linux/kernel/time/timekeeping.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Kernel timekeeping code and accessor functions. Based on code from
   4 *  timer.c, moved in commit 8524070b7982.
   5 */
   6#include <linux/timekeeper_internal.h>
   7#include <linux/module.h>
   8#include <linux/interrupt.h>
   9#include <linux/percpu.h>
  10#include <linux/init.h>
  11#include <linux/mm.h>
  12#include <linux/nmi.h>
  13#include <linux/sched.h>
  14#include <linux/sched/loadavg.h>
  15#include <linux/sched/clock.h>
  16#include <linux/syscore_ops.h>
  17#include <linux/clocksource.h>
  18#include <linux/jiffies.h>
  19#include <linux/time.h>
  20#include <linux/tick.h>
  21#include <linux/stop_machine.h>
  22#include <linux/pvclock_gtod.h>
  23#include <linux/compiler.h>
  24#include <linux/audit.h>
  25
  26#include "tick-internal.h"
  27#include "ntp_internal.h"
  28#include "timekeeping_internal.h"
  29
  30#define TK_CLEAR_NTP            (1 << 0)
  31#define TK_MIRROR               (1 << 1)
  32#define TK_CLOCK_WAS_SET        (1 << 2)
  33
  34enum timekeeping_adv_mode {
  35        /* Update timekeeper when a tick has passed */
  36        TK_ADV_TICK,
  37
  38        /* Update timekeeper on a direct frequency change */
  39        TK_ADV_FREQ
  40};
  41
  42/*
  43 * The most important data for readout fits into a single 64 byte
  44 * cache line.
  45 */
  46static struct {
  47        seqcount_t              seq;
  48        struct timekeeper       timekeeper;
  49} tk_core ____cacheline_aligned = {
  50        .seq = SEQCNT_ZERO(tk_core.seq),
  51};
  52
  53static DEFINE_RAW_SPINLOCK(timekeeper_lock);
  54static struct timekeeper shadow_timekeeper;
  55
  56/**
  57 * struct tk_fast - NMI safe timekeeper
  58 * @seq:        Sequence counter for protecting updates. The lowest bit
  59 *              is the index for the tk_read_base array
  60 * @base:       tk_read_base array. Access is indexed by the lowest bit of
  61 *              @seq.
  62 *
  63 * See @update_fast_timekeeper() below.
  64 */
  65struct tk_fast {
  66        seqcount_t              seq;
  67        struct tk_read_base     base[2];
  68};
  69
  70/* Suspend-time cycles value for halted fast timekeeper. */
  71static u64 cycles_at_suspend;
  72
  73static u64 dummy_clock_read(struct clocksource *cs)
  74{
  75        return cycles_at_suspend;
  76}
  77
  78static struct clocksource dummy_clock = {
  79        .read = dummy_clock_read,
  80};
  81
  82static struct tk_fast tk_fast_mono ____cacheline_aligned = {
  83        .base[0] = { .clock = &dummy_clock, },
  84        .base[1] = { .clock = &dummy_clock, },
  85};
  86
  87static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
  88        .base[0] = { .clock = &dummy_clock, },
  89        .base[1] = { .clock = &dummy_clock, },
  90};
  91
  92/* flag for if timekeeping is suspended */
  93int __read_mostly timekeeping_suspended;
  94
  95static inline void tk_normalize_xtime(struct timekeeper *tk)
  96{
  97        while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
  98                tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
  99                tk->xtime_sec++;
 100        }
 101        while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
 102                tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
 103                tk->raw_sec++;
 104        }
 105}
 106
 107static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
 108{
 109        struct timespec64 ts;
 110
 111        ts.tv_sec = tk->xtime_sec;
 112        ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 113        return ts;
 114}
 115
 116static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
 117{
 118        tk->xtime_sec = ts->tv_sec;
 119        tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
 120}
 121
 122static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
 123{
 124        tk->xtime_sec += ts->tv_sec;
 125        tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
 126        tk_normalize_xtime(tk);
 127}
 128
 129static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
 130{
 131        struct timespec64 tmp;
 132
 133        /*
 134         * Verify consistency of: offset_real = -wall_to_monotonic
 135         * before modifying anything
 136         */
 137        set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
 138                                        -tk->wall_to_monotonic.tv_nsec);
 139        WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
 140        tk->wall_to_monotonic = wtm;
 141        set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
 142        tk->offs_real = timespec64_to_ktime(tmp);
 143        tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
 144}
 145
 146static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
 147{
 148        tk->offs_boot = ktime_add(tk->offs_boot, delta);
 149        /*
 150         * Timespec representation for VDSO update to avoid 64bit division
 151         * on every update.
 152         */
 153        tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
 154}
 155
 156/*
 157 * tk_clock_read - atomic clocksource read() helper
 158 *
 159 * This helper is necessary to use in the read paths because, while the
 160 * seqlock ensures we don't return a bad value while structures are updated,
 161 * it doesn't protect from potential crashes. There is the possibility that
 162 * the tkr's clocksource may change between the read reference, and the
 163 * clock reference passed to the read function.  This can cause crashes if
 164 * the wrong clocksource is passed to the wrong read function.
 165 * This isn't necessary to use when holding the timekeeper_lock or doing
 166 * a read of the fast-timekeeper tkrs (which is protected by its own locking
 167 * and update logic).
 168 */
 169static inline u64 tk_clock_read(const struct tk_read_base *tkr)
 170{
 171        struct clocksource *clock = READ_ONCE(tkr->clock);
 172
 173        return clock->read(clock);
 174}
 175
 176#ifdef CONFIG_DEBUG_TIMEKEEPING
 177#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
 178
 179static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
 180{
 181
 182        u64 max_cycles = tk->tkr_mono.clock->max_cycles;
 183        const char *name = tk->tkr_mono.clock->name;
 184
 185        if (offset > max_cycles) {
 186                printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
 187                                offset, name, max_cycles);
 188                printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
 189        } else {
 190                if (offset > (max_cycles >> 1)) {
 191                        printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
 192                                        offset, name, max_cycles >> 1);
 193                        printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
 194                }
 195        }
 196
 197        if (tk->underflow_seen) {
 198                if (jiffies - tk->last_warning > WARNING_FREQ) {
 199                        printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
 200                        printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
 201                        printk_deferred("         Your kernel is probably still fine.\n");
 202                        tk->last_warning = jiffies;
 203                }
 204                tk->underflow_seen = 0;
 205        }
 206
 207        if (tk->overflow_seen) {
 208                if (jiffies - tk->last_warning > WARNING_FREQ) {
 209                        printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
 210                        printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
 211                        printk_deferred("         Your kernel is probably still fine.\n");
 212                        tk->last_warning = jiffies;
 213                }
 214                tk->overflow_seen = 0;
 215        }
 216}
 217
 218static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
 219{
 220        struct timekeeper *tk = &tk_core.timekeeper;
 221        u64 now, last, mask, max, delta;
 222        unsigned int seq;
 223
 224        /*
 225         * Since we're called holding a seqlock, the data may shift
 226         * under us while we're doing the calculation. This can cause
 227         * false positives, since we'd note a problem but throw the
 228         * results away. So nest another seqlock here to atomically
 229         * grab the points we are checking with.
 230         */
 231        do {
 232                seq = read_seqcount_begin(&tk_core.seq);
 233                now = tk_clock_read(tkr);
 234                last = tkr->cycle_last;
 235                mask = tkr->mask;
 236                max = tkr->clock->max_cycles;
 237        } while (read_seqcount_retry(&tk_core.seq, seq));
 238
 239        delta = clocksource_delta(now, last, mask);
 240
 241        /*
 242         * Try to catch underflows by checking if we are seeing small
 243         * mask-relative negative values.
 244         */
 245        if (unlikely((~delta & mask) < (mask >> 3))) {
 246                tk->underflow_seen = 1;
 247                delta = 0;
 248        }
 249
 250        /* Cap delta value to the max_cycles values to avoid mult overflows */
 251        if (unlikely(delta > max)) {
 252                tk->overflow_seen = 1;
 253                delta = tkr->clock->max_cycles;
 254        }
 255
 256        return delta;
 257}
 258#else
 259static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
 260{
 261}
 262static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
 263{
 264        u64 cycle_now, delta;
 265
 266        /* read clocksource */
 267        cycle_now = tk_clock_read(tkr);
 268
 269        /* calculate the delta since the last update_wall_time */
 270        delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
 271
 272        return delta;
 273}
 274#endif
 275
 276/**
 277 * tk_setup_internals - Set up internals to use clocksource clock.
 278 *
 279 * @tk:         The target timekeeper to setup.
 280 * @clock:              Pointer to clocksource.
 281 *
 282 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 283 * pair and interval request.
 284 *
 285 * Unless you're the timekeeping code, you should not be using this!
 286 */
 287static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
 288{
 289        u64 interval;
 290        u64 tmp, ntpinterval;
 291        struct clocksource *old_clock;
 292
 293        ++tk->cs_was_changed_seq;
 294        old_clock = tk->tkr_mono.clock;
 295        tk->tkr_mono.clock = clock;
 296        tk->tkr_mono.mask = clock->mask;
 297        tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
 298
 299        tk->tkr_raw.clock = clock;
 300        tk->tkr_raw.mask = clock->mask;
 301        tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
 302
 303        /* Do the ns -> cycle conversion first, using original mult */
 304        tmp = NTP_INTERVAL_LENGTH;
 305        tmp <<= clock->shift;
 306        ntpinterval = tmp;
 307        tmp += clock->mult/2;
 308        do_div(tmp, clock->mult);
 309        if (tmp == 0)
 310                tmp = 1;
 311
 312        interval = (u64) tmp;
 313        tk->cycle_interval = interval;
 314
 315        /* Go back from cycles -> shifted ns */
 316        tk->xtime_interval = interval * clock->mult;
 317        tk->xtime_remainder = ntpinterval - tk->xtime_interval;
 318        tk->raw_interval = interval * clock->mult;
 319
 320         /* if changing clocks, convert xtime_nsec shift units */
 321        if (old_clock) {
 322                int shift_change = clock->shift - old_clock->shift;
 323                if (shift_change < 0) {
 324                        tk->tkr_mono.xtime_nsec >>= -shift_change;
 325                        tk->tkr_raw.xtime_nsec >>= -shift_change;
 326                } else {
 327                        tk->tkr_mono.xtime_nsec <<= shift_change;
 328                        tk->tkr_raw.xtime_nsec <<= shift_change;
 329                }
 330        }
 331
 332        tk->tkr_mono.shift = clock->shift;
 333        tk->tkr_raw.shift = clock->shift;
 334
 335        tk->ntp_error = 0;
 336        tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
 337        tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
 338
 339        /*
 340         * The timekeeper keeps its own mult values for the currently
 341         * active clocksource. These value will be adjusted via NTP
 342         * to counteract clock drifting.
 343         */
 344        tk->tkr_mono.mult = clock->mult;
 345        tk->tkr_raw.mult = clock->mult;
 346        tk->ntp_err_mult = 0;
 347        tk->skip_second_overflow = 0;
 348}
 349
 350/* Timekeeper helper functions. */
 351
 352#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
 353static u32 default_arch_gettimeoffset(void) { return 0; }
 354u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
 355#else
 356static inline u32 arch_gettimeoffset(void) { return 0; }
 357#endif
 358
 359static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
 360{
 361        u64 nsec;
 362
 363        nsec = delta * tkr->mult + tkr->xtime_nsec;
 364        nsec >>= tkr->shift;
 365
 366        /* If arch requires, add in get_arch_timeoffset() */
 367        return nsec + arch_gettimeoffset();
 368}
 369
 370static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
 371{
 372        u64 delta;
 373
 374        delta = timekeeping_get_delta(tkr);
 375        return timekeeping_delta_to_ns(tkr, delta);
 376}
 377
 378static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
 379{
 380        u64 delta;
 381
 382        /* calculate the delta since the last update_wall_time */
 383        delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
 384        return timekeeping_delta_to_ns(tkr, delta);
 385}
 386
 387/**
 388 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
 389 * @tkr: Timekeeping readout base from which we take the update
 390 *
 391 * We want to use this from any context including NMI and tracing /
 392 * instrumenting the timekeeping code itself.
 393 *
 394 * Employ the latch technique; see @raw_write_seqcount_latch.
 395 *
 396 * So if a NMI hits the update of base[0] then it will use base[1]
 397 * which is still consistent. In the worst case this can result is a
 398 * slightly wrong timestamp (a few nanoseconds). See
 399 * @ktime_get_mono_fast_ns.
 400 */
 401static void update_fast_timekeeper(const struct tk_read_base *tkr,
 402                                   struct tk_fast *tkf)
 403{
 404        struct tk_read_base *base = tkf->base;
 405
 406        /* Force readers off to base[1] */
 407        raw_write_seqcount_latch(&tkf->seq);
 408
 409        /* Update base[0] */
 410        memcpy(base, tkr, sizeof(*base));
 411
 412        /* Force readers back to base[0] */
 413        raw_write_seqcount_latch(&tkf->seq);
 414
 415        /* Update base[1] */
 416        memcpy(base + 1, base, sizeof(*base));
 417}
 418
 419/**
 420 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 421 *
 422 * This timestamp is not guaranteed to be monotonic across an update.
 423 * The timestamp is calculated by:
 424 *
 425 *      now = base_mono + clock_delta * slope
 426 *
 427 * So if the update lowers the slope, readers who are forced to the
 428 * not yet updated second array are still using the old steeper slope.
 429 *
 430 * tmono
 431 * ^
 432 * |    o  n
 433 * |   o n
 434 * |  u
 435 * | o
 436 * |o
 437 * |12345678---> reader order
 438 *
 439 * o = old slope
 440 * u = update
 441 * n = new slope
 442 *
 443 * So reader 6 will observe time going backwards versus reader 5.
 444 *
 445 * While other CPUs are likely to be able observe that, the only way
 446 * for a CPU local observation is when an NMI hits in the middle of
 447 * the update. Timestamps taken from that NMI context might be ahead
 448 * of the following timestamps. Callers need to be aware of that and
 449 * deal with it.
 450 */
 451static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
 452{
 453        struct tk_read_base *tkr;
 454        unsigned int seq;
 455        u64 now;
 456
 457        do {
 458                seq = raw_read_seqcount_latch(&tkf->seq);
 459                tkr = tkf->base + (seq & 0x01);
 460                now = ktime_to_ns(tkr->base);
 461
 462                now += timekeeping_delta_to_ns(tkr,
 463                                clocksource_delta(
 464                                        tk_clock_read(tkr),
 465                                        tkr->cycle_last,
 466                                        tkr->mask));
 467        } while (read_seqcount_retry(&tkf->seq, seq));
 468
 469        return now;
 470}
 471
 472u64 ktime_get_mono_fast_ns(void)
 473{
 474        return __ktime_get_fast_ns(&tk_fast_mono);
 475}
 476EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
 477
 478u64 ktime_get_raw_fast_ns(void)
 479{
 480        return __ktime_get_fast_ns(&tk_fast_raw);
 481}
 482EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
 483
 484/**
 485 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
 486 *
 487 * To keep it NMI safe since we're accessing from tracing, we're not using a
 488 * separate timekeeper with updates to monotonic clock and boot offset
 489 * protected with seqlocks. This has the following minor side effects:
 490 *
 491 * (1) Its possible that a timestamp be taken after the boot offset is updated
 492 * but before the timekeeper is updated. If this happens, the new boot offset
 493 * is added to the old timekeeping making the clock appear to update slightly
 494 * earlier:
 495 *    CPU 0                                        CPU 1
 496 *    timekeeping_inject_sleeptime64()
 497 *    __timekeeping_inject_sleeptime(tk, delta);
 498 *                                                 timestamp();
 499 *    timekeeping_update(tk, TK_CLEAR_NTP...);
 500 *
 501 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
 502 * partially updated.  Since the tk->offs_boot update is a rare event, this
 503 * should be a rare occurrence which postprocessing should be able to handle.
 504 */
 505u64 notrace ktime_get_boot_fast_ns(void)
 506{
 507        struct timekeeper *tk = &tk_core.timekeeper;
 508
 509        return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
 510}
 511EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
 512
 513
 514/*
 515 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
 516 */
 517static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
 518{
 519        struct tk_read_base *tkr;
 520        unsigned int seq;
 521        u64 now;
 522
 523        do {
 524                seq = raw_read_seqcount_latch(&tkf->seq);
 525                tkr = tkf->base + (seq & 0x01);
 526                now = ktime_to_ns(tkr->base_real);
 527
 528                now += timekeeping_delta_to_ns(tkr,
 529                                clocksource_delta(
 530                                        tk_clock_read(tkr),
 531                                        tkr->cycle_last,
 532                                        tkr->mask));
 533        } while (read_seqcount_retry(&tkf->seq, seq));
 534
 535        return now;
 536}
 537
 538/**
 539 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
 540 */
 541u64 ktime_get_real_fast_ns(void)
 542{
 543        return __ktime_get_real_fast_ns(&tk_fast_mono);
 544}
 545EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
 546
 547/**
 548 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 549 * @tk: Timekeeper to snapshot.
 550 *
 551 * It generally is unsafe to access the clocksource after timekeeping has been
 552 * suspended, so take a snapshot of the readout base of @tk and use it as the
 553 * fast timekeeper's readout base while suspended.  It will return the same
 554 * number of cycles every time until timekeeping is resumed at which time the
 555 * proper readout base for the fast timekeeper will be restored automatically.
 556 */
 557static void halt_fast_timekeeper(const struct timekeeper *tk)
 558{
 559        static struct tk_read_base tkr_dummy;
 560        const struct tk_read_base *tkr = &tk->tkr_mono;
 561
 562        memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
 563        cycles_at_suspend = tk_clock_read(tkr);
 564        tkr_dummy.clock = &dummy_clock;
 565        tkr_dummy.base_real = tkr->base + tk->offs_real;
 566        update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
 567
 568        tkr = &tk->tkr_raw;
 569        memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
 570        tkr_dummy.clock = &dummy_clock;
 571        update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
 572}
 573
 574static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
 575
 576static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
 577{
 578        raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
 579}
 580
 581/**
 582 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 583 */
 584int pvclock_gtod_register_notifier(struct notifier_block *nb)
 585{
 586        struct timekeeper *tk = &tk_core.timekeeper;
 587        unsigned long flags;
 588        int ret;
 589
 590        raw_spin_lock_irqsave(&timekeeper_lock, flags);
 591        ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
 592        update_pvclock_gtod(tk, true);
 593        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 594
 595        return ret;
 596}
 597EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
 598
 599/**
 600 * pvclock_gtod_unregister_notifier - unregister a pvclock
 601 * timedata update listener
 602 */
 603int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
 604{
 605        unsigned long flags;
 606        int ret;
 607
 608        raw_spin_lock_irqsave(&timekeeper_lock, flags);
 609        ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
 610        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 611
 612        return ret;
 613}
 614EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
 615
 616/*
 617 * tk_update_leap_state - helper to update the next_leap_ktime
 618 */
 619static inline void tk_update_leap_state(struct timekeeper *tk)
 620{
 621        tk->next_leap_ktime = ntp_get_next_leap();
 622        if (tk->next_leap_ktime != KTIME_MAX)
 623                /* Convert to monotonic time */
 624                tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
 625}
 626
 627/*
 628 * Update the ktime_t based scalar nsec members of the timekeeper
 629 */
 630static inline void tk_update_ktime_data(struct timekeeper *tk)
 631{
 632        u64 seconds;
 633        u32 nsec;
 634
 635        /*
 636         * The xtime based monotonic readout is:
 637         *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
 638         * The ktime based monotonic readout is:
 639         *      nsec = base_mono + now();
 640         * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
 641         */
 642        seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
 643        nsec = (u32) tk->wall_to_monotonic.tv_nsec;
 644        tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
 645
 646        /*
 647         * The sum of the nanoseconds portions of xtime and
 648         * wall_to_monotonic can be greater/equal one second. Take
 649         * this into account before updating tk->ktime_sec.
 650         */
 651        nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 652        if (nsec >= NSEC_PER_SEC)
 653                seconds++;
 654        tk->ktime_sec = seconds;
 655
 656        /* Update the monotonic raw base */
 657        tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
 658}
 659
 660/* must hold timekeeper_lock */
 661static void timekeeping_update(struct timekeeper *tk, unsigned int action)
 662{
 663        if (action & TK_CLEAR_NTP) {
 664                tk->ntp_error = 0;
 665                ntp_clear();
 666        }
 667
 668        tk_update_leap_state(tk);
 669        tk_update_ktime_data(tk);
 670
 671        update_vsyscall(tk);
 672        update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
 673
 674        tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
 675        update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
 676        update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
 677
 678        if (action & TK_CLOCK_WAS_SET)
 679                tk->clock_was_set_seq++;
 680        /*
 681         * The mirroring of the data to the shadow-timekeeper needs
 682         * to happen last here to ensure we don't over-write the
 683         * timekeeper structure on the next update with stale data
 684         */
 685        if (action & TK_MIRROR)
 686                memcpy(&shadow_timekeeper, &tk_core.timekeeper,
 687                       sizeof(tk_core.timekeeper));
 688}
 689
 690/**
 691 * timekeeping_forward_now - update clock to the current time
 692 *
 693 * Forward the current clock to update its state since the last call to
 694 * update_wall_time(). This is useful before significant clock changes,
 695 * as it avoids having to deal with this time offset explicitly.
 696 */
 697static void timekeeping_forward_now(struct timekeeper *tk)
 698{
 699        u64 cycle_now, delta;
 700
 701        cycle_now = tk_clock_read(&tk->tkr_mono);
 702        delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
 703        tk->tkr_mono.cycle_last = cycle_now;
 704        tk->tkr_raw.cycle_last  = cycle_now;
 705
 706        tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
 707
 708        /* If arch requires, add in get_arch_timeoffset() */
 709        tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
 710
 711
 712        tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
 713
 714        /* If arch requires, add in get_arch_timeoffset() */
 715        tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
 716
 717        tk_normalize_xtime(tk);
 718}
 719
 720/**
 721 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
 722 * @ts:         pointer to the timespec to be set
 723 *
 724 * Returns the time of day in a timespec64 (WARN if suspended).
 725 */
 726void ktime_get_real_ts64(struct timespec64 *ts)
 727{
 728        struct timekeeper *tk = &tk_core.timekeeper;
 729        unsigned int seq;
 730        u64 nsecs;
 731
 732        WARN_ON(timekeeping_suspended);
 733
 734        do {
 735                seq = read_seqcount_begin(&tk_core.seq);
 736
 737                ts->tv_sec = tk->xtime_sec;
 738                nsecs = timekeeping_get_ns(&tk->tkr_mono);
 739
 740        } while (read_seqcount_retry(&tk_core.seq, seq));
 741
 742        ts->tv_nsec = 0;
 743        timespec64_add_ns(ts, nsecs);
 744}
 745EXPORT_SYMBOL(ktime_get_real_ts64);
 746
 747ktime_t ktime_get(void)
 748{
 749        struct timekeeper *tk = &tk_core.timekeeper;
 750        unsigned int seq;
 751        ktime_t base;
 752        u64 nsecs;
 753
 754        WARN_ON(timekeeping_suspended);
 755
 756        do {
 757                seq = read_seqcount_begin(&tk_core.seq);
 758                base = tk->tkr_mono.base;
 759                nsecs = timekeeping_get_ns(&tk->tkr_mono);
 760
 761        } while (read_seqcount_retry(&tk_core.seq, seq));
 762
 763        return ktime_add_ns(base, nsecs);
 764}
 765EXPORT_SYMBOL_GPL(ktime_get);
 766
 767u32 ktime_get_resolution_ns(void)
 768{
 769        struct timekeeper *tk = &tk_core.timekeeper;
 770        unsigned int seq;
 771        u32 nsecs;
 772
 773        WARN_ON(timekeeping_suspended);
 774
 775        do {
 776                seq = read_seqcount_begin(&tk_core.seq);
 777                nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
 778        } while (read_seqcount_retry(&tk_core.seq, seq));
 779
 780        return nsecs;
 781}
 782EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
 783
 784static ktime_t *offsets[TK_OFFS_MAX] = {
 785        [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
 786        [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
 787        [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
 788};
 789
 790ktime_t ktime_get_with_offset(enum tk_offsets offs)
 791{
 792        struct timekeeper *tk = &tk_core.timekeeper;
 793        unsigned int seq;
 794        ktime_t base, *offset = offsets[offs];
 795        u64 nsecs;
 796
 797        WARN_ON(timekeeping_suspended);
 798
 799        do {
 800                seq = read_seqcount_begin(&tk_core.seq);
 801                base = ktime_add(tk->tkr_mono.base, *offset);
 802                nsecs = timekeeping_get_ns(&tk->tkr_mono);
 803
 804        } while (read_seqcount_retry(&tk_core.seq, seq));
 805
 806        return ktime_add_ns(base, nsecs);
 807
 808}
 809EXPORT_SYMBOL_GPL(ktime_get_with_offset);
 810
 811ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
 812{
 813        struct timekeeper *tk = &tk_core.timekeeper;
 814        unsigned int seq;
 815        ktime_t base, *offset = offsets[offs];
 816        u64 nsecs;
 817
 818        WARN_ON(timekeeping_suspended);
 819
 820        do {
 821                seq = read_seqcount_begin(&tk_core.seq);
 822                base = ktime_add(tk->tkr_mono.base, *offset);
 823                nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
 824
 825        } while (read_seqcount_retry(&tk_core.seq, seq));
 826
 827        return ktime_add_ns(base, nsecs);
 828}
 829EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
 830
 831/**
 832 * ktime_mono_to_any() - convert mononotic time to any other time
 833 * @tmono:      time to convert.
 834 * @offs:       which offset to use
 835 */
 836ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
 837{
 838        ktime_t *offset = offsets[offs];
 839        unsigned int seq;
 840        ktime_t tconv;
 841
 842        do {
 843                seq = read_seqcount_begin(&tk_core.seq);
 844                tconv = ktime_add(tmono, *offset);
 845        } while (read_seqcount_retry(&tk_core.seq, seq));
 846
 847        return tconv;
 848}
 849EXPORT_SYMBOL_GPL(ktime_mono_to_any);
 850
 851/**
 852 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 853 */
 854ktime_t ktime_get_raw(void)
 855{
 856        struct timekeeper *tk = &tk_core.timekeeper;
 857        unsigned int seq;
 858        ktime_t base;
 859        u64 nsecs;
 860
 861        do {
 862                seq = read_seqcount_begin(&tk_core.seq);
 863                base = tk->tkr_raw.base;
 864                nsecs = timekeeping_get_ns(&tk->tkr_raw);
 865
 866        } while (read_seqcount_retry(&tk_core.seq, seq));
 867
 868        return ktime_add_ns(base, nsecs);
 869}
 870EXPORT_SYMBOL_GPL(ktime_get_raw);
 871
 872/**
 873 * ktime_get_ts64 - get the monotonic clock in timespec64 format
 874 * @ts:         pointer to timespec variable
 875 *
 876 * The function calculates the monotonic clock from the realtime
 877 * clock and the wall_to_monotonic offset and stores the result
 878 * in normalized timespec64 format in the variable pointed to by @ts.
 879 */
 880void ktime_get_ts64(struct timespec64 *ts)
 881{
 882        struct timekeeper *tk = &tk_core.timekeeper;
 883        struct timespec64 tomono;
 884        unsigned int seq;
 885        u64 nsec;
 886
 887        WARN_ON(timekeeping_suspended);
 888
 889        do {
 890                seq = read_seqcount_begin(&tk_core.seq);
 891                ts->tv_sec = tk->xtime_sec;
 892                nsec = timekeeping_get_ns(&tk->tkr_mono);
 893                tomono = tk->wall_to_monotonic;
 894
 895        } while (read_seqcount_retry(&tk_core.seq, seq));
 896
 897        ts->tv_sec += tomono.tv_sec;
 898        ts->tv_nsec = 0;
 899        timespec64_add_ns(ts, nsec + tomono.tv_nsec);
 900}
 901EXPORT_SYMBOL_GPL(ktime_get_ts64);
 902
 903/**
 904 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 905 *
 906 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 907 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 908 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 909 * covers ~136 years of uptime which should be enough to prevent
 910 * premature wrap arounds.
 911 */
 912time64_t ktime_get_seconds(void)
 913{
 914        struct timekeeper *tk = &tk_core.timekeeper;
 915
 916        WARN_ON(timekeeping_suspended);
 917        return tk->ktime_sec;
 918}
 919EXPORT_SYMBOL_GPL(ktime_get_seconds);
 920
 921/**
 922 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 923 *
 924 * Returns the wall clock seconds since 1970. This replaces the
 925 * get_seconds() interface which is not y2038 safe on 32bit systems.
 926 *
 927 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 928 * 32bit systems the access must be protected with the sequence
 929 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 930 * value.
 931 */
 932time64_t ktime_get_real_seconds(void)
 933{
 934        struct timekeeper *tk = &tk_core.timekeeper;
 935        time64_t seconds;
 936        unsigned int seq;
 937
 938        if (IS_ENABLED(CONFIG_64BIT))
 939                return tk->xtime_sec;
 940
 941        do {
 942                seq = read_seqcount_begin(&tk_core.seq);
 943                seconds = tk->xtime_sec;
 944
 945        } while (read_seqcount_retry(&tk_core.seq, seq));
 946
 947        return seconds;
 948}
 949EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
 950
 951/**
 952 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 953 * but without the sequence counter protect. This internal function
 954 * is called just when timekeeping lock is already held.
 955 */
 956time64_t __ktime_get_real_seconds(void)
 957{
 958        struct timekeeper *tk = &tk_core.timekeeper;
 959
 960        return tk->xtime_sec;
 961}
 962
 963/**
 964 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 965 * @systime_snapshot:   pointer to struct receiving the system time snapshot
 966 */
 967void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
 968{
 969        struct timekeeper *tk = &tk_core.timekeeper;
 970        unsigned int seq;
 971        ktime_t base_raw;
 972        ktime_t base_real;
 973        u64 nsec_raw;
 974        u64 nsec_real;
 975        u64 now;
 976
 977        WARN_ON_ONCE(timekeeping_suspended);
 978
 979        do {
 980                seq = read_seqcount_begin(&tk_core.seq);
 981                now = tk_clock_read(&tk->tkr_mono);
 982                systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
 983                systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
 984                base_real = ktime_add(tk->tkr_mono.base,
 985                                      tk_core.timekeeper.offs_real);
 986                base_raw = tk->tkr_raw.base;
 987                nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
 988                nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
 989        } while (read_seqcount_retry(&tk_core.seq, seq));
 990
 991        systime_snapshot->cycles = now;
 992        systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
 993        systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
 994}
 995EXPORT_SYMBOL_GPL(ktime_get_snapshot);
 996
 997/* Scale base by mult/div checking for overflow */
 998static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
 999{
1000        u64 tmp, rem;
1001
1002        tmp = div64_u64_rem(*base, div, &rem);
1003
1004        if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1005            ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1006                return -EOVERFLOW;
1007        tmp *= mult;
1008        rem *= mult;
1009
1010        do_div(rem, div);
1011        *base = tmp + rem;
1012        return 0;
1013}
1014
1015/**
1016 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1017 * @history:                    Snapshot representing start of history
1018 * @partial_history_cycles:     Cycle offset into history (fractional part)
1019 * @total_history_cycles:       Total history length in cycles
1020 * @discontinuity:              True indicates clock was set on history period
1021 * @ts:                         Cross timestamp that should be adjusted using
1022 *      partial/total ratio
1023 *
1024 * Helper function used by get_device_system_crosststamp() to correct the
1025 * crosstimestamp corresponding to the start of the current interval to the
1026 * system counter value (timestamp point) provided by the driver. The
1027 * total_history_* quantities are the total history starting at the provided
1028 * reference point and ending at the start of the current interval. The cycle
1029 * count between the driver timestamp point and the start of the current
1030 * interval is partial_history_cycles.
1031 */
1032static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1033                                         u64 partial_history_cycles,
1034                                         u64 total_history_cycles,
1035                                         bool discontinuity,
1036                                         struct system_device_crosststamp *ts)
1037{
1038        struct timekeeper *tk = &tk_core.timekeeper;
1039        u64 corr_raw, corr_real;
1040        bool interp_forward;
1041        int ret;
1042
1043        if (total_history_cycles == 0 || partial_history_cycles == 0)
1044                return 0;
1045
1046        /* Interpolate shortest distance from beginning or end of history */
1047        interp_forward = partial_history_cycles > total_history_cycles / 2;
1048        partial_history_cycles = interp_forward ?
1049                total_history_cycles - partial_history_cycles :
1050                partial_history_cycles;
1051
1052        /*
1053         * Scale the monotonic raw time delta by:
1054         *      partial_history_cycles / total_history_cycles
1055         */
1056        corr_raw = (u64)ktime_to_ns(
1057                ktime_sub(ts->sys_monoraw, history->raw));
1058        ret = scale64_check_overflow(partial_history_cycles,
1059                                     total_history_cycles, &corr_raw);
1060        if (ret)
1061                return ret;
1062
1063        /*
1064         * If there is a discontinuity in the history, scale monotonic raw
1065         *      correction by:
1066         *      mult(real)/mult(raw) yielding the realtime correction
1067         * Otherwise, calculate the realtime correction similar to monotonic
1068         *      raw calculation
1069         */
1070        if (discontinuity) {
1071                corr_real = mul_u64_u32_div
1072                        (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1073        } else {
1074                corr_real = (u64)ktime_to_ns(
1075                        ktime_sub(ts->sys_realtime, history->real));
1076                ret = scale64_check_overflow(partial_history_cycles,
1077                                             total_history_cycles, &corr_real);
1078                if (ret)
1079                        return ret;
1080        }
1081
1082        /* Fixup monotonic raw and real time time values */
1083        if (interp_forward) {
1084                ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1085                ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1086        } else {
1087                ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1088                ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1089        }
1090
1091        return 0;
1092}
1093
1094/*
1095 * cycle_between - true if test occurs chronologically between before and after
1096 */
1097static bool cycle_between(u64 before, u64 test, u64 after)
1098{
1099        if (test > before && test < after)
1100                return true;
1101        if (test < before && before > after)
1102                return true;
1103        return false;
1104}
1105
1106/**
1107 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1108 * @get_time_fn:        Callback to get simultaneous device time and
1109 *      system counter from the device driver
1110 * @ctx:                Context passed to get_time_fn()
1111 * @history_begin:      Historical reference point used to interpolate system
1112 *      time when counter provided by the driver is before the current interval
1113 * @xtstamp:            Receives simultaneously captured system and device time
1114 *
1115 * Reads a timestamp from a device and correlates it to system time
1116 */
1117int get_device_system_crosststamp(int (*get_time_fn)
1118                                  (ktime_t *device_time,
1119                                   struct system_counterval_t *sys_counterval,
1120                                   void *ctx),
1121                                  void *ctx,
1122                                  struct system_time_snapshot *history_begin,
1123                                  struct system_device_crosststamp *xtstamp)
1124{
1125        struct system_counterval_t system_counterval;
1126        struct timekeeper *tk = &tk_core.timekeeper;
1127        u64 cycles, now, interval_start;
1128        unsigned int clock_was_set_seq = 0;
1129        ktime_t base_real, base_raw;
1130        u64 nsec_real, nsec_raw;
1131        u8 cs_was_changed_seq;
1132        unsigned int seq;
1133        bool do_interp;
1134        int ret;
1135
1136        do {
1137                seq = read_seqcount_begin(&tk_core.seq);
1138                /*
1139                 * Try to synchronously capture device time and a system
1140                 * counter value calling back into the device driver
1141                 */
1142                ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1143                if (ret)
1144                        return ret;
1145
1146                /*
1147                 * Verify that the clocksource associated with the captured
1148                 * system counter value is the same as the currently installed
1149                 * timekeeper clocksource
1150                 */
1151                if (tk->tkr_mono.clock != system_counterval.cs)
1152                        return -ENODEV;
1153                cycles = system_counterval.cycles;
1154
1155                /*
1156                 * Check whether the system counter value provided by the
1157                 * device driver is on the current timekeeping interval.
1158                 */
1159                now = tk_clock_read(&tk->tkr_mono);
1160                interval_start = tk->tkr_mono.cycle_last;
1161                if (!cycle_between(interval_start, cycles, now)) {
1162                        clock_was_set_seq = tk->clock_was_set_seq;
1163                        cs_was_changed_seq = tk->cs_was_changed_seq;
1164                        cycles = interval_start;
1165                        do_interp = true;
1166                } else {
1167                        do_interp = false;
1168                }
1169
1170                base_real = ktime_add(tk->tkr_mono.base,
1171                                      tk_core.timekeeper.offs_real);
1172                base_raw = tk->tkr_raw.base;
1173
1174                nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1175                                                     system_counterval.cycles);
1176                nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1177                                                    system_counterval.cycles);
1178        } while (read_seqcount_retry(&tk_core.seq, seq));
1179
1180        xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1181        xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1182
1183        /*
1184         * Interpolate if necessary, adjusting back from the start of the
1185         * current interval
1186         */
1187        if (do_interp) {
1188                u64 partial_history_cycles, total_history_cycles;
1189                bool discontinuity;
1190
1191                /*
1192                 * Check that the counter value occurs after the provided
1193                 * history reference and that the history doesn't cross a
1194                 * clocksource change
1195                 */
1196                if (!history_begin ||
1197                    !cycle_between(history_begin->cycles,
1198                                   system_counterval.cycles, cycles) ||
1199                    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1200                        return -EINVAL;
1201                partial_history_cycles = cycles - system_counterval.cycles;
1202                total_history_cycles = cycles - history_begin->cycles;
1203                discontinuity =
1204                        history_begin->clock_was_set_seq != clock_was_set_seq;
1205
1206                ret = adjust_historical_crosststamp(history_begin,
1207                                                    partial_history_cycles,
1208                                                    total_history_cycles,
1209                                                    discontinuity, xtstamp);
1210                if (ret)
1211                        return ret;
1212        }
1213
1214        return 0;
1215}
1216EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1217
1218/**
1219 * do_settimeofday64 - Sets the time of day.
1220 * @ts:     pointer to the timespec64 variable containing the new time
1221 *
1222 * Sets the time of day to the new time and update NTP and notify hrtimers
1223 */
1224int do_settimeofday64(const struct timespec64 *ts)
1225{
1226        struct timekeeper *tk = &tk_core.timekeeper;
1227        struct timespec64 ts_delta, xt;
1228        unsigned long flags;
1229        int ret = 0;
1230
1231        if (!timespec64_valid_settod(ts))
1232                return -EINVAL;
1233
1234        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1235        write_seqcount_begin(&tk_core.seq);
1236
1237        timekeeping_forward_now(tk);
1238
1239        xt = tk_xtime(tk);
1240        ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1241        ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1242
1243        if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1244                ret = -EINVAL;
1245                goto out;
1246        }
1247
1248        tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1249
1250        tk_set_xtime(tk, ts);
1251out:
1252        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1253
1254        write_seqcount_end(&tk_core.seq);
1255        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1256
1257        /* signal hrtimers about time change */
1258        clock_was_set();
1259
1260        if (!ret)
1261                audit_tk_injoffset(ts_delta);
1262
1263        return ret;
1264}
1265EXPORT_SYMBOL(do_settimeofday64);
1266
1267/**
1268 * timekeeping_inject_offset - Adds or subtracts from the current time.
1269 * @tv:         pointer to the timespec variable containing the offset
1270 *
1271 * Adds or subtracts an offset value from the current time.
1272 */
1273static int timekeeping_inject_offset(const struct timespec64 *ts)
1274{
1275        struct timekeeper *tk = &tk_core.timekeeper;
1276        unsigned long flags;
1277        struct timespec64 tmp;
1278        int ret = 0;
1279
1280        if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1281                return -EINVAL;
1282
1283        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1284        write_seqcount_begin(&tk_core.seq);
1285
1286        timekeeping_forward_now(tk);
1287
1288        /* Make sure the proposed value is valid */
1289        tmp = timespec64_add(tk_xtime(tk), *ts);
1290        if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1291            !timespec64_valid_settod(&tmp)) {
1292                ret = -EINVAL;
1293                goto error;
1294        }
1295
1296        tk_xtime_add(tk, ts);
1297        tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1298
1299error: /* even if we error out, we forwarded the time, so call update */
1300        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1301
1302        write_seqcount_end(&tk_core.seq);
1303        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1304
1305        /* signal hrtimers about time change */
1306        clock_was_set();
1307
1308        return ret;
1309}
1310
1311/*
1312 * Indicates if there is an offset between the system clock and the hardware
1313 * clock/persistent clock/rtc.
1314 */
1315int persistent_clock_is_local;
1316
1317/*
1318 * Adjust the time obtained from the CMOS to be UTC time instead of
1319 * local time.
1320 *
1321 * This is ugly, but preferable to the alternatives.  Otherwise we
1322 * would either need to write a program to do it in /etc/rc (and risk
1323 * confusion if the program gets run more than once; it would also be
1324 * hard to make the program warp the clock precisely n hours)  or
1325 * compile in the timezone information into the kernel.  Bad, bad....
1326 *
1327 *                                              - TYT, 1992-01-01
1328 *
1329 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1330 * as real UNIX machines always do it. This avoids all headaches about
1331 * daylight saving times and warping kernel clocks.
1332 */
1333void timekeeping_warp_clock(void)
1334{
1335        if (sys_tz.tz_minuteswest != 0) {
1336                struct timespec64 adjust;
1337
1338                persistent_clock_is_local = 1;
1339                adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1340                adjust.tv_nsec = 0;
1341                timekeeping_inject_offset(&adjust);
1342        }
1343}
1344
1345/**
1346 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1347 *
1348 */
1349static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1350{
1351        tk->tai_offset = tai_offset;
1352        tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1353}
1354
1355/**
1356 * change_clocksource - Swaps clocksources if a new one is available
1357 *
1358 * Accumulates current time interval and initializes new clocksource
1359 */
1360static int change_clocksource(void *data)
1361{
1362        struct timekeeper *tk = &tk_core.timekeeper;
1363        struct clocksource *new, *old;
1364        unsigned long flags;
1365
1366        new = (struct clocksource *) data;
1367
1368        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1369        write_seqcount_begin(&tk_core.seq);
1370
1371        timekeeping_forward_now(tk);
1372        /*
1373         * If the cs is in module, get a module reference. Succeeds
1374         * for built-in code (owner == NULL) as well.
1375         */
1376        if (try_module_get(new->owner)) {
1377                if (!new->enable || new->enable(new) == 0) {
1378                        old = tk->tkr_mono.clock;
1379                        tk_setup_internals(tk, new);
1380                        if (old->disable)
1381                                old->disable(old);
1382                        module_put(old->owner);
1383                } else {
1384                        module_put(new->owner);
1385                }
1386        }
1387        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1388
1389        write_seqcount_end(&tk_core.seq);
1390        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1391
1392        return 0;
1393}
1394
1395/**
1396 * timekeeping_notify - Install a new clock source
1397 * @clock:              pointer to the clock source
1398 *
1399 * This function is called from clocksource.c after a new, better clock
1400 * source has been registered. The caller holds the clocksource_mutex.
1401 */
1402int timekeeping_notify(struct clocksource *clock)
1403{
1404        struct timekeeper *tk = &tk_core.timekeeper;
1405
1406        if (tk->tkr_mono.clock == clock)
1407                return 0;
1408        stop_machine(change_clocksource, clock, NULL);
1409        tick_clock_notify();
1410        return tk->tkr_mono.clock == clock ? 0 : -1;
1411}
1412
1413/**
1414 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1415 * @ts:         pointer to the timespec64 to be set
1416 *
1417 * Returns the raw monotonic time (completely un-modified by ntp)
1418 */
1419void ktime_get_raw_ts64(struct timespec64 *ts)
1420{
1421        struct timekeeper *tk = &tk_core.timekeeper;
1422        unsigned int seq;
1423        u64 nsecs;
1424
1425        do {
1426                seq = read_seqcount_begin(&tk_core.seq);
1427                ts->tv_sec = tk->raw_sec;
1428                nsecs = timekeeping_get_ns(&tk->tkr_raw);
1429
1430        } while (read_seqcount_retry(&tk_core.seq, seq));
1431
1432        ts->tv_nsec = 0;
1433        timespec64_add_ns(ts, nsecs);
1434}
1435EXPORT_SYMBOL(ktime_get_raw_ts64);
1436
1437
1438/**
1439 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1440 */
1441int timekeeping_valid_for_hres(void)
1442{
1443        struct timekeeper *tk = &tk_core.timekeeper;
1444        unsigned int seq;
1445        int ret;
1446
1447        do {
1448                seq = read_seqcount_begin(&tk_core.seq);
1449
1450                ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1451
1452        } while (read_seqcount_retry(&tk_core.seq, seq));
1453
1454        return ret;
1455}
1456
1457/**
1458 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1459 */
1460u64 timekeeping_max_deferment(void)
1461{
1462        struct timekeeper *tk = &tk_core.timekeeper;
1463        unsigned int seq;
1464        u64 ret;
1465
1466        do {
1467                seq = read_seqcount_begin(&tk_core.seq);
1468
1469                ret = tk->tkr_mono.clock->max_idle_ns;
1470
1471        } while (read_seqcount_retry(&tk_core.seq, seq));
1472
1473        return ret;
1474}
1475
1476/**
1477 * read_persistent_clock64 -  Return time from the persistent clock.
1478 *
1479 * Weak dummy function for arches that do not yet support it.
1480 * Reads the time from the battery backed persistent clock.
1481 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1482 *
1483 *  XXX - Do be sure to remove it once all arches implement it.
1484 */
1485void __weak read_persistent_clock64(struct timespec64 *ts)
1486{
1487        ts->tv_sec = 0;
1488        ts->tv_nsec = 0;
1489}
1490
1491/**
1492 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1493 *                                        from the boot.
1494 *
1495 * Weak dummy function for arches that do not yet support it.
1496 * wall_time    - current time as returned by persistent clock
1497 * boot_offset  - offset that is defined as wall_time - boot_time
1498 * The default function calculates offset based on the current value of
1499 * local_clock(). This way architectures that support sched_clock() but don't
1500 * support dedicated boot time clock will provide the best estimate of the
1501 * boot time.
1502 */
1503void __weak __init
1504read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1505                                     struct timespec64 *boot_offset)
1506{
1507        read_persistent_clock64(wall_time);
1508        *boot_offset = ns_to_timespec64(local_clock());
1509}
1510
1511/*
1512 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1513 *
1514 * The flag starts of false and is only set when a suspend reaches
1515 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1516 * timekeeper clocksource is not stopping across suspend and has been
1517 * used to update sleep time. If the timekeeper clocksource has stopped
1518 * then the flag stays true and is used by the RTC resume code to decide
1519 * whether sleeptime must be injected and if so the flag gets false then.
1520 *
1521 * If a suspend fails before reaching timekeeping_resume() then the flag
1522 * stays false and prevents erroneous sleeptime injection.
1523 */
1524static bool suspend_timing_needed;
1525
1526/* Flag for if there is a persistent clock on this platform */
1527static bool persistent_clock_exists;
1528
1529/*
1530 * timekeeping_init - Initializes the clocksource and common timekeeping values
1531 */
1532void __init timekeeping_init(void)
1533{
1534        struct timespec64 wall_time, boot_offset, wall_to_mono;
1535        struct timekeeper *tk = &tk_core.timekeeper;
1536        struct clocksource *clock;
1537        unsigned long flags;
1538
1539        read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1540        if (timespec64_valid_settod(&wall_time) &&
1541            timespec64_to_ns(&wall_time) > 0) {
1542                persistent_clock_exists = true;
1543        } else if (timespec64_to_ns(&wall_time) != 0) {
1544                pr_warn("Persistent clock returned invalid value");
1545                wall_time = (struct timespec64){0};
1546        }
1547
1548        if (timespec64_compare(&wall_time, &boot_offset) < 0)
1549                boot_offset = (struct timespec64){0};
1550
1551        /*
1552         * We want set wall_to_mono, so the following is true:
1553         * wall time + wall_to_mono = boot time
1554         */
1555        wall_to_mono = timespec64_sub(boot_offset, wall_time);
1556
1557        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1558        write_seqcount_begin(&tk_core.seq);
1559        ntp_init();
1560
1561        clock = clocksource_default_clock();
1562        if (clock->enable)
1563                clock->enable(clock);
1564        tk_setup_internals(tk, clock);
1565
1566        tk_set_xtime(tk, &wall_time);
1567        tk->raw_sec = 0;
1568
1569        tk_set_wall_to_mono(tk, wall_to_mono);
1570
1571        timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1572
1573        write_seqcount_end(&tk_core.seq);
1574        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1575}
1576
1577/* time in seconds when suspend began for persistent clock */
1578static struct timespec64 timekeeping_suspend_time;
1579
1580/**
1581 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1582 * @delta: pointer to a timespec delta value
1583 *
1584 * Takes a timespec offset measuring a suspend interval and properly
1585 * adds the sleep offset to the timekeeping variables.
1586 */
1587static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1588                                           const struct timespec64 *delta)
1589{
1590        if (!timespec64_valid_strict(delta)) {
1591                printk_deferred(KERN_WARNING
1592                                "__timekeeping_inject_sleeptime: Invalid "
1593                                "sleep delta value!\n");
1594                return;
1595        }
1596        tk_xtime_add(tk, delta);
1597        tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1598        tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1599        tk_debug_account_sleep_time(delta);
1600}
1601
1602#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1603/**
1604 * We have three kinds of time sources to use for sleep time
1605 * injection, the preference order is:
1606 * 1) non-stop clocksource
1607 * 2) persistent clock (ie: RTC accessible when irqs are off)
1608 * 3) RTC
1609 *
1610 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1611 * If system has neither 1) nor 2), 3) will be used finally.
1612 *
1613 *
1614 * If timekeeping has injected sleeptime via either 1) or 2),
1615 * 3) becomes needless, so in this case we don't need to call
1616 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1617 * means.
1618 */
1619bool timekeeping_rtc_skipresume(void)
1620{
1621        return !suspend_timing_needed;
1622}
1623
1624/**
1625 * 1) can be determined whether to use or not only when doing
1626 * timekeeping_resume() which is invoked after rtc_suspend(),
1627 * so we can't skip rtc_suspend() surely if system has 1).
1628 *
1629 * But if system has 2), 2) will definitely be used, so in this
1630 * case we don't need to call rtc_suspend(), and this is what
1631 * timekeeping_rtc_skipsuspend() means.
1632 */
1633bool timekeeping_rtc_skipsuspend(void)
1634{
1635        return persistent_clock_exists;
1636}
1637
1638/**
1639 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1640 * @delta: pointer to a timespec64 delta value
1641 *
1642 * This hook is for architectures that cannot support read_persistent_clock64
1643 * because their RTC/persistent clock is only accessible when irqs are enabled.
1644 * and also don't have an effective nonstop clocksource.
1645 *
1646 * This function should only be called by rtc_resume(), and allows
1647 * a suspend offset to be injected into the timekeeping values.
1648 */
1649void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1650{
1651        struct timekeeper *tk = &tk_core.timekeeper;
1652        unsigned long flags;
1653
1654        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1655        write_seqcount_begin(&tk_core.seq);
1656
1657        suspend_timing_needed = false;
1658
1659        timekeeping_forward_now(tk);
1660
1661        __timekeeping_inject_sleeptime(tk, delta);
1662
1663        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1664
1665        write_seqcount_end(&tk_core.seq);
1666        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1667
1668        /* signal hrtimers about time change */
1669        clock_was_set();
1670}
1671#endif
1672
1673/**
1674 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1675 */
1676void timekeeping_resume(void)
1677{
1678        struct timekeeper *tk = &tk_core.timekeeper;
1679        struct clocksource *clock = tk->tkr_mono.clock;
1680        unsigned long flags;
1681        struct timespec64 ts_new, ts_delta;
1682        u64 cycle_now, nsec;
1683        bool inject_sleeptime = false;
1684
1685        read_persistent_clock64(&ts_new);
1686
1687        clockevents_resume();
1688        clocksource_resume();
1689
1690        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1691        write_seqcount_begin(&tk_core.seq);
1692
1693        /*
1694         * After system resumes, we need to calculate the suspended time and
1695         * compensate it for the OS time. There are 3 sources that could be
1696         * used: Nonstop clocksource during suspend, persistent clock and rtc
1697         * device.
1698         *
1699         * One specific platform may have 1 or 2 or all of them, and the
1700         * preference will be:
1701         *      suspend-nonstop clocksource -> persistent clock -> rtc
1702         * The less preferred source will only be tried if there is no better
1703         * usable source. The rtc part is handled separately in rtc core code.
1704         */
1705        cycle_now = tk_clock_read(&tk->tkr_mono);
1706        nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1707        if (nsec > 0) {
1708                ts_delta = ns_to_timespec64(nsec);
1709                inject_sleeptime = true;
1710        } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1711                ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1712                inject_sleeptime = true;
1713        }
1714
1715        if (inject_sleeptime) {
1716                suspend_timing_needed = false;
1717                __timekeeping_inject_sleeptime(tk, &ts_delta);
1718        }
1719
1720        /* Re-base the last cycle value */
1721        tk->tkr_mono.cycle_last = cycle_now;
1722        tk->tkr_raw.cycle_last  = cycle_now;
1723
1724        tk->ntp_error = 0;
1725        timekeeping_suspended = 0;
1726        timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1727        write_seqcount_end(&tk_core.seq);
1728        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1729
1730        touch_softlockup_watchdog();
1731
1732        tick_resume();
1733        hrtimers_resume();
1734}
1735
1736int timekeeping_suspend(void)
1737{
1738        struct timekeeper *tk = &tk_core.timekeeper;
1739        unsigned long flags;
1740        struct timespec64               delta, delta_delta;
1741        static struct timespec64        old_delta;
1742        struct clocksource *curr_clock;
1743        u64 cycle_now;
1744
1745        read_persistent_clock64(&timekeeping_suspend_time);
1746
1747        /*
1748         * On some systems the persistent_clock can not be detected at
1749         * timekeeping_init by its return value, so if we see a valid
1750         * value returned, update the persistent_clock_exists flag.
1751         */
1752        if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1753                persistent_clock_exists = true;
1754
1755        suspend_timing_needed = true;
1756
1757        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1758        write_seqcount_begin(&tk_core.seq);
1759        timekeeping_forward_now(tk);
1760        timekeeping_suspended = 1;
1761
1762        /*
1763         * Since we've called forward_now, cycle_last stores the value
1764         * just read from the current clocksource. Save this to potentially
1765         * use in suspend timing.
1766         */
1767        curr_clock = tk->tkr_mono.clock;
1768        cycle_now = tk->tkr_mono.cycle_last;
1769        clocksource_start_suspend_timing(curr_clock, cycle_now);
1770
1771        if (persistent_clock_exists) {
1772                /*
1773                 * To avoid drift caused by repeated suspend/resumes,
1774                 * which each can add ~1 second drift error,
1775                 * try to compensate so the difference in system time
1776                 * and persistent_clock time stays close to constant.
1777                 */
1778                delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1779                delta_delta = timespec64_sub(delta, old_delta);
1780                if (abs(delta_delta.tv_sec) >= 2) {
1781                        /*
1782                         * if delta_delta is too large, assume time correction
1783                         * has occurred and set old_delta to the current delta.
1784                         */
1785                        old_delta = delta;
1786                } else {
1787                        /* Otherwise try to adjust old_system to compensate */
1788                        timekeeping_suspend_time =
1789                                timespec64_add(timekeeping_suspend_time, delta_delta);
1790                }
1791        }
1792
1793        timekeeping_update(tk, TK_MIRROR);
1794        halt_fast_timekeeper(tk);
1795        write_seqcount_end(&tk_core.seq);
1796        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1797
1798        tick_suspend();
1799        clocksource_suspend();
1800        clockevents_suspend();
1801
1802        return 0;
1803}
1804
1805/* sysfs resume/suspend bits for timekeeping */
1806static struct syscore_ops timekeeping_syscore_ops = {
1807        .resume         = timekeeping_resume,
1808        .suspend        = timekeeping_suspend,
1809};
1810
1811static int __init timekeeping_init_ops(void)
1812{
1813        register_syscore_ops(&timekeeping_syscore_ops);
1814        return 0;
1815}
1816device_initcall(timekeeping_init_ops);
1817
1818/*
1819 * Apply a multiplier adjustment to the timekeeper
1820 */
1821static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1822                                                         s64 offset,
1823                                                         s32 mult_adj)
1824{
1825        s64 interval = tk->cycle_interval;
1826
1827        if (mult_adj == 0) {
1828                return;
1829        } else if (mult_adj == -1) {
1830                interval = -interval;
1831                offset = -offset;
1832        } else if (mult_adj != 1) {
1833                interval *= mult_adj;
1834                offset *= mult_adj;
1835        }
1836
1837        /*
1838         * So the following can be confusing.
1839         *
1840         * To keep things simple, lets assume mult_adj == 1 for now.
1841         *
1842         * When mult_adj != 1, remember that the interval and offset values
1843         * have been appropriately scaled so the math is the same.
1844         *
1845         * The basic idea here is that we're increasing the multiplier
1846         * by one, this causes the xtime_interval to be incremented by
1847         * one cycle_interval. This is because:
1848         *      xtime_interval = cycle_interval * mult
1849         * So if mult is being incremented by one:
1850         *      xtime_interval = cycle_interval * (mult + 1)
1851         * Its the same as:
1852         *      xtime_interval = (cycle_interval * mult) + cycle_interval
1853         * Which can be shortened to:
1854         *      xtime_interval += cycle_interval
1855         *
1856         * So offset stores the non-accumulated cycles. Thus the current
1857         * time (in shifted nanoseconds) is:
1858         *      now = (offset * adj) + xtime_nsec
1859         * Now, even though we're adjusting the clock frequency, we have
1860         * to keep time consistent. In other words, we can't jump back
1861         * in time, and we also want to avoid jumping forward in time.
1862         *
1863         * So given the same offset value, we need the time to be the same
1864         * both before and after the freq adjustment.
1865         *      now = (offset * adj_1) + xtime_nsec_1
1866         *      now = (offset * adj_2) + xtime_nsec_2
1867         * So:
1868         *      (offset * adj_1) + xtime_nsec_1 =
1869         *              (offset * adj_2) + xtime_nsec_2
1870         * And we know:
1871         *      adj_2 = adj_1 + 1
1872         * So:
1873         *      (offset * adj_1) + xtime_nsec_1 =
1874         *              (offset * (adj_1+1)) + xtime_nsec_2
1875         *      (offset * adj_1) + xtime_nsec_1 =
1876         *              (offset * adj_1) + offset + xtime_nsec_2
1877         * Canceling the sides:
1878         *      xtime_nsec_1 = offset + xtime_nsec_2
1879         * Which gives us:
1880         *      xtime_nsec_2 = xtime_nsec_1 - offset
1881         * Which simplfies to:
1882         *      xtime_nsec -= offset
1883         */
1884        if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1885                /* NTP adjustment caused clocksource mult overflow */
1886                WARN_ON_ONCE(1);
1887                return;
1888        }
1889
1890        tk->tkr_mono.mult += mult_adj;
1891        tk->xtime_interval += interval;
1892        tk->tkr_mono.xtime_nsec -= offset;
1893}
1894
1895/*
1896 * Adjust the timekeeper's multiplier to the correct frequency
1897 * and also to reduce the accumulated error value.
1898 */
1899static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1900{
1901        u32 mult;
1902
1903        /*
1904         * Determine the multiplier from the current NTP tick length.
1905         * Avoid expensive division when the tick length doesn't change.
1906         */
1907        if (likely(tk->ntp_tick == ntp_tick_length())) {
1908                mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1909        } else {
1910                tk->ntp_tick = ntp_tick_length();
1911                mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1912                                 tk->xtime_remainder, tk->cycle_interval);
1913        }
1914
1915        /*
1916         * If the clock is behind the NTP time, increase the multiplier by 1
1917         * to catch up with it. If it's ahead and there was a remainder in the
1918         * tick division, the clock will slow down. Otherwise it will stay
1919         * ahead until the tick length changes to a non-divisible value.
1920         */
1921        tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1922        mult += tk->ntp_err_mult;
1923
1924        timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1925
1926        if (unlikely(tk->tkr_mono.clock->maxadj &&
1927                (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1928                        > tk->tkr_mono.clock->maxadj))) {
1929                printk_once(KERN_WARNING
1930                        "Adjusting %s more than 11%% (%ld vs %ld)\n",
1931                        tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1932                        (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1933        }
1934
1935        /*
1936         * It may be possible that when we entered this function, xtime_nsec
1937         * was very small.  Further, if we're slightly speeding the clocksource
1938         * in the code above, its possible the required corrective factor to
1939         * xtime_nsec could cause it to underflow.
1940         *
1941         * Now, since we have already accumulated the second and the NTP
1942         * subsystem has been notified via second_overflow(), we need to skip
1943         * the next update.
1944         */
1945        if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1946                tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1947                                                        tk->tkr_mono.shift;
1948                tk->xtime_sec--;
1949                tk->skip_second_overflow = 1;
1950        }
1951}
1952
1953/**
1954 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1955 *
1956 * Helper function that accumulates the nsecs greater than a second
1957 * from the xtime_nsec field to the xtime_secs field.
1958 * It also calls into the NTP code to handle leapsecond processing.
1959 *
1960 */
1961static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1962{
1963        u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1964        unsigned int clock_set = 0;
1965
1966        while (tk->tkr_mono.xtime_nsec >= nsecps) {
1967                int leap;
1968
1969                tk->tkr_mono.xtime_nsec -= nsecps;
1970                tk->xtime_sec++;
1971
1972                /*
1973                 * Skip NTP update if this second was accumulated before,
1974                 * i.e. xtime_nsec underflowed in timekeeping_adjust()
1975                 */
1976                if (unlikely(tk->skip_second_overflow)) {
1977                        tk->skip_second_overflow = 0;
1978                        continue;
1979                }
1980
1981                /* Figure out if its a leap sec and apply if needed */
1982                leap = second_overflow(tk->xtime_sec);
1983                if (unlikely(leap)) {
1984                        struct timespec64 ts;
1985
1986                        tk->xtime_sec += leap;
1987
1988                        ts.tv_sec = leap;
1989                        ts.tv_nsec = 0;
1990                        tk_set_wall_to_mono(tk,
1991                                timespec64_sub(tk->wall_to_monotonic, ts));
1992
1993                        __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1994
1995                        clock_set = TK_CLOCK_WAS_SET;
1996                }
1997        }
1998        return clock_set;
1999}
2000
2001/**
2002 * logarithmic_accumulation - shifted accumulation of cycles
2003 *
2004 * This functions accumulates a shifted interval of cycles into
2005 * into a shifted interval nanoseconds. Allows for O(log) accumulation
2006 * loop.
2007 *
2008 * Returns the unconsumed cycles.
2009 */
2010static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2011                                    u32 shift, unsigned int *clock_set)
2012{
2013        u64 interval = tk->cycle_interval << shift;
2014        u64 snsec_per_sec;
2015
2016        /* If the offset is smaller than a shifted interval, do nothing */
2017        if (offset < interval)
2018                return offset;
2019
2020        /* Accumulate one shifted interval */
2021        offset -= interval;
2022        tk->tkr_mono.cycle_last += interval;
2023        tk->tkr_raw.cycle_last  += interval;
2024
2025        tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2026        *clock_set |= accumulate_nsecs_to_secs(tk);
2027
2028        /* Accumulate raw time */
2029        tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2030        snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2031        while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2032                tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2033                tk->raw_sec++;
2034        }
2035
2036        /* Accumulate error between NTP and clock interval */
2037        tk->ntp_error += tk->ntp_tick << shift;
2038        tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2039                                                (tk->ntp_error_shift + shift);
2040
2041        return offset;
2042}
2043
2044/*
2045 * timekeeping_advance - Updates the timekeeper to the current time and
2046 * current NTP tick length
2047 */
2048static void timekeeping_advance(enum timekeeping_adv_mode mode)
2049{
2050        struct timekeeper *real_tk = &tk_core.timekeeper;
2051        struct timekeeper *tk = &shadow_timekeeper;
2052        u64 offset;
2053        int shift = 0, maxshift;
2054        unsigned int clock_set = 0;
2055        unsigned long flags;
2056
2057        raw_spin_lock_irqsave(&timekeeper_lock, flags);
2058
2059        /* Make sure we're fully resumed: */
2060        if (unlikely(timekeeping_suspended))
2061                goto out;
2062
2063#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2064        offset = real_tk->cycle_interval;
2065
2066        if (mode != TK_ADV_TICK)
2067                goto out;
2068#else
2069        offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2070                                   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2071
2072        /* Check if there's really nothing to do */
2073        if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2074                goto out;
2075#endif
2076
2077        /* Do some additional sanity checking */
2078        timekeeping_check_update(tk, offset);
2079
2080        /*
2081         * With NO_HZ we may have to accumulate many cycle_intervals
2082         * (think "ticks") worth of time at once. To do this efficiently,
2083         * we calculate the largest doubling multiple of cycle_intervals
2084         * that is smaller than the offset.  We then accumulate that
2085         * chunk in one go, and then try to consume the next smaller
2086         * doubled multiple.
2087         */
2088        shift = ilog2(offset) - ilog2(tk->cycle_interval);
2089        shift = max(0, shift);
2090        /* Bound shift to one less than what overflows tick_length */
2091        maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2092        shift = min(shift, maxshift);
2093        while (offset >= tk->cycle_interval) {
2094                offset = logarithmic_accumulation(tk, offset, shift,
2095                                                        &clock_set);
2096                if (offset < tk->cycle_interval<<shift)
2097                        shift--;
2098        }
2099
2100        /* Adjust the multiplier to correct NTP error */
2101        timekeeping_adjust(tk, offset);
2102
2103        /*
2104         * Finally, make sure that after the rounding
2105         * xtime_nsec isn't larger than NSEC_PER_SEC
2106         */
2107        clock_set |= accumulate_nsecs_to_secs(tk);
2108
2109        write_seqcount_begin(&tk_core.seq);
2110        /*
2111         * Update the real timekeeper.
2112         *
2113         * We could avoid this memcpy by switching pointers, but that
2114         * requires changes to all other timekeeper usage sites as
2115         * well, i.e. move the timekeeper pointer getter into the
2116         * spinlocked/seqcount protected sections. And we trade this
2117         * memcpy under the tk_core.seq against one before we start
2118         * updating.
2119         */
2120        timekeeping_update(tk, clock_set);
2121        memcpy(real_tk, tk, sizeof(*tk));
2122        /* The memcpy must come last. Do not put anything here! */
2123        write_seqcount_end(&tk_core.seq);
2124out:
2125        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2126        if (clock_set)
2127                /* Have to call _delayed version, since in irq context*/
2128                clock_was_set_delayed();
2129}
2130
2131/**
2132 * update_wall_time - Uses the current clocksource to increment the wall time
2133 *
2134 */
2135void update_wall_time(void)
2136{
2137        timekeeping_advance(TK_ADV_TICK);
2138}
2139
2140/**
2141 * getboottime64 - Return the real time of system boot.
2142 * @ts:         pointer to the timespec64 to be set
2143 *
2144 * Returns the wall-time of boot in a timespec64.
2145 *
2146 * This is based on the wall_to_monotonic offset and the total suspend
2147 * time. Calls to settimeofday will affect the value returned (which
2148 * basically means that however wrong your real time clock is at boot time,
2149 * you get the right time here).
2150 */
2151void getboottime64(struct timespec64 *ts)
2152{
2153        struct timekeeper *tk = &tk_core.timekeeper;
2154        ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2155
2156        *ts = ktime_to_timespec64(t);
2157}
2158EXPORT_SYMBOL_GPL(getboottime64);
2159
2160void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2161{
2162        struct timekeeper *tk = &tk_core.timekeeper;
2163        unsigned int seq;
2164
2165        do {
2166                seq = read_seqcount_begin(&tk_core.seq);
2167
2168                *ts = tk_xtime(tk);
2169        } while (read_seqcount_retry(&tk_core.seq, seq));
2170}
2171EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2172
2173void ktime_get_coarse_ts64(struct timespec64 *ts)
2174{
2175        struct timekeeper *tk = &tk_core.timekeeper;
2176        struct timespec64 now, mono;
2177        unsigned int seq;
2178
2179        do {
2180                seq = read_seqcount_begin(&tk_core.seq);
2181
2182                now = tk_xtime(tk);
2183                mono = tk->wall_to_monotonic;
2184        } while (read_seqcount_retry(&tk_core.seq, seq));
2185
2186        set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2187                                now.tv_nsec + mono.tv_nsec);
2188}
2189EXPORT_SYMBOL(ktime_get_coarse_ts64);
2190
2191/*
2192 * Must hold jiffies_lock
2193 */
2194void do_timer(unsigned long ticks)
2195{
2196        jiffies_64 += ticks;
2197        calc_global_load(ticks);
2198}
2199
2200/**
2201 * ktime_get_update_offsets_now - hrtimer helper
2202 * @cwsseq:     pointer to check and store the clock was set sequence number
2203 * @offs_real:  pointer to storage for monotonic -> realtime offset
2204 * @offs_boot:  pointer to storage for monotonic -> boottime offset
2205 * @offs_tai:   pointer to storage for monotonic -> clock tai offset
2206 *
2207 * Returns current monotonic time and updates the offsets if the
2208 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2209 * different.
2210 *
2211 * Called from hrtimer_interrupt() or retrigger_next_event()
2212 */
2213ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2214                                     ktime_t *offs_boot, ktime_t *offs_tai)
2215{
2216        struct timekeeper *tk = &tk_core.timekeeper;
2217        unsigned int seq;
2218        ktime_t base;
2219        u64 nsecs;
2220
2221        do {
2222                seq = read_seqcount_begin(&tk_core.seq);
2223
2224                base = tk->tkr_mono.base;
2225                nsecs = timekeeping_get_ns(&tk->tkr_mono);
2226                base = ktime_add_ns(base, nsecs);
2227
2228                if (*cwsseq != tk->clock_was_set_seq) {
2229                        *cwsseq = tk->clock_was_set_seq;
2230                        *offs_real = tk->offs_real;
2231                        *offs_boot = tk->offs_boot;
2232                        *offs_tai = tk->offs_tai;
2233                }
2234
2235                /* Handle leapsecond insertion adjustments */
2236                if (unlikely(base >= tk->next_leap_ktime))
2237                        *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2238
2239        } while (read_seqcount_retry(&tk_core.seq, seq));
2240
2241        return base;
2242}
2243
2244/**
2245 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2246 */
2247static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2248{
2249        if (txc->modes & ADJ_ADJTIME) {
2250                /* singleshot must not be used with any other mode bits */
2251                if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2252                        return -EINVAL;
2253                if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2254                    !capable(CAP_SYS_TIME))
2255                        return -EPERM;
2256        } else {
2257                /* In order to modify anything, you gotta be super-user! */
2258                if (txc->modes && !capable(CAP_SYS_TIME))
2259                        return -EPERM;
2260                /*
2261                 * if the quartz is off by more than 10% then
2262                 * something is VERY wrong!
2263                 */
2264                if (txc->modes & ADJ_TICK &&
2265                    (txc->tick <  900000/USER_HZ ||
2266                     txc->tick > 1100000/USER_HZ))
2267                        return -EINVAL;
2268        }
2269
2270        if (txc->modes & ADJ_SETOFFSET) {
2271                /* In order to inject time, you gotta be super-user! */
2272                if (!capable(CAP_SYS_TIME))
2273                        return -EPERM;
2274
2275                /*
2276                 * Validate if a timespec/timeval used to inject a time
2277                 * offset is valid.  Offsets can be postive or negative, so
2278                 * we don't check tv_sec. The value of the timeval/timespec
2279                 * is the sum of its fields,but *NOTE*:
2280                 * The field tv_usec/tv_nsec must always be non-negative and
2281                 * we can't have more nanoseconds/microseconds than a second.
2282                 */
2283                if (txc->time.tv_usec < 0)
2284                        return -EINVAL;
2285
2286                if (txc->modes & ADJ_NANO) {
2287                        if (txc->time.tv_usec >= NSEC_PER_SEC)
2288                                return -EINVAL;
2289                } else {
2290                        if (txc->time.tv_usec >= USEC_PER_SEC)
2291                                return -EINVAL;
2292                }
2293        }
2294
2295        /*
2296         * Check for potential multiplication overflows that can
2297         * only happen on 64-bit systems:
2298         */
2299        if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2300                if (LLONG_MIN / PPM_SCALE > txc->freq)
2301                        return -EINVAL;
2302                if (LLONG_MAX / PPM_SCALE < txc->freq)
2303                        return -EINVAL;
2304        }
2305
2306        return 0;
2307}
2308
2309
2310/**
2311 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2312 */
2313int do_adjtimex(struct __kernel_timex *txc)
2314{
2315        struct timekeeper *tk = &tk_core.timekeeper;
2316        struct audit_ntp_data ad;
2317        unsigned long flags;
2318        struct timespec64 ts;
2319        s32 orig_tai, tai;
2320        int ret;
2321
2322        /* Validate the data before disabling interrupts */
2323        ret = timekeeping_validate_timex(txc);
2324        if (ret)
2325                return ret;
2326
2327        if (txc->modes & ADJ_SETOFFSET) {
2328                struct timespec64 delta;
2329                delta.tv_sec  = txc->time.tv_sec;
2330                delta.tv_nsec = txc->time.tv_usec;
2331                if (!(txc->modes & ADJ_NANO))
2332                        delta.tv_nsec *= 1000;
2333                ret = timekeeping_inject_offset(&delta);
2334                if (ret)
2335                        return ret;
2336
2337                audit_tk_injoffset(delta);
2338        }
2339
2340        audit_ntp_init(&ad);
2341
2342        ktime_get_real_ts64(&ts);
2343
2344        raw_spin_lock_irqsave(&timekeeper_lock, flags);
2345        write_seqcount_begin(&tk_core.seq);
2346
2347        orig_tai = tai = tk->tai_offset;
2348        ret = __do_adjtimex(txc, &ts, &tai, &ad);
2349
2350        if (tai != orig_tai) {
2351                __timekeeping_set_tai_offset(tk, tai);
2352                timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2353        }
2354        tk_update_leap_state(tk);
2355
2356        write_seqcount_end(&tk_core.seq);
2357        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2358
2359        audit_ntp_log(&ad);
2360
2361        /* Update the multiplier immediately if frequency was set directly */
2362        if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2363                timekeeping_advance(TK_ADV_FREQ);
2364
2365        if (tai != orig_tai)
2366                clock_was_set();
2367
2368        ntp_notify_cmos_timer();
2369
2370        return ret;
2371}
2372
2373#ifdef CONFIG_NTP_PPS
2374/**
2375 * hardpps() - Accessor function to NTP __hardpps function
2376 */
2377void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2378{
2379        unsigned long flags;
2380
2381        raw_spin_lock_irqsave(&timekeeper_lock, flags);
2382        write_seqcount_begin(&tk_core.seq);
2383
2384        __hardpps(phase_ts, raw_ts);
2385
2386        write_seqcount_end(&tk_core.seq);
2387        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2388}
2389EXPORT_SYMBOL(hardpps);
2390#endif /* CONFIG_NTP_PPS */
2391
2392/**
2393 * xtime_update() - advances the timekeeping infrastructure
2394 * @ticks:      number of ticks, that have elapsed since the last call.
2395 *
2396 * Must be called with interrupts disabled.
2397 */
2398void xtime_update(unsigned long ticks)
2399{
2400        write_seqlock(&jiffies_lock);
2401        do_timer(ticks);
2402        write_sequnlock(&jiffies_lock);
2403        update_wall_time();
2404}
2405