linux/kernel/time/clocksource.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * This file contains the functions which manage clocksource drivers.
   4 *
   5 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/device.h>
  11#include <linux/clocksource.h>
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
  15#include <linux/tick.h>
  16#include <linux/kthread.h>
  17
  18#include "tick-internal.h"
  19#include "timekeeping_internal.h"
  20
  21/**
  22 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
  23 * @mult:       pointer to mult variable
  24 * @shift:      pointer to shift variable
  25 * @from:       frequency to convert from
  26 * @to:         frequency to convert to
  27 * @maxsec:     guaranteed runtime conversion range in seconds
  28 *
  29 * The function evaluates the shift/mult pair for the scaled math
  30 * operations of clocksources and clockevents.
  31 *
  32 * @to and @from are frequency values in HZ. For clock sources @to is
  33 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
  34 * event @to is the counter frequency and @from is NSEC_PER_SEC.
  35 *
  36 * The @maxsec conversion range argument controls the time frame in
  37 * seconds which must be covered by the runtime conversion with the
  38 * calculated mult and shift factors. This guarantees that no 64bit
  39 * overflow happens when the input value of the conversion is
  40 * multiplied with the calculated mult factor. Larger ranges may
  41 * reduce the conversion accuracy by chosing smaller mult and shift
  42 * factors.
  43 */
  44void
  45clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
  46{
  47        u64 tmp;
  48        u32 sft, sftacc= 32;
  49
  50        /*
  51         * Calculate the shift factor which is limiting the conversion
  52         * range:
  53         */
  54        tmp = ((u64)maxsec * from) >> 32;
  55        while (tmp) {
  56                tmp >>=1;
  57                sftacc--;
  58        }
  59
  60        /*
  61         * Find the conversion shift/mult pair which has the best
  62         * accuracy and fits the maxsec conversion range:
  63         */
  64        for (sft = 32; sft > 0; sft--) {
  65                tmp = (u64) to << sft;
  66                tmp += from / 2;
  67                do_div(tmp, from);
  68                if ((tmp >> sftacc) == 0)
  69                        break;
  70        }
  71        *mult = tmp;
  72        *shift = sft;
  73}
  74EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
  75
  76/*[Clocksource internal variables]---------
  77 * curr_clocksource:
  78 *      currently selected clocksource.
  79 * suspend_clocksource:
  80 *      used to calculate the suspend time.
  81 * clocksource_list:
  82 *      linked list with the registered clocksources
  83 * clocksource_mutex:
  84 *      protects manipulations to curr_clocksource and the clocksource_list
  85 * override_name:
  86 *      Name of the user-specified clocksource.
  87 */
  88static struct clocksource *curr_clocksource;
  89static struct clocksource *suspend_clocksource;
  90static LIST_HEAD(clocksource_list);
  91static DEFINE_MUTEX(clocksource_mutex);
  92static char override_name[CS_NAME_LEN];
  93static int finished_booting;
  94static u64 suspend_start;
  95
  96#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
  97static void clocksource_watchdog_work(struct work_struct *work);
  98static void clocksource_select(void);
  99
 100static LIST_HEAD(watchdog_list);
 101static struct clocksource *watchdog;
 102static struct timer_list watchdog_timer;
 103static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
 104static DEFINE_SPINLOCK(watchdog_lock);
 105static int watchdog_running;
 106static atomic_t watchdog_reset_pending;
 107
 108static inline void clocksource_watchdog_lock(unsigned long *flags)
 109{
 110        spin_lock_irqsave(&watchdog_lock, *flags);
 111}
 112
 113static inline void clocksource_watchdog_unlock(unsigned long *flags)
 114{
 115        spin_unlock_irqrestore(&watchdog_lock, *flags);
 116}
 117
 118static int clocksource_watchdog_kthread(void *data);
 119static void __clocksource_change_rating(struct clocksource *cs, int rating);
 120
 121/*
 122 * Interval: 0.5sec Threshold: 0.0625s
 123 */
 124#define WATCHDOG_INTERVAL (HZ >> 1)
 125#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
 126
 127static void clocksource_watchdog_work(struct work_struct *work)
 128{
 129        /*
 130         * We cannot directly run clocksource_watchdog_kthread() here, because
 131         * clocksource_select() calls timekeeping_notify() which uses
 132         * stop_machine(). One cannot use stop_machine() from a workqueue() due
 133         * lock inversions wrt CPU hotplug.
 134         *
 135         * Also, we only ever run this work once or twice during the lifetime
 136         * of the kernel, so there is no point in creating a more permanent
 137         * kthread for this.
 138         *
 139         * If kthread_run fails the next watchdog scan over the
 140         * watchdog_list will find the unstable clock again.
 141         */
 142        kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
 143}
 144
 145static void __clocksource_unstable(struct clocksource *cs)
 146{
 147        cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
 148        cs->flags |= CLOCK_SOURCE_UNSTABLE;
 149
 150        /*
 151         * If the clocksource is registered clocksource_watchdog_kthread() will
 152         * re-rate and re-select.
 153         */
 154        if (list_empty(&cs->list)) {
 155                cs->rating = 0;
 156                return;
 157        }
 158
 159        if (cs->mark_unstable)
 160                cs->mark_unstable(cs);
 161
 162        /* kick clocksource_watchdog_kthread() */
 163        if (finished_booting)
 164                schedule_work(&watchdog_work);
 165}
 166
 167/**
 168 * clocksource_mark_unstable - mark clocksource unstable via watchdog
 169 * @cs:         clocksource to be marked unstable
 170 *
 171 * This function is called by the x86 TSC code to mark clocksources as unstable;
 172 * it defers demotion and re-selection to a kthread.
 173 */
 174void clocksource_mark_unstable(struct clocksource *cs)
 175{
 176        unsigned long flags;
 177
 178        spin_lock_irqsave(&watchdog_lock, flags);
 179        if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
 180                if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
 181                        list_add(&cs->wd_list, &watchdog_list);
 182                __clocksource_unstable(cs);
 183        }
 184        spin_unlock_irqrestore(&watchdog_lock, flags);
 185}
 186
 187static void clocksource_watchdog(struct timer_list *unused)
 188{
 189        struct clocksource *cs;
 190        u64 csnow, wdnow, cslast, wdlast, delta;
 191        int64_t wd_nsec, cs_nsec;
 192        int next_cpu, reset_pending;
 193
 194        spin_lock(&watchdog_lock);
 195        if (!watchdog_running)
 196                goto out;
 197
 198        reset_pending = atomic_read(&watchdog_reset_pending);
 199
 200        list_for_each_entry(cs, &watchdog_list, wd_list) {
 201
 202                /* Clocksource already marked unstable? */
 203                if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 204                        if (finished_booting)
 205                                schedule_work(&watchdog_work);
 206                        continue;
 207                }
 208
 209                local_irq_disable();
 210                csnow = cs->read(cs);
 211                wdnow = watchdog->read(watchdog);
 212                local_irq_enable();
 213
 214                /* Clocksource initialized ? */
 215                if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
 216                    atomic_read(&watchdog_reset_pending)) {
 217                        cs->flags |= CLOCK_SOURCE_WATCHDOG;
 218                        cs->wd_last = wdnow;
 219                        cs->cs_last = csnow;
 220                        continue;
 221                }
 222
 223                delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
 224                wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
 225                                             watchdog->shift);
 226
 227                delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
 228                cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
 229                wdlast = cs->wd_last; /* save these in case we print them */
 230                cslast = cs->cs_last;
 231                cs->cs_last = csnow;
 232                cs->wd_last = wdnow;
 233
 234                if (atomic_read(&watchdog_reset_pending))
 235                        continue;
 236
 237                /* Check the deviation from the watchdog clocksource. */
 238                if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
 239                        pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
 240                                smp_processor_id(), cs->name);
 241                        pr_warn("                      '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
 242                                watchdog->name, wdnow, wdlast, watchdog->mask);
 243                        pr_warn("                      '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
 244                                cs->name, csnow, cslast, cs->mask);
 245                        __clocksource_unstable(cs);
 246                        continue;
 247                }
 248
 249                if (cs == curr_clocksource && cs->tick_stable)
 250                        cs->tick_stable(cs);
 251
 252                if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
 253                    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
 254                    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
 255                        /* Mark it valid for high-res. */
 256                        cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 257
 258                        /*
 259                         * clocksource_done_booting() will sort it if
 260                         * finished_booting is not set yet.
 261                         */
 262                        if (!finished_booting)
 263                                continue;
 264
 265                        /*
 266                         * If this is not the current clocksource let
 267                         * the watchdog thread reselect it. Due to the
 268                         * change to high res this clocksource might
 269                         * be preferred now. If it is the current
 270                         * clocksource let the tick code know about
 271                         * that change.
 272                         */
 273                        if (cs != curr_clocksource) {
 274                                cs->flags |= CLOCK_SOURCE_RESELECT;
 275                                schedule_work(&watchdog_work);
 276                        } else {
 277                                tick_clock_notify();
 278                        }
 279                }
 280        }
 281
 282        /*
 283         * We only clear the watchdog_reset_pending, when we did a
 284         * full cycle through all clocksources.
 285         */
 286        if (reset_pending)
 287                atomic_dec(&watchdog_reset_pending);
 288
 289        /*
 290         * Cycle through CPUs to check if the CPUs stay synchronized
 291         * to each other.
 292         */
 293        next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
 294        if (next_cpu >= nr_cpu_ids)
 295                next_cpu = cpumask_first(cpu_online_mask);
 296        watchdog_timer.expires += WATCHDOG_INTERVAL;
 297        add_timer_on(&watchdog_timer, next_cpu);
 298out:
 299        spin_unlock(&watchdog_lock);
 300}
 301
 302static inline void clocksource_start_watchdog(void)
 303{
 304        if (watchdog_running || !watchdog || list_empty(&watchdog_list))
 305                return;
 306        timer_setup(&watchdog_timer, clocksource_watchdog, 0);
 307        watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
 308        add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
 309        watchdog_running = 1;
 310}
 311
 312static inline void clocksource_stop_watchdog(void)
 313{
 314        if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
 315                return;
 316        del_timer(&watchdog_timer);
 317        watchdog_running = 0;
 318}
 319
 320static inline void clocksource_reset_watchdog(void)
 321{
 322        struct clocksource *cs;
 323
 324        list_for_each_entry(cs, &watchdog_list, wd_list)
 325                cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 326}
 327
 328static void clocksource_resume_watchdog(void)
 329{
 330        atomic_inc(&watchdog_reset_pending);
 331}
 332
 333static void clocksource_enqueue_watchdog(struct clocksource *cs)
 334{
 335        INIT_LIST_HEAD(&cs->wd_list);
 336
 337        if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 338                /* cs is a clocksource to be watched. */
 339                list_add(&cs->wd_list, &watchdog_list);
 340                cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 341        } else {
 342                /* cs is a watchdog. */
 343                if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 344                        cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 345        }
 346}
 347
 348static void clocksource_select_watchdog(bool fallback)
 349{
 350        struct clocksource *cs, *old_wd;
 351        unsigned long flags;
 352
 353        spin_lock_irqsave(&watchdog_lock, flags);
 354        /* save current watchdog */
 355        old_wd = watchdog;
 356        if (fallback)
 357                watchdog = NULL;
 358
 359        list_for_each_entry(cs, &clocksource_list, list) {
 360                /* cs is a clocksource to be watched. */
 361                if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
 362                        continue;
 363
 364                /* Skip current if we were requested for a fallback. */
 365                if (fallback && cs == old_wd)
 366                        continue;
 367
 368                /* Pick the best watchdog. */
 369                if (!watchdog || cs->rating > watchdog->rating)
 370                        watchdog = cs;
 371        }
 372        /* If we failed to find a fallback restore the old one. */
 373        if (!watchdog)
 374                watchdog = old_wd;
 375
 376        /* If we changed the watchdog we need to reset cycles. */
 377        if (watchdog != old_wd)
 378                clocksource_reset_watchdog();
 379
 380        /* Check if the watchdog timer needs to be started. */
 381        clocksource_start_watchdog();
 382        spin_unlock_irqrestore(&watchdog_lock, flags);
 383}
 384
 385static void clocksource_dequeue_watchdog(struct clocksource *cs)
 386{
 387        if (cs != watchdog) {
 388                if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 389                        /* cs is a watched clocksource. */
 390                        list_del_init(&cs->wd_list);
 391                        /* Check if the watchdog timer needs to be stopped. */
 392                        clocksource_stop_watchdog();
 393                }
 394        }
 395}
 396
 397static int __clocksource_watchdog_kthread(void)
 398{
 399        struct clocksource *cs, *tmp;
 400        unsigned long flags;
 401        int select = 0;
 402
 403        spin_lock_irqsave(&watchdog_lock, flags);
 404        list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
 405                if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 406                        list_del_init(&cs->wd_list);
 407                        __clocksource_change_rating(cs, 0);
 408                        select = 1;
 409                }
 410                if (cs->flags & CLOCK_SOURCE_RESELECT) {
 411                        cs->flags &= ~CLOCK_SOURCE_RESELECT;
 412                        select = 1;
 413                }
 414        }
 415        /* Check if the watchdog timer needs to be stopped. */
 416        clocksource_stop_watchdog();
 417        spin_unlock_irqrestore(&watchdog_lock, flags);
 418
 419        return select;
 420}
 421
 422static int clocksource_watchdog_kthread(void *data)
 423{
 424        mutex_lock(&clocksource_mutex);
 425        if (__clocksource_watchdog_kthread())
 426                clocksource_select();
 427        mutex_unlock(&clocksource_mutex);
 428        return 0;
 429}
 430
 431static bool clocksource_is_watchdog(struct clocksource *cs)
 432{
 433        return cs == watchdog;
 434}
 435
 436#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
 437
 438static void clocksource_enqueue_watchdog(struct clocksource *cs)
 439{
 440        if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 441                cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 442}
 443
 444static void clocksource_select_watchdog(bool fallback) { }
 445static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
 446static inline void clocksource_resume_watchdog(void) { }
 447static inline int __clocksource_watchdog_kthread(void) { return 0; }
 448static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
 449void clocksource_mark_unstable(struct clocksource *cs) { }
 450
 451static inline void clocksource_watchdog_lock(unsigned long *flags) { }
 452static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
 453
 454#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
 455
 456static bool clocksource_is_suspend(struct clocksource *cs)
 457{
 458        return cs == suspend_clocksource;
 459}
 460
 461static void __clocksource_suspend_select(struct clocksource *cs)
 462{
 463        /*
 464         * Skip the clocksource which will be stopped in suspend state.
 465         */
 466        if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
 467                return;
 468
 469        /*
 470         * The nonstop clocksource can be selected as the suspend clocksource to
 471         * calculate the suspend time, so it should not supply suspend/resume
 472         * interfaces to suspend the nonstop clocksource when system suspends.
 473         */
 474        if (cs->suspend || cs->resume) {
 475                pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
 476                        cs->name);
 477        }
 478
 479        /* Pick the best rating. */
 480        if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
 481                suspend_clocksource = cs;
 482}
 483
 484/**
 485 * clocksource_suspend_select - Select the best clocksource for suspend timing
 486 * @fallback:   if select a fallback clocksource
 487 */
 488static void clocksource_suspend_select(bool fallback)
 489{
 490        struct clocksource *cs, *old_suspend;
 491
 492        old_suspend = suspend_clocksource;
 493        if (fallback)
 494                suspend_clocksource = NULL;
 495
 496        list_for_each_entry(cs, &clocksource_list, list) {
 497                /* Skip current if we were requested for a fallback. */
 498                if (fallback && cs == old_suspend)
 499                        continue;
 500
 501                __clocksource_suspend_select(cs);
 502        }
 503}
 504
 505/**
 506 * clocksource_start_suspend_timing - Start measuring the suspend timing
 507 * @cs:                 current clocksource from timekeeping
 508 * @start_cycles:       current cycles from timekeeping
 509 *
 510 * This function will save the start cycle values of suspend timer to calculate
 511 * the suspend time when resuming system.
 512 *
 513 * This function is called late in the suspend process from timekeeping_suspend(),
 514 * that means processes are freezed, non-boot cpus and interrupts are disabled
 515 * now. It is therefore possible to start the suspend timer without taking the
 516 * clocksource mutex.
 517 */
 518void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
 519{
 520        if (!suspend_clocksource)
 521                return;
 522
 523        /*
 524         * If current clocksource is the suspend timer, we should use the
 525         * tkr_mono.cycle_last value as suspend_start to avoid same reading
 526         * from suspend timer.
 527         */
 528        if (clocksource_is_suspend(cs)) {
 529                suspend_start = start_cycles;
 530                return;
 531        }
 532
 533        if (suspend_clocksource->enable &&
 534            suspend_clocksource->enable(suspend_clocksource)) {
 535                pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
 536                return;
 537        }
 538
 539        suspend_start = suspend_clocksource->read(suspend_clocksource);
 540}
 541
 542/**
 543 * clocksource_stop_suspend_timing - Stop measuring the suspend timing
 544 * @cs:         current clocksource from timekeeping
 545 * @cycle_now:  current cycles from timekeeping
 546 *
 547 * This function will calculate the suspend time from suspend timer.
 548 *
 549 * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
 550 *
 551 * This function is called early in the resume process from timekeeping_resume(),
 552 * that means there is only one cpu, no processes are running and the interrupts
 553 * are disabled. It is therefore possible to stop the suspend timer without
 554 * taking the clocksource mutex.
 555 */
 556u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
 557{
 558        u64 now, delta, nsec = 0;
 559
 560        if (!suspend_clocksource)
 561                return 0;
 562
 563        /*
 564         * If current clocksource is the suspend timer, we should use the
 565         * tkr_mono.cycle_last value from timekeeping as current cycle to
 566         * avoid same reading from suspend timer.
 567         */
 568        if (clocksource_is_suspend(cs))
 569                now = cycle_now;
 570        else
 571                now = suspend_clocksource->read(suspend_clocksource);
 572
 573        if (now > suspend_start) {
 574                delta = clocksource_delta(now, suspend_start,
 575                                          suspend_clocksource->mask);
 576                nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
 577                                       suspend_clocksource->shift);
 578        }
 579
 580        /*
 581         * Disable the suspend timer to save power if current clocksource is
 582         * not the suspend timer.
 583         */
 584        if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
 585                suspend_clocksource->disable(suspend_clocksource);
 586
 587        return nsec;
 588}
 589
 590/**
 591 * clocksource_suspend - suspend the clocksource(s)
 592 */
 593void clocksource_suspend(void)
 594{
 595        struct clocksource *cs;
 596
 597        list_for_each_entry_reverse(cs, &clocksource_list, list)
 598                if (cs->suspend)
 599                        cs->suspend(cs);
 600}
 601
 602/**
 603 * clocksource_resume - resume the clocksource(s)
 604 */
 605void clocksource_resume(void)
 606{
 607        struct clocksource *cs;
 608
 609        list_for_each_entry(cs, &clocksource_list, list)
 610                if (cs->resume)
 611                        cs->resume(cs);
 612
 613        clocksource_resume_watchdog();
 614}
 615
 616/**
 617 * clocksource_touch_watchdog - Update watchdog
 618 *
 619 * Update the watchdog after exception contexts such as kgdb so as not
 620 * to incorrectly trip the watchdog. This might fail when the kernel
 621 * was stopped in code which holds watchdog_lock.
 622 */
 623void clocksource_touch_watchdog(void)
 624{
 625        clocksource_resume_watchdog();
 626}
 627
 628/**
 629 * clocksource_max_adjustment- Returns max adjustment amount
 630 * @cs:         Pointer to clocksource
 631 *
 632 */
 633static u32 clocksource_max_adjustment(struct clocksource *cs)
 634{
 635        u64 ret;
 636        /*
 637         * We won't try to correct for more than 11% adjustments (110,000 ppm),
 638         */
 639        ret = (u64)cs->mult * 11;
 640        do_div(ret,100);
 641        return (u32)ret;
 642}
 643
 644/**
 645 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
 646 * @mult:       cycle to nanosecond multiplier
 647 * @shift:      cycle to nanosecond divisor (power of two)
 648 * @maxadj:     maximum adjustment value to mult (~11%)
 649 * @mask:       bitmask for two's complement subtraction of non 64 bit counters
 650 * @max_cyc:    maximum cycle value before potential overflow (does not include
 651 *              any safety margin)
 652 *
 653 * NOTE: This function includes a safety margin of 50%, in other words, we
 654 * return half the number of nanoseconds the hardware counter can technically
 655 * cover. This is done so that we can potentially detect problems caused by
 656 * delayed timers or bad hardware, which might result in time intervals that
 657 * are larger than what the math used can handle without overflows.
 658 */
 659u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
 660{
 661        u64 max_nsecs, max_cycles;
 662
 663        /*
 664         * Calculate the maximum number of cycles that we can pass to the
 665         * cyc2ns() function without overflowing a 64-bit result.
 666         */
 667        max_cycles = ULLONG_MAX;
 668        do_div(max_cycles, mult+maxadj);
 669
 670        /*
 671         * The actual maximum number of cycles we can defer the clocksource is
 672         * determined by the minimum of max_cycles and mask.
 673         * Note: Here we subtract the maxadj to make sure we don't sleep for
 674         * too long if there's a large negative adjustment.
 675         */
 676        max_cycles = min(max_cycles, mask);
 677        max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
 678
 679        /* return the max_cycles value as well if requested */
 680        if (max_cyc)
 681                *max_cyc = max_cycles;
 682
 683        /* Return 50% of the actual maximum, so we can detect bad values */
 684        max_nsecs >>= 1;
 685
 686        return max_nsecs;
 687}
 688
 689/**
 690 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
 691 * @cs:         Pointer to clocksource to be updated
 692 *
 693 */
 694static inline void clocksource_update_max_deferment(struct clocksource *cs)
 695{
 696        cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
 697                                                cs->maxadj, cs->mask,
 698                                                &cs->max_cycles);
 699}
 700
 701#ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
 702
 703static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
 704{
 705        struct clocksource *cs;
 706
 707        if (!finished_booting || list_empty(&clocksource_list))
 708                return NULL;
 709
 710        /*
 711         * We pick the clocksource with the highest rating. If oneshot
 712         * mode is active, we pick the highres valid clocksource with
 713         * the best rating.
 714         */
 715        list_for_each_entry(cs, &clocksource_list, list) {
 716                if (skipcur && cs == curr_clocksource)
 717                        continue;
 718                if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
 719                        continue;
 720                return cs;
 721        }
 722        return NULL;
 723}
 724
 725static void __clocksource_select(bool skipcur)
 726{
 727        bool oneshot = tick_oneshot_mode_active();
 728        struct clocksource *best, *cs;
 729
 730        /* Find the best suitable clocksource */
 731        best = clocksource_find_best(oneshot, skipcur);
 732        if (!best)
 733                return;
 734
 735        if (!strlen(override_name))
 736                goto found;
 737
 738        /* Check for the override clocksource. */
 739        list_for_each_entry(cs, &clocksource_list, list) {
 740                if (skipcur && cs == curr_clocksource)
 741                        continue;
 742                if (strcmp(cs->name, override_name) != 0)
 743                        continue;
 744                /*
 745                 * Check to make sure we don't switch to a non-highres
 746                 * capable clocksource if the tick code is in oneshot
 747                 * mode (highres or nohz)
 748                 */
 749                if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
 750                        /* Override clocksource cannot be used. */
 751                        if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 752                                pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
 753                                        cs->name);
 754                                override_name[0] = 0;
 755                        } else {
 756                                /*
 757                                 * The override cannot be currently verified.
 758                                 * Deferring to let the watchdog check.
 759                                 */
 760                                pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
 761                                        cs->name);
 762                        }
 763                } else
 764                        /* Override clocksource can be used. */
 765                        best = cs;
 766                break;
 767        }
 768
 769found:
 770        if (curr_clocksource != best && !timekeeping_notify(best)) {
 771                pr_info("Switched to clocksource %s\n", best->name);
 772                curr_clocksource = best;
 773        }
 774}
 775
 776/**
 777 * clocksource_select - Select the best clocksource available
 778 *
 779 * Private function. Must hold clocksource_mutex when called.
 780 *
 781 * Select the clocksource with the best rating, or the clocksource,
 782 * which is selected by userspace override.
 783 */
 784static void clocksource_select(void)
 785{
 786        __clocksource_select(false);
 787}
 788
 789static void clocksource_select_fallback(void)
 790{
 791        __clocksource_select(true);
 792}
 793
 794#else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
 795static inline void clocksource_select(void) { }
 796static inline void clocksource_select_fallback(void) { }
 797
 798#endif
 799
 800/*
 801 * clocksource_done_booting - Called near the end of core bootup
 802 *
 803 * Hack to avoid lots of clocksource churn at boot time.
 804 * We use fs_initcall because we want this to start before
 805 * device_initcall but after subsys_initcall.
 806 */
 807static int __init clocksource_done_booting(void)
 808{
 809        mutex_lock(&clocksource_mutex);
 810        curr_clocksource = clocksource_default_clock();
 811        finished_booting = 1;
 812        /*
 813         * Run the watchdog first to eliminate unstable clock sources
 814         */
 815        __clocksource_watchdog_kthread();
 816        clocksource_select();
 817        mutex_unlock(&clocksource_mutex);
 818        return 0;
 819}
 820fs_initcall(clocksource_done_booting);
 821
 822/*
 823 * Enqueue the clocksource sorted by rating
 824 */
 825static void clocksource_enqueue(struct clocksource *cs)
 826{
 827        struct list_head *entry = &clocksource_list;
 828        struct clocksource *tmp;
 829
 830        list_for_each_entry(tmp, &clocksource_list, list) {
 831                /* Keep track of the place, where to insert */
 832                if (tmp->rating < cs->rating)
 833                        break;
 834                entry = &tmp->list;
 835        }
 836        list_add(&cs->list, entry);
 837}
 838
 839/**
 840 * __clocksource_update_freq_scale - Used update clocksource with new freq
 841 * @cs:         clocksource to be registered
 842 * @scale:      Scale factor multiplied against freq to get clocksource hz
 843 * @freq:       clocksource frequency (cycles per second) divided by scale
 844 *
 845 * This should only be called from the clocksource->enable() method.
 846 *
 847 * This *SHOULD NOT* be called directly! Please use the
 848 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
 849 * functions.
 850 */
 851void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
 852{
 853        u64 sec;
 854
 855        /*
 856         * Default clocksources are *special* and self-define their mult/shift.
 857         * But, you're not special, so you should specify a freq value.
 858         */
 859        if (freq) {
 860                /*
 861                 * Calc the maximum number of seconds which we can run before
 862                 * wrapping around. For clocksources which have a mask > 32-bit
 863                 * we need to limit the max sleep time to have a good
 864                 * conversion precision. 10 minutes is still a reasonable
 865                 * amount. That results in a shift value of 24 for a
 866                 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
 867                 * ~ 0.06ppm granularity for NTP.
 868                 */
 869                sec = cs->mask;
 870                do_div(sec, freq);
 871                do_div(sec, scale);
 872                if (!sec)
 873                        sec = 1;
 874                else if (sec > 600 && cs->mask > UINT_MAX)
 875                        sec = 600;
 876
 877                clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
 878                                       NSEC_PER_SEC / scale, sec * scale);
 879        }
 880        /*
 881         * Ensure clocksources that have large 'mult' values don't overflow
 882         * when adjusted.
 883         */
 884        cs->maxadj = clocksource_max_adjustment(cs);
 885        while (freq && ((cs->mult + cs->maxadj < cs->mult)
 886                || (cs->mult - cs->maxadj > cs->mult))) {
 887                cs->mult >>= 1;
 888                cs->shift--;
 889                cs->maxadj = clocksource_max_adjustment(cs);
 890        }
 891
 892        /*
 893         * Only warn for *special* clocksources that self-define
 894         * their mult/shift values and don't specify a freq.
 895         */
 896        WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
 897                "timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
 898                cs->name);
 899
 900        clocksource_update_max_deferment(cs);
 901
 902        pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
 903                cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
 904}
 905EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
 906
 907/**
 908 * __clocksource_register_scale - Used to install new clocksources
 909 * @cs:         clocksource to be registered
 910 * @scale:      Scale factor multiplied against freq to get clocksource hz
 911 * @freq:       clocksource frequency (cycles per second) divided by scale
 912 *
 913 * Returns -EBUSY if registration fails, zero otherwise.
 914 *
 915 * This *SHOULD NOT* be called directly! Please use the
 916 * clocksource_register_hz() or clocksource_register_khz helper functions.
 917 */
 918int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
 919{
 920        unsigned long flags;
 921
 922        clocksource_arch_init(cs);
 923
 924        /* Initialize mult/shift and max_idle_ns */
 925        __clocksource_update_freq_scale(cs, scale, freq);
 926
 927        /* Add clocksource to the clocksource list */
 928        mutex_lock(&clocksource_mutex);
 929
 930        clocksource_watchdog_lock(&flags);
 931        clocksource_enqueue(cs);
 932        clocksource_enqueue_watchdog(cs);
 933        clocksource_watchdog_unlock(&flags);
 934
 935        clocksource_select();
 936        clocksource_select_watchdog(false);
 937        __clocksource_suspend_select(cs);
 938        mutex_unlock(&clocksource_mutex);
 939        return 0;
 940}
 941EXPORT_SYMBOL_GPL(__clocksource_register_scale);
 942
 943static void __clocksource_change_rating(struct clocksource *cs, int rating)
 944{
 945        list_del(&cs->list);
 946        cs->rating = rating;
 947        clocksource_enqueue(cs);
 948}
 949
 950/**
 951 * clocksource_change_rating - Change the rating of a registered clocksource
 952 * @cs:         clocksource to be changed
 953 * @rating:     new rating
 954 */
 955void clocksource_change_rating(struct clocksource *cs, int rating)
 956{
 957        unsigned long flags;
 958
 959        mutex_lock(&clocksource_mutex);
 960        clocksource_watchdog_lock(&flags);
 961        __clocksource_change_rating(cs, rating);
 962        clocksource_watchdog_unlock(&flags);
 963
 964        clocksource_select();
 965        clocksource_select_watchdog(false);
 966        clocksource_suspend_select(false);
 967        mutex_unlock(&clocksource_mutex);
 968}
 969EXPORT_SYMBOL(clocksource_change_rating);
 970
 971/*
 972 * Unbind clocksource @cs. Called with clocksource_mutex held
 973 */
 974static int clocksource_unbind(struct clocksource *cs)
 975{
 976        unsigned long flags;
 977
 978        if (clocksource_is_watchdog(cs)) {
 979                /* Select and try to install a replacement watchdog. */
 980                clocksource_select_watchdog(true);
 981                if (clocksource_is_watchdog(cs))
 982                        return -EBUSY;
 983        }
 984
 985        if (cs == curr_clocksource) {
 986                /* Select and try to install a replacement clock source */
 987                clocksource_select_fallback();
 988                if (curr_clocksource == cs)
 989                        return -EBUSY;
 990        }
 991
 992        if (clocksource_is_suspend(cs)) {
 993                /*
 994                 * Select and try to install a replacement suspend clocksource.
 995                 * If no replacement suspend clocksource, we will just let the
 996                 * clocksource go and have no suspend clocksource.
 997                 */
 998                clocksource_suspend_select(true);
 999        }
1000
1001        clocksource_watchdog_lock(&flags);
1002        clocksource_dequeue_watchdog(cs);
1003        list_del_init(&cs->list);
1004        clocksource_watchdog_unlock(&flags);
1005
1006        return 0;
1007}
1008
1009/**
1010 * clocksource_unregister - remove a registered clocksource
1011 * @cs: clocksource to be unregistered
1012 */
1013int clocksource_unregister(struct clocksource *cs)
1014{
1015        int ret = 0;
1016
1017        mutex_lock(&clocksource_mutex);
1018        if (!list_empty(&cs->list))
1019                ret = clocksource_unbind(cs);
1020        mutex_unlock(&clocksource_mutex);
1021        return ret;
1022}
1023EXPORT_SYMBOL(clocksource_unregister);
1024
1025#ifdef CONFIG_SYSFS
1026/**
1027 * current_clocksource_show - sysfs interface for current clocksource
1028 * @dev:        unused
1029 * @attr:       unused
1030 * @buf:        char buffer to be filled with clocksource list
1031 *
1032 * Provides sysfs interface for listing current clocksource.
1033 */
1034static ssize_t current_clocksource_show(struct device *dev,
1035                                        struct device_attribute *attr,
1036                                        char *buf)
1037{
1038        ssize_t count = 0;
1039
1040        mutex_lock(&clocksource_mutex);
1041        count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1042        mutex_unlock(&clocksource_mutex);
1043
1044        return count;
1045}
1046
1047ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1048{
1049        size_t ret = cnt;
1050
1051        /* strings from sysfs write are not 0 terminated! */
1052        if (!cnt || cnt >= CS_NAME_LEN)
1053                return -EINVAL;
1054
1055        /* strip of \n: */
1056        if (buf[cnt-1] == '\n')
1057                cnt--;
1058        if (cnt > 0)
1059                memcpy(dst, buf, cnt);
1060        dst[cnt] = 0;
1061        return ret;
1062}
1063
1064/**
1065 * current_clocksource_store - interface for manually overriding clocksource
1066 * @dev:        unused
1067 * @attr:       unused
1068 * @buf:        name of override clocksource
1069 * @count:      length of buffer
1070 *
1071 * Takes input from sysfs interface for manually overriding the default
1072 * clocksource selection.
1073 */
1074static ssize_t current_clocksource_store(struct device *dev,
1075                                         struct device_attribute *attr,
1076                                         const char *buf, size_t count)
1077{
1078        ssize_t ret;
1079
1080        mutex_lock(&clocksource_mutex);
1081
1082        ret = sysfs_get_uname(buf, override_name, count);
1083        if (ret >= 0)
1084                clocksource_select();
1085
1086        mutex_unlock(&clocksource_mutex);
1087
1088        return ret;
1089}
1090static DEVICE_ATTR_RW(current_clocksource);
1091
1092/**
1093 * unbind_clocksource_store - interface for manually unbinding clocksource
1094 * @dev:        unused
1095 * @attr:       unused
1096 * @buf:        unused
1097 * @count:      length of buffer
1098 *
1099 * Takes input from sysfs interface for manually unbinding a clocksource.
1100 */
1101static ssize_t unbind_clocksource_store(struct device *dev,
1102                                        struct device_attribute *attr,
1103                                        const char *buf, size_t count)
1104{
1105        struct clocksource *cs;
1106        char name[CS_NAME_LEN];
1107        ssize_t ret;
1108
1109        ret = sysfs_get_uname(buf, name, count);
1110        if (ret < 0)
1111                return ret;
1112
1113        ret = -ENODEV;
1114        mutex_lock(&clocksource_mutex);
1115        list_for_each_entry(cs, &clocksource_list, list) {
1116                if (strcmp(cs->name, name))
1117                        continue;
1118                ret = clocksource_unbind(cs);
1119                break;
1120        }
1121        mutex_unlock(&clocksource_mutex);
1122
1123        return ret ? ret : count;
1124}
1125static DEVICE_ATTR_WO(unbind_clocksource);
1126
1127/**
1128 * available_clocksource_show - sysfs interface for listing clocksource
1129 * @dev:        unused
1130 * @attr:       unused
1131 * @buf:        char buffer to be filled with clocksource list
1132 *
1133 * Provides sysfs interface for listing registered clocksources
1134 */
1135static ssize_t available_clocksource_show(struct device *dev,
1136                                          struct device_attribute *attr,
1137                                          char *buf)
1138{
1139        struct clocksource *src;
1140        ssize_t count = 0;
1141
1142        mutex_lock(&clocksource_mutex);
1143        list_for_each_entry(src, &clocksource_list, list) {
1144                /*
1145                 * Don't show non-HRES clocksource if the tick code is
1146                 * in one shot mode (highres=on or nohz=on)
1147                 */
1148                if (!tick_oneshot_mode_active() ||
1149                    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1150                        count += snprintf(buf + count,
1151                                  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1152                                  "%s ", src->name);
1153        }
1154        mutex_unlock(&clocksource_mutex);
1155
1156        count += snprintf(buf + count,
1157                          max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1158
1159        return count;
1160}
1161static DEVICE_ATTR_RO(available_clocksource);
1162
1163static struct attribute *clocksource_attrs[] = {
1164        &dev_attr_current_clocksource.attr,
1165        &dev_attr_unbind_clocksource.attr,
1166        &dev_attr_available_clocksource.attr,
1167        NULL
1168};
1169ATTRIBUTE_GROUPS(clocksource);
1170
1171static struct bus_type clocksource_subsys = {
1172        .name = "clocksource",
1173        .dev_name = "clocksource",
1174};
1175
1176static struct device device_clocksource = {
1177        .id     = 0,
1178        .bus    = &clocksource_subsys,
1179        .groups = clocksource_groups,
1180};
1181
1182static int __init init_clocksource_sysfs(void)
1183{
1184        int error = subsys_system_register(&clocksource_subsys, NULL);
1185
1186        if (!error)
1187                error = device_register(&device_clocksource);
1188
1189        return error;
1190}
1191
1192device_initcall(init_clocksource_sysfs);
1193#endif /* CONFIG_SYSFS */
1194
1195/**
1196 * boot_override_clocksource - boot clock override
1197 * @str:        override name
1198 *
1199 * Takes a clocksource= boot argument and uses it
1200 * as the clocksource override name.
1201 */
1202static int __init boot_override_clocksource(char* str)
1203{
1204        mutex_lock(&clocksource_mutex);
1205        if (str)
1206                strlcpy(override_name, str, sizeof(override_name));
1207        mutex_unlock(&clocksource_mutex);
1208        return 1;
1209}
1210
1211__setup("clocksource=", boot_override_clocksource);
1212
1213/**
1214 * boot_override_clock - Compatibility layer for deprecated boot option
1215 * @str:        override name
1216 *
1217 * DEPRECATED! Takes a clock= boot argument and uses it
1218 * as the clocksource override name
1219 */
1220static int __init boot_override_clock(char* str)
1221{
1222        if (!strcmp(str, "pmtmr")) {
1223                pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1224                return boot_override_clocksource("acpi_pm");
1225        }
1226        pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1227        return boot_override_clocksource(str);
1228}
1229
1230__setup("clock=", boot_override_clock);
1231