INTERVAL,       \
 111                                      DEFAULT_RATELIMIT_BURST);         \
 112        if (__ratelimit(&_rs))                                          \
 113                ibdev_level(ibdev, fmt, ##__VA_ARGS__);                 \
 114} while (0)
 115
 116#define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
 117        ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
 118#define ibdev_alert_ratelimited(ibdev, fmt, ...) \
 119        ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
 120#define ibdev_crit_ratelimited(ibdev, fmt, ...) \
 121        ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
 122#define ibdev_err_ratelimited(ibdev, fmt, ...) \
 123        ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
 124#define ibdev_warn_ratelimited(ibdev, fmt, ...) \
 125        ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
 126#define ibdev_notice_ratelimited(ibdev, fmt, ...) \
 127        ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
 128#define ibdev_info_ratelimited(ibdev, fmt, ...) \
 129        ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
 130
 131#if defined(CONFIG_DYNAMIC_DEBUG)
 132/* descriptor check is first to prevent flooding with "callbacks suppressed" */
 133#define ibdev_dbg_ratelimited(ibdev, fmt, ...)                          \
 134do {                                                                    \
 135        static DEFINE_RATELIMIT_STATE(_rs,                              \
 136                                      DEFAULT_RATELIMIT_INTERVAL,       \
 137                                      DEFAULT_RATELIMIT_BURST);         \
 138        DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);                 \
 139        if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs))      \
 140                __dynamic_ibdev_dbg(&descriptor, ibdev, fmt,            \
 141                                    ##__VA_ARGS__);                     \
 142} while (0)
 143#else
 144__printf(2, 3) __cold
 145static inline
 146void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
 147#endif
 148
 149union ib_gid {
 150        u8      raw[16];
 151        struct {
 152                __be64  subnet_prefix;
 153                __be64  interface_id;
 154        } global;
 155};
 156
 157extern union ib_gid zgid;
 158
 159enum ib_gid_type {
 160        /* If link layer is Ethernet, this is RoCE V1 */
 161        IB_GID_TYPE_IB        = 0,
 162        IB_GID_TYPE_ROCE      = 0,
 163        IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
 164        IB_GID_TYPE_SIZE
 165};
 166
 167#define ROCE_V2_UDP_DPORT      4791
 168struct ib_gid_attr {
 169        struct net_device __rcu *ndev;
 170        struct ib_device        *device;
 171        union ib_gid            gid;
 172        enum ib_gid_type        gid_type;
 173        u16                     index;
 174        u8                      port_num;
 175};
 176
 177enum {
 178        /* set the local administered indication */
 179        IB_SA_WELL_KNOWN_GUID   = BIT_ULL(57) | 2,
 180};
 181
 182enum rdma_transport_type {
 183        RDMA_TRANSPORT_IB,
 184        RDMA_TRANSPORT_IWARP,
 185        RDMA_TRANSPORT_USNIC,
 186        RDMA_TRANSPORT_USNIC_UDP,
 187        RDMA_TRANSPORT_UNSPECIFIED,
 188};
 189
 190enum rdma_protocol_type {
 191        RDMA_PROTOCOL_IB,
 192        RDMA_PROTOCOL_IBOE,
 193        RDMA_PROTOCOL_IWARP,
 194        RDMA_PROTOCOL_USNIC_UDP
 195};
 196
 197__attribute_const__ enum rdma_transport_type
 198rdma_node_get_transport(unsigned int node_type);
 199
 200enum rdma_network_type {
 201        RDMA_NETWORK_IB,
 202        RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
 203        RDMA_NETWORK_IPV4,
 204        RDMA_NETWORK_IPV6
 205};
 206
 207static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
 208{
 209        if (network_type == RDMA_NETWORK_IPV4 ||
 210            network_type == RDMA_NETWORK_IPV6)
 211                return IB_GID_TYPE_ROCE_UDP_ENCAP;
 212
 213        /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
 214        return IB_GID_TYPE_IB;
 215}
 216
 217static inline enum rdma_network_type
 218rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
 219{
 220        if (attr->gid_type == IB_GID_TYPE_IB)
 221                return RDMA_NETWORK_IB;
 222
 223        if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
 224                return RDMA_NETWORK_IPV4;
 225        else
 226                return RDMA_NETWORK_IPV6;
 227}
 228
 229enum rdma_link_layer {
 230        IB_LINK_LAYER_UNSPECIFIED,
 231        IB_LINK_LAYER_INFINIBAND,
 232        IB_LINK_LAYER_ETHERNET,
 233};
 234
 235enum ib_device_cap_flags {
 236        IB_DEVICE_RESIZE_MAX_WR                 = (1 << 0),
 237        IB_DEVICE_BAD_PKEY_CNTR                 = (1 << 1),
 238        IB_DEVICE_BAD_QKEY_CNTR                 = (1 << 2),
 239        IB_DEVICE_RAW_MULTI                     = (1 << 3),
 240        IB_DEVICE_AUTO_PATH_MIG                 = (1 << 4),
 241        IB_DEVICE_CHANGE_PHY_PORT               = (1 << 5),
 242        IB_DEVICE_UD_AV_PORT_ENFORCE            = (1 << 6),
 243        IB_DEVICE_CURR_QP_STATE_MOD             = (1 << 7),
 244        IB_DEVICE_SHUTDOWN_PORT                 = (1 << 8),
 245        /* Not in use, former INIT_TYPE         = (1 << 9),*/
 246        IB_DEVICE_PORT_ACTIVE_EVENT             = (1 << 10),
 247        IB_DEVICE_SYS_IMAGE_GUID                = (1 << 11),
 248        IB_DEVICE_RC_RNR_NAK_GEN                = (1 << 12),
 249        IB_DEVICE_SRQ_RESIZE                    = (1 << 13),
 250        IB_DEVICE_N_NOTIFY_CQ                   = (1 << 14),
 251
 252        /*
 253         * This device supports a per-device lkey or stag that can be
 254         * used without performing a memory registration for the local
 255         * memory.  Note that ULPs should never check this flag, but
 256         * instead of use the local_dma_lkey flag in the ib_pd structure,
 257         * which will always contain a usable lkey.
 258         */
 259        IB_DEVICE_LOCAL_DMA_LKEY                = (1 << 15),
 260        /* Reserved, old SEND_W_INV             = (1 << 16),*/
 261        IB_DEVICE_MEM_WINDOW                    = (1 << 17),
 262        /*
 263         * Devices should set IB_DEVICE_UD_IP_SUM if they support
 264         * insertion of UDP and TCP checksum on outgoing UD IPoIB
 265         * messages and can verify the validity of checksum for
 266         * incoming messages.  Setting this flag implies that the
 267         * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
 268         */
 269        IB_DEVICE_UD_IP_CSUM                    = (1 << 18),
 270        IB_DEVICE_UD_TSO                        = (1 << 19),
 271        IB_DEVICE_XRC                           = (1 << 20),
 272
 273        /*
 274         * This device supports the IB "base memory management extension",
 275         * which includes support for fast registrations (IB_WR_REG_MR,
 276         * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
 277         * also be set by any iWarp device which must support FRs to comply
 278         * to the iWarp verbs spec.  iWarp devices also support the
 279         * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
 280         * stag.
 281         */
 282        IB_DEVICE_MEM_MGT_EXTENSIONS            = (1 << 21),
 283        IB_DEVICE_BLOCK_MULTICAST_LOOPBACK      = (1 << 22),
 284        IB_DEVICE_MEM_WINDOW_TYPE_2A            = (1 << 23),
 285        IB_DEVICE_MEM_WINDOW_TYPE_2B            = (1 << 24),
 286        IB_DEVICE_RC_IP_CSUM                    = (1 << 25),
 287        /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
 288        IB_DEVICE_RAW_IP_CSUM                   = (1 << 26),
 289        /*
 290         * Devices should set IB_DEVICE_CROSS_CHANNEL if they
 291         * support execution of WQEs that involve synchronization
 292         * of I/O operations with single completion queue managed
 293         * by hardware.
 294         */
 295        IB_DEVICE_CROSS_CHANNEL                 = (1 << 27),
 296        IB_DEVICE_MANAGED_FLOW_STEERING         = (1 << 29),
 297        IB_DEVICE_INTEGRITY_HANDOVER            = (1 << 30),
 298        IB_DEVICE_ON_DEMAND_PAGING              = (1ULL << 31),
 299        IB_DEVICE_SG_GAPS_REG                   = (1ULL << 32),
 300        IB_DEVICE_VIRTUAL_FUNCTION              = (1ULL << 33),
 301        /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
 302        IB_DEVICE_RAW_SCATTER_FCS               = (1ULL << 34),
 303        IB_DEVICE_RDMA_NETDEV_OPA_VNIC          = (1ULL << 35),
 304        /* The device supports padding incoming writes to cacheline. */
 305        IB_DEVICE_PCI_WRITE_END_PADDING         = (1ULL << 36),
 306        IB_DEVICE_ALLOW_USER_UNREG              = (1ULL << 37),
 307};
 308
 309enum ib_atomic_cap {
 310        IB_ATOMIC_NONE,
 311        IB_ATOMIC_HCA,
 312        IB_ATOMIC_GLOB
 313};
 314
 315enum ib_odp_general_cap_bits {
 316        IB_ODP_SUPPORT          = 1 << 0,
 317        IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
 318};
 319
 320enum ib_odp_transport_cap_bits {
 321        IB_ODP_SUPPORT_SEND     = 1 << 0,
 322        IB_ODP_SUPPORT_RECV     = 1 << 1,
 323        IB_ODP_SUPPORT_WRITE    = 1 << 2,
 324        IB_ODP_SUPPORT_READ     = 1 << 3,
 325        IB_ODP_SUPPORT_ATOMIC   = 1 << 4,
 326        IB_ODP_SUPPORT_SRQ_RECV = 1 << 5,
 327};
 328
 329struct ib_odp_caps {
 330        uint64_t general_caps;
 331        struct {
 332                uint32_t  rc_odp_caps;
 333                uint32_t  uc_odp_caps;
 334                uint32_t  ud_odp_caps;
 335                uint32_t  xrc_odp_caps;
 336        } per_transport_caps;
 337};
 338
 339struct ib_rss_caps {
 340        /* Corresponding bit will be set if qp type from
 341         * 'enum ib_qp_type' is supported, e.g.
 342         * supported_qpts |= 1 << IB_QPT_UD
 343         */
 344        u32 supported_qpts;
 345        u32 max_rwq_indirection_tables;
 346        u32 max_rwq_indirection_table_size;
 347};
 348
 349enum ib_tm_cap_flags {
 350        /*  Support tag matching with rendezvous offload for RC transport */
 351        IB_TM_CAP_RNDV_RC = 1 << 0,
 352};
 353
 354struct ib_tm_caps {
 355        /* Max size of RNDV header */
 356        u32 max_rndv_hdr_size;
 357        /* Max number of entries in tag matching list */
 358        u32 max_num_tags;
 359        /* From enum ib_tm_cap_flags */
 360        u32 flags;
 361        /* Max number of outstanding list operations */
 362        u32 max_ops;
 363        /* Max number of SGE in tag matching entry */
 364        u32 max_sge;
 365};
 366
 367struct ib_cq_init_attr {
 368        unsigned int    cqe;
 369        u32             comp_vector;
 370        u32             flags;
 371};
 372
 373enum ib_cq_attr_mask {
 374        IB_CQ_MODERATE = 1 << 0,
 375};
 376
 377struct ib_cq_caps {
 378        u16     max_cq_moderation_count;
 379        u16     max_cq_moderation_period;
 380};
 381
 382struct ib_dm_mr_attr {
 383        u64             length;
 384        u64             offset;
 385        u32             access_flags;
 386};
 387
 388struct ib_dm_alloc_attr {
 389        u64     length;
 390        u32     alignment;
 391        u32     flags;
 392};
 393
 394struct ib_device_attr {
 395        u64                     fw_ver;
 396        __be64                  sys_image_guid;
 397        u64                     max_mr_size;
 398        u64                     page_size_cap;
 399        u32                     vendor_id;
 400        u32                     vendor_part_id;
 401        u32                     hw_ver;
 402        int                     max_qp;
 403        int                     max_qp_wr;
 404        u64                     device_cap_flags;
 405        int                     max_send_sge;
 406        int                     max_recv_sge;
 407        int                     max_sge_rd;
 408        int                     max_cq;
 409        int                     max_cqe;
 410        int                     max_mr;
 411        int                     max_pd;
 412        int                     max_qp_rd_atom;
 413        int                     max_ee_rd_atom;
 414        int                     max_res_rd_atom;
 415        int                     max_qp_init_rd_atom;
 416        int                     max_ee_init_rd_atom;
 417        enum ib_atomic_cap      atomic_cap;
 418        enum ib_atomic_cap      masked_atomic_cap;
 419        int                     max_ee;
 420        int                     max_rdd;
 421        int                     max_mw;
 422        int                     max_raw_ipv6_qp;
 423        int                     max_raw_ethy_qp;
 424        int                     max_mcast_grp;
 425        int                     max_mcast_qp_attach;
 426        int                     max_total_mcast_qp_attach;
 427        int                     max_ah;
 428        int                     max_fmr;
 429        int                     max_map_per_fmr;
 430        int                     max_srq;
 431        int                     max_srq_wr;
 432        int                     max_srq_sge;
 433        unsigned int            max_fast_reg_page_list_len;
 434        unsigned int            max_pi_fast_reg_page_list_len;
 435        u16                     max_pkeys;
 436        u8                      local_ca_ack_delay;
 437        int                     sig_prot_cap;
 438        int                     sig_guard_cap;
 439        struct ib_odp_caps      odp_caps;
 440        uint64_t                timestamp_mask;
 441        uint64_t                hca_core_clock; /* in KHZ */
 442        struct ib_rss_caps      rss_caps;
 443        u32                     max_wq_type_rq;
 444        u32                     raw_packet_caps; /* Use ib_raw_packet_caps enum */
 445        struct ib_tm_caps       tm_caps;
 446        struct ib_cq_caps       cq_caps;
 447        u64                     max_dm_size;
 448};
 449
 450enum ib_mtu {
 451        IB_MTU_256  = 1,
 452        IB_MTU_512  = 2,
 453        IB_MTU_1024 = 3,
 454        IB_MTU_2048 = 4,
 455        IB_MTU_4096 = 5
 456};
 457
 458static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
 459{
 460        switch (mtu) {
 461        case IB_MTU_256:  return  256;
 462        case IB_MTU_512:  return  512;
 463        case IB_MTU_1024: return 1024;
 464        case IB_MTU_2048: return 2048;
 465        case IB_MTU_4096: return 4096;
 466        default:          return -1;
 467        }
 468}
 469
 470static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
 471{
 472        if (mtu >= 4096)
 473                return IB_MTU_4096;
 474        else if (mtu >= 2048)
 475                return IB_MTU_2048;
 476        else if (mtu >= 1024)
 477                return IB_MTU_1024;
 478        else if (mtu >= 512)
 479                return IB_MTU_512;
 480        else
 481                return IB_MTU_256;
 482}
 483
 484enum ib_port_state {
 485        IB_PORT_NOP             = 0,
 486        IB_PORT_DOWN            = 1,
 487        IB_PORT_INIT            = 2,
 488        IB_PORT_ARMED           = 3,
 489        IB_PORT_ACTIVE          = 4,
 490        IB_PORT_ACTIVE_DEFER    = 5
 491};
 492
 493enum ib_port_phys_state {
 494        IB_PORT_PHYS_STATE_SLEEP = 1,
 495        IB_PORT_PHYS_STATE_POLLING = 2,
 496        IB_PORT_PHYS_STATE_DISABLED = 3,
 497        IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
 498        IB_PORT_PHYS_STATE_LINK_UP = 5,
 499        IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
 500        IB_PORT_PHYS_STATE_PHY_TEST = 7,
 501};
 502
 503enum ib_port_width {
 504        IB_WIDTH_1X     = 1,
 505        IB_WIDTH_2X     = 16,
 506        IB_WIDTH_4X     = 2,
 507        IB_WIDTH_8X     = 4,
 508        IB_WIDTH_12X    = 8
 509};
 510
 511static inline int ib_width_enum_to_int(enum ib_port_width width)
 512{
 513        switch (width) {
 514        case IB_WIDTH_1X:  return  1;
 515        case IB_WIDTH_2X:  return  2;
 516        case IB_WIDTH_4X:  return  4;
 517        case IB_WIDTH_8X:  return  8;
 518        case IB_WIDTH_12X: return 12;
 519        default:          return -1;
 520        }
 521}
 522
 523enum ib_port_speed {
 524        IB_SPEED_SDR    = 1,
 525        IB_SPEED_DDR    = 2,
 526        IB_SPEED_QDR    = 4,
 527        IB_SPEED_FDR10  = 8,
 528        IB_SPEED_FDR    = 16,
 529        IB_SPEED_EDR    = 32,
 530        IB_SPEED_HDR    = 64
 531};
 532
 533/**
 534 * struct rdma_hw_stats
 535 * @lock - Mutex to protect parallel write access to lifespan and values
 536 *    of counters, which are 64bits and not guaranteeed to be written
 537 *    atomicaly on 32bits systems.
 538 * @timestamp - Used by the core code to track when the last update was
 539 * @lifespan - Used by the core code to determine how old the counters
 540 *   should be before being updated again.  Stored in jiffies, defaults
 541 *   to 10 milliseconds, drivers can override the default be specifying
 542 *   their own value during their allocation routine.
 543 * @name - Array of pointers to static names used for the counters in
 544 *   directory.
 545 * @num_counters - How many hardware counters there are.  If name is
 546 *   shorter than this number, a kernel oops will result.  Driver authors
 547 *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
 548 *   in their code to prevent this.
 549 * @value - Array of u64 counters that are accessed by the sysfs code and
 550 *   filled in by the drivers get_stats routine
 551 */
 552struct rdma_hw_stats {
 553        struct mutex    lock; /* Protect lifespan and values[] */
 554        unsigned long   timestamp;
 555        unsigned long   lifespan;
 556        const char * const *names;
 557        int             num_counters;
 558        u64             value[];
 559};
 560
 561#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
 562/**
 563 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
 564 *   for drivers.
 565 * @names - Array of static const char *
 566 * @num_counters - How many elements in array
 567 * @lifespan - How many milliseconds between updates
 568 */
 569static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
 570                const char * const *names, int num_counters,
 571                unsigned long lifespan)
 572{
 573        struct rdma_hw_stats *stats;
 574
 575        stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
 576                        GFP_KERNEL);
 577        if (!stats)
 578                return NULL;
 579        stats->names = names;
 580        stats->num_counters = num_counters;
 581        stats->lifespan = msecs_to_jiffies(lifespan);
 582
 583        return stats;
 584}
 585
 586
 587/* Define bits for the various functionality this port needs to be supported by
 588 * the core.
 589 */
 590/* Management                           0x00000FFF */
 591#define RDMA_CORE_CAP_IB_MAD            0x00000001
 592#define RDMA_CORE_CAP_IB_SMI            0x00000002
 593#define RDMA_CORE_CAP_IB_CM             0x00000004
 594#define RDMA_CORE_CAP_IW_CM             0x00000008
 595#define RDMA_CORE_CAP_IB_SA             0x00000010
 596#define RDMA_CORE_CAP_OPA_MAD           0x00000020
 597
 598/* Address format                       0x000FF000 */
 599#define RDMA_CORE_CAP_AF_IB             0x00001000
 600#define RDMA_CORE_CAP_ETH_AH            0x00002000
 601#define RDMA_CORE_CAP_OPA_AH            0x00004000
 602#define RDMA_CORE_CAP_IB_GRH_REQUIRED   0x00008000
 603
 604/* Protocol                             0xFFF00000 */
 605#define RDMA_CORE_CAP_PROT_IB           0x00100000
 606#define RDMA_CORE_CAP_PROT_ROCE         0x00200000
 607#define RDMA_CORE_CAP_PROT_IWARP        0x00400000
 608#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
 609#define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
 610#define RDMA_CORE_CAP_PROT_USNIC        0x02000000
 611
 612#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
 613                                        | RDMA_CORE_CAP_PROT_ROCE     \
 614                                        | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
 615
 616#define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
 617                                        | RDMA_CORE_CAP_IB_MAD \
 618                                        | RDMA_CORE_CAP_IB_SMI \
 619                                        | RDMA_CORE_CAP_IB_CM  \
 620                                        | RDMA_CORE_CAP_IB_SA  \
 621                                        | RDMA_CORE_CAP_AF_IB)
 622#define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
 623                                        | RDMA_CORE_CAP_IB_MAD  \
 624                                        | RDMA_CORE_CAP_IB_CM   \
 625                                        | RDMA_CORE_CAP_AF_IB   \
 626                                        | RDMA_CORE_CAP_ETH_AH)
 627#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP                       \
 628                                        (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
 629                                        | RDMA_CORE_CAP_IB_MAD  \
 630                                        | RDMA_CORE_CAP_IB_CM   \
 631                                        | RDMA_CORE_CAP_AF_IB   \
 632                                        | RDMA_CORE_CAP_ETH_AH)
 633#define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
 634                                        | RDMA_CORE_CAP_IW_CM)
 635#define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
 636                                        | RDMA_CORE_CAP_OPA_MAD)
 637
 638#define RDMA_CORE_PORT_RAW_PACKET       (RDMA_CORE_CAP_PROT_RAW_PACKET)
 639
 640#define RDMA_CORE_PORT_USNIC            (RDMA_CORE_CAP_PROT_USNIC)
 641
 642struct ib_port_attr {
 643        u64                     subnet_prefix;
 644        enum ib_port_state      state;
 645        enum ib_mtu             max_mtu;
 646        enum ib_mtu             active_mtu;
 647        int                     gid_tbl_len;
 648        unsigned int            ip_gids:1;
 649        /* This is the value from PortInfo CapabilityMask, defined by IBA */
 650        u32                     port_cap_flags;
 651        u32                     max_msg_sz;
 652        u32                     bad_pkey_cntr;
 653        u32                     qkey_viol_cntr;
 654        u16                     pkey_tbl_len;
 655        u32                     sm_lid;
 656        u32                     lid;
 657        u8                      lmc;
 658        u8                      max_vl_num;
 659        u8                      sm_sl;
 660        u8                      subnet_timeout;
 661        u8                      init_type_reply;
 662        u8                      active_width;
 663        u8                      active_speed;
 664        u8                      phys_state;
 665        u16                     port_cap_flags2;
 666};
 667
 668enum ib_device_modify_flags {
 669        IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
 670        IB_DEVICE_MODIFY_NODE_DESC      = 1 << 1
 671};
 672
 673#define IB_DEVICE_NODE_DESC_MAX 64
 674
 675struct ib_device_modify {
 676        u64     sys_image_guid;
 677        char    node_desc[IB_DEVICE_NODE_DESC_MAX];
 678};
 679
 680enum ib_port_modify_flags {
 681        IB_PORT_SHUTDOWN                = 1,
 682        IB_PORT_INIT_TYPE               = (1<<2),
 683        IB_PORT_RESET_QKEY_CNTR         = (1<<3),
 684        IB_PORT_OPA_MASK_CHG            = (1<<4)
 685};
 686
 687struct ib_port_modify {
 688        u32     set_port_cap_mask;
 689        u32     clr_port_cap_mask;
 690        u8      init_type;
 691};
 692
 693enum ib_event_type {
 694        IB_EVENT_CQ_ERR,
 695        IB_EVENT_QP_FATAL,
 696        IB_EVENT_QP_REQ_ERR,
 697        IB_EVENT_QP_ACCESS_ERR,
 698        IB_EVENT_COMM_EST,
 699        IB_EVENT_SQ_DRAINED,
 700        IB_EVENT_PATH_MIG,
 701        IB_EVENT_PATH_MIG_ERR,
 702        IB_EVENT_DEVICE_FATAL,
 703        IB_EVENT_PORT_ACTIVE,
 704        IB_EVENT_PORT_ERR,
 705        IB_EVENT_LID_CHANGE,
 706        IB_EVENT_PKEY_CHANGE,
 707        IB_EVENT_SM_CHANGE,
 708        IB_EVENT_SRQ_ERR,
 709        IB_EVENT_SRQ_LIMIT_REACHED,
 710        IB_EVENT_QP_LAST_WQE_REACHED,
 711        IB_EVENT_CLIENT_REREGISTER,
 712        IB_EVENT_GID_CHANGE,
 713        IB_EVENT_WQ_FATAL,
 714};
 715
 716const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
 717
 718struct ib_event {
 719        struct ib_device        *device;
 720        union {
 721                struct ib_cq    *cq;
 722                struct ib_qp    *qp;
 723                struct ib_srq   *srq;
 724                struct ib_wq    *wq;
 725                u8              port_num;
 726        } element;
 727        enum ib_event_type      event;
 728};
 729
 730struct ib_event_handler {
 731        struct ib_device *device;
 732        void            (*handler)(struct ib_event_handler *, struct ib_event *);
 733        struct list_head  list;
 734};
 735
 736#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)          \
 737        do {                                                    \
 738                (_ptr)->device  = _device;                      \
 739                (_ptr)->handler = _handler;                     \
 740                INIT_LIST_HEAD(&(_ptr)->list);                  \
 741        } while (0)
 742
 743struct ib_global_route {
 744        const struct ib_gid_attr *sgid_attr;
 745        union ib_gid    dgid;
 746        u32             flow_label;
 747        u8              sgid_index;
 748        u8              hop_limit;
 749        u8              traffic_class;
 750};
 751
 752struct ib_grh {
 753        __be32          version_tclass_flow;
 754        __be16          paylen;
 755        u8              next_hdr;
 756        u8              hop_limit;
 757        union ib_gid    sgid;
 758        union ib_gid    dgid;
 759};
 760
 761union rdma_network_hdr {
 762        struct ib_grh ibgrh;
 763        struct {
 764                /* The IB spec states that if it's IPv4, the header
 765                 * is located in the last 20 bytes of the header.
 766                 */
 767                u8              reserved[20];
 768                struct iphdr    roce4grh;
 769        };
 770};
 771
 772#define IB_QPN_MASK             0xFFFFFF
 773
 774enum {
 775        IB_MULTICAST_QPN = 0xffffff
 776};
 777
 778#define IB_LID_PERMISSIVE       cpu_to_be16(0xFFFF)
 779#define IB_MULTICAST_LID_BASE   cpu_to_be16(0xC000)
 780
 781enum ib_ah_flags {
 782        IB_AH_GRH       = 1
 783};
 784
 785enum ib_rate {
 786        IB_RATE_PORT_CURRENT = 0,
 787        IB_RATE_2_5_GBPS = 2,
 788        IB_RATE_5_GBPS   = 5,
 789        IB_RATE_10_GBPS  = 3,
 790        IB_RATE_20_GBPS  = 6,
 791        IB_RATE_30_GBPS  = 4,
 792        IB_RATE_40_GBPS  = 7,
 793        IB_RATE_60_GBPS  = 8,
 794        IB_RATE_80_GBPS  = 9,
 795        IB_RATE_120_GBPS = 10,
 796        IB_RATE_14_GBPS  = 11,
 797        IB_RATE_56_GBPS  = 12,
 798        IB_RATE_112_GBPS = 13,
 799        IB_RATE_168_GBPS = 14,
 800        IB_RATE_25_GBPS  = 15,
 801        IB_RATE_100_GBPS = 16,
 802        IB_RATE_200_GBPS = 17,
 803        IB_RATE_300_GBPS = 18,
 804        IB_RATE_28_GBPS  = 19,
 805        IB_RATE_50_GBPS  = 20,
 806        IB_RATE_400_GBPS = 21,
 807        IB_RATE_600_GBPS = 22,
 808};
 809
 810/**
 811 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
 812 * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
 813 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
 814 * @rate: rate to convert.
 815 */
 816__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
 817
 818/**
 819 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
 820 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
 821 * @rate: rate to convert.
 822 */
 823__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
 824
 825
 826/**
 827 * enum ib_mr_type - memory region type
 828 * @IB_MR_TYPE_MEM_REG:       memory region that is used for
 829 *                            normal registration
 830 * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
 831 *                            register any arbitrary sg lists (without
 832 *                            the normal mr constraints - see
 833 *                            ib_map_mr_sg)
 834 * @IB_MR_TYPE_DM:            memory region that is used for device
 835 *                            memory registration
 836 * @IB_MR_TYPE_USER:          memory region that is used for the user-space
 837 *                            application
 838 * @IB_MR_TYPE_DMA:           memory region that is used for DMA operations
 839 *                            without address translations (VA=PA)
 840 * @IB_MR_TYPE_INTEGRITY:     memory region that is used for
 841 *                            data integrity operations
 842 */
 843enum ib_mr_type {
 844        IB_MR_TYPE_MEM_REG,
 845        IB_MR_TYPE_SG_GAPS,
 846        IB_MR_TYPE_DM,
 847        IB_MR_TYPE_USER,
 848        IB_MR_TYPE_DMA,
 849        IB_MR_TYPE_INTEGRITY,
 850};
 851
 852enum ib_mr_status_check {
 853        IB_MR_CHECK_SIG_STATUS = 1,
 854};
 855
 856/**
 857 * struct ib_mr_status - Memory region status container
 858 *
 859 * @fail_status: Bitmask of MR checks status. For each
 860 *     failed check a corresponding status bit is set.
 861 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
 862 *     failure.
 863 */
 864struct ib_mr_status {
 865        u32                 fail_status;
 866        struct ib_sig_err   sig_err;
 867};
 868
 869/**
 870 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
 871 * enum.
 872 * @mult: multiple to convert.
 873 */
 874__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
 875
 876enum rdma_ah_attr_type {
 877        RDMA_AH_ATTR_TYPE_UNDEFINED,
 878        RDMA_AH_ATTR_TYPE_IB,
 879        RDMA_AH_ATTR_TYPE_ROCE,
 880        RDMA_AH_ATTR_TYPE_OPA,
 881};
 882
 883struct ib_ah_attr {
 884        u16                     dlid;
 885        u8                      src_path_bits;
 886};
 887
 888struct roce_ah_attr {
 889        u8                      dmac[ETH_ALEN];
 890};
 891
 892struct opa_ah_attr {
 893        u32                     dlid;
 894        u8                      src_path_bits;
 895        bool                    make_grd;
 896};
 897
 898struct rdma_ah_attr {
 899        struct ib_global_route  grh;
 900        u8                      sl;
 901        u8                      static_rate;
 902        u8                      port_num;
 903        u8                      ah_flags;
 904        enum rdma_ah_attr_type type;
 905        union {
 906                struct ib_ah_attr ib;
 907                struct roce_ah_attr roce;
 908                struct opa_ah_attr opa;
 909        };
 910};
 911
 912enum ib_wc_status {
 913        IB_WC_SUCCESS,
 914        IB_WC_LOC_LEN_ERR,
 915        IB_WC_LOC_QP_OP_ERR,
 916        IB_WC_LOC_EEC_OP_ERR,
 917        IB_WC_LOC_PROT_ERR,
 918        IB_WC_WR_FLUSH_ERR,
 919        IB_WC_MW_BIND_ERR,
 920        IB_WC_BAD_RESP_ERR,
 921        IB_WC_LOC_ACCESS_ERR,
 922        IB_WC_REM_INV_REQ_ERR,
 923        IB_WC_REM_ACCESS_ERR,
 924        IB_WC_REM_OP_ERR,
 925        IB_WC_RETRY_EXC_ERR,
 926        IB_WC_RNR_RETRY_EXC_ERR,
 927        IB_WC_LOC_RDD_VIOL_ERR,
 928        IB_WC_REM_INV_RD_REQ_ERR,
 929        IB_WC_REM_ABORT_ERR,
 930        IB_WC_INV_EECN_ERR,
 931        IB_WC_INV_EEC_STATE_ERR,
 932        IB_WC_FATAL_ERR,
 933        IB_WC_RESP_TIMEOUT_ERR,
 934        IB_WC_GENERAL_ERR
 935};
 936
 937const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
 938
 939enum ib_wc_opcode {
 940        IB_WC_SEND,
 941        IB_WC_RDMA_WRITE,
 942        IB_WC_RDMA_READ,
 943        IB_WC_COMP_SWAP,
 944        IB_WC_FETCH_ADD,
 945        IB_WC_LSO,
 946        IB_WC_LOCAL_INV,
 947        IB_WC_REG_MR,
 948        IB_WC_MASKED_COMP_SWAP,
 949        IB_WC_MASKED_FETCH_ADD,
 950/*
 951 * Set value of IB_WC_RECV so consumers can test if a completion is a
 952 * receive by testing (opcode & IB_WC_RECV).
 953 */
 954        IB_WC_RECV                      = 1 << 7,
 955        IB_WC_RECV_RDMA_WITH_IMM
 956};
 957
 958enum ib_wc_flags {
 959        IB_WC_GRH               = 1,
 960        IB_WC_WITH_IMM          = (1<<1),
 961        IB_WC_WITH_INVALIDATE   = (1<<2),
 962        IB_WC_IP_CSUM_OK        = (1<<3),
 963        IB_WC_WITH_SMAC         = (1<<4),
 964        IB_WC_WITH_VLAN         = (1<<5),
 965        IB_WC_WITH_NETWORK_HDR_TYPE     = (1<<6),
 966};
 967
 968struct ib_wc {
 969        union {
 970                u64             wr_id;
 971                struct ib_cqe   *wr_cqe;
 972        };
 973        enum ib_wc_status       status;
 974        enum ib_wc_opcode       opcode;
 975        u32                     vendor_err;
 976        u32                     byte_len;
 977        struct ib_qp           *qp;
 978        union {
 979                __be32          imm_data;
 980                u32             invalidate_rkey;
 981        } ex;
 982        u32                     src_qp;
 983        u32                     slid;
 984        int                     wc_flags;
 985        u16                     pkey_index;
 986        u8                      sl;
 987        u8                      dlid_path_bits;
 988        u8                      port_num;       /* valid only for DR SMPs on switches */
 989        u8                      smac[ETH_ALEN];
 990        u16                     vlan_id;
 991        u8                      network_hdr_type;
 992};
 993
 994enum ib_cq_notify_flags {
 995        IB_CQ_SOLICITED                 = 1 << 0,
 996        IB_CQ_NEXT_COMP                 = 1 << 1,
 997        IB_CQ_SOLICITED_MASK            = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
 998        IB_CQ_REPORT_MISSED_EVENTS      = 1 << 2,
 999};
1000
1001enum ib_srq_type {
1002        IB_SRQT_BASIC,
1003        IB_SRQT_XRC,
1004        IB_SRQT_TM,
1005};
1006
1007static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1008{
1009        return srq_type == IB_SRQT_XRC ||
1010               srq_type == IB_SRQT_TM;
1011}
1012
1013enum ib_srq_attr_mask {
1014        IB_SRQ_MAX_WR   = 1 << 0,
1015        IB_SRQ_LIMIT    = 1 << 1,
1016};
1017
1018struct ib_srq_attr {
1019        u32     max_wr;
1020        u32     max_sge;
1021        u32     srq_limit;
1022};
1023
1024struct ib_srq_init_attr {
1025        void                  (*event_handler)(struct ib_event *, void *);
1026        void                   *srq_context;
1027        struct ib_srq_attr      attr;
1028        enum ib_srq_type        srq_type;
1029
1030        struct {
1031                struct ib_cq   *cq;
1032                union {
1033                        struct {
1034                                struct ib_xrcd *xrcd;
1035                        } xrc;
1036
1037                        struct {
1038                                u32             max_num_tags;
1039                        } tag_matching;
1040                };
1041        } ext;
1042};
1043
1044struct ib_qp_cap {
1045        u32     max_send_wr;
1046        u32     max_recv_wr;
1047        u32     max_send_sge;
1048        u32     max_recv_sge;
1049        u32     max_inline_data;
1050
1051        /*
1052         * Maximum number of rdma_rw_ctx structures in flight at a time.
1053         * ib_create_qp() will calculate the right amount of neededed WRs
1054         * and MRs based on this.
1055         */
1056        u32     max_rdma_ctxs;
1057};
1058
1059enum ib_sig_type {
1060        IB_SIGNAL_ALL_WR,
1061        IB_SIGNAL_REQ_WR
1062};
1063
1064enum ib_qp_type {
1065        /*
1066         * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1067         * here (and in that order) since the MAD layer uses them as
1068         * indices into a 2-entry table.
1069         */
1070        IB_QPT_SMI,
1071        IB_QPT_GSI,
1072
1073        IB_QPT_RC,
1074        IB_QPT_UC,
1075        IB_QPT_UD,
1076        IB_QPT_RAW_IPV6,
1077        IB_QPT_RAW_ETHERTYPE,
1078        IB_QPT_RAW_PACKET = 8,
1079        IB_QPT_XRC_INI = 9,
1080        IB_QPT_XRC_TGT,
1081        IB_QPT_MAX,
1082        IB_QPT_DRIVER = 0xFF,
1083        /* Reserve a range for qp types internal to the low level driver.
1084         * These qp types will not be visible at the IB core layer, so the
1085         * IB_QPT_MAX usages should not be affected in the core layer
1086         */
1087        IB_QPT_RESERVED1 = 0x1000,
1088        IB_QPT_RESERVED2,
1089        IB_QPT_RESERVED3,
1090        IB_QPT_RESERVED4,
1091        IB_QPT_RESERVED5,
1092        IB_QPT_RESERVED6,
1093        IB_QPT_RESERVED7,
1094        IB_QPT_RESERVED8,
1095        IB_QPT_RESERVED9,
1096        IB_QPT_RESERVED10,
1097};
1098
1099enum ib_qp_create_flags {
1100        IB_QP_CREATE_IPOIB_UD_LSO               = 1 << 0,
1101        IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK   = 1 << 1,
1102        IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1103        IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1104        IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1105        IB_QP_CREATE_NETIF_QP                   = 1 << 5,
1106        IB_QP_CREATE_INTEGRITY_EN               = 1 << 6,
1107        /* FREE                                 = 1 << 7, */
1108        IB_QP_CREATE_SCATTER_FCS                = 1 << 8,
1109        IB_QP_CREATE_CVLAN_STRIPPING            = 1 << 9,
1110        IB_QP_CREATE_SOURCE_QPN                 = 1 << 10,
1111        IB_QP_CREATE_PCI_WRITE_END_PADDING      = 1 << 11,
1112        /* reserve bits 26-31 for low level drivers' internal use */
1113        IB_QP_CREATE_RESERVED_START             = 1 << 26,
1114        IB_QP_CREATE_RESERVED_END               = 1 << 31,
1115};
1116
1117/*
1118 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1119 * callback to destroy the passed in QP.
1120 */
1121
1122struct ib_qp_init_attr {
1123        /* Consumer's event_handler callback must not block */
1124        void                  (*event_handler)(struct ib_event *, void *);
1125
1126        void                   *qp_context;
1127        struct ib_cq           *send_cq;
1128        struct ib_cq           *recv_cq;
1129        struct ib_srq          *srq;
1130        struct ib_xrcd         *xrcd;     /* XRC TGT QPs only */
1131        struct ib_qp_cap        cap;
1132        enum ib_sig_type        sq_sig_type;
1133        enum ib_qp_type         qp_type;
1134        u32                     create_flags;
1135
1136        /*
1137         * Only needed for special QP types, or when using the RW API.
1138         */
1139        u8                      port_num;
1140        struct ib_rwq_ind_table *rwq_ind_tbl;
1141        u32                     source_qpn;
1142};
1143
1144struct ib_qp_open_attr {
1145        void                  (*event_handler)(struct ib_event *, void *);
1146        void                   *qp_context;
1147        u32                     qp_num;
1148        enum ib_qp_type         qp_type;
1149};
1150
1151enum ib_rnr_timeout {
1152        IB_RNR_TIMER_655_36 =  0,
1153        IB_RNR_TIMER_000_01 =  1,
1154        IB_RNR_TIMER_000_02 =  2,
1155        IB_RNR_TIMER_000_03 =  3,
1156        IB_RNR_TIMER_000_04 =  4,
1157        IB_RNR_TIMER_000_06 =  5,
1158        IB_RNR_TIMER_000_08 =  6,
1159        IB_RNR_TIMER_000_12 =  7,
1160        IB_RNR_TIMER_000_16 =  8,
1161        IB_RNR_TIMER_000_24 =  9,
1162        IB_RNR_TIMER_000_32 = 10,
1163        IB_RNR_TIMER_000_48 = 11,
1164        IB_RNR_TIMER_000_64 = 12,
1165        IB_RNR_TIMER_000_96 = 13,
1166        IB_RNR_TIMER_001_28 = 14,
1167        IB_RNR_TIMER_001_92 = 15,
1168        IB_RNR_TIMER_002_56 = 16,
1169        IB_RNR_TIMER_003_84 = 17,
1170        IB_RNR_TIMER_005_12 = 18,
1171        IB_RNR_TIMER_007_68 = 19,
1172        IB_RNR_TIMER_010_24 = 20,
1173        IB_RNR_TIMER_015_36 = 21,
1174        IB_RNR_TIMER_020_48 = 22,
1175        IB_RNR_TIMER_030_72 = 23,
1176        IB_RNR_TIMER_040_96 = 24,
1177        IB_RNR_TIMER_061_44 = 25,
1178        IB_RNR_TIMER_081_92 = 26,
1179        IB_RNR_TIMER_122_88 = 27,
1180        IB_RNR_TIMER_163_84 = 28,
1181        IB_RNR_TIMER_245_76 = 29,
1182        IB_RNR_TIMER_327_68 = 30,
1183        IB_RNR_TIMER_491_52 = 31
1184};
1185
1186enum ib_qp_attr_mask {
1187        IB_QP_STATE                     = 1,
1188        IB_QP_CUR_STATE                 = (1<<1),
1189        IB_QP_EN_SQD_ASYNC_NOTIFY       = (1<<2),
1190        IB_QP_ACCESS_FLAGS              = (1<<3),
1191        IB_QP_PKEY_INDEX                = (1<<4),
1192        IB_QP_PORT                      = (1<<5),
1193        IB_QP_QKEY                      = (1<<6),
1194        IB_QP_AV                        = (1<<7),
1195        IB_QP_PATH_MTU                  = (1<<8),
1196        IB_QP_TIMEOUT                   = (1<<9),
1197        IB_QP_RETRY_CNT                 = (1<<10),
1198        IB_QP_RNR_RETRY                 = (1<<11),
1199        IB_QP_RQ_PSN                    = (1<<12),
1200        IB_QP_MAX_QP_RD_ATOMIC          = (1<<13),
1201        IB_QP_ALT_PATH                  = (1<<14),
1202        IB_QP_MIN_RNR_TIMER             = (1<<15),
1203        IB_QP_SQ_PSN                    = (1<<16),
1204        IB_QP_MAX_DEST_RD_ATOMIC        = (1<<17),
1205        IB_QP_PATH_MIG_STATE            = (1<<18),
1206        IB_QP_CAP                       = (1<<19),
1207        IB_QP_DEST_QPN                  = (1<<20),
1208        IB_QP_RESERVED1                 = (1<<21),
1209        IB_QP_RESERVED2                 = (1<<22),
1210        IB_QP_RESERVED3                 = (1<<23),
1211        IB_QP_RESERVED4                 = (1<<24),
1212        IB_QP_RATE_LIMIT                = (1<<25),
1213};
1214
1215enum ib_qp_state {
1216        IB_QPS_RESET,
1217        IB_QPS_INIT,
1218        IB_QPS_RTR,
1219        IB_QPS_RTS,
1220        IB_QPS_SQD,
1221        IB_QPS_SQE,
1222        IB_QPS_ERR
1223};
1224
1225enum ib_mig_state {
1226        IB_MIG_MIGRATED,
1227        IB_MIG_REARM,
1228        IB_MIG_ARMED
1229};
1230
1231enum ib_mw_type {
1232        IB_MW_TYPE_1 = 1,
1233        IB_MW_TYPE_2 = 2
1234};
1235
1236struct ib_qp_attr {
1237        enum ib_qp_state        qp_state;
1238        enum ib_qp_state        cur_qp_state;
1239        enum ib_mtu             path_mtu;
1240        enum ib_mig_state       path_mig_state;
1241        u32                     qkey;
1242        u32                     rq_psn;
1243        u32                     sq_psn;
1244        u32                     dest_qp_num;
1245        int                     qp_access_flags;
1246        struct ib_qp_cap        cap;
1247        struct rdma_ah_attr     ah_attr;
1248        struct rdma_ah_attr     alt_ah_attr;
1249        u16                     pkey_index;
1250        u16                     alt_pkey_index;
1251        u8                      en_sqd_async_notify;
1252        u8                      sq_draining;
1253        u8                      max_rd_atomic;
1254        u8                      max_dest_rd_atomic;
1255        u8                      min_rnr_timer;
1256        u8                      port_num;
1257        u8                      timeout;
1258        u8                      retry_cnt;
1259        u8                      rnr_retry;
1260        u8                      alt_port_num;
1261        u8                      alt_timeout;
1262        u32                     rate_limit;
1263};
1264
1265enum ib_wr_opcode {
1266        /* These are shared with userspace */
1267        IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1268        IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1269        IB_WR_SEND = IB_UVERBS_WR_SEND,
1270        IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1271        IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1272        IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1273        IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1274        IB_WR_LSO = IB_UVERBS_WR_TSO,
1275        IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1276        IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1277        IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1278        IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1279                IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1280        IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1281                IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1282
1283        /* These are kernel only and can not be issued by userspace */
1284        IB_WR_REG_MR = 0x20,
1285        IB_WR_REG_MR_INTEGRITY,
1286
1287        /* reserve values for low level drivers' internal use.
1288         * These values will not be used at all in the ib core layer.
1289         */
1290        IB_WR_RESERVED1 = 0xf0,
1291        IB_WR_RESERVED2,
1292        IB_WR_RESERVED3,
1293        IB_WR_RESERVED4,
1294        IB_WR_RESERVED5,
1295        IB_WR_RESERVED6,
1296        IB_WR_RESERVED7,
1297        IB_WR_RESERVED8,
1298        IB_WR_RESERVED9,
1299        IB_WR_RESERVED10,
1300};
1301
1302enum ib_send_flags {
1303        IB_SEND_FENCE           = 1,
1304        IB_SEND_SIGNALED        = (1<<1),
1305        IB_SEND_SOLICITED       = (1<<2),
1306        IB_SEND_INLINE          = (1<<3),
1307        IB_SEND_IP_CSUM         = (1<<4),
1308
1309        /* reserve bits 26-31 for low level drivers' internal use */
1310        IB_SEND_RESERVED_START  = (1 << 26),
1311        IB_SEND_RESERVED_END    = (1 << 31),
1312};
1313
1314struct ib_sge {
1315        u64     addr;
1316        u32     length;
1317        u32     lkey;
1318};
1319
1320struct ib_cqe {
1321        void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1322};
1323
1324struct ib_send_wr {
1325        struct ib_send_wr      *next;
1326        union {
1327                u64             wr_id;
1328                struct ib_cqe   *wr_cqe;
1329        };
1330        struct ib_sge          *sg_list;
1331        int                     num_sge;
1332        enum ib_wr_opcode       opcode;
1333        int                     send_flags;
1334        union {
1335                __be32          imm_data;
1336                u32             invalidate_rkey;
1337        } ex;
1338};
1339
1340struct ib_rdma_wr {
1341        struct ib_send_wr       wr;
1342        u64                     remote_addr;
1343        u32                     rkey;
1344};
1345
1346static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1347{
1348        return container_of(wr, struct ib_rdma_wr, wr);
1349}
1350
1351struct ib_atomic_wr {
1352        struct ib_send_wr       wr;
1353        u64                     remote_addr;
1354        u64                     compare_add;
1355        u64                     swap;
1356        u64                     compare_add_mask;
1357        u64                     swap_mask;
1358        u32                     rkey;
1359};
1360
1361static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1362{
1363        return container_of(wr, struct ib_atomic_wr, wr);
1364}
1365
1366struct ib_ud_wr {
1367        struct ib_send_wr       wr;
1368        struct ib_ah            *ah;
1369        void                    *header;
1370        int                     hlen;
1371        int                     mss;
1372        u32                     remote_qpn;
1373        u32                     remote_qkey;
1374        u16                     pkey_index; /* valid for GSI only */
1375        u8                      port_num;   /* valid for DR SMPs on switch only */
1376};
1377
1378static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1379{
1380        return container_of(wr, struct ib_ud_wr, wr);
1381}
1382
1383struct ib_reg_wr {
1384        struct ib_send_wr       wr;
1385        struct ib_mr            *mr;
1386        u32                     key;
1387        int                     access;
1388};
1389
1390static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1391{
1392        return container_of(wr, struct ib_reg_wr, wr);
1393}
1394
1395struct ib_recv_wr {
1396        struct ib_recv_wr      *next;
1397        union {
1398                u64             wr_id;
1399                struct ib_cqe   *wr_cqe;
1400        };
1401        struct ib_sge          *sg_list;
1402        int                     num_sge;
1403};
1404
1405enum ib_access_flags {
1406        IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1407        IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1408        IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1409        IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1410        IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1411        IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1412        IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1413        IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1414
1415        IB_ACCESS_SUPPORTED = ((IB_ACCESS_HUGETLB << 1) - 1)
1416};
1417
1418/*
1419 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1420 * are hidden here instead of a uapi header!
1421 */
1422enum ib_mr_rereg_flags {
1423        IB_MR_REREG_TRANS       = 1,
1424        IB_MR_REREG_PD          = (1<<1),
1425        IB_MR_REREG_ACCESS      = (1<<2),
1426        IB_MR_REREG_SUPPORTED   = ((IB_MR_REREG_ACCESS << 1) - 1)
1427};
1428
1429struct ib_fmr_attr {
1430        int     max_pages;
1431        int     max_maps;
1432        u8      page_shift;
1433};
1434
1435struct ib_umem;
1436
1437enum rdma_remove_reason {
1438        /*
1439         * Userspace requested uobject deletion or initial try
1440         * to remove uobject via cleanup. Call could fail
1441         */
1442        RDMA_REMOVE_DESTROY,
1443        /* Context deletion. This call should delete the actual object itself */
1444        RDMA_REMOVE_CLOSE,
1445        /* Driver is being hot-unplugged. This call should delete the actual object itself */
1446        RDMA_REMOVE_DRIVER_REMOVE,
1447        /* uobj is being cleaned-up before being committed */
1448        RDMA_REMOVE_ABORT,
1449};
1450
1451struct ib_rdmacg_object {
1452#ifdef CONFIG_CGROUP_RDMA
1453        struct rdma_cgroup      *cg;            /* owner rdma cgroup */
1454#endif
1455};
1456
1457struct ib_ucontext {
1458        struct ib_device       *device;
1459        struct ib_uverbs_file  *ufile;
1460        /*
1461         * 'closing' can be read by the driver only during a destroy callback,
1462         * it is set when we are closing the file descriptor and indicates
1463         * that mm_sem may be locked.
1464         */
1465        bool closing;
1466
1467        bool cleanup_retryable;
1468
1469        struct ib_rdmacg_object cg_obj;
1470        /*
1471         * Implementation details of the RDMA core, don't use in drivers:
1472         */
1473        struct rdma_restrack_entry res;
1474};
1475
1476struct ib_uobject {
1477        u64                     user_handle;    /* handle given to us by userspace */
1478        /* ufile & ucontext owning this object */
1479        struct ib_uverbs_file  *ufile;
1480        /* FIXME, save memory: ufile->context == context */
1481        struct ib_ucontext     *context;        /* associated user context */
1482        void                   *object;         /* containing object */
1483        struct list_head        list;           /* link to context's list */
1484        struct ib_rdmacg_object cg_obj;         /* rdmacg object */
1485        int                     id;             /* index into kernel idr */
1486        struct kref             ref;
1487        atomic_t                usecnt;         /* protects exclusive access */
1488        struct rcu_head         rcu;            /* kfree_rcu() overhead */
1489
1490        const struct uverbs_api_object *uapi_object;
1491};
1492
1493struct ib_udata {
1494        const void __user *inbuf;
1495        void __user *outbuf;
1496        size_t       inlen;
1497        size_t       outlen;
1498};
1499
1500struct ib_pd {
1501        u32                     local_dma_lkey;
1502        u32                     flags;
1503        struct ib_device       *device;
1504        struct ib_uobject      *uobject;
1505        atomic_t                usecnt; /* count all resources */
1506
1507        u32                     unsafe_global_rkey;
1508
1509        /*
1510         * Implementation details of the RDMA core, don't use in drivers:
1511         */
1512        struct ib_mr           *__internal_mr;
1513        struct rdma_restrack_entry res;
1514};
1515
1516struct ib_xrcd {
1517        struct ib_device       *device;
1518        atomic_t                usecnt; /* count all exposed resources */
1519        struct inode           *inode;
1520
1521        struct mutex            tgt_qp_mutex;
1522        struct list_head        tgt_qp_list;
1523};
1524
1525struct ib_ah {
1526        struct ib_device        *device;
1527        struct ib_pd            *pd;
1528        struct ib_uobject       *uobject;
1529        const struct ib_gid_attr *sgid_attr;
1530        enum rdma_ah_attr_type  type;
1531};
1532
1533typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1534
1535enum ib_poll_context {
1536        IB_POLL_DIRECT,            /* caller context, no hw completions */
1537        IB_POLL_SOFTIRQ,           /* poll from softirq context */
1538        IB_POLL_WORKQUEUE,         /* poll from workqueue */
1539        IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1540};
1541
1542struct ib_cq {
1543        struct ib_device       *device;
1544        struct ib_uobject      *uobject;
1545        ib_comp_handler         comp_handler;
1546        void                  (*event_handler)(struct ib_event *, void *);
1547        void                   *cq_context;
1548        int                     cqe;
1549        atomic_t                usecnt; /* count number of work queues */
1550        enum ib_poll_context    poll_ctx;
1551        struct ib_wc            *wc;
1552        union {
1553                struct irq_poll         iop;
1554                struct work_struct      work;
1555        };
1556        struct workqueue_struct *comp_wq;
1557        struct dim *dim;
1558        /*
1559         * Implementation details of the RDMA core, don't use in drivers:
1560         */
1561        struct rdma_restrack_entry res;
1562};
1563
1564struct ib_srq {
1565        struct ib_device       *device;
1566        struct ib_pd           *pd;
1567        struct ib_uobject      *uobject;
1568        void                  (*event_handler)(struct ib_event *, void *);
1569        void                   *srq_context;
1570        enum ib_srq_type        srq_type;
1571        atomic_t                usecnt;
1572
1573        struct {
1574                struct ib_cq   *cq;
1575                union {
1576                        struct {
1577                                struct ib_xrcd *xrcd;
1578                                u32             srq_num;
1579                        } xrc;
1580                };
1581        } ext;
1582};
1583
1584enum ib_raw_packet_caps {
1585        /* Strip cvlan from incoming packet and report it in the matching work
1586         * completion is supported.
1587         */
1588        IB_RAW_PACKET_CAP_CVLAN_STRIPPING       = (1 << 0),
1589        /* Scatter FCS field of an incoming packet to host memory is supported.
1590         */
1591        IB_RAW_PACKET_CAP_SCATTER_FCS           = (1 << 1),
1592        /* Checksum offloads are supported (for both send and receive). */
1593        IB_RAW_PACKET_CAP_IP_CSUM               = (1 << 2),
1594        /* When a packet is received for an RQ with no receive WQEs, the
1595         * packet processing is delayed.
1596         */
1597        IB_RAW_PACKET_CAP_DELAY_DROP            = (1 << 3),
1598};
1599
1600enum ib_wq_type {
1601        IB_WQT_RQ
1602};
1603
1604enum ib_wq_state {
1605        IB_WQS_RESET,
1606        IB_WQS_RDY,
1607        IB_WQS_ERR
1608};
1609
1610struct ib_wq {
1611        struct ib_device       *device;
1612        struct ib_uobject      *uobject;
1613        void                *wq_context;
1614        void                (*event_handler)(struct ib_event *, void *);
1615        struct ib_pd           *pd;
1616        struct ib_cq           *cq;
1617        u32             wq_num;
1618        enum ib_wq_state       state;
1619        enum ib_wq_type wq_type;
1620        atomic_t                usecnt;
1621};
1622
1623enum ib_wq_flags {
1624        IB_WQ_FLAGS_CVLAN_STRIPPING     = 1 << 0,
1625        IB_WQ_FLAGS_SCATTER_FCS         = 1 << 1,
1626        IB_WQ_FLAGS_DELAY_DROP          = 1 << 2,
1627        IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
1628};
1629
1630struct ib_wq_init_attr {
1631        void                   *wq_context;
1632        enum ib_wq_type wq_type;
1633        u32             max_wr;
1634        u32             max_sge;
1635        struct  ib_cq          *cq;
1636        void                (*event_handler)(struct ib_event *, void *);
1637        u32             create_flags; /* Use enum ib_wq_flags */
1638};
1639
1640enum ib_wq_attr_mask {
1641        IB_WQ_STATE             = 1 << 0,
1642        IB_WQ_CUR_STATE         = 1 << 1,
1643        IB_WQ_FLAGS             = 1 << 2,
1644};
1645
1646struct ib_wq_attr {
1647        enum    ib_wq_state     wq_state;
1648        enum    ib_wq_state     curr_wq_state;
1649        u32                     flags; /* Use enum ib_wq_flags */
1650        u32                     flags_mask; /* Use enum ib_wq_flags */
1651};
1652
1653struct ib_rwq_ind_table {
1654        struct ib_device        *device;
1655        struct ib_uobject      *uobject;
1656        atomic_t                usecnt;
1657        u32             ind_tbl_num;
1658        u32             log_ind_tbl_size;
1659        struct ib_wq    **ind_tbl;
1660};
1661
1662struct ib_rwq_ind_table_init_attr {
1663        u32             log_ind_tbl_size;
1664        /* Each entry is a pointer to Receive Work Queue */
1665        struct ib_wq    **ind_tbl;
1666};
1667
1668enum port_pkey_state {
1669        IB_PORT_PKEY_NOT_VALID = 0,
1670        IB_PORT_PKEY_VALID = 1,
1671        IB_PORT_PKEY_LISTED = 2,
1672};
1673
1674struct ib_qp_security;
1675
1676struct ib_port_pkey {
1677        enum port_pkey_state    state;
1678        u16                     pkey_index;
1679        u8                      port_num;
1680        struct list_head        qp_list;
1681        struct list_head        to_error_list;
1682        struct ib_qp_security  *sec;
1683};
1684
1685struct ib_ports_pkeys {
1686        struct ib_port_pkey     main;
1687        struct ib_port_pkey     alt;
1688};
1689
1690struct ib_qp_security {
1691        struct ib_qp           *qp;
1692        struct ib_device       *dev;
1693        /* Hold this mutex when changing port and pkey settings. */
1694        struct mutex            mutex;
1695        struct ib_ports_pkeys  *ports_pkeys;
1696        /* A list of all open shared QP handles.  Required to enforce security
1697         * properly for all users of a shared QP.
1698         */
1699        struct list_head        shared_qp_list;
1700        void                   *security;
1701        bool                    destroying;
1702        atomic_t                error_list_count;
1703        struct completion       error_complete;
1704        int                     error_comps_pending;
1705};
1706
1707/*
1708 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1709 * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1710 */
1711struct ib_qp {
1712        struct ib_device       *device;
1713        struct ib_pd           *pd;
1714        struct ib_cq           *send_cq;
1715        struct ib_cq           *recv_cq;
1716        spinlock_t              mr_lock;
1717        int                     mrs_used;
1718        struct list_head        rdma_mrs;
1719        struct list_head        sig_mrs;
1720        struct ib_srq          *srq;
1721        struct ib_xrcd         *xrcd; /* XRC TGT QPs only */
1722        struct list_head        xrcd_list;
1723
1724        /* count times opened, mcast attaches, flow attaches */
1725        atomic_t                usecnt;
1726        struct list_head        open_list;
1727        struct ib_qp           *real_qp;
1728        struct ib_uobject      *uobject;
1729        void                  (*event_handler)(struct ib_event *, void *);
1730        void                   *qp_context;
1731        /* sgid_attrs associated with the AV's */
1732        const struct ib_gid_attr *av_sgid_attr;
1733        const struct ib_gid_attr *alt_path_sgid_attr;
1734        u32                     qp_num;
1735        u32                     max_write_sge;
1736        u32                     max_read_sge;
1737        enum ib_qp_type         qp_type;
1738        struct ib_rwq_ind_table *rwq_ind_tbl;
1739        struct ib_qp_security  *qp_sec;
1740        u8                      port;
1741
1742        bool                    integrity_en;
1743        /*
1744         * Implementation details of the RDMA core, don't use in drivers:
1745         */
1746        struct rdma_restrack_entry     res;
1747
1748        /* The counter the qp is bind to */
1749        struct rdma_counter    *counter;
1750};
1751
1752struct ib_dm {
1753        struct ib_device  *device;
1754        u32                length;
1755        u32                flags;
1756        struct ib_uobject *uobject;
1757        atomic_t           usecnt;
1758};
1759
1760struct ib_mr {
1761        struct ib_device  *device;
1762        struct ib_pd      *pd;
1763        u32                lkey;
1764        u32                rkey;
1765        u64                iova;
1766        u64                length;
1767        unsigned int       page_size;
1768        enum ib_mr_type    type;
1769        bool               need_inval;
1770        union {
1771                struct ib_uobject       *uobject;       /* user */
1772                struct list_head        qp_entry;       /* FR */
1773        };
1774
1775        struct ib_dm      *dm;
1776        struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1777        /*
1778         * Implementation details of the RDMA core, don't use in drivers:
1779         */
1780        struct rdma_restrack_entry res;
1781};
1782
1783struct ib_mw {
1784        struct ib_device        *device;
1785        struct ib_pd            *pd;
1786        struct ib_uobject       *uobject;
1787        u32                     rkey;
1788        enum ib_mw_type         type;
1789};
1790
1791struct ib_fmr {
1792        struct ib_device        *device;
1793        struct ib_pd            *pd;
1794        struct list_head        list;
1795        u32                     lkey;
1796        u32                     rkey;
1797};
1798
1799/* Supported steering options */
1800enum ib_flow_attr_type {
1801        /* steering according to rule specifications */
1802        IB_FLOW_ATTR_NORMAL             = 0x0,
1803        /* default unicast and multicast rule -
1804         * receive all Eth traffic which isn't steered to any QP
1805         */
1806        IB_FLOW_ATTR_ALL_DEFAULT        = 0x1,
1807        /* default multicast rule -
1808         * receive all Eth multicast traffic which isn't steered to any QP
1809         */
1810        IB_FLOW_ATTR_MC_DEFAULT         = 0x2,
1811        /* sniffer rule - receive all port traffic */
1812        IB_FLOW_ATTR_SNIFFER            = 0x3
1813};
1814
1815/* Supported steering header types */
1816enum ib_flow_spec_type {
1817        /* L2 headers*/
1818        IB_FLOW_SPEC_ETH                = 0x20,
1819        IB_FLOW_SPEC_IB                 = 0x22,
1820        /* L3 header*/
1821        IB_FLOW_SPEC_IPV4               = 0x30,
1822        IB_FLOW_SPEC_IPV6               = 0x31,
1823        IB_FLOW_SPEC_ESP                = 0x34,
1824        /* L4 headers*/
1825        IB_FLOW_SPEC_TCP                = 0x40,
1826        IB_FLOW_SPEC_UDP                = 0x41,
1827        IB_FLOW_SPEC_VXLAN_TUNNEL       = 0x50,
1828        IB_FLOW_SPEC_GRE                = 0x51,
1829        IB_FLOW_SPEC_MPLS               = 0x60,
1830        IB_FLOW_SPEC_INNER              = 0x100,
1831        /* Actions */
1832        IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1833        IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1834        IB_FLOW_SPEC_ACTION_HANDLE      = 0x1002,
1835        IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1836};
1837#define IB_FLOW_SPEC_LAYER_MASK 0xF0
1838#define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1839
1840/* Flow steering rule priority is set according to it's domain.
1841 * Lower domain value means higher priority.
1842 */
1843enum ib_flow_domain {
1844        IB_FLOW_DOMAIN_USER,
1845        IB_FLOW_DOMAIN_ETHTOOL,
1846        IB_FLOW_DOMAIN_RFS,
1847        IB_FLOW_DOMAIN_NIC,
1848        IB_FLOW_DOMAIN_NUM /* Must be last */
1849};
1850
1851enum ib_flow_flags {
1852        IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1853        IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1854        IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1855};
1856
1857struct ib_flow_eth_filter {
1858        u8      dst_mac[6];
1859        u8      src_mac[6];
1860        __be16  ether_type;
1861        __be16  vlan_tag;
1862        /* Must be last */
1863        u8      real_sz[0];
1864};
1865
1866struct ib_flow_spec_eth {
1867        u32                       type;
1868        u16                       size;
1869        struct ib_flow_eth_filter val;
1870        struct ib_flow_eth_filter mask;
1871};
1872
1873struct ib_flow_ib_filter {
1874        __be16 dlid;
1875        __u8   sl;
1876        /* Must be last */
1877        u8      real_sz[0];
1878};
1879
1880struct ib_flow_spec_ib {
1881        u32                      type;
1882        u16                      size;
1883        struct ib_flow_ib_filter val;
1884        struct ib_flow_ib_filter mask;
1885};
1886
1887/* IPv4 header flags */
1888enum ib_ipv4_flags {
1889        IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1890        IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1891                                    last have this flag set */
1892};
1893
1894struct ib_flow_ipv4_filter {
1895        __be32  src_ip;
1896        __be32  dst_ip;
1897        u8      proto;
1898        u8      tos;
1899        u8      ttl;
1900        u8      flags;
1901        /* Must be last */
1902        u8      real_sz[0];
1903};
1904
1905struct ib_flow_spec_ipv4 {
1906        u32                        type;
1907        u16                        size;
1908        struct ib_flow_ipv4_filter val;
1909        struct ib_flow_ipv4_filter mask;
1910};
1911
1912struct ib_flow_ipv6_filter {
1913        u8      src_ip[16];
1914        u8      dst_ip[16];
1915        __be32  flow_label;
1916        u8      next_hdr;
1917        u8      traffic_class;
1918        u8      hop_limit;
1919        /* Must be last */
1920        u8      real_sz[0];
1921};
1922
1923struct ib_flow_spec_ipv6 {
1924        u32                        type;
1925        u16                        size;
1926        struct ib_flow_ipv6_filter val;
1927        struct ib_flow_ipv6_filter mask;
1928};
1929
1930struct ib_flow_tcp_udp_filter {
1931        __be16  dst_port;
1932        __be16  src_port;
1933        /* Must be last */
1934        u8      real_sz[0];
1935};
1936
1937struct ib_flow_spec_tcp_udp {
1938        u32                           type;
1939        u16                           size;
1940        struct ib_flow_tcp_udp_filter val;
1941        struct ib_flow_tcp_udp_filter mask;
1942};
1943
1944struct ib_flow_tunnel_filter {
1945        __be32  tunnel_id;
1946        u8      real_sz[0];
1947};
1948
1949/* ib_flow_spec_tunnel describes the Vxlan tunnel
1950 * the tunnel_id from val has the vni value
1951 */
1952struct ib_flow_spec_tunnel {
1953        u32                           type;
1954        u16                           size;
1955        struct ib_flow_tunnel_filter  val;
1956        struct ib_flow_tunnel_filter  mask;
1957};
1958
1959struct ib_flow_esp_filter {
1960        __be32  spi;
1961        __be32  seq;
1962        /* Must be last */
1963        u8      real_sz[0];
1964};
1965
1966struct ib_flow_spec_esp {
1967        u32                           type;
1968        u16                           size;
1969        struct ib_flow_esp_filter     val;
1970        struct ib_flow_esp_filter     mask;
1971};
1972
1973struct ib_flow_gre_filter {
1974        __be16 c_ks_res0_ver;
1975        __be16 protocol;
1976        __be32 key;
1977        /* Must be last */
1978        u8      real_sz[0];
1979};
1980
1981struct ib_flow_spec_gre {
1982        u32                           type;
1983        u16                           size;
1984        struct ib_flow_gre_filter     val;
1985        struct ib_flow_gre_filter     mask;
1986};
1987
1988struct ib_flow_mpls_filter {
1989        __be32 tag;
1990        /* Must be last */
1991        u8      real_sz[0];
1992};
1993
1994struct ib_flow_spec_mpls {
1995        u32                           type;
1996        u16                           size;
1997        struct ib_flow_mpls_filter     val;
1998        struct ib_flow_mpls_filter     mask;
1999};
2000
2001struct ib_flow_spec_action_tag {
2002        enum ib_flow_spec_type        type;
2003        u16                           size;
2004        u32                           tag_id;
2005};
2006
2007struct ib_flow_spec_action_drop {
2008        enum ib_flow_spec_type        type;
2009        u16                           size;
2010};
2011
2012struct ib_flow_spec_action_handle {
2013        enum ib_flow_spec_type        type;
2014        u16                           size;
2015        struct ib_flow_action        *act;
2016};
2017
2018enum ib_counters_description {
2019        IB_COUNTER_PACKETS,
2020        IB_COUNTER_BYTES,
2021};
2022
2023struct ib_flow_spec_action_count {
2024        enum ib_flow_spec_type type;
2025        u16 size;
2026        struct ib_counters *counters;
2027};
2028
2029union ib_flow_spec {
2030        struct {
2031                u32                     type;
2032                u16                     size;
2033        };
2034        struct ib_flow_spec_eth         eth;
2035        struct ib_flow_spec_ib          ib;
2036        struct ib_flow_spec_ipv4        ipv4;
2037        struct ib_flow_spec_tcp_udp     tcp_udp;
2038        struct ib_flow_spec_ipv6        ipv6;
2039        struct ib_flow_spec_tunnel      tunnel;
2040        struct ib_flow_spec_esp         esp;
2041        struct ib_flow_spec_gre         gre;
2042        struct ib_flow_spec_mpls        mpls;
2043        struct ib_flow_spec_action_tag  flow_tag;
2044        struct ib_flow_spec_action_drop drop;
2045        struct ib_flow_spec_action_handle action;
2046        struct ib_flow_spec_action_count flow_count;
2047};
2048
2049struct ib_flow_attr {
2050        enum ib_flow_attr_type type;
2051        u16          size;
2052        u16          priority;
2053        u32          flags;
2054        u8           num_of_specs;
2055        u8           port;
2056        union ib_flow_spec flows[];
2057};
2058
2059struct ib_flow {
2060        struct ib_qp            *qp;
2061        struct ib_device        *device;
2062        struct ib_uobject       *uobject;
2063};
2064
2065enum ib_flow_action_type {
2066        IB_FLOW_ACTION_UNSPECIFIED,
2067        IB_FLOW_ACTION_ESP = 1,
2068};
2069
2070struct ib_flow_action_attrs_esp_keymats {
2071        enum ib_uverbs_flow_action_esp_keymat                   protocol;
2072        union {
2073                struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2074        } keymat;
2075};
2076
2077struct ib_flow_action_attrs_esp_replays {
2078        enum ib_uverbs_flow_action_esp_replay                   protocol;
2079        union {
2080                struct ib_uverbs_flow_action_esp_replay_bmp     bmp;
2081        } replay;
2082};
2083
2084enum ib_flow_action_attrs_esp_flags {
2085        /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2086         * This is done in order to share the same flags between user-space and
2087         * kernel and spare an unnecessary translation.
2088         */
2089
2090        /* Kernel flags */
2091        IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED  = 1ULL << 32,
2092        IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS  = 1ULL << 33,
2093};
2094
2095struct ib_flow_spec_list {
2096        struct ib_flow_spec_list        *next;
2097        union ib_flow_spec              spec;
2098};
2099
2100struct ib_flow_action_attrs_esp {
2101        struct ib_flow_action_attrs_esp_keymats         *keymat;
2102        struct ib_flow_action_attrs_esp_replays         *replay;
2103        struct ib_flow_spec_list                        *encap;
2104        /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2105         * Value of 0 is a valid value.
2106         */
2107        u32                                             esn;
2108        u32                                             spi;
2109        u32                                             seq;
2110        u32                                             tfc_pad;
2111        /* Use enum ib_flow_action_attrs_esp_flags */
2112        u64                                             flags;
2113        u64                                             hard_limit_pkts;
2114};
2115
2116struct ib_flow_action {
2117        struct ib_device                *device;
2118        struct ib_uobject               *uobject;
2119        enum ib_flow_action_type        type;
2120        atomic_t                        usecnt;
2121};
2122
2123struct ib_mad_hdr;
2124struct ib_grh;
2125
2126enum ib_process_mad_flags {
2127        IB_MAD_IGNORE_MKEY      = 1,
2128        IB_MAD_IGNORE_BKEY      = 2,
2129        IB_MAD_IGNORE_ALL       = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2130};
2131
2132enum ib_mad_result {
2133        IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2134        IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2135        IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2136        IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2137};
2138
2139struct ib_port_cache {
2140        u64                   subnet_prefix;
2141        struct ib_pkey_cache  *pkey;
2142        struct ib_gid_table   *gid;
2143        u8                     lmc;
2144        enum ib_port_state     port_state;
2145};
2146
2147struct ib_cache {
2148        rwlock_t                lock;
2149        struct ib_event_handler event_handler;
2150};
2151
2152struct ib_port_immutable {
2153        int                           pkey_tbl_len;
2154        int                           gid_tbl_len;
2155        u32                           core_cap_flags;
2156        u32                           max_mad_size;
2157};
2158
2159struct ib_port_data {
2160        struct ib_device *ib_dev;
2161
2162        struct ib_port_immutable immutable;
2163
2164        spinlock_t pkey_list_lock;
2165        struct list_head pkey_list;
2166
2167        struct ib_port_cache cache;
2168
2169        spinlock_t netdev_lock;
2170        struct net_device __rcu *netdev;
2171        struct hlist_node ndev_hash_link;
2172        struct rdma_port_counter port_counter;
2173        struct rdma_hw_stats *hw_stats;
2174};
2175
2176/* rdma netdev type - specifies protocol type */
2177enum rdma_netdev_t {
2178        RDMA_NETDEV_OPA_VNIC,
2179        RDMA_NETDEV_IPOIB,
2180};
2181
2182/**
2183 * struct rdma_netdev - rdma netdev
2184 * For cases where netstack interfacing is required.
2185 */
2186struct rdma_netdev {
2187        void              *clnt_priv;
2188        struct ib_device  *hca;
2189        u8                 port_num;
2190
2191        /*
2192         * cleanup function must be specified.
2193         * FIXME: This is only used for OPA_VNIC and that usage should be
2194         * removed too.
2195         */
2196        void (*free_rdma_netdev)(struct net_device *netdev);
2197
2198        /* control functions */
2199        void (*set_id)(struct net_device *netdev, int id);
2200        /* send packet */
2201        int (*send)(struct net_device *dev, struct sk_buff *skb,
2202                    struct ib_ah *address, u32 dqpn);
2203        /* multicast */
2204        int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2205                            union ib_gid *gid, u16 mlid,
2206                            int set_qkey, u32 qkey);
2207        int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2208                            union ib_gid *gid, u16 mlid);
2209};
2210
2211struct rdma_netdev_alloc_params {
2212        size_t sizeof_priv;
2213        unsigned int txqs;
2214        unsigned int rxqs;
2215        void *param;
2216
2217        int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num,
2218                                      struct net_device *netdev, void *param);
2219};
2220
2221struct ib_counters {
2222        struct ib_device        *device;
2223        struct ib_uobject       *uobject;
2224        /* num of objects attached */
2225        atomic_t        usecnt;
2226};
2227
2228struct ib_counters_read_attr {
2229        u64     *counters_buff;
2230        u32     ncounters;
2231        u32     flags; /* use enum ib_read_counters_flags */
2232};
2233
2234struct uverbs_attr_bundle;
2235struct iw_cm_id;
2236struct iw_cm_conn_param;
2237
2238#define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member)                      \
2239        .size_##ib_struct =                                                    \
2240                (sizeof(struct drv_struct) +                                   \
2241                 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) +      \
2242                 BUILD_BUG_ON_ZERO(                                            \
2243                         !__same_type(((struct drv_struct *)NULL)->member,     \
2244                                      struct ib_struct)))
2245
2246#define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp)                         \
2247        ((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp))
2248
2249#define rdma_zalloc_drv_obj(ib_dev, ib_type)                                   \
2250        rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2251
2252#define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2253
2254/**
2255 * struct ib_device_ops - InfiniBand device operations
2256 * This structure defines all the InfiniBand device operations, providers will
2257 * need to define the supported operations, otherwise they will be set to null.
2258 */
2259struct ib_device_ops {
2260        struct module *owner;
2261        enum rdma_driver_id driver_id;
2262        u32 uverbs_abi_ver;
2263        unsigned int uverbs_no_driver_id_binding:1;
2264
2265        int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2266                         const struct ib_send_wr **bad_send_wr);
2267        int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2268                         const struct ib_recv_wr **bad_recv_wr);
2269        void (*drain_rq)(struct ib_qp *qp);
2270        void (*drain_sq)(struct ib_qp *qp);
2271        int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2272        int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2273        int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2274        int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt);
2275        int (*post_srq_recv)(struct ib_srq *srq,
2276                             const struct ib_recv_wr *recv_wr,
2277                             const struct ib_recv_wr **bad_recv_wr);
2278        int (*process_mad)(struct ib_device *device, int process_mad_flags,
2279                           u8 port_num, const struct ib_wc *in_wc,
2280                           const struct ib_grh *in_grh,
2281                           const struct ib_mad_hdr *in_mad, size_t in_mad_size,
2282                           struct ib_mad_hdr *out_mad, size_t *out_mad_size,
2283                           u16 *out_mad_pkey_index);
2284        int (*query_device)(struct ib_device *device,
2285                            struct ib_device_attr *device_attr,
2286                            struct ib_udata *udata);
2287        int (*modify_device)(struct ib_device *device, int device_modify_mask,
2288                             struct ib_device_modify *device_modify);
2289        void (*get_dev_fw_str)(struct ib_device *device, char *str);
2290        const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2291                                                     int comp_vector);
2292        int (*query_port)(struct ib_device *device, u8 port_num,
2293                          struct ib_port_attr *port_attr);
2294        int (*modify_port)(struct ib_device *device, u8 port_num,
2295                           int port_modify_mask,
2296                           struct ib_port_modify *port_modify);
2297        /**
2298         * The following mandatory functions are used only at device
2299         * registration.  Keep functions such as these at the end of this
2300         * structure to avoid cache line misses when accessing struct ib_device
2301         * in fast paths.
2302         */
2303        int (*get_port_immutable)(struct ib_device *device, u8 port_num,
2304                                  struct ib_port_immutable *immutable);
2305        enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2306                                               u8 port_num);
2307        /**
2308         * When calling get_netdev, the HW vendor's driver should return the
2309         * net device of device @device at port @port_num or NULL if such
2310         * a net device doesn't exist. The vendor driver should call dev_hold
2311         * on this net device. The HW vendor's device driver must guarantee
2312         * that this function returns NULL before the net device has finished
2313         * NETDEV_UNREGISTER state.
2314         */
2315        struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num);
2316        /**
2317         * rdma netdev operation
2318         *
2319         * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2320         * must return -EOPNOTSUPP if it doesn't support the specified type.
2321         */
2322        struct net_device *(*alloc_rdma_netdev)(
2323                struct ib_device *device, u8 port_num, enum rdma_netdev_t type,
2324                const char *name, unsigned char name_assign_type,
2325                void (*setup)(struct net_device *));
2326
2327        int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num,
2328                                      enum rdma_netdev_t type,
2329                                      struct rdma_netdev_alloc_params *params);
2330        /**
2331         * query_gid should be return GID value for @device, when @port_num
2332         * link layer is either IB or iWarp. It is no-op if @port_num port
2333         * is RoCE link layer.
2334         */
2335        int (*query_gid)(struct ib_device *device, u8 port_num, int index,
2336                         union ib_gid *gid);
2337        /**
2338         * When calling add_gid, the HW vendor's driver should add the gid
2339         * of device of port at gid index available at @attr. Meta-info of
2340         * that gid (for example, the network device related to this gid) is
2341         * available at @attr. @context allows the HW vendor driver to store
2342         * extra information together with a GID entry. The HW vendor driver may
2343         * allocate memory to contain this information and store it in @context
2344         * when a new GID entry is written to. Params are consistent until the
2345         * next call of add_gid or delete_gid. The function should return 0 on
2346         * success or error otherwise. The function could be called
2347         * concurrently for different ports. This function is only called when
2348         * roce_gid_table is used.
2349         */
2350        int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2351        /**
2352         * When calling del_gid, the HW vendor's driver should delete the
2353         * gid of device @device at gid index gid_index of port port_num
2354         * available in @attr.
2355         * Upon the deletion of a GID entry, the HW vendor must free any
2356         * allocated memory. The caller will clear @context afterwards.
2357         * This function is only called when roce_gid_table is used.
2358         */
2359        int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2360        int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index,
2361                          u16 *pkey);
2362        int (*alloc_ucontext)(struct ib_ucontext *context,
2363                              struct ib_udata *udata);
2364        void (*dealloc_ucontext)(struct ib_ucontext *context);
2365        int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2366        void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2367        int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2368        void (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2369        int (*create_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr,
2370                         u32 flags, struct ib_udata *udata);
2371        int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2372        int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2373        void (*destroy_ah)(struct ib_ah *ah, u32 flags);
2374        int (*create_srq)(struct ib_srq *srq,
2375                          struct ib_srq_init_attr *srq_init_attr,
2376                          struct ib_udata *udata);
2377        int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2378                          enum ib_srq_attr_mask srq_attr_mask,
2379                          struct ib_udata *udata);
2380        int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2381        void (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2382        struct ib_qp *(*create_qp)(struct ib_pd *pd,
2383                                   struct ib_qp_init_attr *qp_init_attr,
2384                                   struct ib_udata *udata);
2385        int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2386                         int qp_attr_mask, struct ib_udata *udata);
2387        int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2388                        int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2389        int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2390        int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2391                         struct ib_udata *udata);
2392        int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2393        void (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2394        int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2395        struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2396        struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2397                                     u64 virt_addr, int mr_access_flags,
2398                                     struct ib_udata *udata);
2399        int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length,
2400                             u64 virt_addr, int mr_access_flags,
2401                             struct ib_pd *pd, struct ib_udata *udata);
2402        int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2403        struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2404                                  u32 max_num_sg, struct ib_udata *udata);
2405        struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2406                                            u32 max_num_data_sg,
2407                                            u32 max_num_meta_sg);
2408        int (*advise_mr)(struct ib_pd *pd,
2409                         enum ib_uverbs_advise_mr_advice advice, u32 flags,
2410                         struct ib_sge *sg_list, u32 num_sge,
2411                         struct uverbs_attr_bundle *attrs);
2412        int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2413                         unsigned int *sg_offset);
2414        int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2415                               struct ib_mr_status *mr_status);
2416        struct ib_mw *(*alloc_mw)(struct ib_pd *pd, enum ib_mw_type type,
2417                                  struct ib_udata *udata);
2418        int (*dealloc_mw)(struct ib_mw *mw);
2419        struct ib_fmr *(*alloc_fmr)(struct ib_pd *pd, int mr_access_flags,
2420                                    struct ib_fmr_attr *fmr_attr);
2421        int (*map_phys_fmr)(struct ib_fmr *fmr, u64 *page_list, int list_len,
2422                            u64 iova);
2423        int (*unmap_fmr)(struct list_head *fmr_list);
2424        int (*dealloc_fmr)(struct ib_fmr *fmr);
2425        void (*invalidate_range)(struct ib_umem_odp *umem_odp,
2426                                 unsigned long start, unsigned long end);
2427        int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2428        int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2429        struct ib_xrcd *(*alloc_xrcd)(struct ib_device *device,
2430                                      struct ib_udata *udata);
2431        int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2432        struct ib_flow *(*create_flow)(struct ib_qp *qp,
2433                                       struct ib_flow_attr *flow_attr,
2434                                       int domain, struct ib_udata *udata);
2435        int (*destroy_flow)(struct ib_flow *flow_id);
2436        struct ib_flow_action *(*create_flow_action_esp)(
2437                struct ib_device *device,
2438                const struct ib_flow_action_attrs_esp *attr,
2439                struct uverbs_attr_bundle *attrs);
2440        int (*destroy_flow_action)(struct ib_flow_action *action);
2441        int (*modify_flow_action_esp)(
2442                struct ib_flow_action *action,
2443                const struct ib_flow_action_attrs_esp *attr,
2444                struct uverbs_attr_bundle *attrs);
2445        int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2446                                 int state);
2447        int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2448                             struct ifla_vf_info *ivf);
2449        int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2450                            struct ifla_vf_stats *stats);
2451        int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2452                           int type);
2453        struct ib_wq *(*create_wq)(struct ib_pd *pd,
2454                                   struct ib_wq_init_attr *init_attr,
2455                                   struct ib_udata *udata);
2456        void (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2457        int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2458                         u32 wq_attr_mask, struct ib_udata *udata);
2459        struct ib_rwq_ind_table *(*create_rwq_ind_table)(
2460                struct ib_device *device,
2461                struct ib_rwq_ind_table_init_attr *init_attr,
2462                struct ib_udata *udata);
2463        int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2464        struct ib_dm *(*alloc_dm)(struct ib_device *device,
2465                                  struct ib_ucontext *context,
2466                                  struct ib_dm_alloc_attr *attr,
2467                                  struct uverbs_attr_bundle *attrs);
2468        int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2469        struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2470                                   struct ib_dm_mr_attr *attr,
2471                                   struct uverbs_attr_bundle *attrs);
2472        struct ib_counters *(*create_counters)(
2473                struct ib_device *device, struct uverbs_attr_bundle *attrs);
2474        int (*destroy_counters)(struct ib_counters *counters);
2475        int (*read_counters)(struct ib_counters *counters,
2476                             struct ib_counters_read_attr *counters_read_attr,
2477                             struct uverbs_attr_bundle *attrs);
2478        int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2479                            int data_sg_nents, unsigned int *data_sg_offset,
2480                            struct scatterlist *meta_sg, int meta_sg_nents,
2481                            unsigned int *meta_sg_offset);
2482
2483        /**
2484         * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2485         *   driver initialized data.  The struct is kfree()'ed by the sysfs
2486         *   core when the device is removed.  A lifespan of -1 in the return
2487         *   struct tells the core to set a default lifespan.
2488         */
2489        struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2490                                                u8 port_num);
2491        /**
2492         * get_hw_stats - Fill in the counter value(s) in the stats struct.
2493         * @index - The index in the value array we wish to have updated, or
2494         *   num_counters if we want all stats updated
2495         * Return codes -
2496         *   < 0 - Error, no counters updated
2497         *   index - Updated the single counter pointed to by index
2498         *   num_counters - Updated all counters (will reset the timestamp
2499         *     and prevent further calls for lifespan milliseconds)
2500         * Drivers are allowed to update all counters in leiu of just the
2501         *   one given in index at their option
2502         */
2503        int (*get_hw_stats)(struct ib_device *device,
2504                            struct rdma_hw_stats *stats, u8 port, int index);
2505        /*
2506         * This function is called once for each port when a ib device is
2507         * registered.
2508         */
2509        int (*init_port)(struct ib_device *device, u8 port_num,
2510                         struct kobject *port_sysfs);
2511        /**
2512         * Allows rdma drivers to add their own restrack attributes.
2513         */
2514        int (*fill_res_entry)(struct sk_buff *msg,
2515                              struct rdma_restrack_entry *entry);
2516
2517        /* Device lifecycle callbacks */
2518        /*
2519         * Called after the device becomes registered, before clients are
2520         * attached
2521         */
2522        int (*enable_driver)(struct ib_device *dev);
2523        /*
2524         * This is called as part of ib_dealloc_device().
2525         */
2526        void (*dealloc_driver)(struct ib_device *dev);
2527
2528        /* iWarp CM callbacks */
2529        void (*iw_add_ref)(struct ib_qp *qp);
2530        void (*iw_rem_ref)(struct ib_qp *qp);
2531        struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2532        int (*iw_connect)(struct iw_cm_id *cm_id,
2533                          struct iw_cm_conn_param *conn_param);
2534        int (*iw_accept)(struct iw_cm_id *cm_id,
2535                         struct iw_cm_conn_param *conn_param);
2536        int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2537                         u8 pdata_len);
2538        int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2539        int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2540        /**
2541         * counter_bind_qp - Bind a QP to a counter.
2542         * @counter - The counter to be bound. If counter->id is zero then
2543         *   the driver needs to allocate a new counter and set counter->id
2544         */
2545        int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2546        /**
2547         * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2548         *   counter and bind it onto the default one
2549         */
2550        int (*counter_unbind_qp)(struct ib_qp *qp);
2551        /**
2552         * counter_dealloc -De-allocate the hw counter
2553         */
2554        int (*counter_dealloc)(struct rdma_counter *counter);
2555        /**
2556         * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2557         * the driver initialized data.
2558         */
2559        struct rdma_hw_stats *(*counter_alloc_stats)(
2560                struct rdma_counter *counter);
2561        /**
2562         * counter_update_stats - Query the stats value of this counter
2563         */
2564        int (*counter_update_stats)(struct rdma_counter *counter);
2565
2566        DECLARE_RDMA_OBJ_SIZE(ib_ah);
2567        DECLARE_RDMA_OBJ_SIZE(ib_cq);
2568        DECLARE_RDMA_OBJ_SIZE(ib_pd);
2569        DECLARE_RDMA_OBJ_SIZE(ib_srq);
2570        DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2571};
2572
2573struct ib_core_device {
2574        /* device must be the first element in structure until,
2575         * union of ib_core_device and device exists in ib_device.
2576         */
2577        struct device dev;
2578        possible_net_t rdma_net;
2579        struct kobject *ports_kobj;
2580        struct list_head port_list;
2581        struct ib_device *owner; /* reach back to owner ib_device */
2582};
2583
2584struct rdma_restrack_root;
2585struct ib_device {
2586        /* Do not access @dma_device directly from ULP nor from HW drivers. */
2587        struct device                *dma_device;
2588        struct ib_device_ops         ops;
2589        char                          name[IB_DEVICE_NAME_MAX];
2590        struct rcu_head rcu_head;
2591
2592        struct list_head              event_handler_list;
2593        spinlock_t                    event_handler_lock;
2594
2595        struct rw_semaphore           client_data_rwsem;
2596        struct xarray                 client_data;
2597        struct mutex                  unregistration_lock;
2598
2599        struct ib_cache               cache;
2600        /**
2601         * port_data is indexed by port number
2602         */
2603        struct ib_port_data *port_data;
2604
2605        int                           num_comp_vectors;
2606
2607        union {
2608                struct device           dev;
2609                struct ib_core_device   coredev;
2610        };
2611
2612        /* First group for device attributes,
2613         * Second group for driver provided attributes (optional).
2614         * It is NULL terminated array.
2615         */
2616        const struct attribute_group    *groups[3];
2617
2618        u64                          uverbs_cmd_mask;
2619        u64                          uverbs_ex_cmd_mask;
2620
2621        char                         node_desc[IB_DEVICE_NODE_DESC_MAX];
2622        __be64                       node_guid;
2623        u32                          local_dma_lkey;
2624        u16                          is_switch:1;
2625        /* Indicates kernel verbs support, should not be used in drivers */
2626        u16                          kverbs_provider:1;
2627        /* CQ adaptive moderation (RDMA DIM) */
2628        u16                          use_cq_dim:1;
2629        u8                           node_type;
2630        u8                           phys_port_cnt;
2631        struct ib_device_attr        attrs;
2632        struct attribute_group       *hw_stats_ag;
2633        struct rdma_hw_stats         *hw_stats;
2634
2635#ifdef CONFIG_CGROUP_RDMA
2636        struct rdmacg_device         cg_device;
2637#endif
2638
2639        u32                          index;
2640        struct rdma_restrack_root *res;
2641
2642        const struct uapi_definition   *driver_def;
2643
2644        /*
2645         * Positive refcount indicates that the device is currently
2646         * registered and cannot be unregistered.
2647         */
2648        refcount_t refcount;
2649        struct completion unreg_completion;
2650        struct work_struct unregistration_work;
2651
2652        const struct rdma_link_ops *link_ops;
2653
2654        /* Protects compat_devs xarray modifications */
2655        struct mutex compat_devs_mutex;
2656        /* Maintains compat devices for each net namespace */
2657        struct xarray compat_devs;
2658
2659        /* Used by iWarp CM */
2660        char iw_ifname[IFNAMSIZ];
2661        u32 iw_driver_flags;
2662};
2663
2664struct ib_client_nl_info;
2665struct ib_client {
2666        const char *name;
2667        void (*add)   (struct ib_device *);
2668        void (*remove)(struct ib_device *, void *client_data);
2669        void (*rename)(struct ib_device *dev, void *client_data);
2670        int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2671                           struct ib_client_nl_info *res);
2672        int (*get_global_nl_info)(struct ib_client_nl_info *res);
2673
2674        /* Returns the net_dev belonging to this ib_client and matching the
2675         * given parameters.
2676         * @dev:         An RDMA device that the net_dev use for communication.
2677         * @port:        A physical port number on the RDMA device.
2678         * @pkey:        P_Key that the net_dev uses if applicable.
2679         * @gid:         A GID that the net_dev uses to communicate.
2680         * @addr:        An IP address the net_dev is configured with.
2681         * @client_data: The device's client data set by ib_set_client_data().
2682         *
2683         * An ib_client that implements a net_dev on top of RDMA devices
2684         * (such as IP over IB) should implement this callback, allowing the
2685         * rdma_cm module to find the right net_dev for a given request.
2686         *
2687         * The caller is responsible for calling dev_put on the returned
2688         * netdev. */
2689        struct net_device *(*get_net_dev_by_params)(
2690                        struct ib_device *dev,
2691                        u8 port,
2692                        u16 pkey,
2693                        const union ib_gid *gid,
2694                        const struct sockaddr *addr,
2695                        void *client_data);
2696
2697        refcount_t uses;
2698        struct completion uses_zero;
2699        u32 client_id;
2700
2701        /* kverbs are not required by the client */
2702        u8 no_kverbs_req:1;
2703};
2704
2705/*
2706 * IB block DMA iterator
2707 *
2708 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2709 * to a HW supported page size.
2710 */
2711struct ib_block_iter {
2712        /* internal states */
2713        struct scatterlist *__sg;       /* sg holding the current aligned block */
2714        dma_addr_t __dma_addr;          /* unaligned DMA address of this block */
2715        unsigned int __sg_nents;        /* number of SG entries */
2716        unsigned int __sg_advance;      /* number of bytes to advance in sg in next step */
2717        unsigned int __pg_bit;          /* alignment of current block */
2718};
2719
2720struct ib_device *_ib_alloc_device(size_t size);
2721#define ib_alloc_device(drv_struct, member)                                    \
2722        container_of(_ib_alloc_device(sizeof(struct drv_struct) +              \
2723                                      BUILD_BUG_ON_ZERO(offsetof(              \
2724                                              struct drv_struct, member))),    \
2725                     struct drv_struct, member)
2726
2727void ib_dealloc_device(struct ib_device *device);
2728
2729void ib_get_device_fw_str(struct ib_device *device, char *str);
2730
2731int ib_register_device(struct ib_device *device, const char *name);
2732void ib_unregister_device(struct ib_device *device);
2733void ib_unregister_driver(enum rdma_driver_id driver_id);
2734void ib_unregister_device_and_put(struct ib_device *device);
2735void ib_unregister_device_queued(struct ib_device *ib_dev);
2736
2737int ib_register_client   (struct ib_client *client);
2738void ib_unregister_client(struct ib_client *client);
2739
2740void __rdma_block_iter_start(struct ib_block_iter *biter,
2741                             struct scatterlist *sglist,
2742                             unsigned int nents,
2743                             unsigned long pgsz);
2744bool __rdma_block_iter_next(struct ib_block_iter *biter);
2745
2746/**
2747 * rdma_block_iter_dma_address - get the aligned dma address of the current
2748 * block held by the block iterator.
2749 * @biter: block iterator holding the memory block
2750 */
2751static inline dma_addr_t
2752rdma_block_iter_dma_address(struct ib_block_iter *biter)
2753{
2754        return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2755}
2756
2757/**
2758 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2759 * @sglist: sglist to iterate over
2760 * @biter: block iterator holding the memory block
2761 * @nents: maximum number of sg entries to iterate over
2762 * @pgsz: best HW supported page size to use
2763 *
2764 * Callers may use rdma_block_iter_dma_address() to get each
2765 * blocks aligned DMA address.
2766 */
2767#define rdma_for_each_block(sglist, biter, nents, pgsz)         \
2768        for (__rdma_block_iter_start(biter, sglist, nents,      \
2769                                     pgsz);                     \
2770             __rdma_block_iter_next(biter);)
2771
2772/**
2773 * ib_get_client_data - Get IB client context
2774 * @device:Device to get context for
2775 * @client:Client to get context for
2776 *
2777 * ib_get_client_data() returns the client context data set with
2778 * ib_set_client_data(). This can only be called while the client is
2779 * registered to the device, once the ib_client remove() callback returns this
2780 * cannot be called.
2781 */
2782static inline void *ib_get_client_data(struct ib_device *device,
2783                                       struct ib_client *client)
2784{
2785        return xa_load(&device->client_data, client->client_id);
2786}
2787void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2788                         void *data);
2789void ib_set_device_ops(struct ib_device *device,
2790                       const struct ib_device_ops *ops);
2791
2792#if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
2793int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2794                      unsigned long pfn, unsigned long size, pgprot_t prot);
2795#else
2796static inline int rdma_user_mmap_io(struct ib_ucontext *ucontext,
2797                                    struct vm_area_struct *vma,
2798                                    unsigned long pfn, unsigned long size,
2799                                    pgprot_t prot)
2800{
2801        return -EINVAL;
2802}
2803#endif
2804
2805static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2806{
2807        return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2808}
2809
2810static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2811{
2812        return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2813}
2814
2815static inline bool ib_is_buffer_cleared(const void __user *p,
2816                                        size_t len)
2817{
2818        bool ret;
2819        u8 *buf;
2820
2821        if (len > USHRT_MAX)
2822                return false;
2823
2824        buf = memdup_user(p, len);
2825        if (IS_ERR(buf))
2826                return false;
2827
2828        ret = !memchr_inv(buf, 0, len);
2829        kfree(buf);
2830        return ret;
2831}
2832
2833static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2834                                       size_t offset,
2835                                       size_t len)
2836{
2837        return ib_is_buffer_cleared(udata->inbuf + offset, len);
2838}
2839
2840/**
2841 * ib_is_destroy_retryable - Check whether the uobject destruction
2842 * is retryable.
2843 * @ret: The initial destruction return code
2844 * @why: remove reason
2845 * @uobj: The uobject that is destroyed
2846 *
2847 * This function is a helper function that IB layer and low-level drivers
2848 * can use to consider whether the destruction of the given uobject is
2849 * retry-able.
2850 * It checks the original return code, if it wasn't success the destruction
2851 * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2852 * the remove reason. (i.e. why).
2853 * Must be called with the object locked for destroy.
2854 */
2855static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2856                                           struct ib_uobject *uobj)
2857{
2858        return ret && (why == RDMA_REMOVE_DESTROY ||
2859                       uobj->context->cleanup_retryable);
2860}
2861
2862/**
2863 * ib_destroy_usecnt - Called during destruction to check the usecnt
2864 * @usecnt: The usecnt atomic
2865 * @why: remove reason
2866 * @uobj: The uobject that is destroyed
2867 *
2868 * Non-zero usecnts will block destruction unless destruction was triggered by
2869 * a ucontext cleanup.
2870 */
2871static inline int ib_destroy_usecnt(atomic_t *usecnt,
2872                                    enum rdma_remove_reason why,
2873                                    struct ib_uobject *uobj)
2874{
2875        if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2876                return -EBUSY;
2877        return 0;
2878}
2879
2880/**
2881 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2882 * contains all required attributes and no attributes not allowed for
2883 * the given QP state transition.
2884 * @cur_state: Current QP state
2885 * @next_state: Next QP state
2886 * @type: QP type
2887 * @mask: Mask of supplied QP attributes
2888 *
2889 * This function is a helper function that a low-level driver's
2890 * modify_qp method can use to validate the consumer's input.  It
2891 * checks that cur_state and next_state are valid QP states, that a
2892 * transition from cur_state to next_state is allowed by the IB spec,
2893 * and that the attribute mask supplied is allowed for the transition.
2894 */
2895bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2896                        enum ib_qp_type type, enum ib_qp_attr_mask mask);
2897
2898void ib_register_event_handler(struct ib_event_handler *event_handler);
2899void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2900void ib_dispatch_event(struct ib_event *event);
2901
2902int ib_query_port(struct ib_device *device,
2903                  u8 port_num, struct ib_port_attr *port_attr);
2904
2905enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2906                                               u8 port_num);
2907
2908/**
2909 * rdma_cap_ib_switch - Check if the device is IB switch
2910 * @device: Device to check
2911 *
2912 * Device driver is responsible for setting is_switch bit on
2913 * in ib_device structure at init time.
2914 *
2915 * Return: true if the device is IB switch.
2916 */
2917static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2918{
2919        return device->is_switch;
2920}
2921
2922/**
2923 * rdma_start_port - Return the first valid port number for the device
2924 * specified
2925 *
2926 * @device: Device to be checked
2927 *
2928 * Return start port number
2929 */
2930static inline u8 rdma_start_port(const struct ib_device *device)
2931{
2932        return rdma_cap_ib_switch(device) ? 0 : 1;
2933}
2934
2935/**
2936 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
2937 * @device - The struct ib_device * to iterate over
2938 * @iter - The unsigned int to store the port number
2939 */
2940#define rdma_for_each_port(device, iter)                                       \
2941        for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type(   \
2942                                                     unsigned int, iter)));    \
2943             iter <= rdma_end_port(device); (iter)++)
2944
2945/**
2946 * rdma_end_port - Return the last valid port number for the device
2947 * specified
2948 *
2949 * @device: Device to be checked
2950 *
2951 * Return last port number
2952 */
2953static inline u8 rdma_end_port(const struct ib_device *device)
2954{
2955        return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2956}
2957
2958static inline int rdma_is_port_valid(const struct ib_device *device,
2959                                     unsigned int port)
2960{
2961        return (port >= rdma_start_port(device) &&
2962                port <= rdma_end_port(device));
2963}
2964
2965static inline bool rdma_is_grh_required(const struct ib_device *device,
2966                                        u8 port_num)
2967{
2968        return device->port_data[port_num].immutable.core_cap_flags &
2969               RDMA_CORE_PORT_IB_GRH_REQUIRED;
2970}
2971
2972static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2973{
2974        return device->port_data[port_num].immutable.core_cap_flags &
2975               RDMA_CORE_CAP_PROT_IB;
2976}
2977
2978static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2979{
2980        return device->port_data[port_num].immutable.core_cap_flags &
2981               (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2982}
2983
2984static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2985{
2986        return device->port_data[port_num].immutable.core_cap_flags &
2987               RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2988}
2989
2990static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2991{
2992        return device->port_data[port_num].immutable.core_cap_flags &
2993               RDMA_CORE_CAP_PROT_ROCE;
2994}
2995
2996static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2997{
2998        return device->port_data[port_num].immutable.core_cap_flags &
2999               RDMA_CORE_CAP_PROT_IWARP;
3000}
3001
3002static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
3003{
3004        return rdma_protocol_ib(device, port_num) ||
3005                rdma_protocol_roce(device, port_num);
3006}
3007
3008static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
3009{
3010        return device->port_data[port_num].immutable.core_cap_flags &
3011               RDMA_CORE_CAP_PROT_RAW_PACKET;
3012}
3013
3014static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
3015{
3016        return device->port_data[port_num].immutable.core_cap_flags &
3017               RDMA_CORE_CAP_PROT_USNIC;
3018}
3019
3020/**
3021 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3022 * Management Datagrams.
3023 * @device: Device to check
3024 * @port_num: Port number to check
3025 *
3026 * Management Datagrams (MAD) are a required part of the InfiniBand
3027 * specification and are supported on all InfiniBand devices.  A slightly
3028 * extended version are also supported on OPA interfaces.
3029 *
3030 * Return: true if the port supports sending/receiving of MAD packets.
3031 */
3032static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
3033{
3034        return device->port_data[port_num].immutable.core_cap_flags &
3035               RDMA_CORE_CAP_IB_MAD;
3036}
3037
3038/**
3039 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3040 * Management Datagrams.
3041 * @device: Device to check
3042 * @port_num: Port number to check
3043 *
3044 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3045 * datagrams with their own versions.  These OPA MADs share many but not all of
3046 * the characteristics of InfiniBand MADs.
3047 *
3048 * OPA MADs differ in the following ways:
3049 *
3050 *    1) MADs are variable size up to 2K
3051 *       IBTA defined MADs remain fixed at 256 bytes
3052 *    2) OPA SMPs must carry valid PKeys
3053 *    3) OPA SMP packets are a different format
3054 *
3055 * Return: true if the port supports OPA MAD packet formats.
3056 */
3057static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
3058{
3059        return device->port_data[port_num].immutable.core_cap_flags &
3060                RDMA_CORE_CAP_OPA_MAD;
3061}
3062
3063/**
3064 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3065 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3066 * @device: Device to check
3067 * @port_num: Port number to check
3068 *
3069 * Each InfiniBand node is required to provide a Subnet Management Agent
3070 * that the subnet manager can access.  Prior to the fabric being fully
3071 * configured by the subnet manager, the SMA is accessed via a well known
3072 * interface called the Subnet Management Interface (SMI).  This interface
3073 * uses directed route packets to communicate with the SM to get around the
3074 * chicken and egg problem of the SM needing to know what's on the fabric
3075 * in order to configure the fabric, and needing to configure the fabric in
3076 * order to send packets to the devices on the fabric.  These directed
3077 * route packets do not need the fabric fully configured in order to reach
3078 * their destination.  The SMI is the only method allowed to send
3079 * directed route packets on an InfiniBand fabric.
3080 *
3081 * Return: true if the port provides an SMI.
3082 */
3083static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
3084{
3085        return device->port_data[port_num].immutable.core_cap_flags &
3086               RDMA_CORE_CAP_IB_SMI;
3087}
3088
3089/**
3090 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3091 * Communication Manager.
3092 * @device: Device to check
3093 * @port_num: Port number to check
3094 *
3095 * The InfiniBand Communication Manager is one of many pre-defined General
3096 * Service Agents (GSA) that are accessed via the General Service
3097 * Interface (GSI).  It's role is to facilitate establishment of connections
3098 * between nodes as well as other management related tasks for established
3099 * connections.
3100 *
3101 * Return: true if the port supports an IB CM (this does not guarantee that
3102 * a CM is actually running however).
3103 */
3104static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
3105{
3106        return device->port_data[port_num].immutable.core_cap_flags &
3107               RDMA_CORE_CAP_IB_CM;
3108}
3109
3110/**
3111 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3112 * Communication Manager.
3113 * @device: Device to check
3114 * @port_num: Port number to check
3115 *
3116 * Similar to above, but specific to iWARP connections which have a different
3117 * managment protocol than InfiniBand.
3118 *
3119 * Return: true if the port supports an iWARP CM (this does not guarantee that
3120 * a CM is actually running however).
3121 */
3122static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
3123{
3124        return device->port_data[port_num].immutable.core_cap_flags &
3125               RDMA_CORE_CAP_IW_CM;
3126}
3127
3128/**
3129 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3130 * Subnet Administration.
3131 * @device: Device to check
3132 * @port_num: Port number to check
3133 *
3134 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3135 * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
3136 * fabrics, devices should resolve routes to other hosts by contacting the
3137 * SA to query the proper route.
3138 *
3139 * Return: true if the port should act as a client to the fabric Subnet
3140 * Administration interface.  This does not imply that the SA service is
3141 * running locally.
3142 */
3143static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
3144{
3145        return device->port_data[port_num].immutable.core_cap_flags &
3146               RDMA_CORE_CAP_IB_SA;
3147}
3148
3149/**
3150 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3151 * Multicast.
3152 * @device: Device to check
3153 * @port_num: Port number to check
3154 *
3155 * InfiniBand multicast registration is more complex than normal IPv4 or
3156 * IPv6 multicast registration.  Each Host Channel Adapter must register
3157 * with the Subnet Manager when it wishes to join a multicast group.  It
3158 * should do so only once regardless of how many queue pairs it subscribes
3159 * to this group.  And it should leave the group only after all queue pairs
3160 * attached to the group have been detached.
3161 *
3162 * Return: true if the port must undertake the additional adminstrative
3163 * overhead of registering/unregistering with the SM and tracking of the
3164 * total number of queue pairs attached to the multicast group.
3165 */
3166static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
3167{
3168        return rdma_cap_ib_sa(device, port_num);
3169}
3170
3171/**
3172 * rdma_cap_af_ib - Check if the port of device has the capability
3173 * Native Infiniband Address.
3174 * @device: Device to check
3175 * @port_num: Port number to check
3176 *
3177 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3178 * GID.  RoCE uses a different mechanism, but still generates a GID via
3179 * a prescribed mechanism and port specific data.
3180 *
3181 * Return: true if the port uses a GID address to identify devices on the
3182 * network.
3183 */
3184static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
3185{
3186        return device->port_data[port_num].immutable.core_cap_flags &
3187               RDMA_CORE_CAP_AF_IB;
3188}
3189
3190/**
3191 * rdma_cap_eth_ah - Check if the port of device has the capability
3192 * Ethernet Address Handle.
3193 * @device: Device to check
3194 * @port_num: Port number to check
3195 *
3196 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3197 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3198 * port.  Normally, packet headers are generated by the sending host
3199 * adapter, but when sending connectionless datagrams, we must manually
3200 * inject the proper headers for the fabric we are communicating over.
3201 *
3202 * Return: true if we are running as a RoCE port and must force the
3203 * addition of a Global Route Header built from our Ethernet Address
3204 * Handle into our header list for connectionless packets.
3205 */
3206static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
3207{
3208        return device->port_data[port_num].immutable.core_cap_flags &
3209               RDMA_CORE_CAP_ETH_AH;
3210}
3211
3212/**
3213 * rdma_cap_opa_ah - Check if the port of device supports
3214 * OPA Address handles
3215 * @device: Device to check
3216 * @port_num: Port number to check
3217 *
3218 * Return: true if we are running on an OPA device which supports
3219 * the extended OPA addressing.
3220 */
3221static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
3222{
3223        return (device->port_data[port_num].immutable.core_cap_flags &
3224                RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3225}
3226
3227/**
3228 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3229 *
3230 * @device: Device
3231 * @port_num: Port number
3232 *
3233 * This MAD size includes the MAD headers and MAD payload.  No other headers
3234 * are included.
3235 *
3236 * Return the max MAD size required by the Port.  Will return 0 if the port
3237 * does not support MADs
3238 */
3239static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
3240{
3241        return device->port_data[port_num].immutable.max_mad_size;
3242}
3243
3244/**
3245 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3246 * @device: Device to check
3247 * @port_num: Port number to check
3248 *
3249 * RoCE GID table mechanism manages the various GIDs for a device.
3250 *
3251 * NOTE: if allocating the port's GID table has failed, this call will still
3252 * return true, but any RoCE GID table API will fail.
3253 *
3254 * Return: true if the port uses RoCE GID table mechanism in order to manage
3255 * its GIDs.
3256 */
3257static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3258                                           u8 port_num)
3259{
3260        return rdma_protocol_roce(device, port_num) &&
3261                device->ops.add_gid && device->ops.del_gid;
3262}
3263
3264/*
3265 * Check if the device supports READ W/ INVALIDATE.
3266 */
3267static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3268{
3269        /*
3270         * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
3271         * has support for it yet.
3272         */
3273        return rdma_protocol_iwarp(dev, port_num);
3274}
3275
3276/**
3277 * rdma_find_pg_bit - Find page bit given address and HW supported page sizes
3278 *
3279 * @addr: address
3280 * @pgsz_bitmap: bitmap of HW supported page sizes
3281 */
3282static inline unsigned int rdma_find_pg_bit(unsigned long addr,
3283                                            unsigned long pgsz_bitmap)
3284{
3285        unsigned long align;
3286        unsigned long pgsz;
3287
3288        align = addr & -addr;
3289
3290        /* Find page bit such that addr is aligned to the highest supported
3291         * HW page size
3292         */
3293        pgsz = pgsz_bitmap & ~(-align << 1);
3294        if (!pgsz)
3295                return __ffs(pgsz_bitmap);
3296
3297        return __fls(pgsz);
3298}
3299
3300int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
3301                         int state);
3302int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
3303                     struct ifla_vf_info *info);
3304int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
3305                    struct ifla_vf_stats *stats);
3306int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
3307                   int type);
3308
3309int ib_query_pkey(struct ib_device *device,
3310                  u8 port_num, u16 index, u16 *pkey);
3311
3312int ib_modify_device(struct ib_device *device,
3313                     int device_modify_mask,
3314                     struct ib_device_modify *device_modify);
3315
3316int ib_modify_port(struct ib_device *device,
3317                   u8 port_num, int port_modify_mask,
3318                   struct ib_port_modify *port_modify);
3319
3320int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3321                u8 *port_num, u16 *index);
3322
3323int ib_find_pkey(struct ib_device *device,
3324                 u8 port_num, u16 pkey, u16 *index);
3325
3326enum ib_pd_flags {
3327        /*
3328         * Create a memory registration for all memory in the system and place
3329         * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3330         * ULPs to avoid the overhead of dynamic MRs.
3331         *
3332         * This flag is generally considered unsafe and must only be used in
3333         * extremly trusted environments.  Every use of it will log a warning
3334         * in the kernel log.
3335         */
3336        IB_PD_UNSAFE_GLOBAL_RKEY        = 0x01,
3337};
3338
3339struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3340                const char *caller);
3341
3342#define ib_alloc_pd(device, flags) \
3343        __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3344
3345/**
3346 * ib_dealloc_pd_user - Deallocate kernel/user PD
3347 * @pd: The protection domain
3348 * @udata: Valid user data or NULL for kernel objects
3349 */
3350void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3351
3352/**
3353 * ib_dealloc_pd - Deallocate kernel PD
3354 * @pd: The protection domain
3355 *
3356 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3357 */
3358static inline void ib_dealloc_pd(struct ib_pd *pd)
3359{
3360        ib_dealloc_pd_user(pd, NULL);
3361}
3362
3363enum rdma_create_ah_flags {
3364        /* In a sleepable context */
3365        RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3366};
3367
3368/**
3369 * rdma_create_ah - Creates an address handle for the given address vector.
3370 * @pd: The protection domain associated with the address handle.
3371 * @ah_attr: The attributes of the address vector.
3372 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3373 *
3374 * The address handle is used to reference a local or global destination
3375 * in all UD QP post sends.
3376 */
3377struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3378                             u32 flags);
3379
3380/**
3381 * rdma_create_user_ah - Creates an address handle for the given address vector.
3382 * It resolves destination mac address for ah attribute of RoCE type.
3383 * @pd: The protection domain associated with the address handle.
3384 * @ah_attr: The attributes of the address vector.
3385 * @udata: pointer to user's input output buffer information need by
3386 *         provider driver.
3387 *
3388 * It returns 0 on success and returns appropriate error code on error.
3389 * The address handle is used to reference a local or global destination
3390 * in all UD QP post sends.
3391 */
3392struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3393                                  struct rdma_ah_attr *ah_attr,
3394                                  struct ib_udata *udata);
3395/**
3396 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3397 *   work completion.
3398 * @hdr: the L3 header to parse
3399 * @net_type: type of header to parse
3400 * @sgid: place to store source gid
3401 * @dgid: place to store destination gid
3402 */
3403int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3404                              enum rdma_network_type net_type,
3405                              union ib_gid *sgid, union ib_gid *dgid);
3406
3407/**
3408 * ib_get_rdma_header_version - Get the header version
3409 * @hdr: the L3 header to parse
3410 */
3411int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3412
3413/**
3414 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3415 *   work completion.
3416 * @device: Device on which the received message arrived.
3417 * @port_num: Port on which the received message arrived.
3418 * @wc: Work completion associated with the received message.
3419 * @grh: References the received global route header.  This parameter is
3420 *   ignored unless the work completion indicates that the GRH is valid.
3421 * @ah_attr: Returned attributes that can be used when creating an address
3422 *   handle for replying to the message.
3423 * When ib_init_ah_attr_from_wc() returns success,
3424 * (a) for IB link layer it optionally contains a reference to SGID attribute
3425 * when GRH is present for IB link layer.
3426 * (b) for RoCE link layer it contains a reference to SGID attribute.
3427 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3428 * attributes which are initialized using ib_init_ah_attr_from_wc().
3429 *
3430 */
3431int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3432                            const struct ib_wc *wc, const struct ib_grh *grh,
3433                            struct rdma_ah_attr *ah_attr);
3434
3435/**
3436 * ib_create_ah_from_wc - Creates an address handle associated with the
3437 *   sender of the specified work completion.
3438 * @pd: The protection domain associated with the address handle.
3439 * @wc: Work completion information associated with a received message.
3440 * @grh: References the received global route header.  This parameter is
3441 *   ignored unless the work completion indicates that the GRH is valid.
3442 * @port_num: The outbound port number to associate with the address.
3443 *
3444 * The address handle is used to reference a local or global destination
3445 * in all UD QP post sends.
3446 */
3447struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3448                                   const struct ib_grh *grh, u8 port_num);
3449
3450/**
3451 * rdma_modify_ah - Modifies the address vector associated with an address
3452 *   handle.
3453 * @ah: The address handle to modify.
3454 * @ah_attr: The new address vector attributes to associate with the
3455 *   address handle.
3456 */
3457int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3458
3459/**
3460 * rdma_query_ah - Queries the address vector associated with an address
3461 *   handle.
3462 * @ah: The address handle to query.
3463 * @ah_attr: The address vector attributes associated with the address
3464 *   handle.
3465 */
3466int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3467
3468enum rdma_destroy_ah_flags {
3469        /* In a sleepable context */
3470        RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3471};
3472
3473/**
3474 * rdma_destroy_ah_user - Destroys an address handle.
3475 * @ah: The address handle to destroy.
3476 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3477 * @udata: Valid user data or NULL for kernel objects
3478 */
3479int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3480
3481/**
3482 * rdma_destroy_ah - Destroys an kernel address handle.
3483 * @ah: The address handle to destroy.
3484 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3485 *
3486 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3487 */
3488static inline int rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3489{
3490        return rdma_destroy_ah_user(ah, flags, NULL);
3491}
3492
3493/**
3494 * ib_create_srq - Creates a SRQ associated with the specified protection
3495 *   domain.
3496 * @pd: The protection domain associated with the SRQ.
3497 * @srq_init_attr: A list of initial attributes required to create the
3498 *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
3499 *   the actual capabilities of the created SRQ.
3500 *
3501 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
3502 * requested size of the SRQ, and set to the actual values allocated
3503 * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
3504 * will always be at least as large as the requested values.
3505 */
3506struct ib_srq *ib_create_srq(struct ib_pd *pd,
3507                             struct ib_srq_init_attr *srq_init_attr);
3508
3509/**
3510 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3511 * @srq: The SRQ to modify.
3512 * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3513 *   the current values of selected SRQ attributes are returned.
3514 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3515 *   are being modified.
3516 *
3517 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3518 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3519 * the number of receives queued drops below the limit.
3520 */
3521int ib_modify_srq(struct ib_srq *srq,
3522                  struct ib_srq_attr *srq_attr,
3523                  enum ib_srq_attr_mask srq_attr_mask);
3524
3525/**
3526 * ib_query_srq - Returns the attribute list and current values for the
3527 *   specified SRQ.
3528 * @srq: The SRQ to query.
3529 * @srq_attr: The attributes of the specified SRQ.
3530 */
3531int ib_query_srq(struct ib_srq *srq,
3532                 struct ib_srq_attr *srq_attr);
3533
3534/**
3535 * ib_destroy_srq_user - Destroys the specified SRQ.
3536 * @srq: The SRQ to destroy.
3537 * @udata: Valid user data or NULL for kernel objects
3538 */
3539int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3540
3541/**
3542 * ib_destroy_srq - Destroys the specified kernel SRQ.
3543 * @srq: The SRQ to destroy.
3544 *
3545 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3546 */
3547static inline int ib_destroy_srq(struct ib_srq *srq)
3548{
3549        return ib_destroy_srq_user(srq, NULL);
3550}
3551
3552/**
3553 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3554 * @srq: The SRQ to post the work request on.
3555 * @recv_wr: A list of work requests to post on the receive queue.
3556 * @bad_recv_wr: On an immediate failure, this parameter will reference
3557 *   the work request that failed to be posted on the QP.
3558 */
3559static inline int ib_post_srq_recv(struct ib_srq *srq,
3560                                   const struct ib_recv_wr *recv_wr,
3561                                   const struct ib_recv_wr **bad_recv_wr)
3562{
3563        const struct ib_recv_wr *dummy;
3564
3565        return srq->device->ops.post_srq_recv(srq, recv_wr,
3566                                              bad_recv_wr ? : &dummy);
3567}
3568
3569/**
3570 * ib_create_qp_user - Creates a QP associated with the specified protection
3571 *   domain.
3572 * @pd: The protection domain associated with the QP.
3573 * @qp_init_attr: A list of initial attributes required to create the
3574 *   QP.  If QP creation succeeds, then the attributes are updated to
3575 *   the actual capabilities of the created QP.
3576 * @udata: Valid user data or NULL for kernel objects
3577 */
3578struct ib_qp *ib_create_qp_user(struct ib_pd *pd,
3579                                struct ib_qp_init_attr *qp_init_attr,
3580                                struct ib_udata *udata);
3581
3582/**
3583 * ib_create_qp - Creates a kernel QP associated with the specified protection
3584 *   domain.
3585 * @pd: The protection domain associated with the QP.
3586 * @qp_init_attr: A list of initial attributes required to create the
3587 *   QP.  If QP creation succeeds, then the attributes are updated to
3588 *   the actual capabilities of the created QP.
3589 * @udata: Valid user data or NULL for kernel objects
3590 *
3591 * NOTE: for user qp use ib_create_qp_user with valid udata!
3592 */
3593static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3594                                         struct ib_qp_init_attr *qp_init_attr)
3595{
3596        return ib_create_qp_user(pd, qp_init_attr, NULL);
3597}
3598
3599/**
3600 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3601 * @qp: The QP to modify.
3602 * @attr: On input, specifies the QP attributes to modify.  On output,
3603 *   the current values of selected QP attributes are returned.
3604 * @attr_mask: A bit-mask used to specify which attributes of the QP
3605 *   are being modified.
3606 * @udata: pointer to user's input output buffer information
3607 *   are being modified.
3608 * It returns 0 on success and returns appropriate error code on error.
3609 */
3610int ib_modify_qp_with_udata(struct ib_qp *qp,
3611                            struct ib_qp_attr *attr,
3612                            int attr_mask,
3613                            struct ib_udata *udata);
3614
3615/**
3616 * ib_modify_qp - Modifies the attributes for the specified QP and then
3617 *   transitions the QP to the given state.
3618 * @qp: The QP to modify.
3619 * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3620 *   the current values of selected QP attributes are returned.
3621 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3622 *   are being modified.
3623 */
3624int ib_modify_qp(struct ib_qp *qp,
3625                 struct ib_qp_attr *qp_attr,
3626                 int qp_attr_mask);
3627
3628/**
3629 * ib_query_qp - Returns the attribute list and current values for the
3630 *   specified QP.
3631 * @qp: The QP to query.
3632 * @qp_attr: The attributes of the specified QP.
3633 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3634 * @qp_init_attr: Additional attributes of the selected QP.
3635 *
3636 * The qp_attr_mask may be used to limit the query to gathering only the
3637 * selected attributes.
3638 */
3639int ib_query_qp(struct ib_qp *qp,
3640                struct ib_qp_attr *qp_attr,
3641                int qp_attr_mask,
3642                struct ib_qp_init_attr *qp_init_attr);
3643
3644/**
3645 * ib_destroy_qp - Destroys the specified QP.
3646 * @qp: The QP to destroy.
3647 * @udata: Valid udata or NULL for kernel objects
3648 */
3649int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3650
3651/**
3652 * ib_destroy_qp - Destroys the specified kernel QP.
3653 * @qp: The QP to destroy.
3654 *
3655 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3656 */
3657static inline int ib_destroy_qp(struct ib_qp *qp)
3658{
3659        return ib_destroy_qp_user(qp, NULL);
3660}
3661
3662/**
3663 * ib_open_qp - Obtain a reference to an existing sharable QP.
3664 * @xrcd - XRC domain
3665 * @qp_open_attr: Attributes identifying the QP to open.
3666 *
3667 * Returns a reference to a sharable QP.
3668 */
3669struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3670                         struct ib_qp_open_attr *qp_open_attr);
3671
3672/**
3673 * ib_close_qp - Release an external reference to a QP.
3674 * @qp: The QP handle to release
3675 *
3676 * The opened QP handle is released by the caller.  The underlying
3677 * shared QP is not destroyed until all internal references are released.
3678 */
3679int ib_close_qp(struct ib_qp *qp);
3680
3681/**
3682 * ib_post_send - Posts a list of work requests to the send queue of
3683 *   the specified QP.
3684 * @qp: The QP to post the work request on.
3685 * @send_wr: A list of work requests to post on the send queue.
3686 * @bad_send_wr: On an immediate failure, this parameter will reference
3687 *   the work request that failed to be posted on the QP.
3688 *
3689 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3690 * error is returned, the QP state shall not be affected,
3691 * ib_post_send() will return an immediate error after queueing any
3692 * earlier work requests in the list.
3693 */
3694static inline int ib_post_send(struct ib_qp *qp,
3695                               const struct ib_send_wr *send_wr,
3696                               const struct ib_send_wr **bad_send_wr)
3697{
3698        const struct ib_send_wr *dummy;
3699
3700        return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3701}
3702
3703/**
3704 * ib_post_recv - Posts a list of work requests to the receive queue of
3705 *   the specified QP.
3706 * @qp: The QP to post the work request on.
3707 * @recv_wr: A list of work requests to post on the receive queue.
3708 * @bad_recv_wr: On an immediate failure, this parameter will reference
3709 *   the work request that failed to be posted on the QP.
3710 */
3711static inline int ib_post_recv(struct ib_qp *qp,
3712                               const struct ib_recv_wr *recv_wr,
3713                               const struct ib_recv_wr **bad_recv_wr)
3714{
3715        const struct ib_recv_wr *dummy;
3716
3717        return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3718}
3719
3720struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private,
3721                                 int nr_cqe, int comp_vector,
3722                                 enum ib_poll_context poll_ctx,
3723                                 const char *caller, struct ib_udata *udata);
3724
3725/**
3726 * ib_alloc_cq_user: Allocate kernel/user CQ
3727 * @dev: The IB device
3728 * @private: Private data attached to the CQE
3729 * @nr_cqe: Number of CQEs in the CQ
3730 * @comp_vector: Completion vector used for the IRQs
3731 * @poll_ctx: Context used for polling the CQ
3732 * @udata: Valid user data or NULL for kernel objects
3733 */
3734static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev,
3735                                             void *private, int nr_cqe,
3736                                             int comp_vector,
3737                                             enum ib_poll_context poll_ctx,
3738                                             struct ib_udata *udata)
3739{
3740        return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3741                                  KBUILD_MODNAME, udata);
3742}
3743
3744/**
3745 * ib_alloc_cq: Allocate kernel CQ
3746 * @dev: The IB device
3747 * @private: Private data attached to the CQE
3748 * @nr_cqe: Number of CQEs in the CQ
3749 * @comp_vector: Completion vector used for the IRQs
3750 * @poll_ctx: Context used for polling the CQ
3751 *
3752 * NOTE: for user cq use ib_alloc_cq_user with valid udata!
3753 */
3754static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3755                                        int nr_cqe, int comp_vector,
3756                                        enum ib_poll_context poll_ctx)
3757{
3758        return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3759                                NULL);
3760}
3761
3762struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3763                                int nr_cqe, enum ib_poll_context poll_ctx,
3764                                const char *caller);
3765
3766/**
3767 * ib_alloc_cq_any: Allocate kernel CQ
3768 * @dev: The IB device
3769 * @private: Private data attached to the CQE
3770 * @nr_cqe: Number of CQEs in the CQ
3771 * @poll_ctx: Context used for polling the CQ
3772 */
3773static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3774                                            void *private, int nr_cqe,
3775                                            enum ib_poll_context poll_ctx)
3776{
3777        return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3778                                 KBUILD_MODNAME);
3779}
3780
3781/**
3782 * ib_free_cq_user - Free kernel/user CQ
3783 * @cq: The CQ to free
3784 * @udata: Valid user data or NULL for kernel objects
3785 */
3786void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3787
3788/**
3789 * ib_free_cq - Free kernel CQ
3790 * @cq: The CQ to free
3791 *
3792 * NOTE: for user cq use ib_free_cq_user with valid udata!
3793 */
3794static inline void ib_free_cq(struct ib_cq *cq)
3795{
3796        ib_free_cq_user(cq, NULL);
3797}
3798
3799int ib_process_cq_direct(struct ib_cq *cq, int budget);
3800
3801/**
3802 * ib_create_cq - Creates a CQ on the specified device.
3803 * @device: The device on which to create the CQ.
3804 * @comp_handler: A user-specified callback that is invoked when a
3805 *   completion event occurs on the CQ.
3806 * @event_handler: A user-specified callback that is invoked when an
3807 *   asynchronous event not associated with a completion occurs on the CQ.
3808 * @cq_context: Context associated with the CQ returned to the user via
3809 *   the associated completion and event handlers.
3810 * @cq_attr: The attributes the CQ should be created upon.
3811 *
3812 * Users can examine the cq structure to determine the actual CQ size.
3813 */
3814struct ib_cq *__ib_create_cq(struct ib_device *device,
3815                             ib_comp_handler comp_handler,
3816                             void (*event_handler)(struct ib_event *, void *),
3817                             void *cq_context,
3818                             const struct ib_cq_init_attr *cq_attr,
3819                             const char *caller);
3820#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3821        __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3822
3823/**
3824 * ib_resize_cq - Modifies the capacity of the CQ.
3825 * @cq: The CQ to resize.
3826 * @cqe: The minimum size of the CQ.
3827 *
3828 * Users can examine the cq structure to determine the actual CQ size.
3829 */
3830int ib_resize_cq(struct ib_cq *cq, int cqe);
3831
3832/**
3833 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3834 * @cq: The CQ to modify.
3835 * @cq_count: number of CQEs that will trigger an event
3836 * @cq_period: max period of time in usec before triggering an event
3837 *
3838 */
3839int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3840
3841/**
3842 * ib_destroy_cq_user - Destroys the specified CQ.
3843 * @cq: The CQ to destroy.
3844 * @udata: Valid user data or NULL for kernel objects
3845 */
3846int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3847
3848/**
3849 * ib_destroy_cq - Destroys the specified kernel CQ.
3850 * @cq: The CQ to destroy.
3851 *
3852 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3853 */
3854static inline void ib_destroy_cq(struct ib_cq *cq)
3855{
3856        ib_destroy_cq_user(cq, NULL);
3857}
3858
3859/**
3860 * ib_poll_cq - poll a CQ for completion(s)
3861 * @cq:the CQ being polled
3862 * @num_entries:maximum number of completions to return
3863 * @wc:array of at least @num_entries &struct ib_wc where completions
3864 *   will be returned
3865 *
3866 * Poll a CQ for (possibly multiple) completions.  If the return value
3867 * is < 0, an error occurred.  If the return value is >= 0, it is the
3868 * number of completions returned.  If the return value is
3869 * non-negative and < num_entries, then the CQ was emptied.
3870 */
3871static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3872                             struct ib_wc *wc)
3873{
3874        return cq->device->ops.poll_cq(cq, num_entries, wc);
3875}
3876
3877/**
3878 * ib_req_notify_cq - Request completion notification on a CQ.
3879 * @cq: The CQ to generate an event for.
3880 * @flags:
3881 *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3882 *   to request an event on the next solicited event or next work
3883 *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3884 *   may also be |ed in to request a hint about missed events, as
3885 *   described below.
3886 *
3887 * Return Value:
3888 *    < 0 means an error occurred while requesting notification
3889 *   == 0 means notification was requested successfully, and if
3890 *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3891 *        were missed and it is safe to wait for another event.  In
3892 *        this case is it guaranteed that any work completions added
3893 *        to the CQ since the last CQ poll will trigger a completion
3894 *        notification event.
3895 *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3896 *        in.  It means that the consumer must poll the CQ again to
3897 *        make sure it is empty to avoid missing an event because of a
3898 *        race between requesting notification and an entry being
3899 *        added to the CQ.  This return value means it is possible
3900 *        (but not guaranteed) that a work completion has been added
3901 *        to the CQ since the last poll without triggering a
3902 *        completion notification event.
3903 */
3904static inline int ib_req_notify_cq(struct ib_cq *cq,
3905                                   enum ib_cq_notify_flags flags)
3906{
3907        return cq->device->ops.req_notify_cq(cq, flags);
3908}
3909
3910/**
3911 * ib_req_ncomp_notif - Request completion notification when there are
3912 *   at least the specified number of unreaped completions on the CQ.
3913 * @cq: The CQ to generate an event for.
3914 * @wc_cnt: The number of unreaped completions that should be on the
3915 *   CQ before an event is generated.
3916 */
3917static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3918{
3919        return cq->device->ops.req_ncomp_notif ?
3920                cq->device->ops.req_ncomp_notif(cq, wc_cnt) :
3921                -ENOSYS;
3922}
3923
3924/**
3925 * ib_dma_mapping_error - check a DMA addr for error
3926 * @dev: The device for which the dma_addr was created
3927 * @dma_addr: The DMA address to check
3928 */
3929static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3930{
3931        return dma_mapping_error(dev->dma_device, dma_addr);
3932}
3933
3934/**
3935 * ib_dma_map_single - Map a kernel virtual address to DMA address
3936 * @dev: The device for which the dma_addr is to be created
3937 * @cpu_addr: The kernel virtual address
3938 * @size: The size of the region in bytes
3939 * @direction: The direction of the DMA
3940 */
3941static inline u64 ib_dma_map_single(struct ib_device *dev,
3942                                    void *cpu_addr, size_t size,
3943                                    enum dma_data_direction direction)
3944{
3945        return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3946}
3947
3948/**
3949 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3950 * @dev: The device for which the DMA address was created
3951 * @addr: The DMA address
3952 * @size: The size of the region in bytes
3953 * @direction: The direction of the DMA
3954 */
3955static inline void ib_dma_unmap_single(struct ib_device *dev,
3956                                       u64 addr, size_t size,
3957                                       enum dma_data_direction direction)
3958{
3959        dma_unmap_single(dev->dma_device, addr, size, direction);
3960}
3961
3962/**
3963 * ib_dma_map_page - Map a physical page to DMA address
3964 * @dev: The device for which the dma_addr is to be created
3965 * @page: The page to be mapped
3966 * @offset: The offset within the page
3967 * @size: The size of the region in bytes
3968 * @direction: The direction of the DMA
3969 */
3970static inline u64 ib_dma_map_page(struct ib_device *dev,
3971                                  struct page *page,
3972                                  unsigned long offset,
3973                                  size_t size,
3974                                         enum dma_data_direction direction)
3975{
3976        return dma_map_page(dev->dma_device, page, offset, size, direction);
3977}
3978
3979/**
3980 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3981 * @dev: The device for which the DMA address was created
3982 * @addr: The DMA address
3983 * @size: The size of the region in bytes
3984 * @direction: The direction of the DMA
3985 */
3986static inline void ib_dma_unmap_page(struct ib_device *dev,
3987                                     u64 addr, size_t size,
3988                                     enum dma_data_direction direction)
3989{
3990        dma_unmap_page(dev->dma_device, addr, size, direction);
3991}
3992
3993/**
3994 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3995 * @dev: The device for which the DMA addresses are to be created
3996 * @sg: The array of scatter/gather entries
3997 * @nents: The number of scatter/gather entries
3998 * @direction: The direction of the DMA
3999 */
4000static inline int ib_dma_map_sg(struct ib_device *dev,
4001                                struct scatterlist *sg, int nents,
4002                                enum dma_data_direction direction)
4003{
4004        return dma_map_sg(dev->dma_device, sg, nents, direction);
4005}
4006
4007/**
4008 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4009 * @dev: The device for which the DMA addresses were created
4010 * @sg: The array of scatter/gather entries
4011 * @nents: The number of scatter/gather entries
4012 * @direction: The direction of the DMA
4013 */
4014static inline void ib_dma_unmap_sg(struct ib_device *dev,
4015                                   struct scatterlist *sg, int nents,
4016                                   enum dma_data_direction direction)
4017{
4018        dma_unmap_sg(dev->dma_device, sg, nents, direction);
4019}
4020
4021static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4022                                      struct scatterlist *sg, int nents,
4023                                      enum dma_data_direction direction,
4024                                      unsigned long dma_attrs)
4025{
4026        return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4027                                dma_attrs);
4028}
4029
4030static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4031                                         struct scatterlist *sg, int nents,
4032                                         enum dma_data_direction direction,
4033                                         unsigned long dma_attrs)
4034{
4035        dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
4036}
4037
4038/**
4039 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4040 * @dev: The device to query
4041 *
4042 * The returned value represents a size in bytes.
4043 */
4044static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4045{
4046        struct device_dma_parameters *p = dev->dma_device->dma_parms;
4047
4048        return p ? p->max_segment_size : UINT_MAX;
4049}
4050
4051/**
4052 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4053 * @dev: The device for which the DMA address was created
4054 * @addr: The DMA address
4055 * @size: The size of the region in bytes
4056 * @dir: The direction of the DMA
4057 */
4058static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4059                                              u64 addr,
4060                                              size_t size,
4061                                              enum dma_data_direction dir)
4062{
4063        dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4064}
4065
4066/**
4067 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4068 * @dev: The device for which the DMA address was created
4069 * @addr: The DMA address
4070 * @size: The size of the region in bytes
4071 * @dir: The direction of the DMA
4072 */
4073static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4074                                                 u64 addr,
4075                                                 size_t size,
4076                                                 enum dma_data_direction dir)
4077{
4078        dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4079}
4080
4081/**
4082 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
4083 * @dev: The device for which the DMA address is requested
4084 * @size: The size of the region to allocate in bytes
4085 * @dma_handle: A pointer for returning the DMA address of the region
4086 * @flag: memory allocator flags
4087 */
4088static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
4089                                           size_t size,
4090                                           dma_addr_t *dma_handle,
4091                                           gfp_t flag)
4092{
4093        return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
4094}
4095
4096/**
4097 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
4098 * @dev: The device for which the DMA addresses were allocated
4099 * @size: The size of the region
4100 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
4101 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
4102 */
4103static inline void ib_dma_free_coherent(struct ib_device *dev,
4104                                        size_t size, void *cpu_addr,
4105                                        dma_addr_t dma_handle)
4106{
4107        dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
4108}
4109
4110/**
4111 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4112 *   HCA translation table.
4113 * @mr: The memory region to deregister.
4114 * @udata: Valid user data or NULL for kernel object
4115 *
4116 * This function can fail, if the memory region has memory windows bound to it.
4117 */
4118int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4119
4120/**
4121 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4122 *   HCA translation table.
4123 * @mr: The memory region to deregister.
4124 *
4125 * This function can fail, if the memory region has memory windows bound to it.
4126 *
4127 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4128 */
4129static inline int ib_dereg_mr(struct ib_mr *mr)
4130{
4131        return ib_dereg_mr_user(mr, NULL);
4132}
4133
4134struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
4135                               u32 max_num_sg, struct ib_udata *udata);
4136
4137static inline struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
4138                                        enum ib_mr_type mr_type, u32 max_num_sg)
4139{
4140        return ib_alloc_mr_user(pd, mr_type, max_num_sg, NULL);
4141}
4142
4143struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4144                                    u32 max_num_data_sg,
4145                                    u32 max_num_meta_sg);
4146
4147/**
4148 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4149 *   R_Key and L_Key.
4150 * @mr - struct ib_mr pointer to be updated.
4151 * @newkey - new key to be used.
4152 */
4153static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4154{
4155        mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4156        mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4157}
4158
4159/**
4160 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4161 * for calculating a new rkey for type 2 memory windows.
4162 * @rkey - the rkey to increment.
4163 */
4164static inline u32 ib_inc_rkey(u32 rkey)
4165{
4166        const u32 mask = 0x000000ff;
4167        return ((rkey + 1) & mask) | (rkey & ~mask);
4168}
4169
4170/**
4171 * ib_alloc_fmr - Allocates a unmapped fast memory region.
4172 * @pd: The protection domain associated with the unmapped region.
4173 * @mr_access_flags: Specifies the memory access rights.
4174 * @fmr_attr: Attributes of the unmapped region.
4175 *
4176 * A fast memory region must be mapped before it can be used as part of
4177 * a work request.
4178 */
4179struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
4180                            int mr_access_flags,
4181                            struct ib_fmr_attr *fmr_attr);
4182
4183/**
4184 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
4185 * @fmr: The fast memory region to associate with the pages.
4186 * @page_list: An array of physical pages to map to the fast memory region.
4187 * @list_len: The number of pages in page_list.
4188 * @iova: The I/O virtual address to use with the mapped region.
4189 */
4190static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
4191                                  u64 *page_list, int list_len,
4192                                  u64 iova)
4193{
4194        return fmr->device->ops.map_phys_fmr(fmr, page_list, list_len, iova);
4195}
4196
4197/**
4198 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
4199 * @fmr_list: A linked list of fast memory regions to unmap.
4200 */
4201int ib_unmap_fmr(struct list_head *fmr_list);
4202
4203/**
4204 * ib_dealloc_fmr - Deallocates a fast memory region.
4205 * @fmr: The fast memory region to deallocate.
4206 */
4207int ib_dealloc_fmr(struct ib_fmr *fmr);
4208
4209/**
4210 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4211 * @qp: QP to attach to the multicast group.  The QP must be type
4212 *   IB_QPT_UD.
4213 * @gid: Multicast group GID.
4214 * @lid: Multicast group LID in host byte order.
4215 *
4216 * In order to send and receive multicast packets, subnet
4217 * administration must have created the multicast group and configured
4218 * the fabric appropriately.  The port associated with the specified
4219 * QP must also be a member of the multicast group.
4220 */
4221int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4222
4223/**
4224 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4225 * @qp: QP to detach from the multicast group.
4226 * @gid: Multicast group GID.
4227 * @lid: Multicast group LID in host byte order.
4228 */
4229int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4230
4231/**
4232 * ib_alloc_xrcd - Allocates an XRC domain.
4233 * @device: The device on which to allocate the XRC domain.
4234 * @caller: Module name for kernel consumers
4235 */
4236struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
4237#define ib_alloc_xrcd(device) \
4238        __ib_alloc_xrcd((device), KBUILD_MODNAME)
4239
4240/**
4241 * ib_dealloc_xrcd - Deallocates an XRC domain.
4242 * @xrcd: The XRC domain to deallocate.
4243 * @udata: Valid user data or NULL for kernel object
4244 */
4245int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata);
4246
4247static inline int ib_check_mr_access(int flags)
4248{
4249        /*
4250         * Local write permission is required if remote write or
4251         * remote atomic permission is also requested.
4252         */
4253        if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4254            !(flags & IB_ACCESS_LOCAL_WRITE))
4255                return -EINVAL;
4256
4257        return 0;
4258}
4259
4260static inline bool ib_access_writable(int access_flags)
4261{
4262        /*
4263         * We have writable memory backing the MR if any of the following
4264         * access flags are set.  "Local write" and "remote write" obviously
4265         * require write access.  "Remote atomic" can do things like fetch and
4266         * add, which will modify memory, and "MW bind" can change permissions
4267         * by binding a window.
4268         */
4269        return access_flags &
4270                (IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
4271                 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4272}
4273
4274/**
4275 * ib_check_mr_status: lightweight check of MR status.
4276 *     This routine may provide status checks on a selected
4277 *     ib_mr. first use is for signature status check.
4278 *
4279 * @mr: A memory region.
4280 * @check_mask: Bitmask of which checks to perform from
4281 *     ib_mr_status_check enumeration.
4282 * @mr_status: The container of relevant status checks.
4283 *     failed checks will be indicated in the status bitmask
4284 *     and the relevant info shall be in the error item.
4285 */
4286int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4287                       struct ib_mr_status *mr_status);
4288
4289/**
4290 * ib_device_try_get: Hold a registration lock
4291 * device: The device to lock
4292 *
4293 * A device under an active registration lock cannot become unregistered. It
4294 * is only possible to obtain a registration lock on a device that is fully
4295 * registered, otherwise this function returns false.
4296 *
4297 * The registration lock is only necessary for actions which require the
4298 * device to still be registered. Uses that only require the device pointer to
4299 * be valid should use get_device(&ibdev->dev) to hold the memory.
4300 *
4301 */
4302static inline bool ib_device_try_get(struct ib_device *dev)
4303{
4304        return refcount_inc_not_zero(&dev->refcount);
4305}
4306
4307void ib_device_put(struct ib_device *device);
4308struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4309                                          enum rdma_driver_id driver_id);
4310struct ib_device *ib_device_get_by_name(const char *name,
4311                                        enum rdma_driver_id driver_id);
4312struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
4313                                            u16 pkey, const union ib_gid *gid,
4314                                            const struct sockaddr *addr);
4315int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4316                         unsigned int port);
4317struct net_device *ib_device_netdev(struct ib_device *dev, u8 port);
4318
4319struct ib_wq *ib_create_wq(struct ib_pd *pd,
4320                           struct ib_wq_init_attr *init_attr);
4321int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata);
4322int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
4323                 u32 wq_attr_mask);
4324struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
4325                                                 struct ib_rwq_ind_table_init_attr*
4326                                                 wq_ind_table_init_attr);
4327int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
4328
4329int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4330                 unsigned int *sg_offset, unsigned int page_size);
4331int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4332                    int data_sg_nents, unsigned int *data_sg_offset,
4333                    struct scatterlist *meta_sg, int meta_sg_nents,
4334                    unsigned int *meta_sg_offset, unsigned int page_size);
4335
4336static inline int
4337ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4338                  unsigned int *sg_offset, unsigned int page_size)
4339{
4340        int n;
4341
4342        n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4343        mr->iova = 0;
4344
4345        return n;
4346}
4347
4348int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4349                unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4350
4351void ib_drain_rq(struct ib_qp *qp);
4352void ib_drain_sq(struct ib_qp *qp);
4353void ib_drain_qp(struct ib_qp *qp);
4354
4355int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
4356
4357static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4358{
4359        if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4360                return attr->roce.dmac;
4361        return NULL;
4362}
4363
4364static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4365{
4366        if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4367                attr->ib.dlid = (u16)dlid;
4368        else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4369                attr->opa.dlid = dlid;
4370}
4371
4372static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4373{
4374        if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4375                return attr->ib.dlid;
4376        else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4377                return attr->opa.dlid;
4378        return 0;
4379}
4380
4381static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4382{
4383        attr->sl = sl;
4384}
4385
4386static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4387{
4388        return attr->sl;
4389}
4390
4391static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4392                                         u8 src_path_bits)
4393{
4394        if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4395                attr->ib.src_path_bits = src_path_bits;
4396        else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4397                attr->opa.src_path_bits = src_path_bits;
4398}
4399
4400static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4401{
4402        if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4403                return attr->ib.src_path_bits;
4404        else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4405                return attr->opa.src_path_bits;
4406        return 0;
4407}
4408
4409static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4410                                        bool make_grd)
4411{
4412        if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4413                attr->opa.make_grd = make_grd;
4414}
4415
4416static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4417{
4418        if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4419                return attr->opa.make_grd;
4420        return false;
4421}
4422
4423static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
4424{
4425        attr->port_num = port_num;
4426}
4427
4428static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4429{
4430        return attr->port_num;
4431}
4432
4433static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4434                                           u8 static_rate)
4435{
4436        attr->static_rate = static_rate;
4437}
4438
4439static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4440{
4441        return attr->static_rate;
4442}
4443
4444static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4445                                        enum ib_ah_flags flag)
4446{
4447        attr->ah_flags = flag;
4448}
4449
4450static inline enum ib_ah_flags
4451                rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4452{
4453        return attr->ah_flags;
4454}
4455
4456static inline const struct ib_global_route
4457                *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4458{
4459        return &attr->grh;
4460}
4461
4462/*To retrieve and modify the grh */
4463static inline struct ib_global_route
4464                *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4465{
4466        return &attr->grh;
4467}
4468
4469static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4470{
4471        struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4472
4473        memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4474}
4475
4476static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4477                                             __be64 prefix)
4478{
4479        struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4480
4481        grh->dgid.global.subnet_prefix = prefix;
4482}
4483
4484static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4485                                            __be64 if_id)
4486{
4487        struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4488
4489        grh->dgid.global.interface_id = if_id;
4490}
4491
4492static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4493                                   union ib_gid *dgid, u32 flow_label,
4494                                   u8 sgid_index, u8 hop_limit,
4495                                   u8 traffic_class)
4496{
4497        struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4498
4499        attr->ah_flags = IB_AH_GRH;
4500        if (dgid)
4501                grh->dgid = *dgid;
4502        grh->flow_label = flow_label;
4503        grh->sgid_index = sgid_index;
4504        grh->hop_limit = hop_limit;
4505        grh->traffic_class = traffic_class;
4506        grh->sgid_attr = NULL;
4507}
4508
4509void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4510void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4511                             u32 flow_label, u8 hop_limit, u8 traffic_class,
4512                             const struct ib_gid_attr *sgid_attr);
4513void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4514                       const struct rdma_ah_attr *src);
4515void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4516                          const struct rdma_ah_attr *new);
4517void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4518
4519/**
4520 * rdma_ah_find_type - Return address handle type.
4521 *
4522 * @dev: Device to be checked
4523 * @port_num: Port number
4524 */
4525static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4526                                                       u8 port_num)
4527{
4528        if (rdma_protocol_roce(dev, port_num))
4529                return RDMA_AH_ATTR_TYPE_ROCE;
4530        if (rdma_protocol_ib(dev, port_num)) {
4531                if (rdma_cap_opa_ah(dev, port_num))
4532                        return RDMA_AH_ATTR_TYPE_OPA;
4533                return RDMA_AH_ATTR_TYPE_IB;
4534        }
4535
4536        return RDMA_AH_ATTR_TYPE_UNDEFINED;
4537}
4538
4539/**
4540 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4541 *     In the current implementation the only way to get
4542 *     get the 32bit lid is from other sources for OPA.
4543 *     For IB, lids will always be 16bits so cast the
4544 *     value accordingly.
4545 *
4546 * @lid: A 32bit LID
4547 */
4548static inline u16 ib_lid_cpu16(u32 lid)
4549{
4550        WARN_ON_ONCE(lid & 0xFFFF0000);
4551        return (u16)lid;
4552}
4553
4554/**
4555 * ib_lid_be16 - Return lid in 16bit BE encoding.
4556 *
4557 * @lid: A 32bit LID
4558 */
4559static inline __be16 ib_lid_be16(u32 lid)
4560{
4561        WARN_ON_ONCE(lid & 0xFFFF0000);
4562        return cpu_to_be16((u16)lid);
4563}
4564
4565/**
4566 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4567 *   vector
4568 * @device:         the rdma device
4569 * @comp_vector:    index of completion vector
4570 *
4571 * Returns NULL on failure, otherwise a corresponding cpu map of the
4572 * completion vector (returns all-cpus map if the device driver doesn't
4573 * implement get_vector_affinity).
4574 */
4575static inline const struct cpumask *
4576ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4577{
4578        if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4579            !device->ops.get_vector_affinity)
4580                return NULL;
4581
4582        return device->ops.get_vector_affinity(device, comp_vector);
4583
4584}
4585
4586/**
4587 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4588 * and add their gids, as needed, to the relevant RoCE devices.
4589 *
4590 * @device:         the rdma device
4591 */
4592void rdma_roce_rescan_device(struct ib_device *ibdev);
4593
4594struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4595
4596int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4597
4598struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
4599                                     enum rdma_netdev_t type, const char *name,
4600                                     unsigned char name_assign_type,
4601                                     void (*setup)(struct net_device *));
4602
4603int rdma_init_netdev(struct ib_device *device, u8 port_num,
4604                     enum rdma_netdev_t type, const char *name,
4605                     unsigned char name_assign_type,
4606                     void (*setup)(struct net_device *),
4607                     struct net_device *netdev);
4608
4609/**
4610 * rdma_set_device_sysfs_group - Set device attributes group to have
4611 *                               driver specific sysfs entries at
4612 *                               for infiniband class.
4613 *
4614 * @device:     device pointer for which attributes to be created
4615 * @group:      Pointer to group which should be added when device
4616 *              is registered with sysfs.
4617 * rdma_set_device_sysfs_group() allows existing drivers to expose one
4618 * group per device to have sysfs attributes.
4619 *
4620 * NOTE: New drivers should not make use of this API; instead new device
4621 * parameter should be exposed via netlink command. This API and mechanism
4622 * exist only for existing drivers.
4623 */
4624static inline void
4625rdma_set_device_sysfs_group(struct ib_device *dev,
4626                            const struct attribute_group *group)
4627{
4628        dev->groups[1] = group;
4629}
4630
4631/**
4632 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4633 *
4634 * @device:     device pointer for which ib_device pointer to retrieve
4635 *
4636 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4637 *
4638 */
4639static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4640{
4641        struct ib_core_device *coredev =
4642                container_of(device, struct ib_core_device, dev);
4643
4644        return coredev->owner;
4645}
4646
4647/**
4648 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4649 *                             ib_device holder structure from device pointer.
4650 *
4651 * NOTE: New drivers should not make use of this API; This API is only for
4652 * existing drivers who have exposed sysfs entries using
4653 * rdma_set_device_sysfs_group().
4654 */
4655#define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member)           \
4656        container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4657
4658bool rdma_dev_access_netns(const struct ib_device *device,
4659                           const struct net *net);
4660#endif /* IB_VERBS_H */
4661