linux/kernel/kexec_core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kexec.c - kexec system call core code.
   4 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
   5 */
   6
   7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   8
   9#include <linux/capability.h>
  10#include <linux/mm.h>
  11#include <linux/file.h>
  12#include <linux/slab.h>
  13#include <linux/fs.h>
  14#include <linux/kexec.h>
  15#include <linux/mutex.h>
  16#include <linux/list.h>
  17#include <linux/highmem.h>
  18#include <linux/syscalls.h>
  19#include <linux/reboot.h>
  20#include <linux/ioport.h>
  21#include <linux/hardirq.h>
  22#include <linux/elf.h>
  23#include <linux/elfcore.h>
  24#include <linux/utsname.h>
  25#include <linux/numa.h>
  26#include <linux/suspend.h>
  27#include <linux/device.h>
  28#include <linux/freezer.h>
  29#include <linux/pm.h>
  30#include <linux/cpu.h>
  31#include <linux/uaccess.h>
  32#include <linux/io.h>
  33#include <linux/console.h>
  34#include <linux/vmalloc.h>
  35#include <linux/swap.h>
  36#include <linux/syscore_ops.h>
  37#include <linux/compiler.h>
  38#include <linux/hugetlb.h>
  39#include <linux/frame.h>
  40
  41#include <asm/page.h>
  42#include <asm/sections.h>
  43
  44#include <crypto/hash.h>
  45#include <crypto/sha.h>
  46#include "kexec_internal.h"
  47
  48DEFINE_MUTEX(kexec_mutex);
  49
  50/* Per cpu memory for storing cpu states in case of system crash. */
  51note_buf_t __percpu *crash_notes;
  52
  53/* Flag to indicate we are going to kexec a new kernel */
  54bool kexec_in_progress = false;
  55
  56
  57/* Location of the reserved area for the crash kernel */
  58struct resource crashk_res = {
  59        .name  = "Crash kernel",
  60        .start = 0,
  61        .end   = 0,
  62        .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
  63        .desc  = IORES_DESC_CRASH_KERNEL
  64};
  65struct resource crashk_low_res = {
  66        .name  = "Crash kernel",
  67        .start = 0,
  68        .end   = 0,
  69        .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
  70        .desc  = IORES_DESC_CRASH_KERNEL
  71};
  72
  73int kexec_should_crash(struct task_struct *p)
  74{
  75        /*
  76         * If crash_kexec_post_notifiers is enabled, don't run
  77         * crash_kexec() here yet, which must be run after panic
  78         * notifiers in panic().
  79         */
  80        if (crash_kexec_post_notifiers)
  81                return 0;
  82        /*
  83         * There are 4 panic() calls in do_exit() path, each of which
  84         * corresponds to each of these 4 conditions.
  85         */
  86        if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
  87                return 1;
  88        return 0;
  89}
  90
  91int kexec_crash_loaded(void)
  92{
  93        return !!kexec_crash_image;
  94}
  95EXPORT_SYMBOL_GPL(kexec_crash_loaded);
  96
  97/*
  98 * When kexec transitions to the new kernel there is a one-to-one
  99 * mapping between physical and virtual addresses.  On processors
 100 * where you can disable the MMU this is trivial, and easy.  For
 101 * others it is still a simple predictable page table to setup.
 102 *
 103 * In that environment kexec copies the new kernel to its final
 104 * resting place.  This means I can only support memory whose
 105 * physical address can fit in an unsigned long.  In particular
 106 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
 107 * If the assembly stub has more restrictive requirements
 108 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
 109 * defined more restrictively in <asm/kexec.h>.
 110 *
 111 * The code for the transition from the current kernel to the
 112 * the new kernel is placed in the control_code_buffer, whose size
 113 * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
 114 * page of memory is necessary, but some architectures require more.
 115 * Because this memory must be identity mapped in the transition from
 116 * virtual to physical addresses it must live in the range
 117 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
 118 * modifiable.
 119 *
 120 * The assembly stub in the control code buffer is passed a linked list
 121 * of descriptor pages detailing the source pages of the new kernel,
 122 * and the destination addresses of those source pages.  As this data
 123 * structure is not used in the context of the current OS, it must
 124 * be self-contained.
 125 *
 126 * The code has been made to work with highmem pages and will use a
 127 * destination page in its final resting place (if it happens
 128 * to allocate it).  The end product of this is that most of the
 129 * physical address space, and most of RAM can be used.
 130 *
 131 * Future directions include:
 132 *  - allocating a page table with the control code buffer identity
 133 *    mapped, to simplify machine_kexec and make kexec_on_panic more
 134 *    reliable.
 135 */
 136
 137/*
 138 * KIMAGE_NO_DEST is an impossible destination address..., for
 139 * allocating pages whose destination address we do not care about.
 140 */
 141#define KIMAGE_NO_DEST (-1UL)
 142#define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
 143
 144static struct page *kimage_alloc_page(struct kimage *image,
 145                                       gfp_t gfp_mask,
 146                                       unsigned long dest);
 147
 148int sanity_check_segment_list(struct kimage *image)
 149{
 150        int i;
 151        unsigned long nr_segments = image->nr_segments;
 152        unsigned long total_pages = 0;
 153        unsigned long nr_pages = totalram_pages();
 154
 155        /*
 156         * Verify we have good destination addresses.  The caller is
 157         * responsible for making certain we don't attempt to load
 158         * the new image into invalid or reserved areas of RAM.  This
 159         * just verifies it is an address we can use.
 160         *
 161         * Since the kernel does everything in page size chunks ensure
 162         * the destination addresses are page aligned.  Too many
 163         * special cases crop of when we don't do this.  The most
 164         * insidious is getting overlapping destination addresses
 165         * simply because addresses are changed to page size
 166         * granularity.
 167         */
 168        for (i = 0; i < nr_segments; i++) {
 169                unsigned long mstart, mend;
 170
 171                mstart = image->segment[i].mem;
 172                mend   = mstart + image->segment[i].memsz;
 173                if (mstart > mend)
 174                        return -EADDRNOTAVAIL;
 175                if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
 176                        return -EADDRNOTAVAIL;
 177                if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
 178                        return -EADDRNOTAVAIL;
 179        }
 180
 181        /* Verify our destination addresses do not overlap.
 182         * If we alloed overlapping destination addresses
 183         * through very weird things can happen with no
 184         * easy explanation as one segment stops on another.
 185         */
 186        for (i = 0; i < nr_segments; i++) {
 187                unsigned long mstart, mend;
 188                unsigned long j;
 189
 190                mstart = image->segment[i].mem;
 191                mend   = mstart + image->segment[i].memsz;
 192                for (j = 0; j < i; j++) {
 193                        unsigned long pstart, pend;
 194
 195                        pstart = image->segment[j].mem;
 196                        pend   = pstart + image->segment[j].memsz;
 197                        /* Do the segments overlap ? */
 198                        if ((mend > pstart) && (mstart < pend))
 199                                return -EINVAL;
 200                }
 201        }
 202
 203        /* Ensure our buffer sizes are strictly less than
 204         * our memory sizes.  This should always be the case,
 205         * and it is easier to check up front than to be surprised
 206         * later on.
 207         */
 208        for (i = 0; i < nr_segments; i++) {
 209                if (image->segment[i].bufsz > image->segment[i].memsz)
 210                        return -EINVAL;
 211        }
 212
 213        /*
 214         * Verify that no more than half of memory will be consumed. If the
 215         * request from userspace is too large, a large amount of time will be
 216         * wasted allocating pages, which can cause a soft lockup.
 217         */
 218        for (i = 0; i < nr_segments; i++) {
 219                if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
 220                        return -EINVAL;
 221
 222                total_pages += PAGE_COUNT(image->segment[i].memsz);
 223        }
 224
 225        if (total_pages > nr_pages / 2)
 226                return -EINVAL;
 227
 228        /*
 229         * Verify we have good destination addresses.  Normally
 230         * the caller is responsible for making certain we don't
 231         * attempt to load the new image into invalid or reserved
 232         * areas of RAM.  But crash kernels are preloaded into a
 233         * reserved area of ram.  We must ensure the addresses
 234         * are in the reserved area otherwise preloading the
 235         * kernel could corrupt things.
 236         */
 237
 238        if (image->type == KEXEC_TYPE_CRASH) {
 239                for (i = 0; i < nr_segments; i++) {
 240                        unsigned long mstart, mend;
 241
 242                        mstart = image->segment[i].mem;
 243                        mend = mstart + image->segment[i].memsz - 1;
 244                        /* Ensure we are within the crash kernel limits */
 245                        if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
 246                            (mend > phys_to_boot_phys(crashk_res.end)))
 247                                return -EADDRNOTAVAIL;
 248                }
 249        }
 250
 251        return 0;
 252}
 253
 254struct kimage *do_kimage_alloc_init(void)
 255{
 256        struct kimage *image;
 257
 258        /* Allocate a controlling structure */
 259        image = kzalloc(sizeof(*image), GFP_KERNEL);
 260        if (!image)
 261                return NULL;
 262
 263        image->head = 0;
 264        image->entry = &image->head;
 265        image->last_entry = &image->head;
 266        image->control_page = ~0; /* By default this does not apply */
 267        image->type = KEXEC_TYPE_DEFAULT;
 268
 269        /* Initialize the list of control pages */
 270        INIT_LIST_HEAD(&image->control_pages);
 271
 272        /* Initialize the list of destination pages */
 273        INIT_LIST_HEAD(&image->dest_pages);
 274
 275        /* Initialize the list of unusable pages */
 276        INIT_LIST_HEAD(&image->unusable_pages);
 277
 278        return image;
 279}
 280
 281int kimage_is_destination_range(struct kimage *image,
 282                                        unsigned long start,
 283                                        unsigned long end)
 284{
 285        unsigned long i;
 286
 287        for (i = 0; i < image->nr_segments; i++) {
 288                unsigned long mstart, mend;
 289
 290                mstart = image->segment[i].mem;
 291                mend = mstart + image->segment[i].memsz;
 292                if ((end > mstart) && (start < mend))
 293                        return 1;
 294        }
 295
 296        return 0;
 297}
 298
 299static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
 300{
 301        struct page *pages;
 302
 303        if (fatal_signal_pending(current))
 304                return NULL;
 305        pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
 306        if (pages) {
 307                unsigned int count, i;
 308
 309                pages->mapping = NULL;
 310                set_page_private(pages, order);
 311                count = 1 << order;
 312                for (i = 0; i < count; i++)
 313                        SetPageReserved(pages + i);
 314
 315                arch_kexec_post_alloc_pages(page_address(pages), count,
 316                                            gfp_mask);
 317
 318                if (gfp_mask & __GFP_ZERO)
 319                        for (i = 0; i < count; i++)
 320                                clear_highpage(pages + i);
 321        }
 322
 323        return pages;
 324}
 325
 326static void kimage_free_pages(struct page *page)
 327{
 328        unsigned int order, count, i;
 329
 330        order = page_private(page);
 331        count = 1 << order;
 332
 333        arch_kexec_pre_free_pages(page_address(page), count);
 334
 335        for (i = 0; i < count; i++)
 336                ClearPageReserved(page + i);
 337        __free_pages(page, order);
 338}
 339
 340void kimage_free_page_list(struct list_head *list)
 341{
 342        struct page *page, *next;
 343
 344        list_for_each_entry_safe(page, next, list, lru) {
 345                list_del(&page->lru);
 346                kimage_free_pages(page);
 347        }
 348}
 349
 350static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
 351                                                        unsigned int order)
 352{
 353        /* Control pages are special, they are the intermediaries
 354         * that are needed while we copy the rest of the pages
 355         * to their final resting place.  As such they must
 356         * not conflict with either the destination addresses
 357         * or memory the kernel is already using.
 358         *
 359         * The only case where we really need more than one of
 360         * these are for architectures where we cannot disable
 361         * the MMU and must instead generate an identity mapped
 362         * page table for all of the memory.
 363         *
 364         * At worst this runs in O(N) of the image size.
 365         */
 366        struct list_head extra_pages;
 367        struct page *pages;
 368        unsigned int count;
 369
 370        count = 1 << order;
 371        INIT_LIST_HEAD(&extra_pages);
 372
 373        /* Loop while I can allocate a page and the page allocated
 374         * is a destination page.
 375         */
 376        do {
 377                unsigned long pfn, epfn, addr, eaddr;
 378
 379                pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
 380                if (!pages)
 381                        break;
 382                pfn   = page_to_boot_pfn(pages);
 383                epfn  = pfn + count;
 384                addr  = pfn << PAGE_SHIFT;
 385                eaddr = epfn << PAGE_SHIFT;
 386                if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
 387                              kimage_is_destination_range(image, addr, eaddr)) {
 388                        list_add(&pages->lru, &extra_pages);
 389                        pages = NULL;
 390                }
 391        } while (!pages);
 392
 393        if (pages) {
 394                /* Remember the allocated page... */
 395                list_add(&pages->lru, &image->control_pages);
 396
 397                /* Because the page is already in it's destination
 398                 * location we will never allocate another page at
 399                 * that address.  Therefore kimage_alloc_pages
 400                 * will not return it (again) and we don't need
 401                 * to give it an entry in image->segment[].
 402                 */
 403        }
 404        /* Deal with the destination pages I have inadvertently allocated.
 405         *
 406         * Ideally I would convert multi-page allocations into single
 407         * page allocations, and add everything to image->dest_pages.
 408         *
 409         * For now it is simpler to just free the pages.
 410         */
 411        kimage_free_page_list(&extra_pages);
 412
 413        return pages;
 414}
 415
 416static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
 417                                                      unsigned int order)
 418{
 419        /* Control pages are special, they are the intermediaries
 420         * that are needed while we copy the rest of the pages
 421         * to their final resting place.  As such they must
 422         * not conflict with either the destination addresses
 423         * or memory the kernel is already using.
 424         *
 425         * Control pages are also the only pags we must allocate
 426         * when loading a crash kernel.  All of the other pages
 427         * are specified by the segments and we just memcpy
 428         * into them directly.
 429         *
 430         * The only case where we really need more than one of
 431         * these are for architectures where we cannot disable
 432         * the MMU and must instead generate an identity mapped
 433         * page table for all of the memory.
 434         *
 435         * Given the low demand this implements a very simple
 436         * allocator that finds the first hole of the appropriate
 437         * size in the reserved memory region, and allocates all
 438         * of the memory up to and including the hole.
 439         */
 440        unsigned long hole_start, hole_end, size;
 441        struct page *pages;
 442
 443        pages = NULL;
 444        size = (1 << order) << PAGE_SHIFT;
 445        hole_start = (image->control_page + (size - 1)) & ~(size - 1);
 446        hole_end   = hole_start + size - 1;
 447        while (hole_end <= crashk_res.end) {
 448                unsigned long i;
 449
 450                cond_resched();
 451
 452                if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
 453                        break;
 454                /* See if I overlap any of the segments */
 455                for (i = 0; i < image->nr_segments; i++) {
 456                        unsigned long mstart, mend;
 457
 458                        mstart = image->segment[i].mem;
 459                        mend   = mstart + image->segment[i].memsz - 1;
 460                        if ((hole_end >= mstart) && (hole_start <= mend)) {
 461                                /* Advance the hole to the end of the segment */
 462                                hole_start = (mend + (size - 1)) & ~(size - 1);
 463                                hole_end   = hole_start + size - 1;
 464                                break;
 465                        }
 466                }
 467                /* If I don't overlap any segments I have found my hole! */
 468                if (i == image->nr_segments) {
 469                        pages = pfn_to_page(hole_start >> PAGE_SHIFT);
 470                        image->control_page = hole_end;
 471                        break;
 472                }
 473        }
 474
 475        /* Ensure that these pages are decrypted if SME is enabled. */
 476        if (pages)
 477                arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
 478
 479        return pages;
 480}
 481
 482
 483struct page *kimage_alloc_control_pages(struct kimage *image,
 484                                         unsigned int order)
 485{
 486        struct page *pages = NULL;
 487
 488        switch (image->type) {
 489        case KEXEC_TYPE_DEFAULT:
 490                pages = kimage_alloc_normal_control_pages(image, order);
 491                break;
 492        case KEXEC_TYPE_CRASH:
 493                pages = kimage_alloc_crash_control_pages(image, order);
 494                break;
 495        }
 496
 497        return pages;
 498}
 499
 500int kimage_crash_copy_vmcoreinfo(struct kimage *image)
 501{
 502        struct page *vmcoreinfo_page;
 503        void *safecopy;
 504
 505        if (image->type != KEXEC_TYPE_CRASH)
 506                return 0;
 507
 508        /*
 509         * For kdump, allocate one vmcoreinfo safe copy from the
 510         * crash memory. as we have arch_kexec_protect_crashkres()
 511         * after kexec syscall, we naturally protect it from write
 512         * (even read) access under kernel direct mapping. But on
 513         * the other hand, we still need to operate it when crash
 514         * happens to generate vmcoreinfo note, hereby we rely on
 515         * vmap for this purpose.
 516         */
 517        vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
 518        if (!vmcoreinfo_page) {
 519                pr_warn("Could not allocate vmcoreinfo buffer\n");
 520                return -ENOMEM;
 521        }
 522        safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
 523        if (!safecopy) {
 524                pr_warn("Could not vmap vmcoreinfo buffer\n");
 525                return -ENOMEM;
 526        }
 527
 528        image->vmcoreinfo_data_copy = safecopy;
 529        crash_update_vmcoreinfo_safecopy(safecopy);
 530
 531        return 0;
 532}
 533
 534static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
 535{
 536        if (*image->entry != 0)
 537                image->entry++;
 538
 539        if (image->entry == image->last_entry) {
 540                kimage_entry_t *ind_page;
 541                struct page *page;
 542
 543                page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
 544                if (!page)
 545                        return -ENOMEM;
 546
 547                ind_page = page_address(page);
 548                *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
 549                image->entry = ind_page;
 550                image->last_entry = ind_page +
 551                                      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
 552        }
 553        *image->entry = entry;
 554        image->entry++;
 555        *image->entry = 0;
 556
 557        return 0;
 558}
 559
 560static int kimage_set_destination(struct kimage *image,
 561                                   unsigned long destination)
 562{
 563        int result;
 564
 565        destination &= PAGE_MASK;
 566        result = kimage_add_entry(image, destination | IND_DESTINATION);
 567
 568        return result;
 569}
 570
 571
 572static int kimage_add_page(struct kimage *image, unsigned long page)
 573{
 574        int result;
 575
 576        page &= PAGE_MASK;
 577        result = kimage_add_entry(image, page | IND_SOURCE);
 578
 579        return result;
 580}
 581
 582
 583static void kimage_free_extra_pages(struct kimage *image)
 584{
 585        /* Walk through and free any extra destination pages I may have */
 586        kimage_free_page_list(&image->dest_pages);
 587
 588        /* Walk through and free any unusable pages I have cached */
 589        kimage_free_page_list(&image->unusable_pages);
 590
 591}
 592void kimage_terminate(struct kimage *image)
 593{
 594        if (*image->entry != 0)
 595                image->entry++;
 596
 597        *image->entry = IND_DONE;
 598}
 599
 600#define for_each_kimage_entry(image, ptr, entry) \
 601        for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
 602                ptr = (entry & IND_INDIRECTION) ? \
 603                        boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
 604
 605static void kimage_free_entry(kimage_entry_t entry)
 606{
 607        struct page *page;
 608
 609        page = boot_pfn_to_page(entry >> PAGE_SHIFT);
 610        kimage_free_pages(page);
 611}
 612
 613void kimage_free(struct kimage *image)
 614{
 615        kimage_entry_t *ptr, entry;
 616        kimage_entry_t ind = 0;
 617
 618        if (!image)
 619                return;
 620
 621        if (image->vmcoreinfo_data_copy) {
 622                crash_update_vmcoreinfo_safecopy(NULL);
 623                vunmap(image->vmcoreinfo_data_copy);
 624        }
 625
 626        kimage_free_extra_pages(image);
 627        for_each_kimage_entry(image, ptr, entry) {
 628                if (entry & IND_INDIRECTION) {
 629                        /* Free the previous indirection page */
 630                        if (ind & IND_INDIRECTION)
 631                                kimage_free_entry(ind);
 632                        /* Save this indirection page until we are
 633                         * done with it.
 634                         */
 635                        ind = entry;
 636                } else if (entry & IND_SOURCE)
 637                        kimage_free_entry(entry);
 638        }
 639        /* Free the final indirection page */
 640        if (ind & IND_INDIRECTION)
 641                kimage_free_entry(ind);
 642
 643        /* Handle any machine specific cleanup */
 644        machine_kexec_cleanup(image);
 645
 646        /* Free the kexec control pages... */
 647        kimage_free_page_list(&image->control_pages);
 648
 649        /*
 650         * Free up any temporary buffers allocated. This might hit if
 651         * error occurred much later after buffer allocation.
 652         */
 653        if (image->file_mode)
 654                kimage_file_post_load_cleanup(image);
 655
 656        kfree(image);
 657}
 658
 659static kimage_entry_t *kimage_dst_used(struct kimage *image,
 660                                        unsigned long page)
 661{
 662        kimage_entry_t *ptr, entry;
 663        unsigned long destination = 0;
 664
 665        for_each_kimage_entry(image, ptr, entry) {
 666                if (entry & IND_DESTINATION)
 667                        destination = entry & PAGE_MASK;
 668                else if (entry & IND_SOURCE) {
 669                        if (page == destination)
 670                                return ptr;
 671                        destination += PAGE_SIZE;
 672                }
 673        }
 674
 675        return NULL;
 676}
 677
 678static struct page *kimage_alloc_page(struct kimage *image,
 679                                        gfp_t gfp_mask,
 680                                        unsigned long destination)
 681{
 682        /*
 683         * Here we implement safeguards to ensure that a source page
 684         * is not copied to its destination page before the data on
 685         * the destination page is no longer useful.
 686         *
 687         * To do this we maintain the invariant that a source page is
 688         * either its own destination page, or it is not a
 689         * destination page at all.
 690         *
 691         * That is slightly stronger than required, but the proof
 692         * that no problems will not occur is trivial, and the
 693         * implementation is simply to verify.
 694         *
 695         * When allocating all pages normally this algorithm will run
 696         * in O(N) time, but in the worst case it will run in O(N^2)
 697         * time.   If the runtime is a problem the data structures can
 698         * be fixed.
 699         */
 700        struct page *page;
 701        unsigned long addr;
 702
 703        /*
 704         * Walk through the list of destination pages, and see if I
 705         * have a match.
 706         */
 707        list_for_each_entry(page, &image->dest_pages, lru) {
 708                addr = page_to_boot_pfn(page) << PAGE_SHIFT;
 709                if (addr == destination) {
 710                        list_del(&page->lru);
 711                        return page;
 712                }
 713        }
 714        page = NULL;
 715        while (1) {
 716                kimage_entry_t *old;
 717
 718                /* Allocate a page, if we run out of memory give up */
 719                page = kimage_alloc_pages(gfp_mask, 0);
 720                if (!page)
 721                        return NULL;
 722                /* If the page cannot be used file it away */
 723                if (page_to_boot_pfn(page) >
 724                                (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
 725                        list_add(&page->lru, &image->unusable_pages);
 726                        continue;
 727                }
 728                addr = page_to_boot_pfn(page) << PAGE_SHIFT;
 729
 730                /* If it is the destination page we want use it */
 731                if (addr == destination)
 732                        break;
 733
 734                /* If the page is not a destination page use it */
 735                if (!kimage_is_destination_range(image, addr,
 736                                                  addr + PAGE_SIZE))
 737                        break;
 738
 739                /*
 740                 * I know that the page is someones destination page.
 741                 * See if there is already a source page for this
 742                 * destination page.  And if so swap the source pages.
 743                 */
 744                old = kimage_dst_used(image, addr);
 745                if (old) {
 746                        /* If so move it */
 747                        unsigned long old_addr;
 748                        struct page *old_page;
 749
 750                        old_addr = *old & PAGE_MASK;
 751                        old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
 752                        copy_highpage(page, old_page);
 753                        *old = addr | (*old & ~PAGE_MASK);
 754
 755                        /* The old page I have found cannot be a
 756                         * destination page, so return it if it's
 757                         * gfp_flags honor the ones passed in.
 758                         */
 759                        if (!(gfp_mask & __GFP_HIGHMEM) &&
 760                            PageHighMem(old_page)) {
 761                                kimage_free_pages(old_page);
 762                                continue;
 763                        }
 764                        addr = old_addr;
 765                        page = old_page;
 766                        break;
 767                }
 768                /* Place the page on the destination list, to be used later */
 769                list_add(&page->lru, &image->dest_pages);
 770        }
 771
 772        return page;
 773}
 774
 775static int kimage_load_normal_segment(struct kimage *image,
 776                                         struct kexec_segment *segment)
 777{
 778        unsigned long maddr;
 779        size_t ubytes, mbytes;
 780        int result;
 781        unsigned char __user *buf = NULL;
 782        unsigned char *kbuf = NULL;
 783
 784        result = 0;
 785        if (image->file_mode)
 786                kbuf = segment->kbuf;
 787        else
 788                buf = segment->buf;
 789        ubytes = segment->bufsz;
 790        mbytes = segment->memsz;
 791        maddr = segment->mem;
 792
 793        result = kimage_set_destination(image, maddr);
 794        if (result < 0)
 795                goto out;
 796
 797        while (mbytes) {
 798                struct page *page;
 799                char *ptr;
 800                size_t uchunk, mchunk;
 801
 802                page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
 803                if (!page) {
 804                        result  = -ENOMEM;
 805                        goto out;
 806                }
 807                result = kimage_add_page(image, page_to_boot_pfn(page)
 808                                                                << PAGE_SHIFT);
 809                if (result < 0)
 810                        goto out;
 811
 812                ptr = kmap(page);
 813                /* Start with a clear page */
 814                clear_page(ptr);
 815                ptr += maddr & ~PAGE_MASK;
 816                mchunk = min_t(size_t, mbytes,
 817                                PAGE_SIZE - (maddr & ~PAGE_MASK));
 818                uchunk = min(ubytes, mchunk);
 819
 820                /* For file based kexec, source pages are in kernel memory */
 821                if (image->file_mode)
 822                        memcpy(ptr, kbuf, uchunk);
 823                else
 824                        result = copy_from_user(ptr, buf, uchunk);
 825                kunmap(page);
 826                if (result) {
 827                        result = -EFAULT;
 828                        goto out;
 829                }
 830                ubytes -= uchunk;
 831                maddr  += mchunk;
 832                if (image->file_mode)
 833                        kbuf += mchunk;
 834                else
 835                        buf += mchunk;
 836                mbytes -= mchunk;
 837
 838                cond_resched();
 839        }
 840out:
 841        return result;
 842}
 843
 844static int kimage_load_crash_segment(struct kimage *image,
 845                                        struct kexec_segment *segment)
 846{
 847        /* For crash dumps kernels we simply copy the data from
 848         * user space to it's destination.
 849         * We do things a page at a time for the sake of kmap.
 850         */
 851        unsigned long maddr;
 852        size_t ubytes, mbytes;
 853        int result;
 854        unsigned char __user *buf = NULL;
 855        unsigned char *kbuf = NULL;
 856
 857        result = 0;
 858        if (image->file_mode)
 859                kbuf = segment->kbuf;
 860        else
 861                buf = segment->buf;
 862        ubytes = segment->bufsz;
 863        mbytes = segment->memsz;
 864        maddr = segment->mem;
 865        while (mbytes) {
 866                struct page *page;
 867                char *ptr;
 868                size_t uchunk, mchunk;
 869
 870                page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
 871                if (!page) {
 872                        result  = -ENOMEM;
 873                        goto out;
 874                }
 875                arch_kexec_post_alloc_pages(page_address(page), 1, 0);
 876                ptr = kmap(page);
 877                ptr += maddr & ~PAGE_MASK;
 878                mchunk = min_t(size_t, mbytes,
 879                                PAGE_SIZE - (maddr & ~PAGE_MASK));
 880                uchunk = min(ubytes, mchunk);
 881                if (mchunk > uchunk) {
 882                        /* Zero the trailing part of the page */
 883                        memset(ptr + uchunk, 0, mchunk - uchunk);
 884                }
 885
 886                /* For file based kexec, source pages are in kernel memory */
 887                if (image->file_mode)
 888                        memcpy(ptr, kbuf, uchunk);
 889                else
 890                        result = copy_from_user(ptr, buf, uchunk);
 891                kexec_flush_icache_page(page);
 892                kunmap(page);
 893                arch_kexec_pre_free_pages(page_address(page), 1);
 894                if (result) {
 895                        result = -EFAULT;
 896                        goto out;
 897                }
 898                ubytes -= uchunk;
 899                maddr  += mchunk;
 900                if (image->file_mode)
 901                        kbuf += mchunk;
 902                else
 903                        buf += mchunk;
 904                mbytes -= mchunk;
 905
 906                cond_resched();
 907        }
 908out:
 909        return result;
 910}
 911
 912int kimage_load_segment(struct kimage *image,
 913                                struct kexec_segment *segment)
 914{
 915        int result = -ENOMEM;
 916
 917        switch (image->type) {
 918        case KEXEC_TYPE_DEFAULT:
 919                result = kimage_load_normal_segment(image, segment);
 920                break;
 921        case KEXEC_TYPE_CRASH:
 922                result = kimage_load_crash_segment(image, segment);
 923                break;
 924        }
 925
 926        return result;
 927}
 928
 929struct kimage *kexec_image;
 930struct kimage *kexec_crash_image;
 931int kexec_load_disabled;
 932
 933/*
 934 * No panic_cpu check version of crash_kexec().  This function is called
 935 * only when panic_cpu holds the current CPU number; this is the only CPU
 936 * which processes crash_kexec routines.
 937 */
 938void __noclone __crash_kexec(struct pt_regs *regs)
 939{
 940        /* Take the kexec_mutex here to prevent sys_kexec_load
 941         * running on one cpu from replacing the crash kernel
 942         * we are using after a panic on a different cpu.
 943         *
 944         * If the crash kernel was not located in a fixed area
 945         * of memory the xchg(&kexec_crash_image) would be
 946         * sufficient.  But since I reuse the memory...
 947         */
 948        if (mutex_trylock(&kexec_mutex)) {
 949                if (kexec_crash_image) {
 950                        struct pt_regs fixed_regs;
 951
 952                        crash_setup_regs(&fixed_regs, regs);
 953                        crash_save_vmcoreinfo();
 954                        machine_crash_shutdown(&fixed_regs);
 955                        machine_kexec(kexec_crash_image);
 956                }
 957                mutex_unlock(&kexec_mutex);
 958        }
 959}
 960STACK_FRAME_NON_STANDARD(__crash_kexec);
 961
 962void crash_kexec(struct pt_regs *regs)
 963{
 964        int old_cpu, this_cpu;
 965
 966        /*
 967         * Only one CPU is allowed to execute the crash_kexec() code as with
 968         * panic().  Otherwise parallel calls of panic() and crash_kexec()
 969         * may stop each other.  To exclude them, we use panic_cpu here too.
 970         */
 971        this_cpu = raw_smp_processor_id();
 972        old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
 973        if (old_cpu == PANIC_CPU_INVALID) {
 974                /* This is the 1st CPU which comes here, so go ahead. */
 975                printk_safe_flush_on_panic();
 976                __crash_kexec(regs);
 977
 978                /*
 979                 * Reset panic_cpu to allow another panic()/crash_kexec()
 980                 * call.
 981                 */
 982                atomic_set(&panic_cpu, PANIC_CPU_INVALID);
 983        }
 984}
 985
 986size_t crash_get_memory_size(void)
 987{
 988        size_t size = 0;
 989
 990        mutex_lock(&kexec_mutex);
 991        if (crashk_res.end != crashk_res.start)
 992                size = resource_size(&crashk_res);
 993        mutex_unlock(&kexec_mutex);
 994        return size;
 995}
 996
 997void __weak crash_free_reserved_phys_range(unsigned long begin,
 998                                           unsigned long end)
 999{
1000        unsigned long addr;
1001
1002        for (addr = begin; addr < end; addr += PAGE_SIZE)
1003                free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
1004}
1005
1006int crash_shrink_memory(unsigned long new_size)
1007{
1008        int ret = 0;
1009        unsigned long start, end;
1010        unsigned long old_size;
1011        struct resource *ram_res;
1012
1013        mutex_lock(&kexec_mutex);
1014
1015        if (kexec_crash_image) {
1016                ret = -ENOENT;
1017                goto unlock;
1018        }
1019        start = crashk_res.start;
1020        end = crashk_res.end;
1021        old_size = (end == 0) ? 0 : end - start + 1;
1022        if (new_size >= old_size) {
1023                ret = (new_size == old_size) ? 0 : -EINVAL;
1024                goto unlock;
1025        }
1026
1027        ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1028        if (!ram_res) {
1029                ret = -ENOMEM;
1030                goto unlock;
1031        }
1032
1033        start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1034        end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1035
1036        crash_free_reserved_phys_range(end, crashk_res.end);
1037
1038        if ((start == end) && (crashk_res.parent != NULL))
1039                release_resource(&crashk_res);
1040
1041        ram_res->start = end;
1042        ram_res->end = crashk_res.end;
1043        ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
1044        ram_res->name = "System RAM";
1045
1046        crashk_res.end = end - 1;
1047
1048        insert_resource(&iomem_resource, ram_res);
1049
1050unlock:
1051        mutex_unlock(&kexec_mutex);
1052        return ret;
1053}
1054
1055void crash_save_cpu(struct pt_regs *regs, int cpu)
1056{
1057        struct elf_prstatus prstatus;
1058        u32 *buf;
1059
1060        if ((cpu < 0) || (cpu >= nr_cpu_ids))
1061                return;
1062
1063        /* Using ELF notes here is opportunistic.
1064         * I need a well defined structure format
1065         * for the data I pass, and I need tags
1066         * on the data to indicate what information I have
1067         * squirrelled away.  ELF notes happen to provide
1068         * all of that, so there is no need to invent something new.
1069         */
1070        buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1071        if (!buf)
1072                return;
1073        memset(&prstatus, 0, sizeof(prstatus));
1074        prstatus.pr_pid = current->pid;
1075        elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1076        buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1077                              &prstatus, sizeof(prstatus));
1078        final_note(buf);
1079}
1080
1081static int __init crash_notes_memory_init(void)
1082{
1083        /* Allocate memory for saving cpu registers. */
1084        size_t size, align;
1085
1086        /*
1087         * crash_notes could be allocated across 2 vmalloc pages when percpu
1088         * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1089         * pages are also on 2 continuous physical pages. In this case the
1090         * 2nd part of crash_notes in 2nd page could be lost since only the
1091         * starting address and size of crash_notes are exported through sysfs.
1092         * Here round up the size of crash_notes to the nearest power of two
1093         * and pass it to __alloc_percpu as align value. This can make sure
1094         * crash_notes is allocated inside one physical page.
1095         */
1096        size = sizeof(note_buf_t);
1097        align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1098
1099        /*
1100         * Break compile if size is bigger than PAGE_SIZE since crash_notes
1101         * definitely will be in 2 pages with that.
1102         */
1103        BUILD_BUG_ON(size > PAGE_SIZE);
1104
1105        crash_notes = __alloc_percpu(size, align);
1106        if (!crash_notes) {
1107                pr_warn("Memory allocation for saving cpu register states failed\n");
1108                return -ENOMEM;
1109        }
1110        return 0;
1111}
1112subsys_initcall(crash_notes_memory_init);
1113
1114
1115/*
1116 * Move into place and start executing a preloaded standalone
1117 * executable.  If nothing was preloaded return an error.
1118 */
1119int kernel_kexec(void)
1120{
1121        int error = 0;
1122
1123        if (!mutex_trylock(&kexec_mutex))
1124                return -EBUSY;
1125        if (!kexec_image) {
1126                error = -EINVAL;
1127                goto Unlock;
1128        }
1129
1130#ifdef CONFIG_KEXEC_JUMP
1131        if (kexec_image->preserve_context) {
1132                lock_system_sleep();
1133                pm_prepare_console();
1134                error = freeze_processes();
1135                if (error) {
1136                        error = -EBUSY;
1137                        goto Restore_console;
1138                }
1139                suspend_console();
1140                error = dpm_suspend_start(PMSG_FREEZE);
1141                if (error)
1142                        goto Resume_console;
1143                /* At this point, dpm_suspend_start() has been called,
1144                 * but *not* dpm_suspend_end(). We *must* call
1145                 * dpm_suspend_end() now.  Otherwise, drivers for
1146                 * some devices (e.g. interrupt controllers) become
1147                 * desynchronized with the actual state of the
1148                 * hardware at resume time, and evil weirdness ensues.
1149                 */
1150                error = dpm_suspend_end(PMSG_FREEZE);
1151                if (error)
1152                        goto Resume_devices;
1153                error = suspend_disable_secondary_cpus();
1154                if (error)
1155                        goto Enable_cpus;
1156                local_irq_disable();
1157                error = syscore_suspend();
1158                if (error)
1159                        goto Enable_irqs;
1160        } else
1161#endif
1162        {
1163                kexec_in_progress = true;
1164                kernel_restart_prepare(NULL);
1165                migrate_to_reboot_cpu();
1166
1167                /*
1168                 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1169                 * no further code needs to use CPU hotplug (which is true in
1170                 * the reboot case). However, the kexec path depends on using
1171                 * CPU hotplug again; so re-enable it here.
1172                 */
1173                cpu_hotplug_enable();
1174                pr_emerg("Starting new kernel\n");
1175                machine_shutdown();
1176        }
1177
1178        machine_kexec(kexec_image);
1179
1180#ifdef CONFIG_KEXEC_JUMP
1181        if (kexec_image->preserve_context) {
1182                syscore_resume();
1183 Enable_irqs:
1184                local_irq_enable();
1185 Enable_cpus:
1186                suspend_enable_secondary_cpus();
1187                dpm_resume_start(PMSG_RESTORE);
1188 Resume_devices:
1189                dpm_resume_end(PMSG_RESTORE);
1190 Resume_console:
1191                resume_console();
1192                thaw_processes();
1193 Restore_console:
1194                pm_restore_console();
1195                unlock_system_sleep();
1196        }
1197#endif
1198
1199 Unlock:
1200        mutex_unlock(&kexec_mutex);
1201        return error;
1202}
1203
1204/*
1205 * Protection mechanism for crashkernel reserved memory after
1206 * the kdump kernel is loaded.
1207 *
1208 * Provide an empty default implementation here -- architecture
1209 * code may override this
1210 */
1211void __weak arch_kexec_protect_crashkres(void)
1212{}
1213
1214void __weak arch_kexec_unprotect_crashkres(void)
1215{}
1216