linux/kernel/module.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3   Copyright (C) 2002 Richard Henderson
   4   Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
   5
   6*/
   7#include <linux/export.h>
   8#include <linux/extable.h>
   9#include <linux/moduleloader.h>
  10#include <linux/module_signature.h>
  11#include <linux/trace_events.h>
  12#include <linux/init.h>
  13#include <linux/kallsyms.h>
  14#include <linux/file.h>
  15#include <linux/fs.h>
  16#include <linux/sysfs.h>
  17#include <linux/kernel.h>
  18#include <linux/slab.h>
  19#include <linux/vmalloc.h>
  20#include <linux/elf.h>
  21#include <linux/proc_fs.h>
  22#include <linux/security.h>
  23#include <linux/seq_file.h>
  24#include <linux/syscalls.h>
  25#include <linux/fcntl.h>
  26#include <linux/rcupdate.h>
  27#include <linux/capability.h>
  28#include <linux/cpu.h>
  29#include <linux/moduleparam.h>
  30#include <linux/errno.h>
  31#include <linux/err.h>
  32#include <linux/vermagic.h>
  33#include <linux/notifier.h>
  34#include <linux/sched.h>
  35#include <linux/device.h>
  36#include <linux/string.h>
  37#include <linux/mutex.h>
  38#include <linux/rculist.h>
  39#include <linux/uaccess.h>
  40#include <asm/cacheflush.h>
  41#include <linux/set_memory.h>
  42#include <asm/mmu_context.h>
  43#include <linux/license.h>
  44#include <asm/sections.h>
  45#include <linux/tracepoint.h>
  46#include <linux/ftrace.h>
  47#include <linux/livepatch.h>
  48#include <linux/async.h>
  49#include <linux/percpu.h>
  50#include <linux/kmemleak.h>
  51#include <linux/jump_label.h>
  52#include <linux/pfn.h>
  53#include <linux/bsearch.h>
  54#include <linux/dynamic_debug.h>
  55#include <linux/audit.h>
  56#include <uapi/linux/module.h>
  57#include "module-internal.h"
  58
  59#define CREATE_TRACE_POINTS
  60#include <trace/events/module.h>
  61
  62#ifndef ARCH_SHF_SMALL
  63#define ARCH_SHF_SMALL 0
  64#endif
  65
  66/*
  67 * Modules' sections will be aligned on page boundaries
  68 * to ensure complete separation of code and data, but
  69 * only when CONFIG_ARCH_HAS_STRICT_MODULE_RWX=y
  70 */
  71#ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
  72# define debug_align(X) ALIGN(X, PAGE_SIZE)
  73#else
  74# define debug_align(X) (X)
  75#endif
  76
  77/* If this is set, the section belongs in the init part of the module */
  78#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
  79
  80/*
  81 * Mutex protects:
  82 * 1) List of modules (also safely readable with preempt_disable),
  83 * 2) module_use links,
  84 * 3) module_addr_min/module_addr_max.
  85 * (delete and add uses RCU list operations). */
  86DEFINE_MUTEX(module_mutex);
  87EXPORT_SYMBOL_GPL(module_mutex);
  88static LIST_HEAD(modules);
  89
  90/* Work queue for freeing init sections in success case */
  91static struct work_struct init_free_wq;
  92static struct llist_head init_free_list;
  93
  94#ifdef CONFIG_MODULES_TREE_LOOKUP
  95
  96/*
  97 * Use a latched RB-tree for __module_address(); this allows us to use
  98 * RCU-sched lookups of the address from any context.
  99 *
 100 * This is conditional on PERF_EVENTS || TRACING because those can really hit
 101 * __module_address() hard by doing a lot of stack unwinding; potentially from
 102 * NMI context.
 103 */
 104
 105static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
 106{
 107        struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
 108
 109        return (unsigned long)layout->base;
 110}
 111
 112static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
 113{
 114        struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
 115
 116        return (unsigned long)layout->size;
 117}
 118
 119static __always_inline bool
 120mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
 121{
 122        return __mod_tree_val(a) < __mod_tree_val(b);
 123}
 124
 125static __always_inline int
 126mod_tree_comp(void *key, struct latch_tree_node *n)
 127{
 128        unsigned long val = (unsigned long)key;
 129        unsigned long start, end;
 130
 131        start = __mod_tree_val(n);
 132        if (val < start)
 133                return -1;
 134
 135        end = start + __mod_tree_size(n);
 136        if (val >= end)
 137                return 1;
 138
 139        return 0;
 140}
 141
 142static const struct latch_tree_ops mod_tree_ops = {
 143        .less = mod_tree_less,
 144        .comp = mod_tree_comp,
 145};
 146
 147static struct mod_tree_root {
 148        struct latch_tree_root root;
 149        unsigned long addr_min;
 150        unsigned long addr_max;
 151} mod_tree __cacheline_aligned = {
 152        .addr_min = -1UL,
 153};
 154
 155#define module_addr_min mod_tree.addr_min
 156#define module_addr_max mod_tree.addr_max
 157
 158static noinline void __mod_tree_insert(struct mod_tree_node *node)
 159{
 160        latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
 161}
 162
 163static void __mod_tree_remove(struct mod_tree_node *node)
 164{
 165        latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
 166}
 167
 168/*
 169 * These modifications: insert, remove_init and remove; are serialized by the
 170 * module_mutex.
 171 */
 172static void mod_tree_insert(struct module *mod)
 173{
 174        mod->core_layout.mtn.mod = mod;
 175        mod->init_layout.mtn.mod = mod;
 176
 177        __mod_tree_insert(&mod->core_layout.mtn);
 178        if (mod->init_layout.size)
 179                __mod_tree_insert(&mod->init_layout.mtn);
 180}
 181
 182static void mod_tree_remove_init(struct module *mod)
 183{
 184        if (mod->init_layout.size)
 185                __mod_tree_remove(&mod->init_layout.mtn);
 186}
 187
 188static void mod_tree_remove(struct module *mod)
 189{
 190        __mod_tree_remove(&mod->core_layout.mtn);
 191        mod_tree_remove_init(mod);
 192}
 193
 194static struct module *mod_find(unsigned long addr)
 195{
 196        struct latch_tree_node *ltn;
 197
 198        ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
 199        if (!ltn)
 200                return NULL;
 201
 202        return container_of(ltn, struct mod_tree_node, node)->mod;
 203}
 204
 205#else /* MODULES_TREE_LOOKUP */
 206
 207static unsigned long module_addr_min = -1UL, module_addr_max = 0;
 208
 209static void mod_tree_insert(struct module *mod) { }
 210static void mod_tree_remove_init(struct module *mod) { }
 211static void mod_tree_remove(struct module *mod) { }
 212
 213static struct module *mod_find(unsigned long addr)
 214{
 215        struct module *mod;
 216
 217        list_for_each_entry_rcu(mod, &modules, list) {
 218                if (within_module(addr, mod))
 219                        return mod;
 220        }
 221
 222        return NULL;
 223}
 224
 225#endif /* MODULES_TREE_LOOKUP */
 226
 227/*
 228 * Bounds of module text, for speeding up __module_address.
 229 * Protected by module_mutex.
 230 */
 231static void __mod_update_bounds(void *base, unsigned int size)
 232{
 233        unsigned long min = (unsigned long)base;
 234        unsigned long max = min + size;
 235
 236        if (min < module_addr_min)
 237                module_addr_min = min;
 238        if (max > module_addr_max)
 239                module_addr_max = max;
 240}
 241
 242static void mod_update_bounds(struct module *mod)
 243{
 244        __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
 245        if (mod->init_layout.size)
 246                __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
 247}
 248
 249#ifdef CONFIG_KGDB_KDB
 250struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
 251#endif /* CONFIG_KGDB_KDB */
 252
 253static void module_assert_mutex(void)
 254{
 255        lockdep_assert_held(&module_mutex);
 256}
 257
 258static void module_assert_mutex_or_preempt(void)
 259{
 260#ifdef CONFIG_LOCKDEP
 261        if (unlikely(!debug_locks))
 262                return;
 263
 264        WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
 265                !lockdep_is_held(&module_mutex));
 266#endif
 267}
 268
 269static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
 270module_param(sig_enforce, bool_enable_only, 0644);
 271
 272/*
 273 * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
 274 * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
 275 */
 276bool is_module_sig_enforced(void)
 277{
 278        return sig_enforce;
 279}
 280EXPORT_SYMBOL(is_module_sig_enforced);
 281
 282void set_module_sig_enforced(void)
 283{
 284        sig_enforce = true;
 285}
 286
 287/* Block module loading/unloading? */
 288int modules_disabled = 0;
 289core_param(nomodule, modules_disabled, bint, 0);
 290
 291/* Waiting for a module to finish initializing? */
 292static DECLARE_WAIT_QUEUE_HEAD(module_wq);
 293
 294static BLOCKING_NOTIFIER_HEAD(module_notify_list);
 295
 296int register_module_notifier(struct notifier_block *nb)
 297{
 298        return blocking_notifier_chain_register(&module_notify_list, nb);
 299}
 300EXPORT_SYMBOL(register_module_notifier);
 301
 302int unregister_module_notifier(struct notifier_block *nb)
 303{
 304        return blocking_notifier_chain_unregister(&module_notify_list, nb);
 305}
 306EXPORT_SYMBOL(unregister_module_notifier);
 307
 308/*
 309 * We require a truly strong try_module_get(): 0 means success.
 310 * Otherwise an error is returned due to ongoing or failed
 311 * initialization etc.
 312 */
 313static inline int strong_try_module_get(struct module *mod)
 314{
 315        BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
 316        if (mod && mod->state == MODULE_STATE_COMING)
 317                return -EBUSY;
 318        if (try_module_get(mod))
 319                return 0;
 320        else
 321                return -ENOENT;
 322}
 323
 324static inline void add_taint_module(struct module *mod, unsigned flag,
 325                                    enum lockdep_ok lockdep_ok)
 326{
 327        add_taint(flag, lockdep_ok);
 328        set_bit(flag, &mod->taints);
 329}
 330
 331/*
 332 * A thread that wants to hold a reference to a module only while it
 333 * is running can call this to safely exit.  nfsd and lockd use this.
 334 */
 335void __noreturn __module_put_and_exit(struct module *mod, long code)
 336{
 337        module_put(mod);
 338        do_exit(code);
 339}
 340EXPORT_SYMBOL(__module_put_and_exit);
 341
 342/* Find a module section: 0 means not found. */
 343static unsigned int find_sec(const struct load_info *info, const char *name)
 344{
 345        unsigned int i;
 346
 347        for (i = 1; i < info->hdr->e_shnum; i++) {
 348                Elf_Shdr *shdr = &info->sechdrs[i];
 349                /* Alloc bit cleared means "ignore it." */
 350                if ((shdr->sh_flags & SHF_ALLOC)
 351                    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
 352                        return i;
 353        }
 354        return 0;
 355}
 356
 357/* Find a module section, or NULL. */
 358static void *section_addr(const struct load_info *info, const char *name)
 359{
 360        /* Section 0 has sh_addr 0. */
 361        return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
 362}
 363
 364/* Find a module section, or NULL.  Fill in number of "objects" in section. */
 365static void *section_objs(const struct load_info *info,
 366                          const char *name,
 367                          size_t object_size,
 368                          unsigned int *num)
 369{
 370        unsigned int sec = find_sec(info, name);
 371
 372        /* Section 0 has sh_addr 0 and sh_size 0. */
 373        *num = info->sechdrs[sec].sh_size / object_size;
 374        return (void *)info->sechdrs[sec].sh_addr;
 375}
 376
 377/* Provided by the linker */
 378extern const struct kernel_symbol __start___ksymtab[];
 379extern const struct kernel_symbol __stop___ksymtab[];
 380extern const struct kernel_symbol __start___ksymtab_gpl[];
 381extern const struct kernel_symbol __stop___ksymtab_gpl[];
 382extern const struct kernel_symbol __start___ksymtab_gpl_future[];
 383extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
 384extern const s32 __start___kcrctab[];
 385extern const s32 __start___kcrctab_gpl[];
 386extern const s32 __start___kcrctab_gpl_future[];
 387#ifdef CONFIG_UNUSED_SYMBOLS
 388extern const struct kernel_symbol __start___ksymtab_unused[];
 389extern const struct kernel_symbol __stop___ksymtab_unused[];
 390extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
 391extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
 392extern const s32 __start___kcrctab_unused[];
 393extern const s32 __start___kcrctab_unused_gpl[];
 394#endif
 395
 396#ifndef CONFIG_MODVERSIONS
 397#define symversion(base, idx) NULL
 398#else
 399#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
 400#endif
 401
 402static bool each_symbol_in_section(const struct symsearch *arr,
 403                                   unsigned int arrsize,
 404                                   struct module *owner,
 405                                   bool (*fn)(const struct symsearch *syms,
 406                                              struct module *owner,
 407                                              void *data),
 408                                   void *data)
 409{
 410        unsigned int j;
 411
 412        for (j = 0; j < arrsize; j++) {
 413                if (fn(&arr[j], owner, data))
 414                        return true;
 415        }
 416
 417        return false;
 418}
 419
 420/* Returns true as soon as fn returns true, otherwise false. */
 421bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
 422                                    struct module *owner,
 423                                    void *data),
 424                         void *data)
 425{
 426        struct module *mod;
 427        static const struct symsearch arr[] = {
 428                { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
 429                  NOT_GPL_ONLY, false },
 430                { __start___ksymtab_gpl, __stop___ksymtab_gpl,
 431                  __start___kcrctab_gpl,
 432                  GPL_ONLY, false },
 433                { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
 434                  __start___kcrctab_gpl_future,
 435                  WILL_BE_GPL_ONLY, false },
 436#ifdef CONFIG_UNUSED_SYMBOLS
 437                { __start___ksymtab_unused, __stop___ksymtab_unused,
 438                  __start___kcrctab_unused,
 439                  NOT_GPL_ONLY, true },
 440                { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
 441                  __start___kcrctab_unused_gpl,
 442                  GPL_ONLY, true },
 443#endif
 444        };
 445
 446        module_assert_mutex_or_preempt();
 447
 448        if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
 449                return true;
 450
 451        list_for_each_entry_rcu(mod, &modules, list) {
 452                struct symsearch arr[] = {
 453                        { mod->syms, mod->syms + mod->num_syms, mod->crcs,
 454                          NOT_GPL_ONLY, false },
 455                        { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
 456                          mod->gpl_crcs,
 457                          GPL_ONLY, false },
 458                        { mod->gpl_future_syms,
 459                          mod->gpl_future_syms + mod->num_gpl_future_syms,
 460                          mod->gpl_future_crcs,
 461                          WILL_BE_GPL_ONLY, false },
 462#ifdef CONFIG_UNUSED_SYMBOLS
 463                        { mod->unused_syms,
 464                          mod->unused_syms + mod->num_unused_syms,
 465                          mod->unused_crcs,
 466                          NOT_GPL_ONLY, true },
 467                        { mod->unused_gpl_syms,
 468                          mod->unused_gpl_syms + mod->num_unused_gpl_syms,
 469                          mod->unused_gpl_crcs,
 470                          GPL_ONLY, true },
 471#endif
 472                };
 473
 474                if (mod->state == MODULE_STATE_UNFORMED)
 475                        continue;
 476
 477                if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
 478                        return true;
 479        }
 480        return false;
 481}
 482EXPORT_SYMBOL_GPL(each_symbol_section);
 483
 484struct find_symbol_arg {
 485        /* Input */
 486        const char *name;
 487        bool gplok;
 488        bool warn;
 489
 490        /* Output */
 491        struct module *owner;
 492        const s32 *crc;
 493        const struct kernel_symbol *sym;
 494};
 495
 496static bool check_exported_symbol(const struct symsearch *syms,
 497                                  struct module *owner,
 498                                  unsigned int symnum, void *data)
 499{
 500        struct find_symbol_arg *fsa = data;
 501
 502        if (!fsa->gplok) {
 503                if (syms->licence == GPL_ONLY)
 504                        return false;
 505                if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
 506                        pr_warn("Symbol %s is being used by a non-GPL module, "
 507                                "which will not be allowed in the future\n",
 508                                fsa->name);
 509                }
 510        }
 511
 512#ifdef CONFIG_UNUSED_SYMBOLS
 513        if (syms->unused && fsa->warn) {
 514                pr_warn("Symbol %s is marked as UNUSED, however this module is "
 515                        "using it.\n", fsa->name);
 516                pr_warn("This symbol will go away in the future.\n");
 517                pr_warn("Please evaluate if this is the right api to use and "
 518                        "if it really is, submit a report to the linux kernel "
 519                        "mailing list together with submitting your code for "
 520                        "inclusion.\n");
 521        }
 522#endif
 523
 524        fsa->owner = owner;
 525        fsa->crc = symversion(syms->crcs, symnum);
 526        fsa->sym = &syms->start[symnum];
 527        return true;
 528}
 529
 530static unsigned long kernel_symbol_value(const struct kernel_symbol *sym)
 531{
 532#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
 533        return (unsigned long)offset_to_ptr(&sym->value_offset);
 534#else
 535        return sym->value;
 536#endif
 537}
 538
 539static const char *kernel_symbol_name(const struct kernel_symbol *sym)
 540{
 541#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
 542        return offset_to_ptr(&sym->name_offset);
 543#else
 544        return sym->name;
 545#endif
 546}
 547
 548static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
 549{
 550#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
 551        if (!sym->namespace_offset)
 552                return NULL;
 553        return offset_to_ptr(&sym->namespace_offset);
 554#else
 555        return sym->namespace;
 556#endif
 557}
 558
 559static int cmp_name(const void *name, const void *sym)
 560{
 561        return strcmp(name, kernel_symbol_name(sym));
 562}
 563
 564static bool find_exported_symbol_in_section(const struct symsearch *syms,
 565                                            struct module *owner,
 566                                            void *data)
 567{
 568        struct find_symbol_arg *fsa = data;
 569        struct kernel_symbol *sym;
 570
 571        sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
 572                        sizeof(struct kernel_symbol), cmp_name);
 573
 574        if (sym != NULL && check_exported_symbol(syms, owner,
 575                                                 sym - syms->start, data))
 576                return true;
 577
 578        return false;
 579}
 580
 581/* Find an exported symbol and return it, along with, (optional) crc and
 582 * (optional) module which owns it.  Needs preempt disabled or module_mutex. */
 583const struct kernel_symbol *find_symbol(const char *name,
 584                                        struct module **owner,
 585                                        const s32 **crc,
 586                                        bool gplok,
 587                                        bool warn)
 588{
 589        struct find_symbol_arg fsa;
 590
 591        fsa.name = name;
 592        fsa.gplok = gplok;
 593        fsa.warn = warn;
 594
 595        if (each_symbol_section(find_exported_symbol_in_section, &fsa)) {
 596                if (owner)
 597                        *owner = fsa.owner;
 598                if (crc)
 599                        *crc = fsa.crc;
 600                return fsa.sym;
 601        }
 602
 603        pr_debug("Failed to find symbol %s\n", name);
 604        return NULL;
 605}
 606EXPORT_SYMBOL_GPL(find_symbol);
 607
 608/*
 609 * Search for module by name: must hold module_mutex (or preempt disabled
 610 * for read-only access).
 611 */
 612static struct module *find_module_all(const char *name, size_t len,
 613                                      bool even_unformed)
 614{
 615        struct module *mod;
 616
 617        module_assert_mutex_or_preempt();
 618
 619        list_for_each_entry_rcu(mod, &modules, list) {
 620                if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
 621                        continue;
 622                if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
 623                        return mod;
 624        }
 625        return NULL;
 626}
 627
 628struct module *find_module(const char *name)
 629{
 630        module_assert_mutex();
 631        return find_module_all(name, strlen(name), false);
 632}
 633EXPORT_SYMBOL_GPL(find_module);
 634
 635#ifdef CONFIG_SMP
 636
 637static inline void __percpu *mod_percpu(struct module *mod)
 638{
 639        return mod->percpu;
 640}
 641
 642static int percpu_modalloc(struct module *mod, struct load_info *info)
 643{
 644        Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
 645        unsigned long align = pcpusec->sh_addralign;
 646
 647        if (!pcpusec->sh_size)
 648                return 0;
 649
 650        if (align > PAGE_SIZE) {
 651                pr_warn("%s: per-cpu alignment %li > %li\n",
 652                        mod->name, align, PAGE_SIZE);
 653                align = PAGE_SIZE;
 654        }
 655
 656        mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
 657        if (!mod->percpu) {
 658                pr_warn("%s: Could not allocate %lu bytes percpu data\n",
 659                        mod->name, (unsigned long)pcpusec->sh_size);
 660                return -ENOMEM;
 661        }
 662        mod->percpu_size = pcpusec->sh_size;
 663        return 0;
 664}
 665
 666static void percpu_modfree(struct module *mod)
 667{
 668        free_percpu(mod->percpu);
 669}
 670
 671static unsigned int find_pcpusec(struct load_info *info)
 672{
 673        return find_sec(info, ".data..percpu");
 674}
 675
 676static void percpu_modcopy(struct module *mod,
 677                           const void *from, unsigned long size)
 678{
 679        int cpu;
 680
 681        for_each_possible_cpu(cpu)
 682                memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
 683}
 684
 685bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
 686{
 687        struct module *mod;
 688        unsigned int cpu;
 689
 690        preempt_disable();
 691
 692        list_for_each_entry_rcu(mod, &modules, list) {
 693                if (mod->state == MODULE_STATE_UNFORMED)
 694                        continue;
 695                if (!mod->percpu_size)
 696                        continue;
 697                for_each_possible_cpu(cpu) {
 698                        void *start = per_cpu_ptr(mod->percpu, cpu);
 699                        void *va = (void *)addr;
 700
 701                        if (va >= start && va < start + mod->percpu_size) {
 702                                if (can_addr) {
 703                                        *can_addr = (unsigned long) (va - start);
 704                                        *can_addr += (unsigned long)
 705                                                per_cpu_ptr(mod->percpu,
 706                                                            get_boot_cpu_id());
 707                                }
 708                                preempt_enable();
 709                                return true;
 710                        }
 711                }
 712        }
 713
 714        preempt_enable();
 715        return false;
 716}
 717
 718/**
 719 * is_module_percpu_address - test whether address is from module static percpu
 720 * @addr: address to test
 721 *
 722 * Test whether @addr belongs to module static percpu area.
 723 *
 724 * RETURNS:
 725 * %true if @addr is from module static percpu area
 726 */
 727bool is_module_percpu_address(unsigned long addr)
 728{
 729        return __is_module_percpu_address(addr, NULL);
 730}
 731
 732#else /* ... !CONFIG_SMP */
 733
 734static inline void __percpu *mod_percpu(struct module *mod)
 735{
 736        return NULL;
 737}
 738static int percpu_modalloc(struct module *mod, struct load_info *info)
 739{
 740        /* UP modules shouldn't have this section: ENOMEM isn't quite right */
 741        if (info->sechdrs[info->index.pcpu].sh_size != 0)
 742                return -ENOMEM;
 743        return 0;
 744}
 745static inline void percpu_modfree(struct module *mod)
 746{
 747}
 748static unsigned int find_pcpusec(struct load_info *info)
 749{
 750        return 0;
 751}
 752static inline void percpu_modcopy(struct module *mod,
 753                                  const void *from, unsigned long size)
 754{
 755        /* pcpusec should be 0, and size of that section should be 0. */
 756        BUG_ON(size != 0);
 757}
 758bool is_module_percpu_address(unsigned long addr)
 759{
 760        return false;
 761}
 762
 763bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
 764{
 765        return false;
 766}
 767
 768#endif /* CONFIG_SMP */
 769
 770#define MODINFO_ATTR(field)     \
 771static void setup_modinfo_##field(struct module *mod, const char *s)  \
 772{                                                                     \
 773        mod->field = kstrdup(s, GFP_KERNEL);                          \
 774}                                                                     \
 775static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
 776                        struct module_kobject *mk, char *buffer)      \
 777{                                                                     \
 778        return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
 779}                                                                     \
 780static int modinfo_##field##_exists(struct module *mod)               \
 781{                                                                     \
 782        return mod->field != NULL;                                    \
 783}                                                                     \
 784static void free_modinfo_##field(struct module *mod)                  \
 785{                                                                     \
 786        kfree(mod->field);                                            \
 787        mod->field = NULL;                                            \
 788}                                                                     \
 789static struct module_attribute modinfo_##field = {                    \
 790        .attr = { .name = __stringify(field), .mode = 0444 },         \
 791        .show = show_modinfo_##field,                                 \
 792        .setup = setup_modinfo_##field,                               \
 793        .test = modinfo_##field##_exists,                             \
 794        .free = free_modinfo_##field,                                 \
 795};
 796
 797MODINFO_ATTR(version);
 798MODINFO_ATTR(srcversion);
 799
 800static char last_unloaded_module[MODULE_NAME_LEN+1];
 801
 802#ifdef CONFIG_MODULE_UNLOAD
 803
 804EXPORT_TRACEPOINT_SYMBOL(module_get);
 805
 806/* MODULE_REF_BASE is the base reference count by kmodule loader. */
 807#define MODULE_REF_BASE 1
 808
 809/* Init the unload section of the module. */
 810static int module_unload_init(struct module *mod)
 811{
 812        /*
 813         * Initialize reference counter to MODULE_REF_BASE.
 814         * refcnt == 0 means module is going.
 815         */
 816        atomic_set(&mod->refcnt, MODULE_REF_BASE);
 817
 818        INIT_LIST_HEAD(&mod->source_list);
 819        INIT_LIST_HEAD(&mod->target_list);
 820
 821        /* Hold reference count during initialization. */
 822        atomic_inc(&mod->refcnt);
 823
 824        return 0;
 825}
 826
 827/* Does a already use b? */
 828static int already_uses(struct module *a, struct module *b)
 829{
 830        struct module_use *use;
 831
 832        list_for_each_entry(use, &b->source_list, source_list) {
 833                if (use->source == a) {
 834                        pr_debug("%s uses %s!\n", a->name, b->name);
 835                        return 1;
 836                }
 837        }
 838        pr_debug("%s does not use %s!\n", a->name, b->name);
 839        return 0;
 840}
 841
 842/*
 843 * Module a uses b
 844 *  - we add 'a' as a "source", 'b' as a "target" of module use
 845 *  - the module_use is added to the list of 'b' sources (so
 846 *    'b' can walk the list to see who sourced them), and of 'a'
 847 *    targets (so 'a' can see what modules it targets).
 848 */
 849static int add_module_usage(struct module *a, struct module *b)
 850{
 851        struct module_use *use;
 852
 853        pr_debug("Allocating new usage for %s.\n", a->name);
 854        use = kmalloc(sizeof(*use), GFP_ATOMIC);
 855        if (!use)
 856                return -ENOMEM;
 857
 858        use->source = a;
 859        use->target = b;
 860        list_add(&use->source_list, &b->source_list);
 861        list_add(&use->target_list, &a->target_list);
 862        return 0;
 863}
 864
 865/* Module a uses b: caller needs module_mutex() */
 866int ref_module(struct module *a, struct module *b)
 867{
 868        int err;
 869
 870        if (b == NULL || already_uses(a, b))
 871                return 0;
 872
 873        /* If module isn't available, we fail. */
 874        err = strong_try_module_get(b);
 875        if (err)
 876                return err;
 877
 878        err = add_module_usage(a, b);
 879        if (err) {
 880                module_put(b);
 881                return err;
 882        }
 883        return 0;
 884}
 885EXPORT_SYMBOL_GPL(ref_module);
 886
 887/* Clear the unload stuff of the module. */
 888static void module_unload_free(struct module *mod)
 889{
 890        struct module_use *use, *tmp;
 891
 892        mutex_lock(&module_mutex);
 893        list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
 894                struct module *i = use->target;
 895                pr_debug("%s unusing %s\n", mod->name, i->name);
 896                module_put(i);
 897                list_del(&use->source_list);
 898                list_del(&use->target_list);
 899                kfree(use);
 900        }
 901        mutex_unlock(&module_mutex);
 902}
 903
 904#ifdef CONFIG_MODULE_FORCE_UNLOAD
 905static inline int try_force_unload(unsigned int flags)
 906{
 907        int ret = (flags & O_TRUNC);
 908        if (ret)
 909                add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
 910        return ret;
 911}
 912#else
 913static inline int try_force_unload(unsigned int flags)
 914{
 915        return 0;
 916}
 917#endif /* CONFIG_MODULE_FORCE_UNLOAD */
 918
 919/* Try to release refcount of module, 0 means success. */
 920static int try_release_module_ref(struct module *mod)
 921{
 922        int ret;
 923
 924        /* Try to decrement refcnt which we set at loading */
 925        ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
 926        BUG_ON(ret < 0);
 927        if (ret)
 928                /* Someone can put this right now, recover with checking */
 929                ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
 930
 931        return ret;
 932}
 933
 934static int try_stop_module(struct module *mod, int flags, int *forced)
 935{
 936        /* If it's not unused, quit unless we're forcing. */
 937        if (try_release_module_ref(mod) != 0) {
 938                *forced = try_force_unload(flags);
 939                if (!(*forced))
 940                        return -EWOULDBLOCK;
 941        }
 942
 943        /* Mark it as dying. */
 944        mod->state = MODULE_STATE_GOING;
 945
 946        return 0;
 947}
 948
 949/**
 950 * module_refcount - return the refcount or -1 if unloading
 951 *
 952 * @mod:        the module we're checking
 953 *
 954 * Returns:
 955 *      -1 if the module is in the process of unloading
 956 *      otherwise the number of references in the kernel to the module
 957 */
 958int module_refcount(struct module *mod)
 959{
 960        return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
 961}
 962EXPORT_SYMBOL(module_refcount);
 963
 964/* This exists whether we can unload or not */
 965static void free_module(struct module *mod);
 966
 967SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
 968                unsigned int, flags)
 969{
 970        struct module *mod;
 971        char name[MODULE_NAME_LEN];
 972        int ret, forced = 0;
 973
 974        if (!capable(CAP_SYS_MODULE) || modules_disabled)
 975                return -EPERM;
 976
 977        if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
 978                return -EFAULT;
 979        name[MODULE_NAME_LEN-1] = '\0';
 980
 981        audit_log_kern_module(name);
 982
 983        if (mutex_lock_interruptible(&module_mutex) != 0)
 984                return -EINTR;
 985
 986        mod = find_module(name);
 987        if (!mod) {
 988                ret = -ENOENT;
 989                goto out;
 990        }
 991
 992        if (!list_empty(&mod->source_list)) {
 993                /* Other modules depend on us: get rid of them first. */
 994                ret = -EWOULDBLOCK;
 995                goto out;
 996        }
 997
 998        /* Doing init or already dying? */
 999        if (mod->state != MODULE_STATE_LIVE) {
1000                /* FIXME: if (force), slam module count damn the torpedoes */
1001                pr_debug("%s already dying\n", mod->name);
1002                ret = -EBUSY;
1003                goto out;
1004        }
1005
1006        /* If it has an init func, it must have an exit func to unload */
1007        if (mod->init && !mod->exit) {
1008                forced = try_force_unload(flags);
1009                if (!forced) {
1010                        /* This module can't be removed */
1011                        ret = -EBUSY;
1012                        goto out;
1013                }
1014        }
1015
1016        /* Stop the machine so refcounts can't move and disable module. */
1017        ret = try_stop_module(mod, flags, &forced);
1018        if (ret != 0)
1019                goto out;
1020
1021        mutex_unlock(&module_mutex);
1022        /* Final destruction now no one is using it. */
1023        if (mod->exit != NULL)
1024                mod->exit();
1025        blocking_notifier_call_chain(&module_notify_list,
1026                                     MODULE_STATE_GOING, mod);
1027        klp_module_going(mod);
1028        ftrace_release_mod(mod);
1029
1030        async_synchronize_full();
1031
1032        /* Store the name of the last unloaded module for diagnostic purposes */
1033        strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1034
1035        free_module(mod);
1036        return 0;
1037out:
1038        mutex_unlock(&module_mutex);
1039        return ret;
1040}
1041
1042static inline void print_unload_info(struct seq_file *m, struct module *mod)
1043{
1044        struct module_use *use;
1045        int printed_something = 0;
1046
1047        seq_printf(m, " %i ", module_refcount(mod));
1048
1049        /*
1050         * Always include a trailing , so userspace can differentiate
1051         * between this and the old multi-field proc format.
1052         */
1053        list_for_each_entry(use, &mod->source_list, source_list) {
1054                printed_something = 1;
1055                seq_printf(m, "%s,", use->source->name);
1056        }
1057
1058        if (mod->init != NULL && mod->exit == NULL) {
1059                printed_something = 1;
1060                seq_puts(m, "[permanent],");
1061        }
1062
1063        if (!printed_something)
1064                seq_puts(m, "-");
1065}
1066
1067void __symbol_put(const char *symbol)
1068{
1069        struct module *owner;
1070
1071        preempt_disable();
1072        if (!find_symbol(symbol, &owner, NULL, true, false))
1073                BUG();
1074        module_put(owner);
1075        preempt_enable();
1076}
1077EXPORT_SYMBOL(__symbol_put);
1078
1079/* Note this assumes addr is a function, which it currently always is. */
1080void symbol_put_addr(void *addr)
1081{
1082        struct module *modaddr;
1083        unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1084
1085        if (core_kernel_text(a))
1086                return;
1087
1088        /*
1089         * Even though we hold a reference on the module; we still need to
1090         * disable preemption in order to safely traverse the data structure.
1091         */
1092        preempt_disable();
1093        modaddr = __module_text_address(a);
1094        BUG_ON(!modaddr);
1095        module_put(modaddr);
1096        preempt_enable();
1097}
1098EXPORT_SYMBOL_GPL(symbol_put_addr);
1099
1100static ssize_t show_refcnt(struct module_attribute *mattr,
1101                           struct module_kobject *mk, char *buffer)
1102{
1103        return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1104}
1105
1106static struct module_attribute modinfo_refcnt =
1107        __ATTR(refcnt, 0444, show_refcnt, NULL);
1108
1109void __module_get(struct module *module)
1110{
1111        if (module) {
1112                preempt_disable();
1113                atomic_inc(&module->refcnt);
1114                trace_module_get(module, _RET_IP_);
1115                preempt_enable();
1116        }
1117}
1118EXPORT_SYMBOL(__module_get);
1119
1120bool try_module_get(struct module *module)
1121{
1122        bool ret = true;
1123
1124        if (module) {
1125                preempt_disable();
1126                /* Note: here, we can fail to get a reference */
1127                if (likely(module_is_live(module) &&
1128                           atomic_inc_not_zero(&module->refcnt) != 0))
1129                        trace_module_get(module, _RET_IP_);
1130                else
1131                        ret = false;
1132
1133                preempt_enable();
1134        }
1135        return ret;
1136}
1137EXPORT_SYMBOL(try_module_get);
1138
1139void module_put(struct module *module)
1140{
1141        int ret;
1142
1143        if (module) {
1144                preempt_disable();
1145                ret = atomic_dec_if_positive(&module->refcnt);
1146                WARN_ON(ret < 0);       /* Failed to put refcount */
1147                trace_module_put(module, _RET_IP_);
1148                preempt_enable();
1149        }
1150}
1151EXPORT_SYMBOL(module_put);
1152
1153#else /* !CONFIG_MODULE_UNLOAD */
1154static inline void print_unload_info(struct seq_file *m, struct module *mod)
1155{
1156        /* We don't know the usage count, or what modules are using. */
1157        seq_puts(m, " - -");
1158}
1159
1160static inline void module_unload_free(struct module *mod)
1161{
1162}
1163
1164int ref_module(struct module *a, struct module *b)
1165{
1166        return strong_try_module_get(b);
1167}
1168EXPORT_SYMBOL_GPL(ref_module);
1169
1170static inline int module_unload_init(struct module *mod)
1171{
1172        return 0;
1173}
1174#endif /* CONFIG_MODULE_UNLOAD */
1175
1176static size_t module_flags_taint(struct module *mod, char *buf)
1177{
1178        size_t l = 0;
1179        int i;
1180
1181        for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1182                if (taint_flags[i].module && test_bit(i, &mod->taints))
1183                        buf[l++] = taint_flags[i].c_true;
1184        }
1185
1186        return l;
1187}
1188
1189static ssize_t show_initstate(struct module_attribute *mattr,
1190                              struct module_kobject *mk, char *buffer)
1191{
1192        const char *state = "unknown";
1193
1194        switch (mk->mod->state) {
1195        case MODULE_STATE_LIVE:
1196                state = "live";
1197                break;
1198        case MODULE_STATE_COMING:
1199                state = "coming";
1200                break;
1201        case MODULE_STATE_GOING:
1202                state = "going";
1203                break;
1204        default:
1205                BUG();
1206        }
1207        return sprintf(buffer, "%s\n", state);
1208}
1209
1210static struct module_attribute modinfo_initstate =
1211        __ATTR(initstate, 0444, show_initstate, NULL);
1212
1213static ssize_t store_uevent(struct module_attribute *mattr,
1214                            struct module_kobject *mk,
1215                            const char *buffer, size_t count)
1216{
1217        int rc;
1218
1219        rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1220        return rc ? rc : count;
1221}
1222
1223struct module_attribute module_uevent =
1224        __ATTR(uevent, 0200, NULL, store_uevent);
1225
1226static ssize_t show_coresize(struct module_attribute *mattr,
1227                             struct module_kobject *mk, char *buffer)
1228{
1229        return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1230}
1231
1232static struct module_attribute modinfo_coresize =
1233        __ATTR(coresize, 0444, show_coresize, NULL);
1234
1235static ssize_t show_initsize(struct module_attribute *mattr,
1236                             struct module_kobject *mk, char *buffer)
1237{
1238        return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1239}
1240
1241static struct module_attribute modinfo_initsize =
1242        __ATTR(initsize, 0444, show_initsize, NULL);
1243
1244static ssize_t show_taint(struct module_attribute *mattr,
1245                          struct module_kobject *mk, char *buffer)
1246{
1247        size_t l;
1248
1249        l = module_flags_taint(mk->mod, buffer);
1250        buffer[l++] = '\n';
1251        return l;
1252}
1253
1254static struct module_attribute modinfo_taint =
1255        __ATTR(taint, 0444, show_taint, NULL);
1256
1257static struct module_attribute *modinfo_attrs[] = {
1258        &module_uevent,
1259        &modinfo_version,
1260        &modinfo_srcversion,
1261        &modinfo_initstate,
1262        &modinfo_coresize,
1263        &modinfo_initsize,
1264        &modinfo_taint,
1265#ifdef CONFIG_MODULE_UNLOAD
1266        &modinfo_refcnt,
1267#endif
1268        NULL,
1269};
1270
1271static const char vermagic[] = VERMAGIC_STRING;
1272
1273static int try_to_force_load(struct module *mod, const char *reason)
1274{
1275#ifdef CONFIG_MODULE_FORCE_LOAD
1276        if (!test_taint(TAINT_FORCED_MODULE))
1277                pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1278        add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1279        return 0;
1280#else
1281        return -ENOEXEC;
1282#endif
1283}
1284
1285#ifdef CONFIG_MODVERSIONS
1286
1287static u32 resolve_rel_crc(const s32 *crc)
1288{
1289        return *(u32 *)((void *)crc + *crc);
1290}
1291
1292static int check_version(const struct load_info *info,
1293                         const char *symname,
1294                         struct module *mod,
1295                         const s32 *crc)
1296{
1297        Elf_Shdr *sechdrs = info->sechdrs;
1298        unsigned int versindex = info->index.vers;
1299        unsigned int i, num_versions;
1300        struct modversion_info *versions;
1301
1302        /* Exporting module didn't supply crcs?  OK, we're already tainted. */
1303        if (!crc)
1304                return 1;
1305
1306        /* No versions at all?  modprobe --force does this. */
1307        if (versindex == 0)
1308                return try_to_force_load(mod, symname) == 0;
1309
1310        versions = (void *) sechdrs[versindex].sh_addr;
1311        num_versions = sechdrs[versindex].sh_size
1312                / sizeof(struct modversion_info);
1313
1314        for (i = 0; i < num_versions; i++) {
1315                u32 crcval;
1316
1317                if (strcmp(versions[i].name, symname) != 0)
1318                        continue;
1319
1320                if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1321                        crcval = resolve_rel_crc(crc);
1322                else
1323                        crcval = *crc;
1324                if (versions[i].crc == crcval)
1325                        return 1;
1326                pr_debug("Found checksum %X vs module %lX\n",
1327                         crcval, versions[i].crc);
1328                goto bad_version;
1329        }
1330
1331        /* Broken toolchain. Warn once, then let it go.. */
1332        pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1333        return 1;
1334
1335bad_version:
1336        pr_warn("%s: disagrees about version of symbol %s\n",
1337               info->name, symname);
1338        return 0;
1339}
1340
1341static inline int check_modstruct_version(const struct load_info *info,
1342                                          struct module *mod)
1343{
1344        const s32 *crc;
1345
1346        /*
1347         * Since this should be found in kernel (which can't be removed), no
1348         * locking is necessary -- use preempt_disable() to placate lockdep.
1349         */
1350        preempt_disable();
1351        if (!find_symbol("module_layout", NULL, &crc, true, false)) {
1352                preempt_enable();
1353                BUG();
1354        }
1355        preempt_enable();
1356        return check_version(info, "module_layout", mod, crc);
1357}
1358
1359/* First part is kernel version, which we ignore if module has crcs. */
1360static inline int same_magic(const char *amagic, const char *bmagic,
1361                             bool has_crcs)
1362{
1363        if (has_crcs) {
1364                amagic += strcspn(amagic, " ");
1365                bmagic += strcspn(bmagic, " ");
1366        }
1367        return strcmp(amagic, bmagic) == 0;
1368}
1369#else
1370static inline int check_version(const struct load_info *info,
1371                                const char *symname,
1372                                struct module *mod,
1373                                const s32 *crc)
1374{
1375        return 1;
1376}
1377
1378static inline int check_modstruct_version(const struct load_info *info,
1379                                          struct module *mod)
1380{
1381        return 1;
1382}
1383
1384static inline int same_magic(const char *amagic, const char *bmagic,
1385                             bool has_crcs)
1386{
1387        return strcmp(amagic, bmagic) == 0;
1388}
1389#endif /* CONFIG_MODVERSIONS */
1390
1391static char *get_modinfo(const struct load_info *info, const char *tag);
1392static char *get_next_modinfo(const struct load_info *info, const char *tag,
1393                              char *prev);
1394
1395static int verify_namespace_is_imported(const struct load_info *info,
1396                                        const struct kernel_symbol *sym,
1397                                        struct module *mod)
1398{
1399        const char *namespace;
1400        char *imported_namespace;
1401
1402        namespace = kernel_symbol_namespace(sym);
1403        if (namespace) {
1404                imported_namespace = get_modinfo(info, "import_ns");
1405                while (imported_namespace) {
1406                        if (strcmp(namespace, imported_namespace) == 0)
1407                                return 0;
1408                        imported_namespace = get_next_modinfo(
1409                                info, "import_ns", imported_namespace);
1410                }
1411#ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1412                pr_warn(
1413#else
1414                pr_err(
1415#endif
1416                        "%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1417                        mod->name, kernel_symbol_name(sym), namespace);
1418#ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1419                return -EINVAL;
1420#endif
1421        }
1422        return 0;
1423}
1424
1425
1426/* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1427static const struct kernel_symbol *resolve_symbol(struct module *mod,
1428                                                  const struct load_info *info,
1429                                                  const char *name,
1430                                                  char ownername[])
1431{
1432        struct module *owner;
1433        const struct kernel_symbol *sym;
1434        const s32 *crc;
1435        int err;
1436
1437        /*
1438         * The module_mutex should not be a heavily contended lock;
1439         * if we get the occasional sleep here, we'll go an extra iteration
1440         * in the wait_event_interruptible(), which is harmless.
1441         */
1442        sched_annotate_sleep();
1443        mutex_lock(&module_mutex);
1444        sym = find_symbol(name, &owner, &crc,
1445                          !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1446        if (!sym)
1447                goto unlock;
1448
1449        if (!check_version(info, name, mod, crc)) {
1450                sym = ERR_PTR(-EINVAL);
1451                goto getname;
1452        }
1453
1454        err = verify_namespace_is_imported(info, sym, mod);
1455        if (err) {
1456                sym = ERR_PTR(err);
1457                goto getname;
1458        }
1459
1460        err = ref_module(mod, owner);
1461        if (err) {
1462                sym = ERR_PTR(err);
1463                goto getname;
1464        }
1465
1466getname:
1467        /* We must make copy under the lock if we failed to get ref. */
1468        strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1469unlock:
1470        mutex_unlock(&module_mutex);
1471        return sym;
1472}
1473
1474static const struct kernel_symbol *
1475resolve_symbol_wait(struct module *mod,
1476                    const struct load_info *info,
1477                    const char *name)
1478{
1479        const struct kernel_symbol *ksym;
1480        char owner[MODULE_NAME_LEN];
1481
1482        if (wait_event_interruptible_timeout(module_wq,
1483                        !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1484                        || PTR_ERR(ksym) != -EBUSY,
1485                                             30 * HZ) <= 0) {
1486                pr_warn("%s: gave up waiting for init of module %s.\n",
1487                        mod->name, owner);
1488        }
1489        return ksym;
1490}
1491
1492/*
1493 * /sys/module/foo/sections stuff
1494 * J. Corbet <corbet@lwn.net>
1495 */
1496#ifdef CONFIG_SYSFS
1497
1498#ifdef CONFIG_KALLSYMS
1499static inline bool sect_empty(const Elf_Shdr *sect)
1500{
1501        return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1502}
1503
1504struct module_sect_attr {
1505        struct module_attribute mattr;
1506        char *name;
1507        unsigned long address;
1508};
1509
1510struct module_sect_attrs {
1511        struct attribute_group grp;
1512        unsigned int nsections;
1513        struct module_sect_attr attrs[0];
1514};
1515
1516static ssize_t module_sect_show(struct module_attribute *mattr,
1517                                struct module_kobject *mk, char *buf)
1518{
1519        struct module_sect_attr *sattr =
1520                container_of(mattr, struct module_sect_attr, mattr);
1521        return sprintf(buf, "0x%px\n", kptr_restrict < 2 ?
1522                       (void *)sattr->address : NULL);
1523}
1524
1525static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1526{
1527        unsigned int section;
1528
1529        for (section = 0; section < sect_attrs->nsections; section++)
1530                kfree(sect_attrs->attrs[section].name);
1531        kfree(sect_attrs);
1532}
1533
1534static void add_sect_attrs(struct module *mod, const struct load_info *info)
1535{
1536        unsigned int nloaded = 0, i, size[2];
1537        struct module_sect_attrs *sect_attrs;
1538        struct module_sect_attr *sattr;
1539        struct attribute **gattr;
1540
1541        /* Count loaded sections and allocate structures */
1542        for (i = 0; i < info->hdr->e_shnum; i++)
1543                if (!sect_empty(&info->sechdrs[i]))
1544                        nloaded++;
1545        size[0] = ALIGN(struct_size(sect_attrs, attrs, nloaded),
1546                        sizeof(sect_attrs->grp.attrs[0]));
1547        size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1548        sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1549        if (sect_attrs == NULL)
1550                return;
1551
1552        /* Setup section attributes. */
1553        sect_attrs->grp.name = "sections";
1554        sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1555
1556        sect_attrs->nsections = 0;
1557        sattr = &sect_attrs->attrs[0];
1558        gattr = &sect_attrs->grp.attrs[0];
1559        for (i = 0; i < info->hdr->e_shnum; i++) {
1560                Elf_Shdr *sec = &info->sechdrs[i];
1561                if (sect_empty(sec))
1562                        continue;
1563                sattr->address = sec->sh_addr;
1564                sattr->name = kstrdup(info->secstrings + sec->sh_name,
1565                                        GFP_KERNEL);
1566                if (sattr->name == NULL)
1567                        goto out;
1568                sect_attrs->nsections++;
1569                sysfs_attr_init(&sattr->mattr.attr);
1570                sattr->mattr.show = module_sect_show;
1571                sattr->mattr.store = NULL;
1572                sattr->mattr.attr.name = sattr->name;
1573                sattr->mattr.attr.mode = S_IRUSR;
1574                *(gattr++) = &(sattr++)->mattr.attr;
1575        }
1576        *gattr = NULL;
1577
1578        if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1579                goto out;
1580
1581        mod->sect_attrs = sect_attrs;
1582        return;
1583  out:
1584        free_sect_attrs(sect_attrs);
1585}
1586
1587static void remove_sect_attrs(struct module *mod)
1588{
1589        if (mod->sect_attrs) {
1590                sysfs_remove_group(&mod->mkobj.kobj,
1591                                   &mod->sect_attrs->grp);
1592                /* We are positive that no one is using any sect attrs
1593                 * at this point.  Deallocate immediately. */
1594                free_sect_attrs(mod->sect_attrs);
1595                mod->sect_attrs = NULL;
1596        }
1597}
1598
1599/*
1600 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1601 */
1602
1603struct module_notes_attrs {
1604        struct kobject *dir;
1605        unsigned int notes;
1606        struct bin_attribute attrs[0];
1607};
1608
1609static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1610                                 struct bin_attribute *bin_attr,
1611                                 char *buf, loff_t pos, size_t count)
1612{
1613        /*
1614         * The caller checked the pos and count against our size.
1615         */
1616        memcpy(buf, bin_attr->private + pos, count);
1617        return count;
1618}
1619
1620static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1621                             unsigned int i)
1622{
1623        if (notes_attrs->dir) {
1624                while (i-- > 0)
1625                        sysfs_remove_bin_file(notes_attrs->dir,
1626                                              &notes_attrs->attrs[i]);
1627                kobject_put(notes_attrs->dir);
1628        }
1629        kfree(notes_attrs);
1630}
1631
1632static void add_notes_attrs(struct module *mod, const struct load_info *info)
1633{
1634        unsigned int notes, loaded, i;
1635        struct module_notes_attrs *notes_attrs;
1636        struct bin_attribute *nattr;
1637
1638        /* failed to create section attributes, so can't create notes */
1639        if (!mod->sect_attrs)
1640                return;
1641
1642        /* Count notes sections and allocate structures.  */
1643        notes = 0;
1644        for (i = 0; i < info->hdr->e_shnum; i++)
1645                if (!sect_empty(&info->sechdrs[i]) &&
1646                    (info->sechdrs[i].sh_type == SHT_NOTE))
1647                        ++notes;
1648
1649        if (notes == 0)
1650                return;
1651
1652        notes_attrs = kzalloc(struct_size(notes_attrs, attrs, notes),
1653                              GFP_KERNEL);
1654        if (notes_attrs == NULL)
1655                return;
1656
1657        notes_attrs->notes = notes;
1658        nattr = &notes_attrs->attrs[0];
1659        for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1660                if (sect_empty(&info->sechdrs[i]))
1661                        continue;
1662                if (info->sechdrs[i].sh_type == SHT_NOTE) {
1663                        sysfs_bin_attr_init(nattr);
1664                        nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1665                        nattr->attr.mode = S_IRUGO;
1666                        nattr->size = info->sechdrs[i].sh_size;
1667                        nattr->private = (void *) info->sechdrs[i].sh_addr;
1668                        nattr->read = module_notes_read;
1669                        ++nattr;
1670                }
1671                ++loaded;
1672        }
1673
1674        notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1675        if (!notes_attrs->dir)
1676                goto out;
1677
1678        for (i = 0; i < notes; ++i)
1679                if (sysfs_create_bin_file(notes_attrs->dir,
1680                                          &notes_attrs->attrs[i]))
1681                        goto out;
1682
1683        mod->notes_attrs = notes_attrs;
1684        return;
1685
1686  out:
1687        free_notes_attrs(notes_attrs, i);
1688}
1689
1690static void remove_notes_attrs(struct module *mod)
1691{
1692        if (mod->notes_attrs)
1693                free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1694}
1695
1696#else
1697
1698static inline void add_sect_attrs(struct module *mod,
1699                                  const struct load_info *info)
1700{
1701}
1702
1703static inline void remove_sect_attrs(struct module *mod)
1704{
1705}
1706
1707static inline void add_notes_attrs(struct module *mod,
1708                                   const struct load_info *info)
1709{
1710}
1711
1712static inline void remove_notes_attrs(struct module *mod)
1713{
1714}
1715#endif /* CONFIG_KALLSYMS */
1716
1717static void del_usage_links(struct module *mod)
1718{
1719#ifdef CONFIG_MODULE_UNLOAD
1720        struct module_use *use;
1721
1722        mutex_lock(&module_mutex);
1723        list_for_each_entry(use, &mod->target_list, target_list)
1724                sysfs_remove_link(use->target->holders_dir, mod->name);
1725        mutex_unlock(&module_mutex);
1726#endif
1727}
1728
1729static int add_usage_links(struct module *mod)
1730{
1731        int ret = 0;
1732#ifdef CONFIG_MODULE_UNLOAD
1733        struct module_use *use;
1734
1735        mutex_lock(&module_mutex);
1736        list_for_each_entry(use, &mod->target_list, target_list) {
1737                ret = sysfs_create_link(use->target->holders_dir,
1738                                        &mod->mkobj.kobj, mod->name);
1739                if (ret)
1740                        break;
1741        }
1742        mutex_unlock(&module_mutex);
1743        if (ret)
1744                del_usage_links(mod);
1745#endif
1746        return ret;
1747}
1748
1749static void module_remove_modinfo_attrs(struct module *mod, int end);
1750
1751static int module_add_modinfo_attrs(struct module *mod)
1752{
1753        struct module_attribute *attr;
1754        struct module_attribute *temp_attr;
1755        int error = 0;
1756        int i;
1757
1758        mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1759                                        (ARRAY_SIZE(modinfo_attrs) + 1)),
1760                                        GFP_KERNEL);
1761        if (!mod->modinfo_attrs)
1762                return -ENOMEM;
1763
1764        temp_attr = mod->modinfo_attrs;
1765        for (i = 0; (attr = modinfo_attrs[i]); i++) {
1766                if (!attr->test || attr->test(mod)) {
1767                        memcpy(temp_attr, attr, sizeof(*temp_attr));
1768                        sysfs_attr_init(&temp_attr->attr);
1769                        error = sysfs_create_file(&mod->mkobj.kobj,
1770                                        &temp_attr->attr);
1771                        if (error)
1772                                goto error_out;
1773                        ++temp_attr;
1774                }
1775        }
1776
1777        return 0;
1778
1779error_out:
1780        if (i > 0)
1781                module_remove_modinfo_attrs(mod, --i);
1782        return error;
1783}
1784
1785static void module_remove_modinfo_attrs(struct module *mod, int end)
1786{
1787        struct module_attribute *attr;
1788        int i;
1789
1790        for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1791                if (end >= 0 && i > end)
1792                        break;
1793                /* pick a field to test for end of list */
1794                if (!attr->attr.name)
1795                        break;
1796                sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1797                if (attr->free)
1798                        attr->free(mod);
1799        }
1800        kfree(mod->modinfo_attrs);
1801}
1802
1803static void mod_kobject_put(struct module *mod)
1804{
1805        DECLARE_COMPLETION_ONSTACK(c);
1806        mod->mkobj.kobj_completion = &c;
1807        kobject_put(&mod->mkobj.kobj);
1808        wait_for_completion(&c);
1809}
1810
1811static int mod_sysfs_init(struct module *mod)
1812{
1813        int err;
1814        struct kobject *kobj;
1815
1816        if (!module_sysfs_initialized) {
1817                pr_err("%s: module sysfs not initialized\n", mod->name);
1818                err = -EINVAL;
1819                goto out;
1820        }
1821
1822        kobj = kset_find_obj(module_kset, mod->name);
1823        if (kobj) {
1824                pr_err("%s: module is already loaded\n", mod->name);
1825                kobject_put(kobj);
1826                err = -EINVAL;
1827                goto out;
1828        }
1829
1830        mod->mkobj.mod = mod;
1831
1832        memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1833        mod->mkobj.kobj.kset = module_kset;
1834        err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1835                                   "%s", mod->name);
1836        if (err)
1837                mod_kobject_put(mod);
1838
1839        /* delay uevent until full sysfs population */
1840out:
1841        return err;
1842}
1843
1844static int mod_sysfs_setup(struct module *mod,
1845                           const struct load_info *info,
1846                           struct kernel_param *kparam,
1847                           unsigned int num_params)
1848{
1849        int err;
1850
1851        err = mod_sysfs_init(mod);
1852        if (err)
1853                goto out;
1854
1855        mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1856        if (!mod->holders_dir) {
1857                err = -ENOMEM;
1858                goto out_unreg;
1859        }
1860
1861        err = module_param_sysfs_setup(mod, kparam, num_params);
1862        if (err)
1863                goto out_unreg_holders;
1864
1865        err = module_add_modinfo_attrs(mod);
1866        if (err)
1867                goto out_unreg_param;
1868
1869        err = add_usage_links(mod);
1870        if (err)
1871                goto out_unreg_modinfo_attrs;
1872
1873        add_sect_attrs(mod, info);
1874        add_notes_attrs(mod, info);
1875
1876        kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1877        return 0;
1878
1879out_unreg_modinfo_attrs:
1880        module_remove_modinfo_attrs(mod, -1);
1881out_unreg_param:
1882        module_param_sysfs_remove(mod);
1883out_unreg_holders:
1884        kobject_put(mod->holders_dir);
1885out_unreg:
1886        mod_kobject_put(mod);
1887out:
1888        return err;
1889}
1890
1891static void mod_sysfs_fini(struct module *mod)
1892{
1893        remove_notes_attrs(mod);
1894        remove_sect_attrs(mod);
1895        mod_kobject_put(mod);
1896}
1897
1898static void init_param_lock(struct module *mod)
1899{
1900        mutex_init(&mod->param_lock);
1901}
1902#else /* !CONFIG_SYSFS */
1903
1904static int mod_sysfs_setup(struct module *mod,
1905                           const struct load_info *info,
1906                           struct kernel_param *kparam,
1907                           unsigned int num_params)
1908{
1909        return 0;
1910}
1911
1912static void mod_sysfs_fini(struct module *mod)
1913{
1914}
1915
1916static void module_remove_modinfo_attrs(struct module *mod, int end)
1917{
1918}
1919
1920static void del_usage_links(struct module *mod)
1921{
1922}
1923
1924static void init_param_lock(struct module *mod)
1925{
1926}
1927#endif /* CONFIG_SYSFS */
1928
1929static void mod_sysfs_teardown(struct module *mod)
1930{
1931        del_usage_links(mod);
1932        module_remove_modinfo_attrs(mod, -1);
1933        module_param_sysfs_remove(mod);
1934        kobject_put(mod->mkobj.drivers_dir);
1935        kobject_put(mod->holders_dir);
1936        mod_sysfs_fini(mod);
1937}
1938
1939#ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
1940/*
1941 * LKM RO/NX protection: protect module's text/ro-data
1942 * from modification and any data from execution.
1943 *
1944 * General layout of module is:
1945 *          [text] [read-only-data] [ro-after-init] [writable data]
1946 * text_size -----^                ^               ^               ^
1947 * ro_size ------------------------|               |               |
1948 * ro_after_init_size -----------------------------|               |
1949 * size -----------------------------------------------------------|
1950 *
1951 * These values are always page-aligned (as is base)
1952 */
1953static void frob_text(const struct module_layout *layout,
1954                      int (*set_memory)(unsigned long start, int num_pages))
1955{
1956        BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1957        BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1958        set_memory((unsigned long)layout->base,
1959                   layout->text_size >> PAGE_SHIFT);
1960}
1961
1962#ifdef CONFIG_STRICT_MODULE_RWX
1963static void frob_rodata(const struct module_layout *layout,
1964                        int (*set_memory)(unsigned long start, int num_pages))
1965{
1966        BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1967        BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1968        BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1969        set_memory((unsigned long)layout->base + layout->text_size,
1970                   (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1971}
1972
1973static void frob_ro_after_init(const struct module_layout *layout,
1974                                int (*set_memory)(unsigned long start, int num_pages))
1975{
1976        BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1977        BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1978        BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1979        set_memory((unsigned long)layout->base + layout->ro_size,
1980                   (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1981}
1982
1983static void frob_writable_data(const struct module_layout *layout,
1984                               int (*set_memory)(unsigned long start, int num_pages))
1985{
1986        BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1987        BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1988        BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1989        set_memory((unsigned long)layout->base + layout->ro_after_init_size,
1990                   (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
1991}
1992
1993/* livepatching wants to disable read-only so it can frob module. */
1994void module_disable_ro(const struct module *mod)
1995{
1996        if (!rodata_enabled)
1997                return;
1998
1999        frob_text(&mod->core_layout, set_memory_rw);
2000        frob_rodata(&mod->core_layout, set_memory_rw);
2001        frob_ro_after_init(&mod->core_layout, set_memory_rw);
2002        frob_text(&mod->init_layout, set_memory_rw);
2003        frob_rodata(&mod->init_layout, set_memory_rw);
2004}
2005
2006void module_enable_ro(const struct module *mod, bool after_init)
2007{
2008        if (!rodata_enabled)
2009                return;
2010
2011        set_vm_flush_reset_perms(mod->core_layout.base);
2012        set_vm_flush_reset_perms(mod->init_layout.base);
2013        frob_text(&mod->core_layout, set_memory_ro);
2014
2015        frob_rodata(&mod->core_layout, set_memory_ro);
2016        frob_text(&mod->init_layout, set_memory_ro);
2017        frob_rodata(&mod->init_layout, set_memory_ro);
2018
2019        if (after_init)
2020                frob_ro_after_init(&mod->core_layout, set_memory_ro);
2021}
2022
2023static void module_enable_nx(const struct module *mod)
2024{
2025        frob_rodata(&mod->core_layout, set_memory_nx);
2026        frob_ro_after_init(&mod->core_layout, set_memory_nx);
2027        frob_writable_data(&mod->core_layout, set_memory_nx);
2028        frob_rodata(&mod->init_layout, set_memory_nx);
2029        frob_writable_data(&mod->init_layout, set_memory_nx);
2030}
2031
2032/* Iterate through all modules and set each module's text as RW */
2033void set_all_modules_text_rw(void)
2034{
2035        struct module *mod;
2036
2037        if (!rodata_enabled)
2038                return;
2039
2040        mutex_lock(&module_mutex);
2041        list_for_each_entry_rcu(mod, &modules, list) {
2042                if (mod->state == MODULE_STATE_UNFORMED)
2043                        continue;
2044
2045                frob_text(&mod->core_layout, set_memory_rw);
2046                frob_text(&mod->init_layout, set_memory_rw);
2047        }
2048        mutex_unlock(&module_mutex);
2049}
2050
2051/* Iterate through all modules and set each module's text as RO */
2052void set_all_modules_text_ro(void)
2053{
2054        struct module *mod;
2055
2056        if (!rodata_enabled)
2057                return;
2058
2059        mutex_lock(&module_mutex);
2060        list_for_each_entry_rcu(mod, &modules, list) {
2061                /*
2062                 * Ignore going modules since it's possible that ro
2063                 * protection has already been disabled, otherwise we'll
2064                 * run into protection faults at module deallocation.
2065                 */
2066                if (mod->state == MODULE_STATE_UNFORMED ||
2067                        mod->state == MODULE_STATE_GOING)
2068                        continue;
2069
2070                frob_text(&mod->core_layout, set_memory_ro);
2071                frob_text(&mod->init_layout, set_memory_ro);
2072        }
2073        mutex_unlock(&module_mutex);
2074}
2075#else /* !CONFIG_STRICT_MODULE_RWX */
2076static void module_enable_nx(const struct module *mod) { }
2077#endif /*  CONFIG_STRICT_MODULE_RWX */
2078static void module_enable_x(const struct module *mod)
2079{
2080        frob_text(&mod->core_layout, set_memory_x);
2081        frob_text(&mod->init_layout, set_memory_x);
2082}
2083#else /* !CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
2084static void module_enable_nx(const struct module *mod) { }
2085static void module_enable_x(const struct module *mod) { }
2086#endif /* CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
2087
2088
2089#ifdef CONFIG_LIVEPATCH
2090/*
2091 * Persist Elf information about a module. Copy the Elf header,
2092 * section header table, section string table, and symtab section
2093 * index from info to mod->klp_info.
2094 */
2095static int copy_module_elf(struct module *mod, struct load_info *info)
2096{
2097        unsigned int size, symndx;
2098        int ret;
2099
2100        size = sizeof(*mod->klp_info);
2101        mod->klp_info = kmalloc(size, GFP_KERNEL);
2102        if (mod->klp_info == NULL)
2103                return -ENOMEM;
2104
2105        /* Elf header */
2106        size = sizeof(mod->klp_info->hdr);
2107        memcpy(&mod->klp_info->hdr, info->hdr, size);
2108
2109        /* Elf section header table */
2110        size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2111        mod->klp_info->sechdrs = kmemdup(info->sechdrs, size, GFP_KERNEL);
2112        if (mod->klp_info->sechdrs == NULL) {
2113                ret = -ENOMEM;
2114                goto free_info;
2115        }
2116
2117        /* Elf section name string table */
2118        size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2119        mod->klp_info->secstrings = kmemdup(info->secstrings, size, GFP_KERNEL);
2120        if (mod->klp_info->secstrings == NULL) {
2121                ret = -ENOMEM;
2122                goto free_sechdrs;
2123        }
2124
2125        /* Elf symbol section index */
2126        symndx = info->index.sym;
2127        mod->klp_info->symndx = symndx;
2128
2129        /*
2130         * For livepatch modules, core_kallsyms.symtab is a complete
2131         * copy of the original symbol table. Adjust sh_addr to point
2132         * to core_kallsyms.symtab since the copy of the symtab in module
2133         * init memory is freed at the end of do_init_module().
2134         */
2135        mod->klp_info->sechdrs[symndx].sh_addr = \
2136                (unsigned long) mod->core_kallsyms.symtab;
2137
2138        return 0;
2139
2140free_sechdrs:
2141        kfree(mod->klp_info->sechdrs);
2142free_info:
2143        kfree(mod->klp_info);
2144        return ret;
2145}
2146
2147static void free_module_elf(struct module *mod)
2148{
2149        kfree(mod->klp_info->sechdrs);
2150        kfree(mod->klp_info->secstrings);
2151        kfree(mod->klp_info);
2152}
2153#else /* !CONFIG_LIVEPATCH */
2154static int copy_module_elf(struct module *mod, struct load_info *info)
2155{
2156        return 0;
2157}
2158
2159static void free_module_elf(struct module *mod)
2160{
2161}
2162#endif /* CONFIG_LIVEPATCH */
2163
2164void __weak module_memfree(void *module_region)
2165{
2166        /*
2167         * This memory may be RO, and freeing RO memory in an interrupt is not
2168         * supported by vmalloc.
2169         */
2170        WARN_ON(in_interrupt());
2171        vfree(module_region);
2172}
2173
2174void __weak module_arch_cleanup(struct module *mod)
2175{
2176}
2177
2178void __weak module_arch_freeing_init(struct module *mod)
2179{
2180}
2181
2182/* Free a module, remove from lists, etc. */
2183static void free_module(struct module *mod)
2184{
2185        trace_module_free(mod);
2186
2187        mod_sysfs_teardown(mod);
2188
2189        /* We leave it in list to prevent duplicate loads, but make sure
2190         * that noone uses it while it's being deconstructed. */
2191        mutex_lock(&module_mutex);
2192        mod->state = MODULE_STATE_UNFORMED;
2193        mutex_unlock(&module_mutex);
2194
2195        /* Remove dynamic debug info */
2196        ddebug_remove_module(mod->name);
2197
2198        /* Arch-specific cleanup. */
2199        module_arch_cleanup(mod);
2200
2201        /* Module unload stuff */
2202        module_unload_free(mod);
2203
2204        /* Free any allocated parameters. */
2205        destroy_params(mod->kp, mod->num_kp);
2206
2207        if (is_livepatch_module(mod))
2208                free_module_elf(mod);
2209
2210        /* Now we can delete it from the lists */
2211        mutex_lock(&module_mutex);
2212        /* Unlink carefully: kallsyms could be walking list. */
2213        list_del_rcu(&mod->list);
2214        mod_tree_remove(mod);
2215        /* Remove this module from bug list, this uses list_del_rcu */
2216        module_bug_cleanup(mod);
2217        /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2218        synchronize_rcu();
2219        mutex_unlock(&module_mutex);
2220
2221        /* This may be empty, but that's OK */
2222        module_arch_freeing_init(mod);
2223        module_memfree(mod->init_layout.base);
2224        kfree(mod->args);
2225        percpu_modfree(mod);
2226
2227        /* Free lock-classes; relies on the preceding sync_rcu(). */
2228        lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2229
2230        /* Finally, free the core (containing the module structure) */
2231        module_memfree(mod->core_layout.base);
2232}
2233
2234void *__symbol_get(const char *symbol)
2235{
2236        struct module *owner;
2237        const struct kernel_symbol *sym;
2238
2239        preempt_disable();
2240        sym = find_symbol(symbol, &owner, NULL, true, true);
2241        if (sym && strong_try_module_get(owner))
2242                sym = NULL;
2243        preempt_enable();
2244
2245        return sym ? (void *)kernel_symbol_value(sym) : NULL;
2246}
2247EXPORT_SYMBOL_GPL(__symbol_get);
2248
2249/*
2250 * Ensure that an exported symbol [global namespace] does not already exist
2251 * in the kernel or in some other module's exported symbol table.
2252 *
2253 * You must hold the module_mutex.
2254 */
2255static int verify_exported_symbols(struct module *mod)
2256{
2257        unsigned int i;
2258        struct module *owner;
2259        const struct kernel_symbol *s;
2260        struct {
2261                const struct kernel_symbol *sym;
2262                unsigned int num;
2263        } arr[] = {
2264                { mod->syms, mod->num_syms },
2265                { mod->gpl_syms, mod->num_gpl_syms },
2266                { mod->gpl_future_syms, mod->num_gpl_future_syms },
2267#ifdef CONFIG_UNUSED_SYMBOLS
2268                { mod->unused_syms, mod->num_unused_syms },
2269                { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2270#endif
2271        };
2272
2273        for (i = 0; i < ARRAY_SIZE(arr); i++) {
2274                for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2275                        if (find_symbol(kernel_symbol_name(s), &owner, NULL,
2276                                        true, false)) {
2277                                pr_err("%s: exports duplicate symbol %s"
2278                                       " (owned by %s)\n",
2279                                       mod->name, kernel_symbol_name(s),
2280                                       module_name(owner));
2281                                return -ENOEXEC;
2282                        }
2283                }
2284        }
2285        return 0;
2286}
2287
2288/* Change all symbols so that st_value encodes the pointer directly. */
2289static int simplify_symbols(struct module *mod, const struct load_info *info)
2290{
2291        Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2292        Elf_Sym *sym = (void *)symsec->sh_addr;
2293        unsigned long secbase;
2294        unsigned int i;
2295        int ret = 0;
2296        const struct kernel_symbol *ksym;
2297
2298        for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2299                const char *name = info->strtab + sym[i].st_name;
2300
2301                switch (sym[i].st_shndx) {
2302                case SHN_COMMON:
2303                        /* Ignore common symbols */
2304                        if (!strncmp(name, "__gnu_lto", 9))
2305                                break;
2306
2307                        /* We compiled with -fno-common.  These are not
2308                           supposed to happen.  */
2309                        pr_debug("Common symbol: %s\n", name);
2310                        pr_warn("%s: please compile with -fno-common\n",
2311                               mod->name);
2312                        ret = -ENOEXEC;
2313                        break;
2314
2315                case SHN_ABS:
2316                        /* Don't need to do anything */
2317                        pr_debug("Absolute symbol: 0x%08lx\n",
2318                               (long)sym[i].st_value);
2319                        break;
2320
2321                case SHN_LIVEPATCH:
2322                        /* Livepatch symbols are resolved by livepatch */
2323                        break;
2324
2325                case SHN_UNDEF:
2326                        ksym = resolve_symbol_wait(mod, info, name);
2327                        /* Ok if resolved.  */
2328                        if (ksym && !IS_ERR(ksym)) {
2329                                sym[i].st_value = kernel_symbol_value(ksym);
2330                                break;
2331                        }
2332
2333                        /* Ok if weak.  */
2334                        if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2335                                break;
2336
2337                        ret = PTR_ERR(ksym) ?: -ENOENT;
2338                        pr_warn("%s: Unknown symbol %s (err %d)\n",
2339                                mod->name, name, ret);
2340                        break;
2341
2342                default:
2343                        /* Divert to percpu allocation if a percpu var. */
2344                        if (sym[i].st_shndx == info->index.pcpu)
2345                                secbase = (unsigned long)mod_percpu(mod);
2346                        else
2347                                secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2348                        sym[i].st_value += secbase;
2349                        break;
2350                }
2351        }
2352
2353        return ret;
2354}
2355
2356static int apply_relocations(struct module *mod, const struct load_info *info)
2357{
2358        unsigned int i;
2359        int err = 0;
2360
2361        /* Now do relocations. */
2362        for (i = 1; i < info->hdr->e_shnum; i++) {
2363                unsigned int infosec = info->sechdrs[i].sh_info;
2364
2365                /* Not a valid relocation section? */
2366                if (infosec >= info->hdr->e_shnum)
2367                        continue;
2368
2369                /* Don't bother with non-allocated sections */
2370                if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2371                        continue;
2372
2373                /* Livepatch relocation sections are applied by livepatch */
2374                if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2375                        continue;
2376
2377                if (info->sechdrs[i].sh_type == SHT_REL)
2378                        err = apply_relocate(info->sechdrs, info->strtab,
2379                                             info->index.sym, i, mod);
2380                else if (info->sechdrs[i].sh_type == SHT_RELA)
2381                        err = apply_relocate_add(info->sechdrs, info->strtab,
2382                                                 info->index.sym, i, mod);
2383                if (err < 0)
2384                        break;
2385        }
2386        return err;
2387}
2388
2389/* Additional bytes needed by arch in front of individual sections */
2390unsigned int __weak arch_mod_section_prepend(struct module *mod,
2391                                             unsigned int section)
2392{
2393        /* default implementation just returns zero */
2394        return 0;
2395}
2396
2397/* Update size with this section: return offset. */
2398static long get_offset(struct module *mod, unsigned int *size,
2399                       Elf_Shdr *sechdr, unsigned int section)
2400{
2401        long ret;
2402
2403        *size += arch_mod_section_prepend(mod, section);
2404        ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2405        *size = ret + sechdr->sh_size;
2406        return ret;
2407}
2408
2409/* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2410   might -- code, read-only data, read-write data, small data.  Tally
2411   sizes, and place the offsets into sh_entsize fields: high bit means it
2412   belongs in init. */
2413static void layout_sections(struct module *mod, struct load_info *info)
2414{
2415        static unsigned long const masks[][2] = {
2416                /* NOTE: all executable code must be the first section
2417                 * in this array; otherwise modify the text_size
2418                 * finder in the two loops below */
2419                { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2420                { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2421                { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2422                { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2423                { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2424        };
2425        unsigned int m, i;
2426
2427        for (i = 0; i < info->hdr->e_shnum; i++)
2428                info->sechdrs[i].sh_entsize = ~0UL;
2429
2430        pr_debug("Core section allocation order:\n");
2431        for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2432                for (i = 0; i < info->hdr->e_shnum; ++i) {
2433                        Elf_Shdr *s = &info->sechdrs[i];
2434                        const char *sname = info->secstrings + s->sh_name;
2435
2436                        if ((s->sh_flags & masks[m][0]) != masks[m][0]
2437                            || (s->sh_flags & masks[m][1])
2438                            || s->sh_entsize != ~0UL
2439                            || strstarts(sname, ".init"))
2440                                continue;
2441                        s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2442                        pr_debug("\t%s\n", sname);
2443                }
2444                switch (m) {
2445                case 0: /* executable */
2446                        mod->core_layout.size = debug_align(mod->core_layout.size);
2447                        mod->core_layout.text_size = mod->core_layout.size;
2448                        break;
2449                case 1: /* RO: text and ro-data */
2450                        mod->core_layout.size = debug_align(mod->core_layout.size);
2451                        mod->core_layout.ro_size = mod->core_layout.size;
2452                        break;
2453                case 2: /* RO after init */
2454                        mod->core_layout.size = debug_align(mod->core_layout.size);
2455                        mod->core_layout.ro_after_init_size = mod->core_layout.size;
2456                        break;
2457                case 4: /* whole core */
2458                        mod->core_layout.size = debug_align(mod->core_layout.size);
2459                        break;
2460                }
2461        }
2462
2463        pr_debug("Init section allocation order:\n");
2464        for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2465                for (i = 0; i < info->hdr->e_shnum; ++i) {
2466                        Elf_Shdr *s = &info->sechdrs[i];
2467                        const char *sname = info->secstrings + s->sh_name;
2468
2469                        if ((s->sh_flags & masks[m][0]) != masks[m][0]
2470                            || (s->sh_flags & masks[m][1])
2471                            || s->sh_entsize != ~0UL
2472                            || !strstarts(sname, ".init"))
2473                                continue;
2474                        s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2475                                         | INIT_OFFSET_MASK);
2476                        pr_debug("\t%s\n", sname);
2477                }
2478                switch (m) {
2479                case 0: /* executable */
2480                        mod->init_layout.size = debug_align(mod->init_layout.size);
2481                        mod->init_layout.text_size = mod->init_layout.size;
2482                        break;
2483                case 1: /* RO: text and ro-data */
2484                        mod->init_layout.size = debug_align(mod->init_layout.size);
2485                        mod->init_layout.ro_size = mod->init_layout.size;
2486                        break;
2487                case 2:
2488                        /*
2489                         * RO after init doesn't apply to init_layout (only
2490                         * core_layout), so it just takes the value of ro_size.
2491                         */
2492                        mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2493                        break;
2494                case 4: /* whole init */
2495                        mod->init_layout.size = debug_align(mod->init_layout.size);
2496                        break;
2497                }
2498        }
2499}
2500
2501static void set_license(struct module *mod, const char *license)
2502{
2503        if (!license)
2504                license = "unspecified";
2505
2506        if (!license_is_gpl_compatible(license)) {
2507                if (!test_taint(TAINT_PROPRIETARY_MODULE))
2508                        pr_warn("%s: module license '%s' taints kernel.\n",
2509                                mod->name, license);
2510                add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2511                                 LOCKDEP_NOW_UNRELIABLE);
2512        }
2513}
2514
2515/* Parse tag=value strings from .modinfo section */
2516static char *next_string(char *string, unsigned long *secsize)
2517{
2518        /* Skip non-zero chars */
2519        while (string[0]) {
2520                string++;
2521                if ((*secsize)-- <= 1)
2522                        return NULL;
2523        }
2524
2525        /* Skip any zero padding. */
2526        while (!string[0]) {
2527                string++;
2528                if ((*secsize)-- <= 1)
2529                        return NULL;
2530        }
2531        return string;
2532}
2533
2534static char *get_next_modinfo(const struct load_info *info, const char *tag,
2535                              char *prev)
2536{
2537        char *p;
2538        unsigned int taglen = strlen(tag);
2539        Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2540        unsigned long size = infosec->sh_size;
2541
2542        /*
2543         * get_modinfo() calls made before rewrite_section_headers()
2544         * must use sh_offset, as sh_addr isn't set!
2545         */
2546        char *modinfo = (char *)info->hdr + infosec->sh_offset;
2547
2548        if (prev) {
2549                size -= prev - modinfo;
2550                modinfo = next_string(prev, &size);
2551        }
2552
2553        for (p = modinfo; p; p = next_string(p, &size)) {
2554                if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2555                        return p + taglen + 1;
2556        }
2557        return NULL;
2558}
2559
2560static char *get_modinfo(const struct load_info *info, const char *tag)
2561{
2562        return get_next_modinfo(info, tag, NULL);
2563}
2564
2565static void setup_modinfo(struct module *mod, struct load_info *info)
2566{
2567        struct module_attribute *attr;
2568        int i;
2569
2570        for (i = 0; (attr = modinfo_attrs[i]); i++) {
2571                if (attr->setup)
2572                        attr->setup(mod, get_modinfo(info, attr->attr.name));
2573        }
2574}
2575
2576static void free_modinfo(struct module *mod)
2577{
2578        struct module_attribute *attr;
2579        int i;
2580
2581        for (i = 0; (attr = modinfo_attrs[i]); i++) {
2582                if (attr->free)
2583                        attr->free(mod);
2584        }
2585}
2586
2587#ifdef CONFIG_KALLSYMS
2588
2589/* Lookup exported symbol in given range of kernel_symbols */
2590static const struct kernel_symbol *lookup_exported_symbol(const char *name,
2591                                                          const struct kernel_symbol *start,
2592                                                          const struct kernel_symbol *stop)
2593{
2594        return bsearch(name, start, stop - start,
2595                        sizeof(struct kernel_symbol), cmp_name);
2596}
2597
2598static int is_exported(const char *name, unsigned long value,
2599                       const struct module *mod)
2600{
2601        const struct kernel_symbol *ks;
2602        if (!mod)
2603                ks = lookup_exported_symbol(name, __start___ksymtab, __stop___ksymtab);
2604        else
2605                ks = lookup_exported_symbol(name, mod->syms, mod->syms + mod->num_syms);
2606
2607        return ks != NULL && kernel_symbol_value(ks) == value;
2608}
2609
2610/* As per nm */
2611static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2612{
2613        const Elf_Shdr *sechdrs = info->sechdrs;
2614
2615        if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2616                if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2617                        return 'v';
2618                else
2619                        return 'w';
2620        }
2621        if (sym->st_shndx == SHN_UNDEF)
2622                return 'U';
2623        if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2624                return 'a';
2625        if (sym->st_shndx >= SHN_LORESERVE)
2626                return '?';
2627        if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2628                return 't';
2629        if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2630            && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2631                if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2632                        return 'r';
2633                else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2634                        return 'g';
2635                else
2636                        return 'd';
2637        }
2638        if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2639                if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2640                        return 's';
2641                else
2642                        return 'b';
2643        }
2644        if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2645                      ".debug")) {
2646                return 'n';
2647        }
2648        return '?';
2649}
2650
2651static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2652                        unsigned int shnum, unsigned int pcpundx)
2653{
2654        const Elf_Shdr *sec;
2655
2656        if (src->st_shndx == SHN_UNDEF
2657            || src->st_shndx >= shnum
2658            || !src->st_name)
2659                return false;
2660
2661#ifdef CONFIG_KALLSYMS_ALL
2662        if (src->st_shndx == pcpundx)
2663                return true;
2664#endif
2665
2666        sec = sechdrs + src->st_shndx;
2667        if (!(sec->sh_flags & SHF_ALLOC)
2668#ifndef CONFIG_KALLSYMS_ALL
2669            || !(sec->sh_flags & SHF_EXECINSTR)
2670#endif
2671            || (sec->sh_entsize & INIT_OFFSET_MASK))
2672                return false;
2673
2674        return true;
2675}
2676
2677/*
2678 * We only allocate and copy the strings needed by the parts of symtab
2679 * we keep.  This is simple, but has the effect of making multiple
2680 * copies of duplicates.  We could be more sophisticated, see
2681 * linux-kernel thread starting with
2682 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2683 */
2684static void layout_symtab(struct module *mod, struct load_info *info)
2685{
2686        Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2687        Elf_Shdr *strsect = info->sechdrs + info->index.str;
2688        const Elf_Sym *src;
2689        unsigned int i, nsrc, ndst, strtab_size = 0;
2690
2691        /* Put symbol section at end of init part of module. */
2692        symsect->sh_flags |= SHF_ALLOC;
2693        symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2694                                         info->index.sym) | INIT_OFFSET_MASK;
2695        pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2696
2697        src = (void *)info->hdr + symsect->sh_offset;
2698        nsrc = symsect->sh_size / sizeof(*src);
2699
2700        /* Compute total space required for the core symbols' strtab. */
2701        for (ndst = i = 0; i < nsrc; i++) {
2702                if (i == 0 || is_livepatch_module(mod) ||
2703                    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2704                                   info->index.pcpu)) {
2705                        strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2706                        ndst++;
2707                }
2708        }
2709
2710        /* Append room for core symbols at end of core part. */
2711        info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2712        info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2713        mod->core_layout.size += strtab_size;
2714        info->core_typeoffs = mod->core_layout.size;
2715        mod->core_layout.size += ndst * sizeof(char);
2716        mod->core_layout.size = debug_align(mod->core_layout.size);
2717
2718        /* Put string table section at end of init part of module. */
2719        strsect->sh_flags |= SHF_ALLOC;
2720        strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2721                                         info->index.str) | INIT_OFFSET_MASK;
2722        pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2723
2724        /* We'll tack temporary mod_kallsyms on the end. */
2725        mod->init_layout.size = ALIGN(mod->init_layout.size,
2726                                      __alignof__(struct mod_kallsyms));
2727        info->mod_kallsyms_init_off = mod->init_layout.size;
2728        mod->init_layout.size += sizeof(struct mod_kallsyms);
2729        info->init_typeoffs = mod->init_layout.size;
2730        mod->init_layout.size += nsrc * sizeof(char);
2731        mod->init_layout.size = debug_align(mod->init_layout.size);
2732}
2733
2734/*
2735 * We use the full symtab and strtab which layout_symtab arranged to
2736 * be appended to the init section.  Later we switch to the cut-down
2737 * core-only ones.
2738 */
2739static void add_kallsyms(struct module *mod, const struct load_info *info)
2740{
2741        unsigned int i, ndst;
2742        const Elf_Sym *src;
2743        Elf_Sym *dst;
2744        char *s;
2745        Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2746
2747        /* Set up to point into init section. */
2748        mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2749
2750        mod->kallsyms->symtab = (void *)symsec->sh_addr;
2751        mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2752        /* Make sure we get permanent strtab: don't use info->strtab. */
2753        mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2754        mod->kallsyms->typetab = mod->init_layout.base + info->init_typeoffs;
2755
2756        /*
2757         * Now populate the cut down core kallsyms for after init
2758         * and set types up while we still have access to sections.
2759         */
2760        mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2761        mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2762        mod->core_kallsyms.typetab = mod->core_layout.base + info->core_typeoffs;
2763        src = mod->kallsyms->symtab;
2764        for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2765                mod->kallsyms->typetab[i] = elf_type(src + i, info);
2766                if (i == 0 || is_livepatch_module(mod) ||
2767                    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2768                                   info->index.pcpu)) {
2769                        mod->core_kallsyms.typetab[ndst] =
2770                            mod->kallsyms->typetab[i];
2771                        dst[ndst] = src[i];
2772                        dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2773                        s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2774                                     KSYM_NAME_LEN) + 1;
2775                }
2776        }
2777        mod->core_kallsyms.num_symtab = ndst;
2778}
2779#else
2780static inline void layout_symtab(struct module *mod, struct load_info *info)
2781{
2782}
2783
2784static void add_kallsyms(struct module *mod, const struct load_info *info)
2785{
2786}
2787#endif /* CONFIG_KALLSYMS */
2788
2789static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2790{
2791        if (!debug)
2792                return;
2793        ddebug_add_module(debug, num, mod->name);
2794}
2795
2796static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2797{
2798        if (debug)
2799                ddebug_remove_module(mod->name);
2800}
2801
2802void * __weak module_alloc(unsigned long size)
2803{
2804        return vmalloc_exec(size);
2805}
2806
2807bool __weak module_exit_section(const char *name)
2808{
2809        return strstarts(name, ".exit");
2810}
2811
2812#ifdef CONFIG_DEBUG_KMEMLEAK
2813static void kmemleak_load_module(const struct module *mod,
2814                                 const struct load_info *info)
2815{
2816        unsigned int i;
2817
2818        /* only scan the sections containing data */
2819        kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2820
2821        for (i = 1; i < info->hdr->e_shnum; i++) {
2822                /* Scan all writable sections that's not executable */
2823                if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2824                    !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2825                    (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2826                        continue;
2827
2828                kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2829                                   info->sechdrs[i].sh_size, GFP_KERNEL);
2830        }
2831}
2832#else
2833static inline void kmemleak_load_module(const struct module *mod,
2834                                        const struct load_info *info)
2835{
2836}
2837#endif
2838
2839#ifdef CONFIG_MODULE_SIG
2840static int module_sig_check(struct load_info *info, int flags)
2841{
2842        int err = -ENODATA;
2843        const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2844        const char *reason;
2845        const void *mod = info->hdr;
2846
2847        /*
2848         * Require flags == 0, as a module with version information
2849         * removed is no longer the module that was signed
2850         */
2851        if (flags == 0 &&
2852            info->len > markerlen &&
2853            memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2854                /* We truncate the module to discard the signature */
2855                info->len -= markerlen;
2856                err = mod_verify_sig(mod, info);
2857        }
2858
2859        switch (err) {
2860        case 0:
2861                info->sig_ok = true;
2862                return 0;
2863
2864                /* We don't permit modules to be loaded into trusted kernels
2865                 * without a valid signature on them, but if we're not
2866                 * enforcing, certain errors are non-fatal.
2867                 */
2868        case -ENODATA:
2869                reason = "Loading of unsigned module";
2870                goto decide;
2871        case -ENOPKG:
2872                reason = "Loading of module with unsupported crypto";
2873                goto decide;
2874        case -ENOKEY:
2875                reason = "Loading of module with unavailable key";
2876        decide:
2877                if (is_module_sig_enforced()) {
2878                        pr_notice("%s is rejected\n", reason);
2879                        return -EKEYREJECTED;
2880                }
2881
2882                return security_locked_down(LOCKDOWN_MODULE_SIGNATURE);
2883
2884                /* All other errors are fatal, including nomem, unparseable
2885                 * signatures and signature check failures - even if signatures
2886                 * aren't required.
2887                 */
2888        default:
2889                return err;
2890        }
2891}
2892#else /* !CONFIG_MODULE_SIG */
2893static int module_sig_check(struct load_info *info, int flags)
2894{
2895        return 0;
2896}
2897#endif /* !CONFIG_MODULE_SIG */
2898
2899/* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2900static int elf_header_check(struct load_info *info)
2901{
2902        if (info->len < sizeof(*(info->hdr)))
2903                return -ENOEXEC;
2904
2905        if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2906            || info->hdr->e_type != ET_REL
2907            || !elf_check_arch(info->hdr)
2908            || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2909                return -ENOEXEC;
2910
2911        if (info->hdr->e_shoff >= info->len
2912            || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2913                info->len - info->hdr->e_shoff))
2914                return -ENOEXEC;
2915
2916        return 0;
2917}
2918
2919#define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2920
2921static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2922{
2923        do {
2924                unsigned long n = min(len, COPY_CHUNK_SIZE);
2925
2926                if (copy_from_user(dst, usrc, n) != 0)
2927                        return -EFAULT;
2928                cond_resched();
2929                dst += n;
2930                usrc += n;
2931                len -= n;
2932        } while (len);
2933        return 0;
2934}
2935
2936#ifdef CONFIG_LIVEPATCH
2937static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2938{
2939        if (get_modinfo(info, "livepatch")) {
2940                mod->klp = true;
2941                add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2942                pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2943                               mod->name);
2944        }
2945
2946        return 0;
2947}
2948#else /* !CONFIG_LIVEPATCH */
2949static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2950{
2951        if (get_modinfo(info, "livepatch")) {
2952                pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2953                       mod->name);
2954                return -ENOEXEC;
2955        }
2956
2957        return 0;
2958}
2959#endif /* CONFIG_LIVEPATCH */
2960
2961static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2962{
2963        if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2964                return;
2965
2966        pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2967                mod->name);
2968}
2969
2970/* Sets info->hdr and info->len. */
2971static int copy_module_from_user(const void __user *umod, unsigned long len,
2972                                  struct load_info *info)
2973{
2974        int err;
2975
2976        info->len = len;
2977        if (info->len < sizeof(*(info->hdr)))
2978                return -ENOEXEC;
2979
2980        err = security_kernel_load_data(LOADING_MODULE);
2981        if (err)
2982                return err;
2983
2984        /* Suck in entire file: we'll want most of it. */
2985        info->hdr = __vmalloc(info->len,
2986                        GFP_KERNEL | __GFP_NOWARN, PAGE_KERNEL);
2987        if (!info->hdr)
2988                return -ENOMEM;
2989
2990        if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2991                vfree(info->hdr);
2992                return -EFAULT;
2993        }
2994
2995        return 0;
2996}
2997
2998static void free_copy(struct load_info *info)
2999{
3000        vfree(info->hdr);
3001}
3002
3003static int rewrite_section_headers(struct load_info *info, int flags)
3004{
3005        unsigned int i;
3006
3007        /* This should always be true, but let's be sure. */
3008        info->sechdrs[0].sh_addr = 0;
3009
3010        for (i = 1; i < info->hdr->e_shnum; i++) {
3011                Elf_Shdr *shdr = &info->sechdrs[i];
3012                if (shdr->sh_type != SHT_NOBITS
3013                    && info->len < shdr->sh_offset + shdr->sh_size) {
3014                        pr_err("Module len %lu truncated\n", info->len);
3015                        return -ENOEXEC;
3016                }
3017
3018                /* Mark all sections sh_addr with their address in the
3019                   temporary image. */
3020                shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
3021
3022#ifndef CONFIG_MODULE_UNLOAD
3023                /* Don't load .exit sections */
3024                if (module_exit_section(info->secstrings+shdr->sh_name))
3025                        shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
3026#endif
3027        }
3028
3029        /* Track but don't keep modinfo and version sections. */
3030        info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
3031        info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
3032
3033        return 0;
3034}
3035
3036/*
3037 * Set up our basic convenience variables (pointers to section headers,
3038 * search for module section index etc), and do some basic section
3039 * verification.
3040 *
3041 * Set info->mod to the temporary copy of the module in info->hdr. The final one
3042 * will be allocated in move_module().
3043 */
3044static int setup_load_info(struct load_info *info, int flags)
3045{
3046        unsigned int i;
3047
3048        /* Set up the convenience variables */
3049        info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
3050        info->secstrings = (void *)info->hdr
3051                + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
3052
3053        /* Try to find a name early so we can log errors with a module name */
3054        info->index.info = find_sec(info, ".modinfo");
3055        if (!info->index.info)
3056                info->name = "(missing .modinfo section)";
3057        else
3058                info->name = get_modinfo(info, "name");
3059
3060        /* Find internal symbols and strings. */
3061        for (i = 1; i < info->hdr->e_shnum; i++) {
3062                if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
3063                        info->index.sym = i;
3064                        info->index.str = info->sechdrs[i].sh_link;
3065                        info->strtab = (char *)info->hdr
3066                                + info->sechdrs[info->index.str].sh_offset;
3067                        break;
3068                }
3069        }
3070
3071        if (info->index.sym == 0) {
3072                pr_warn("%s: module has no symbols (stripped?)\n", info->name);
3073                return -ENOEXEC;
3074        }
3075
3076        info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
3077        if (!info->index.mod) {
3078                pr_warn("%s: No module found in object\n",
3079                        info->name ?: "(missing .modinfo name field)");
3080                return -ENOEXEC;
3081        }
3082        /* This is temporary: point mod into copy of data. */
3083        info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
3084
3085        /*
3086         * If we didn't load the .modinfo 'name' field earlier, fall back to
3087         * on-disk struct mod 'name' field.
3088         */
3089        if (!info->name)
3090                info->name = info->mod->name;
3091
3092        if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
3093                info->index.vers = 0; /* Pretend no __versions section! */
3094        else
3095                info->index.vers = find_sec(info, "__versions");
3096
3097        info->index.pcpu = find_pcpusec(info);
3098
3099        return 0;
3100}
3101
3102static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3103{
3104        const char *modmagic = get_modinfo(info, "vermagic");
3105        int err;
3106
3107        if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3108                modmagic = NULL;
3109
3110        /* This is allowed: modprobe --force will invalidate it. */
3111        if (!modmagic) {
3112                err = try_to_force_load(mod, "bad vermagic");
3113                if (err)
3114                        return err;
3115        } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3116                pr_err("%s: version magic '%s' should be '%s'\n",
3117                       info->name, modmagic, vermagic);
3118                return -ENOEXEC;
3119        }
3120
3121        if (!get_modinfo(info, "intree")) {
3122                if (!test_taint(TAINT_OOT_MODULE))
3123                        pr_warn("%s: loading out-of-tree module taints kernel.\n",
3124                                mod->name);
3125                add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3126        }
3127
3128        check_modinfo_retpoline(mod, info);
3129
3130        if (get_modinfo(info, "staging")) {
3131                add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3132                pr_warn("%s: module is from the staging directory, the quality "
3133                        "is unknown, you have been warned.\n", mod->name);
3134        }
3135
3136        err = check_modinfo_livepatch(mod, info);
3137        if (err)
3138                return err;
3139
3140        /* Set up license info based on the info section */
3141        set_license(mod, get_modinfo(info, "license"));
3142
3143        return 0;
3144}
3145
3146static int find_module_sections(struct module *mod, struct load_info *info)
3147{
3148        mod->kp = section_objs(info, "__param",
3149                               sizeof(*mod->kp), &mod->num_kp);
3150        mod->syms = section_objs(info, "__ksymtab",
3151                                 sizeof(*mod->syms), &mod->num_syms);
3152        mod->crcs = section_addr(info, "__kcrctab");
3153        mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3154                                     sizeof(*mod->gpl_syms),
3155                                     &mod->num_gpl_syms);
3156        mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3157        mod->gpl_future_syms = section_objs(info,
3158                                            "__ksymtab_gpl_future",
3159                                            sizeof(*mod->gpl_future_syms),
3160                                            &mod->num_gpl_future_syms);
3161        mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3162
3163#ifdef CONFIG_UNUSED_SYMBOLS
3164        mod->unused_syms = section_objs(info, "__ksymtab_unused",
3165                                        sizeof(*mod->unused_syms),
3166                                        &mod->num_unused_syms);
3167        mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3168        mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3169                                            sizeof(*mod->unused_gpl_syms),
3170                                            &mod->num_unused_gpl_syms);
3171        mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3172#endif
3173#ifdef CONFIG_CONSTRUCTORS
3174        mod->ctors = section_objs(info, ".ctors",
3175                                  sizeof(*mod->ctors), &mod->num_ctors);
3176        if (!mod->ctors)
3177                mod->ctors = section_objs(info, ".init_array",
3178                                sizeof(*mod->ctors), &mod->num_ctors);
3179        else if (find_sec(info, ".init_array")) {
3180                /*
3181                 * This shouldn't happen with same compiler and binutils
3182                 * building all parts of the module.
3183                 */
3184                pr_warn("%s: has both .ctors and .init_array.\n",
3185                       mod->name);
3186                return -EINVAL;
3187        }
3188#endif
3189
3190#ifdef CONFIG_TRACEPOINTS
3191        mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3192                                             sizeof(*mod->tracepoints_ptrs),
3193                                             &mod->num_tracepoints);
3194#endif
3195#ifdef CONFIG_TREE_SRCU
3196        mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
3197                                             sizeof(*mod->srcu_struct_ptrs),
3198                                             &mod->num_srcu_structs);
3199#endif
3200#ifdef CONFIG_BPF_EVENTS
3201        mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
3202                                           sizeof(*mod->bpf_raw_events),
3203                                           &mod->num_bpf_raw_events);
3204#endif
3205#ifdef CONFIG_JUMP_LABEL
3206        mod->jump_entries = section_objs(info, "__jump_table",
3207                                        sizeof(*mod->jump_entries),
3208                                        &mod->num_jump_entries);
3209#endif
3210#ifdef CONFIG_EVENT_TRACING
3211        mod->trace_events = section_objs(info, "_ftrace_events",
3212                                         sizeof(*mod->trace_events),
3213                                         &mod->num_trace_events);
3214        mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3215                                        sizeof(*mod->trace_evals),
3216                                        &mod->num_trace_evals);
3217#endif
3218#ifdef CONFIG_TRACING
3219        mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3220                                         sizeof(*mod->trace_bprintk_fmt_start),
3221                                         &mod->num_trace_bprintk_fmt);
3222#endif
3223#ifdef CONFIG_FTRACE_MCOUNT_RECORD
3224        /* sechdrs[0].sh_size is always zero */
3225        mod->ftrace_callsites = section_objs(info, "__mcount_loc",
3226                                             sizeof(*mod->ftrace_callsites),
3227                                             &mod->num_ftrace_callsites);
3228#endif
3229#ifdef CONFIG_FUNCTION_ERROR_INJECTION
3230        mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3231                                            sizeof(*mod->ei_funcs),
3232                                            &mod->num_ei_funcs);
3233#endif
3234        mod->extable = section_objs(info, "__ex_table",
3235                                    sizeof(*mod->extable), &mod->num_exentries);
3236
3237        if (section_addr(info, "__obsparm"))
3238                pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3239
3240        info->debug = section_objs(info, "__verbose",
3241                                   sizeof(*info->debug), &info->num_debug);
3242
3243        return 0;
3244}
3245
3246static int move_module(struct module *mod, struct load_info *info)
3247{
3248        int i;
3249        void *ptr;
3250
3251        /* Do the allocs. */
3252        ptr = module_alloc(mod->core_layout.size);
3253        /*
3254         * The pointer to this block is stored in the module structure
3255         * which is inside the block. Just mark it as not being a
3256         * leak.
3257         */
3258        kmemleak_not_leak(ptr);
3259        if (!ptr)
3260                return -ENOMEM;
3261
3262        memset(ptr, 0, mod->core_layout.size);
3263        mod->core_layout.base = ptr;
3264
3265        if (mod->init_layout.size) {
3266                ptr = module_alloc(mod->init_layout.size);
3267                /*
3268                 * The pointer to this block is stored in the module structure
3269                 * which is inside the block. This block doesn't need to be
3270                 * scanned as it contains data and code that will be freed
3271                 * after the module is initialized.
3272                 */
3273                kmemleak_ignore(ptr);
3274                if (!ptr) {
3275                        module_memfree(mod->core_layout.base);
3276                        return -ENOMEM;
3277                }
3278                memset(ptr, 0, mod->init_layout.size);
3279                mod->init_layout.base = ptr;
3280        } else
3281                mod->init_layout.base = NULL;
3282
3283        /* Transfer each section which specifies SHF_ALLOC */
3284        pr_debug("final section addresses:\n");
3285        for (i = 0; i < info->hdr->e_shnum; i++) {
3286                void *dest;
3287                Elf_Shdr *shdr = &info->sechdrs[i];
3288
3289                if (!(shdr->sh_flags & SHF_ALLOC))
3290                        continue;
3291
3292                if (shdr->sh_entsize & INIT_OFFSET_MASK)
3293                        dest = mod->init_layout.base
3294                                + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3295                else
3296                        dest = mod->core_layout.base + shdr->sh_entsize;
3297
3298                if (shdr->sh_type != SHT_NOBITS)
3299                        memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3300                /* Update sh_addr to point to copy in image. */
3301                shdr->sh_addr = (unsigned long)dest;
3302                pr_debug("\t0x%lx %s\n",
3303                         (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3304        }
3305
3306        return 0;
3307}
3308
3309static int check_module_license_and_versions(struct module *mod)
3310{
3311        int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3312
3313        /*
3314         * ndiswrapper is under GPL by itself, but loads proprietary modules.
3315         * Don't use add_taint_module(), as it would prevent ndiswrapper from
3316         * using GPL-only symbols it needs.
3317         */
3318        if (strcmp(mod->name, "ndiswrapper") == 0)
3319                add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3320
3321        /* driverloader was caught wrongly pretending to be under GPL */
3322        if (strcmp(mod->name, "driverloader") == 0)
3323                add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3324                                 LOCKDEP_NOW_UNRELIABLE);
3325
3326        /* lve claims to be GPL but upstream won't provide source */
3327        if (strcmp(mod->name, "lve") == 0)
3328                add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3329                                 LOCKDEP_NOW_UNRELIABLE);
3330
3331        if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3332                pr_warn("%s: module license taints kernel.\n", mod->name);
3333
3334#ifdef CONFIG_MODVERSIONS
3335        if ((mod->num_syms && !mod->crcs)
3336            || (mod->num_gpl_syms && !mod->gpl_crcs)
3337            || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3338#ifdef CONFIG_UNUSED_SYMBOLS
3339            || (mod->num_unused_syms && !mod->unused_crcs)
3340            || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3341#endif
3342                ) {
3343                return try_to_force_load(mod,
3344                                         "no versions for exported symbols");
3345        }
3346#endif
3347        return 0;
3348}
3349
3350static void flush_module_icache(const struct module *mod)
3351{
3352        mm_segment_t old_fs;
3353
3354        /* flush the icache in correct context */
3355        old_fs = get_fs();
3356        set_fs(KERNEL_DS);
3357
3358        /*
3359         * Flush the instruction cache, since we've played with text.
3360         * Do it before processing of module parameters, so the module
3361         * can provide parameter accessor functions of its own.
3362         */
3363        if (mod->init_layout.base)
3364                flush_icache_range((unsigned long)mod->init_layout.base,
3365                                   (unsigned long)mod->init_layout.base
3366                                   + mod->init_layout.size);
3367        flush_icache_range((unsigned long)mod->core_layout.base,
3368                           (unsigned long)mod->core_layout.base + mod->core_layout.size);
3369
3370        set_fs(old_fs);
3371}
3372
3373int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3374                                     Elf_Shdr *sechdrs,
3375                                     char *secstrings,
3376                                     struct module *mod)
3377{
3378        return 0;
3379}
3380
3381/* module_blacklist is a comma-separated list of module names */
3382static char *module_blacklist;
3383static bool blacklisted(const char *module_name)
3384{
3385        const char *p;
3386        size_t len;
3387
3388        if (!module_blacklist)
3389                return false;
3390
3391        for (p = module_blacklist; *p; p += len) {
3392                len = strcspn(p, ",");
3393                if (strlen(module_name) == len && !memcmp(module_name, p, len))
3394                        return true;
3395                if (p[len] == ',')
3396                        len++;
3397        }
3398        return false;
3399}
3400core_param(module_blacklist, module_blacklist, charp, 0400);
3401
3402static struct module *layout_and_allocate(struct load_info *info, int flags)
3403{
3404        struct module *mod;
3405        unsigned int ndx;
3406        int err;
3407
3408        err = check_modinfo(info->mod, info, flags);
3409        if (err)
3410                return ERR_PTR(err);
3411
3412        /* Allow arches to frob section contents and sizes.  */
3413        err = module_frob_arch_sections(info->hdr, info->sechdrs,
3414                                        info->secstrings, info->mod);
3415        if (err < 0)
3416                return ERR_PTR(err);
3417
3418        /* We will do a special allocation for per-cpu sections later. */
3419        info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3420
3421        /*
3422         * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3423         * layout_sections() can put it in the right place.
3424         * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3425         */
3426        ndx = find_sec(info, ".data..ro_after_init");
3427        if (ndx)
3428                info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3429        /*
3430         * Mark the __jump_table section as ro_after_init as well: these data
3431         * structures are never modified, with the exception of entries that
3432         * refer to code in the __init section, which are annotated as such
3433         * at module load time.
3434         */
3435        ndx = find_sec(info, "__jump_table");
3436        if (ndx)
3437                info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3438
3439        /* Determine total sizes, and put offsets in sh_entsize.  For now
3440           this is done generically; there doesn't appear to be any
3441           special cases for the architectures. */
3442        layout_sections(info->mod, info);
3443        layout_symtab(info->mod, info);
3444
3445        /* Allocate and move to the final place */
3446        err = move_module(info->mod, info);
3447        if (err)
3448                return ERR_PTR(err);
3449
3450        /* Module has been copied to its final place now: return it. */
3451        mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3452        kmemleak_load_module(mod, info);
3453        return mod;
3454}
3455
3456/* mod is no longer valid after this! */
3457static void module_deallocate(struct module *mod, struct load_info *info)
3458{
3459        percpu_modfree(mod);
3460        module_arch_freeing_init(mod);
3461        module_memfree(mod->init_layout.base);
3462        module_memfree(mod->core_layout.base);
3463}
3464
3465int __weak module_finalize(const Elf_Ehdr *hdr,
3466                           const Elf_Shdr *sechdrs,
3467                           struct module *me)
3468{
3469        return 0;
3470}
3471
3472static int post_relocation(struct module *mod, const struct load_info *info)
3473{
3474        /* Sort exception table now relocations are done. */
3475        sort_extable(mod->extable, mod->extable + mod->num_exentries);
3476
3477        /* Copy relocated percpu area over. */
3478        percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3479                       info->sechdrs[info->index.pcpu].sh_size);
3480
3481        /* Setup kallsyms-specific fields. */
3482        add_kallsyms(mod, info);
3483
3484        /* Arch-specific module finalizing. */
3485        return module_finalize(info->hdr, info->sechdrs, mod);
3486}
3487
3488/* Is this module of this name done loading?  No locks held. */
3489static bool finished_loading(const char *name)
3490{
3491        struct module *mod;
3492        bool ret;
3493
3494        /*
3495         * The module_mutex should not be a heavily contended lock;
3496         * if we get the occasional sleep here, we'll go an extra iteration
3497         * in the wait_event_interruptible(), which is harmless.
3498         */
3499        sched_annotate_sleep();
3500        mutex_lock(&module_mutex);
3501        mod = find_module_all(name, strlen(name), true);
3502        ret = !mod || mod->state == MODULE_STATE_LIVE;
3503        mutex_unlock(&module_mutex);
3504
3505        return ret;
3506}
3507
3508/* Call module constructors. */
3509static void do_mod_ctors(struct module *mod)
3510{
3511#ifdef CONFIG_CONSTRUCTORS
3512        unsigned long i;
3513
3514        for (i = 0; i < mod->num_ctors; i++)
3515                mod->ctors[i]();
3516#endif
3517}
3518
3519/* For freeing module_init on success, in case kallsyms traversing */
3520struct mod_initfree {
3521        struct llist_node node;
3522        void *module_init;
3523};
3524
3525static void do_free_init(struct work_struct *w)
3526{
3527        struct llist_node *pos, *n, *list;
3528        struct mod_initfree *initfree;
3529
3530        list = llist_del_all(&init_free_list);
3531
3532        synchronize_rcu();
3533
3534        llist_for_each_safe(pos, n, list) {
3535                initfree = container_of(pos, struct mod_initfree, node);
3536                module_memfree(initfree->module_init);
3537                kfree(initfree);
3538        }
3539}
3540
3541static int __init modules_wq_init(void)
3542{
3543        INIT_WORK(&init_free_wq, do_free_init);
3544        init_llist_head(&init_free_list);
3545        return 0;
3546}
3547module_init(modules_wq_init);
3548
3549/*
3550 * This is where the real work happens.
3551 *
3552 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3553 * helper command 'lx-symbols'.
3554 */
3555static noinline int do_init_module(struct module *mod)
3556{
3557        int ret = 0;
3558        struct mod_initfree *freeinit;
3559
3560        freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3561        if (!freeinit) {
3562                ret = -ENOMEM;
3563                goto fail;
3564        }
3565        freeinit->module_init = mod->init_layout.base;
3566
3567        /*
3568         * We want to find out whether @mod uses async during init.  Clear
3569         * PF_USED_ASYNC.  async_schedule*() will set it.
3570         */
3571        current->flags &= ~PF_USED_ASYNC;
3572
3573        do_mod_ctors(mod);
3574        /* Start the module */
3575        if (mod->init != NULL)
3576                ret = do_one_initcall(mod->init);
3577        if (ret < 0) {
3578                goto fail_free_freeinit;
3579        }
3580        if (ret > 0) {
3581                pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3582                        "follow 0/-E convention\n"
3583                        "%s: loading module anyway...\n",
3584                        __func__, mod->name, ret, __func__);
3585                dump_stack();
3586        }
3587
3588        /* Now it's a first class citizen! */
3589        mod->state = MODULE_STATE_LIVE;
3590        blocking_notifier_call_chain(&module_notify_list,
3591                                     MODULE_STATE_LIVE, mod);
3592
3593        /*
3594         * We need to finish all async code before the module init sequence
3595         * is done.  This has potential to deadlock.  For example, a newly
3596         * detected block device can trigger request_module() of the
3597         * default iosched from async probing task.  Once userland helper
3598         * reaches here, async_synchronize_full() will wait on the async
3599         * task waiting on request_module() and deadlock.
3600         *
3601         * This deadlock is avoided by perfomring async_synchronize_full()
3602         * iff module init queued any async jobs.  This isn't a full
3603         * solution as it will deadlock the same if module loading from
3604         * async jobs nests more than once; however, due to the various
3605         * constraints, this hack seems to be the best option for now.
3606         * Please refer to the following thread for details.
3607         *
3608         * http://thread.gmane.org/gmane.linux.kernel/1420814
3609         */
3610        if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3611                async_synchronize_full();
3612
3613        ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3614                        mod->init_layout.size);
3615        mutex_lock(&module_mutex);
3616        /* Drop initial reference. */
3617        module_put(mod);
3618        trim_init_extable(mod);
3619#ifdef CONFIG_KALLSYMS
3620        /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3621        rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3622#endif
3623        module_enable_ro(mod, true);
3624        mod_tree_remove_init(mod);
3625        module_arch_freeing_init(mod);
3626        mod->init_layout.base = NULL;
3627        mod->init_layout.size = 0;
3628        mod->init_layout.ro_size = 0;
3629        mod->init_layout.ro_after_init_size = 0;
3630        mod->init_layout.text_size = 0;
3631        /*
3632         * We want to free module_init, but be aware that kallsyms may be
3633         * walking this with preempt disabled.  In all the failure paths, we
3634         * call synchronize_rcu(), but we don't want to slow down the success
3635         * path. module_memfree() cannot be called in an interrupt, so do the
3636         * work and call synchronize_rcu() in a work queue.
3637         *
3638         * Note that module_alloc() on most architectures creates W+X page
3639         * mappings which won't be cleaned up until do_free_init() runs.  Any
3640         * code such as mark_rodata_ro() which depends on those mappings to
3641         * be cleaned up needs to sync with the queued work - ie
3642         * rcu_barrier()
3643         */
3644        if (llist_add(&freeinit->node, &init_free_list))
3645                schedule_work(&init_free_wq);
3646
3647        mutex_unlock(&module_mutex);
3648        wake_up_all(&module_wq);
3649
3650        return 0;
3651
3652fail_free_freeinit:
3653        kfree(freeinit);
3654fail:
3655        /* Try to protect us from buggy refcounters. */
3656        mod->state = MODULE_STATE_GOING;
3657        synchronize_rcu();
3658        module_put(mod);
3659        blocking_notifier_call_chain(&module_notify_list,
3660                                     MODULE_STATE_GOING, mod);
3661        klp_module_going(mod);
3662        ftrace_release_mod(mod);
3663        free_module(mod);
3664        wake_up_all(&module_wq);
3665        return ret;
3666}
3667
3668static int may_init_module(void)
3669{
3670        if (!capable(CAP_SYS_MODULE) || modules_disabled)
3671                return -EPERM;
3672
3673        return 0;
3674}
3675
3676/*
3677 * We try to place it in the list now to make sure it's unique before
3678 * we dedicate too many resources.  In particular, temporary percpu
3679 * memory exhaustion.
3680 */
3681static int add_unformed_module(struct module *mod)
3682{
3683        int err;
3684        struct module *old;
3685
3686        mod->state = MODULE_STATE_UNFORMED;
3687
3688again:
3689        mutex_lock(&module_mutex);
3690        old = find_module_all(mod->name, strlen(mod->name), true);
3691        if (old != NULL) {
3692                if (old->state != MODULE_STATE_LIVE) {
3693                        /* Wait in case it fails to load. */
3694                        mutex_unlock(&module_mutex);
3695                        err = wait_event_interruptible(module_wq,
3696                                               finished_loading(mod->name));
3697                        if (err)
3698                                goto out_unlocked;
3699                        goto again;
3700                }
3701                err = -EEXIST;
3702                goto out;
3703        }
3704        mod_update_bounds(mod);
3705        list_add_rcu(&mod->list, &modules);
3706        mod_tree_insert(mod);
3707        err = 0;
3708
3709out:
3710        mutex_unlock(&module_mutex);
3711out_unlocked:
3712        return err;
3713}
3714
3715static int complete_formation(struct module *mod, struct load_info *info)
3716{
3717        int err;
3718
3719        mutex_lock(&module_mutex);
3720
3721        /* Find duplicate symbols (must be called under lock). */
3722        err = verify_exported_symbols(mod);
3723        if (err < 0)
3724                goto out;
3725
3726        /* This relies on module_mutex for list integrity. */
3727        module_bug_finalize(info->hdr, info->sechdrs, mod);
3728
3729        module_enable_ro(mod, false);
3730        module_enable_nx(mod);
3731        module_enable_x(mod);
3732
3733        /* Mark state as coming so strong_try_module_get() ignores us,
3734         * but kallsyms etc. can see us. */
3735        mod->state = MODULE_STATE_COMING;
3736        mutex_unlock(&module_mutex);
3737
3738        return 0;
3739
3740out:
3741        mutex_unlock(&module_mutex);
3742        return err;
3743}
3744
3745static int prepare_coming_module(struct module *mod)
3746{
3747        int err;
3748
3749        ftrace_module_enable(mod);
3750        err = klp_module_coming(mod);
3751        if (err)
3752                return err;
3753
3754        blocking_notifier_call_chain(&module_notify_list,
3755                                     MODULE_STATE_COMING, mod);
3756        return 0;
3757}
3758
3759static int unknown_module_param_cb(char *param, char *val, const char *modname,
3760                                   void *arg)
3761{
3762        struct module *mod = arg;
3763        int ret;
3764
3765        if (strcmp(param, "async_probe") == 0) {
3766                mod->async_probe_requested = true;
3767                return 0;
3768        }
3769
3770        /* Check for magic 'dyndbg' arg */
3771        ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3772        if (ret != 0)
3773                pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3774        return 0;
3775}
3776
3777/* Allocate and load the module: note that size of section 0 is always
3778   zero, and we rely on this for optional sections. */
3779static int load_module(struct load_info *info, const char __user *uargs,
3780                       int flags)
3781{
3782        struct module *mod;
3783        long err = 0;
3784        char *after_dashes;
3785
3786        err = elf_header_check(info);
3787        if (err)
3788                goto free_copy;
3789
3790        err = setup_load_info(info, flags);
3791        if (err)
3792                goto free_copy;
3793
3794        if (blacklisted(info->name)) {
3795                err = -EPERM;
3796                goto free_copy;
3797        }
3798
3799        err = module_sig_check(info, flags);
3800        if (err)
3801                goto free_copy;
3802
3803        err = rewrite_section_headers(info, flags);
3804        if (err)
3805                goto free_copy;
3806
3807        /* Check module struct version now, before we try to use module. */
3808        if (!check_modstruct_version(info, info->mod)) {
3809                err = -ENOEXEC;
3810                goto free_copy;
3811        }
3812
3813        /* Figure out module layout, and allocate all the memory. */
3814        mod = layout_and_allocate(info, flags);
3815        if (IS_ERR(mod)) {
3816                err = PTR_ERR(mod);
3817                goto free_copy;
3818        }
3819
3820        audit_log_kern_module(mod->name);
3821
3822        /* Reserve our place in the list. */
3823        err = add_unformed_module(mod);
3824        if (err)
3825                goto free_module;
3826
3827#ifdef CONFIG_MODULE_SIG
3828        mod->sig_ok = info->sig_ok;
3829        if (!mod->sig_ok) {
3830                pr_notice_once("%s: module verification failed: signature "
3831                               "and/or required key missing - tainting "
3832                               "kernel\n", mod->name);
3833                add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3834        }
3835#endif
3836
3837        /* To avoid stressing percpu allocator, do this once we're unique. */
3838        err = percpu_modalloc(mod, info);
3839        if (err)
3840                goto unlink_mod;
3841
3842        /* Now module is in final location, initialize linked lists, etc. */
3843        err = module_unload_init(mod);
3844        if (err)
3845                goto unlink_mod;
3846
3847        init_param_lock(mod);
3848
3849        /* Now we've got everything in the final locations, we can
3850         * find optional sections. */
3851        err = find_module_sections(mod, info);
3852        if (err)
3853                goto free_unload;
3854
3855        err = check_module_license_and_versions(mod);
3856        if (err)
3857                goto free_unload;
3858
3859        /* Set up MODINFO_ATTR fields */
3860        setup_modinfo(mod, info);
3861
3862        /* Fix up syms, so that st_value is a pointer to location. */
3863        err = simplify_symbols(mod, info);
3864        if (err < 0)
3865                goto free_modinfo;
3866
3867        err = apply_relocations(mod, info);
3868        if (err < 0)
3869                goto free_modinfo;
3870
3871        err = post_relocation(mod, info);
3872        if (err < 0)
3873                goto free_modinfo;
3874
3875        flush_module_icache(mod);
3876
3877        /* Now copy in args */
3878        mod->args = strndup_user(uargs, ~0UL >> 1);
3879        if (IS_ERR(mod->args)) {
3880                err = PTR_ERR(mod->args);
3881                goto free_arch_cleanup;
3882        }
3883
3884        dynamic_debug_setup(mod, info->debug, info->num_debug);
3885
3886        /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3887        ftrace_module_init(mod);
3888
3889        /* Finally it's fully formed, ready to start executing. */
3890        err = complete_formation(mod, info);
3891        if (err)
3892                goto ddebug_cleanup;
3893
3894        err = prepare_coming_module(mod);
3895        if (err)
3896                goto bug_cleanup;
3897
3898        /* Module is ready to execute: parsing args may do that. */
3899        after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3900                                  -32768, 32767, mod,
3901                                  unknown_module_param_cb);
3902        if (IS_ERR(after_dashes)) {
3903                err = PTR_ERR(after_dashes);
3904                goto coming_cleanup;
3905        } else if (after_dashes) {
3906                pr_warn("%s: parameters '%s' after `--' ignored\n",
3907                       mod->name, after_dashes);
3908        }
3909
3910        /* Link in to sysfs. */
3911        err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3912        if (err < 0)
3913                goto coming_cleanup;
3914
3915        if (is_livepatch_module(mod)) {
3916                err = copy_module_elf(mod, info);
3917                if (err < 0)
3918                        goto sysfs_cleanup;
3919        }
3920
3921        /* Get rid of temporary copy. */
3922        free_copy(info);
3923
3924        /* Done! */
3925        trace_module_load(mod);
3926
3927        return do_init_module(mod);
3928
3929 sysfs_cleanup:
3930        mod_sysfs_teardown(mod);
3931 coming_cleanup:
3932        mod->state = MODULE_STATE_GOING;
3933        destroy_params(mod->kp, mod->num_kp);
3934        blocking_notifier_call_chain(&module_notify_list,
3935                                     MODULE_STATE_GOING, mod);
3936        klp_module_going(mod);
3937 bug_cleanup:
3938        /* module_bug_cleanup needs module_mutex protection */
3939        mutex_lock(&module_mutex);
3940        module_bug_cleanup(mod);
3941        mutex_unlock(&module_mutex);
3942
3943 ddebug_cleanup:
3944        ftrace_release_mod(mod);
3945        dynamic_debug_remove(mod, info->debug);
3946        synchronize_rcu();
3947        kfree(mod->args);
3948 free_arch_cleanup:
3949        module_arch_cleanup(mod);
3950 free_modinfo:
3951        free_modinfo(mod);
3952 free_unload:
3953        module_unload_free(mod);
3954 unlink_mod:
3955        mutex_lock(&module_mutex);
3956        /* Unlink carefully: kallsyms could be walking list. */
3957        list_del_rcu(&mod->list);
3958        mod_tree_remove(mod);
3959        wake_up_all(&module_wq);
3960        /* Wait for RCU-sched synchronizing before releasing mod->list. */
3961        synchronize_rcu();
3962        mutex_unlock(&module_mutex);
3963 free_module:
3964        /* Free lock-classes; relies on the preceding sync_rcu() */
3965        lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3966
3967        module_deallocate(mod, info);
3968 free_copy:
3969        free_copy(info);
3970        return err;
3971}
3972
3973SYSCALL_DEFINE3(init_module, void __user *, umod,
3974                unsigned long, len, const char __user *, uargs)
3975{
3976        int err;
3977        struct load_info info = { };
3978
3979        err = may_init_module();
3980        if (err)
3981                return err;
3982
3983        pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3984               umod, len, uargs);
3985
3986        err = copy_module_from_user(umod, len, &info);
3987        if (err)
3988                return err;
3989
3990        return load_module(&info, uargs, 0);
3991}
3992
3993SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3994{
3995        struct load_info info = { };
3996        loff_t size;
3997        void *hdr;
3998        int err;
3999
4000        err = may_init_module();
4001        if (err)
4002                return err;
4003
4004        pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
4005
4006        if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
4007                      |MODULE_INIT_IGNORE_VERMAGIC))
4008                return -EINVAL;
4009
4010        err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
4011                                       READING_MODULE);
4012        if (err)
4013                return err;
4014        info.hdr = hdr;
4015        info.len = size;
4016
4017        return load_module(&info, uargs, flags);
4018}
4019
4020static inline int within(unsigned long addr, void *start, unsigned long size)
4021{
4022        return ((void *)addr >= start && (void *)addr < start + size);
4023}
4024
4025#ifdef CONFIG_KALLSYMS
4026/*
4027 * This ignores the intensely annoying "mapping symbols" found
4028 * in ARM ELF files: $a, $t and $d.
4029 */
4030static inline int is_arm_mapping_symbol(const char *str)
4031{
4032        if (str[0] == '.' && str[1] == 'L')
4033                return true;
4034        return str[0] == '$' && strchr("axtd", str[1])
4035               && (str[2] == '\0' || str[2] == '.');
4036}
4037
4038static const char *kallsyms_symbol_name(struct mod_kallsyms *kallsyms, unsigned int symnum)
4039{
4040        return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
4041}
4042
4043/*
4044 * Given a module and address, find the corresponding symbol and return its name
4045 * while providing its size and offset if needed.
4046 */
4047static const char *find_kallsyms_symbol(struct module *mod,
4048                                        unsigned long addr,
4049                                        unsigned long *size,
4050                                        unsigned long *offset)
4051{
4052        unsigned int i, best = 0;
4053        unsigned long nextval, bestval;
4054        struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4055
4056        /* At worse, next value is at end of module */
4057        if (within_module_init(addr, mod))
4058                nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
4059        else
4060                nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
4061
4062        bestval = kallsyms_symbol_value(&kallsyms->symtab[best]);
4063
4064        /* Scan for closest preceding symbol, and next symbol. (ELF
4065           starts real symbols at 1). */
4066        for (i = 1; i < kallsyms->num_symtab; i++) {
4067                const Elf_Sym *sym = &kallsyms->symtab[i];
4068                unsigned long thisval = kallsyms_symbol_value(sym);
4069
4070                if (sym->st_shndx == SHN_UNDEF)
4071                        continue;
4072
4073                /* We ignore unnamed symbols: they're uninformative
4074                 * and inserted at a whim. */
4075                if (*kallsyms_symbol_name(kallsyms, i) == '\0'
4076                    || is_arm_mapping_symbol(kallsyms_symbol_name(kallsyms, i)))
4077                        continue;
4078
4079                if (thisval <= addr && thisval > bestval) {
4080                        best = i;
4081                        bestval = thisval;
4082                }
4083                if (thisval > addr && thisval < nextval)
4084                        nextval = thisval;
4085        }
4086
4087        if (!best)
4088                return NULL;
4089
4090        if (size)
4091                *size = nextval - bestval;
4092        if (offset)
4093                *offset = addr - bestval;
4094
4095        return kallsyms_symbol_name(kallsyms, best);
4096}
4097
4098void * __weak dereference_module_function_descriptor(struct module *mod,
4099                                                     void *ptr)
4100{
4101        return ptr;
4102}
4103
4104/* For kallsyms to ask for address resolution.  NULL means not found.  Careful
4105 * not to lock to avoid deadlock on oopses, simply disable preemption. */
4106const char *module_address_lookup(unsigned long addr,
4107                            unsigned long *size,
4108                            unsigned long *offset,
4109                            char **modname,
4110                            char *namebuf)
4111{
4112        const char *ret = NULL;
4113        struct module *mod;
4114
4115        preempt_disable();
4116        mod = __module_address(addr);
4117        if (mod) {
4118                if (modname)
4119                        *modname = mod->name;
4120
4121                ret = find_kallsyms_symbol(mod, addr, size, offset);
4122        }
4123        /* Make a copy in here where it's safe */
4124        if (ret) {
4125                strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
4126                ret = namebuf;
4127        }
4128        preempt_enable();
4129
4130        return ret;
4131}
4132
4133int lookup_module_symbol_name(unsigned long addr, char *symname)
4134{
4135        struct module *mod;
4136
4137        preempt_disable();
4138        list_for_each_entry_rcu(mod, &modules, list) {
4139                if (mod->state == MODULE_STATE_UNFORMED)
4140                        continue;
4141                if (within_module(addr, mod)) {
4142                        const char *sym;
4143
4144                        sym = find_kallsyms_symbol(mod, addr, NULL, NULL);
4145                        if (!sym)
4146                                goto out;
4147
4148                        strlcpy(symname, sym, KSYM_NAME_LEN);
4149                        preempt_enable();
4150                        return 0;
4151                }
4152        }
4153out:
4154        preempt_enable();
4155        return -ERANGE;
4156}
4157
4158int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4159                        unsigned long *offset, char *modname, char *name)
4160{
4161        struct module *mod;
4162
4163        preempt_disable();
4164        list_for_each_entry_rcu(mod, &modules, list) {
4165                if (mod->state == MODULE_STATE_UNFORMED)
4166                        continue;
4167                if (within_module(addr, mod)) {
4168                        const char *sym;
4169
4170                        sym = find_kallsyms_symbol(mod, addr, size, offset);
4171                        if (!sym)
4172                                goto out;
4173                        if (modname)
4174                                strlcpy(modname, mod->name, MODULE_NAME_LEN);
4175                        if (name)
4176                                strlcpy(name, sym, KSYM_NAME_LEN);
4177                        preempt_enable();
4178                        return 0;
4179                }
4180        }
4181out:
4182        preempt_enable();
4183        return -ERANGE;
4184}
4185
4186int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4187                        char *name, char *module_name, int *exported)
4188{
4189        struct module *mod;
4190
4191        preempt_disable();
4192        list_for_each_entry_rcu(mod, &modules, list) {
4193                struct mod_kallsyms *kallsyms;
4194
4195                if (mod->state == MODULE_STATE_UNFORMED)
4196                        continue;
4197                kallsyms = rcu_dereference_sched(mod->kallsyms);
4198                if (symnum < kallsyms->num_symtab) {
4199                        const Elf_Sym *sym = &kallsyms->symtab[symnum];
4200
4201                        *value = kallsyms_symbol_value(sym);
4202                        *type = kallsyms->typetab[symnum];
4203                        strlcpy(name, kallsyms_symbol_name(kallsyms, symnum), KSYM_NAME_LEN);
4204                        strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4205                        *exported = is_exported(name, *value, mod);
4206                        preempt_enable();
4207                        return 0;
4208                }
4209                symnum -= kallsyms->num_symtab;
4210        }
4211        preempt_enable();
4212        return -ERANGE;
4213}
4214
4215/* Given a module and name of symbol, find and return the symbol's value */
4216static unsigned long find_kallsyms_symbol_value(struct module *mod, const char *name)
4217{
4218        unsigned int i;
4219        struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4220
4221        for (i = 0; i < kallsyms->num_symtab; i++) {
4222                const Elf_Sym *sym = &kallsyms->symtab[i];
4223
4224                if (strcmp(name, kallsyms_symbol_name(kallsyms, i)) == 0 &&
4225                    sym->st_shndx != SHN_UNDEF)
4226                        return kallsyms_symbol_value(sym);
4227        }
4228        return 0;
4229}
4230
4231/* Look for this name: can be of form module:name. */
4232unsigned long module_kallsyms_lookup_name(const char *name)
4233{
4234        struct module *mod;
4235        char *colon;
4236        unsigned long ret = 0;
4237
4238        /* Don't lock: we're in enough trouble already. */
4239        preempt_disable();
4240        if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4241                if ((mod = find_module_all(name, colon - name, false)) != NULL)
4242                        ret = find_kallsyms_symbol_value(mod, colon+1);
4243        } else {
4244                list_for_each_entry_rcu(mod, &modules, list) {
4245                        if (mod->state == MODULE_STATE_UNFORMED)
4246                                continue;
4247                        if ((ret = find_kallsyms_symbol_value(mod, name)) != 0)
4248                                break;
4249                }
4250        }
4251        preempt_enable();
4252        return ret;
4253}
4254
4255int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4256                                             struct module *, unsigned long),
4257                                   void *data)
4258{
4259        struct module *mod;
4260        unsigned int i;
4261        int ret;
4262
4263        module_assert_mutex();
4264
4265        list_for_each_entry(mod, &modules, list) {
4266                /* We hold module_mutex: no need for rcu_dereference_sched */
4267                struct mod_kallsyms *kallsyms = mod->kallsyms;
4268
4269                if (mod->state == MODULE_STATE_UNFORMED)
4270                        continue;
4271                for (i = 0; i < kallsyms->num_symtab; i++) {
4272                        const Elf_Sym *sym = &kallsyms->symtab[i];
4273
4274                        if (sym->st_shndx == SHN_UNDEF)
4275                                continue;
4276
4277                        ret = fn(data, kallsyms_symbol_name(kallsyms, i),
4278                                 mod, kallsyms_symbol_value(sym));
4279                        if (ret != 0)
4280                                return ret;
4281                }
4282        }
4283        return 0;
4284}
4285#endif /* CONFIG_KALLSYMS */
4286
4287/* Maximum number of characters written by module_flags() */
4288#define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4289
4290/* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
4291static char *module_flags(struct module *mod, char *buf)
4292{
4293        int bx = 0;
4294
4295        BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4296        if (mod->taints ||
4297            mod->state == MODULE_STATE_GOING ||
4298            mod->state == MODULE_STATE_COMING) {
4299                buf[bx++] = '(';
4300                bx += module_flags_taint(mod, buf + bx);
4301                /* Show a - for module-is-being-unloaded */
4302                if (mod->state == MODULE_STATE_GOING)
4303                        buf[bx++] = '-';
4304                /* Show a + for module-is-being-loaded */
4305                if (mod->state == MODULE_STATE_COMING)
4306                        buf[bx++] = '+';
4307                buf[bx++] = ')';
4308        }
4309        buf[bx] = '\0';
4310
4311        return buf;
4312}
4313
4314#ifdef CONFIG_PROC_FS
4315/* Called by the /proc file system to return a list of modules. */
4316static void *m_start(struct seq_file *m, loff_t *pos)
4317{
4318        mutex_lock(&module_mutex);
4319        return seq_list_start(&modules, *pos);
4320}
4321
4322static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4323{
4324        return seq_list_next(p, &modules, pos);
4325}
4326
4327static void m_stop(struct seq_file *m, void *p)
4328{
4329        mutex_unlock(&module_mutex);
4330}
4331
4332static int m_show(struct seq_file *m, void *p)
4333{
4334        struct module *mod = list_entry(p, struct module, list);
4335        char buf[MODULE_FLAGS_BUF_SIZE];
4336        void *value;
4337
4338        /* We always ignore unformed modules. */
4339        if (mod->state == MODULE_STATE_UNFORMED)
4340                return 0;
4341
4342        seq_printf(m, "%s %u",
4343                   mod->name, mod->init_layout.size + mod->core_layout.size);
4344        print_unload_info(m, mod);
4345
4346        /* Informative for users. */
4347        seq_printf(m, " %s",
4348                   mod->state == MODULE_STATE_GOING ? "Unloading" :
4349                   mod->state == MODULE_STATE_COMING ? "Loading" :
4350                   "Live");
4351        /* Used by oprofile and other similar tools. */
4352        value = m->private ? NULL : mod->core_layout.base;
4353        seq_printf(m, " 0x%px", value);
4354
4355        /* Taints info */
4356        if (mod->taints)
4357                seq_printf(m, " %s", module_flags(mod, buf));
4358
4359        seq_puts(m, "\n");
4360        return 0;
4361}
4362
4363/* Format: modulename size refcount deps address
4364
4365   Where refcount is a number or -, and deps is a comma-separated list
4366   of depends or -.
4367*/
4368static const struct seq_operations modules_op = {
4369        .start  = m_start,
4370        .next   = m_next,
4371        .stop   = m_stop,
4372        .show   = m_show
4373};
4374
4375/*
4376 * This also sets the "private" pointer to non-NULL if the
4377 * kernel pointers should be hidden (so you can just test
4378 * "m->private" to see if you should keep the values private).
4379 *
4380 * We use the same logic as for /proc/kallsyms.
4381 */
4382static int modules_open(struct inode *inode, struct file *file)
4383{
4384        int err = seq_open(file, &modules_op);
4385
4386        if (!err) {
4387                struct seq_file *m = file->private_data;
4388                m->private = kallsyms_show_value() ? NULL : (void *)8ul;
4389        }
4390
4391        return err;
4392}
4393
4394static const struct file_operations proc_modules_operations = {
4395        .open           = modules_open,
4396        .read           = seq_read,
4397        .llseek         = seq_lseek,
4398        .release        = seq_release,
4399};
4400
4401static int __init proc_modules_init(void)
4402{
4403        proc_create("modules", 0, NULL, &proc_modules_operations);
4404        return 0;
4405}
4406module_init(proc_modules_init);
4407#endif
4408
4409/* Given an address, look for it in the module exception tables. */
4410const struct exception_table_entry *search_module_extables(unsigned long addr)
4411{
4412        const struct exception_table_entry *e = NULL;
4413        struct module *mod;
4414
4415        preempt_disable();
4416        mod = __module_address(addr);
4417        if (!mod)
4418                goto out;
4419
4420        if (!mod->num_exentries)
4421                goto out;
4422
4423        e = search_extable(mod->extable,
4424                           mod->num_exentries,
4425                           addr);
4426out:
4427        preempt_enable();
4428
4429        /*
4430         * Now, if we found one, we are running inside it now, hence
4431         * we cannot unload the module, hence no refcnt needed.
4432         */
4433        return e;
4434}
4435
4436/*
4437 * is_module_address - is this address inside a module?
4438 * @addr: the address to check.
4439 *
4440 * See is_module_text_address() if you simply want to see if the address
4441 * is code (not data).
4442 */
4443bool is_module_address(unsigned long addr)
4444{
4445        bool ret;
4446
4447        preempt_disable();
4448        ret = __module_address(addr) != NULL;
4449        preempt_enable();
4450
4451        return ret;
4452}
4453
4454/*
4455 * __module_address - get the module which contains an address.
4456 * @addr: the address.
4457 *
4458 * Must be called with preempt disabled or module mutex held so that
4459 * module doesn't get freed during this.
4460 */
4461struct module *__module_address(unsigned long addr)
4462{
4463        struct module *mod;
4464
4465        if (addr < module_addr_min || addr > module_addr_max)
4466                return NULL;
4467
4468        module_assert_mutex_or_preempt();
4469
4470        mod = mod_find(addr);
4471        if (mod) {
4472                BUG_ON(!within_module(addr, mod));
4473                if (mod->state == MODULE_STATE_UNFORMED)
4474                        mod = NULL;
4475        }
4476        return mod;
4477}
4478EXPORT_SYMBOL_GPL(__module_address);
4479
4480/*
4481 * is_module_text_address - is this address inside module code?
4482 * @addr: the address to check.
4483 *
4484 * See is_module_address() if you simply want to see if the address is
4485 * anywhere in a module.  See kernel_text_address() for testing if an
4486 * address corresponds to kernel or module code.
4487 */
4488bool is_module_text_address(unsigned long addr)
4489{
4490        bool ret;
4491
4492        preempt_disable();
4493        ret = __module_text_address(addr) != NULL;
4494        preempt_enable();
4495
4496        return ret;
4497}
4498
4499/*
4500 * __module_text_address - get the module whose code contains an address.
4501 * @addr: the address.
4502 *
4503 * Must be called with preempt disabled or module mutex held so that
4504 * module doesn't get freed during this.
4505 */
4506struct module *__module_text_address(unsigned long addr)
4507{
4508        struct module *mod = __module_address(addr);
4509        if (mod) {
4510                /* Make sure it's within the text section. */
4511                if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4512                    && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4513                        mod = NULL;
4514        }
4515        return mod;
4516}
4517EXPORT_SYMBOL_GPL(__module_text_address);
4518
4519/* Don't grab lock, we're oopsing. */
4520void print_modules(void)
4521{
4522        struct module *mod;
4523        char buf[MODULE_FLAGS_BUF_SIZE];
4524
4525        printk(KERN_DEFAULT "Modules linked in:");
4526        /* Most callers should already have preempt disabled, but make sure */
4527        preempt_disable();
4528        list_for_each_entry_rcu(mod, &modules, list) {
4529                if (mod->state == MODULE_STATE_UNFORMED)
4530                        continue;
4531                pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4532        }
4533        preempt_enable();
4534        if (last_unloaded_module[0])
4535                pr_cont(" [last unloaded: %s]", last_unloaded_module);
4536        pr_cont("\n");
4537}
4538
4539#ifdef CONFIG_MODVERSIONS
4540/* Generate the signature for all relevant module structures here.
4541 * If these change, we don't want to try to parse the module. */
4542void module_layout(struct module *mod,
4543                   struct modversion_info *ver,
4544                   struct kernel_param *kp,
4545                   struct kernel_symbol *ks,
4546                   struct tracepoint * const *tp)
4547{
4548}
4549EXPORT_SYMBOL(module_layout);
4550#endif
4551