linux/mm/memory-failure.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2008, 2009 Intel Corporation
   4 * Authors: Andi Kleen, Fengguang Wu
   5 *
   6 * High level machine check handler. Handles pages reported by the
   7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
   8 * failure.
   9 * 
  10 * In addition there is a "soft offline" entry point that allows stop using
  11 * not-yet-corrupted-by-suspicious pages without killing anything.
  12 *
  13 * Handles page cache pages in various states.  The tricky part
  14 * here is that we can access any page asynchronously in respect to 
  15 * other VM users, because memory failures could happen anytime and 
  16 * anywhere. This could violate some of their assumptions. This is why 
  17 * this code has to be extremely careful. Generally it tries to use 
  18 * normal locking rules, as in get the standard locks, even if that means 
  19 * the error handling takes potentially a long time.
  20 *
  21 * It can be very tempting to add handling for obscure cases here.
  22 * In general any code for handling new cases should only be added iff:
  23 * - You know how to test it.
  24 * - You have a test that can be added to mce-test
  25 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
  26 * - The case actually shows up as a frequent (top 10) page state in
  27 *   tools/vm/page-types when running a real workload.
  28 * 
  29 * There are several operations here with exponential complexity because
  30 * of unsuitable VM data structures. For example the operation to map back 
  31 * from RMAP chains to processes has to walk the complete process list and 
  32 * has non linear complexity with the number. But since memory corruptions
  33 * are rare we hope to get away with this. This avoids impacting the core 
  34 * VM.
  35 */
  36#include <linux/kernel.h>
  37#include <linux/mm.h>
  38#include <linux/page-flags.h>
  39#include <linux/kernel-page-flags.h>
  40#include <linux/sched/signal.h>
  41#include <linux/sched/task.h>
  42#include <linux/ksm.h>
  43#include <linux/rmap.h>
  44#include <linux/export.h>
  45#include <linux/pagemap.h>
  46#include <linux/swap.h>
  47#include <linux/backing-dev.h>
  48#include <linux/migrate.h>
  49#include <linux/suspend.h>
  50#include <linux/slab.h>
  51#include <linux/swapops.h>
  52#include <linux/hugetlb.h>
  53#include <linux/memory_hotplug.h>
  54#include <linux/mm_inline.h>
  55#include <linux/memremap.h>
  56#include <linux/kfifo.h>
  57#include <linux/ratelimit.h>
  58#include <linux/page-isolation.h>
  59#include "internal.h"
  60#include "ras/ras_event.h"
  61
  62int sysctl_memory_failure_early_kill __read_mostly = 0;
  63
  64int sysctl_memory_failure_recovery __read_mostly = 1;
  65
  66atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  67
  68#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  69
  70u32 hwpoison_filter_enable = 0;
  71u32 hwpoison_filter_dev_major = ~0U;
  72u32 hwpoison_filter_dev_minor = ~0U;
  73u64 hwpoison_filter_flags_mask;
  74u64 hwpoison_filter_flags_value;
  75EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  76EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  77EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  78EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  79EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  80
  81static int hwpoison_filter_dev(struct page *p)
  82{
  83        struct address_space *mapping;
  84        dev_t dev;
  85
  86        if (hwpoison_filter_dev_major == ~0U &&
  87            hwpoison_filter_dev_minor == ~0U)
  88                return 0;
  89
  90        /*
  91         * page_mapping() does not accept slab pages.
  92         */
  93        if (PageSlab(p))
  94                return -EINVAL;
  95
  96        mapping = page_mapping(p);
  97        if (mapping == NULL || mapping->host == NULL)
  98                return -EINVAL;
  99
 100        dev = mapping->host->i_sb->s_dev;
 101        if (hwpoison_filter_dev_major != ~0U &&
 102            hwpoison_filter_dev_major != MAJOR(dev))
 103                return -EINVAL;
 104        if (hwpoison_filter_dev_minor != ~0U &&
 105            hwpoison_filter_dev_minor != MINOR(dev))
 106                return -EINVAL;
 107
 108        return 0;
 109}
 110
 111static int hwpoison_filter_flags(struct page *p)
 112{
 113        if (!hwpoison_filter_flags_mask)
 114                return 0;
 115
 116        if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
 117                                    hwpoison_filter_flags_value)
 118                return 0;
 119        else
 120                return -EINVAL;
 121}
 122
 123/*
 124 * This allows stress tests to limit test scope to a collection of tasks
 125 * by putting them under some memcg. This prevents killing unrelated/important
 126 * processes such as /sbin/init. Note that the target task may share clean
 127 * pages with init (eg. libc text), which is harmless. If the target task
 128 * share _dirty_ pages with another task B, the test scheme must make sure B
 129 * is also included in the memcg. At last, due to race conditions this filter
 130 * can only guarantee that the page either belongs to the memcg tasks, or is
 131 * a freed page.
 132 */
 133#ifdef CONFIG_MEMCG
 134u64 hwpoison_filter_memcg;
 135EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
 136static int hwpoison_filter_task(struct page *p)
 137{
 138        if (!hwpoison_filter_memcg)
 139                return 0;
 140
 141        if (page_cgroup_ino(p) != hwpoison_filter_memcg)
 142                return -EINVAL;
 143
 144        return 0;
 145}
 146#else
 147static int hwpoison_filter_task(struct page *p) { return 0; }
 148#endif
 149
 150int hwpoison_filter(struct page *p)
 151{
 152        if (!hwpoison_filter_enable)
 153                return 0;
 154
 155        if (hwpoison_filter_dev(p))
 156                return -EINVAL;
 157
 158        if (hwpoison_filter_flags(p))
 159                return -EINVAL;
 160
 161        if (hwpoison_filter_task(p))
 162                return -EINVAL;
 163
 164        return 0;
 165}
 166#else
 167int hwpoison_filter(struct page *p)
 168{
 169        return 0;
 170}
 171#endif
 172
 173EXPORT_SYMBOL_GPL(hwpoison_filter);
 174
 175/*
 176 * Kill all processes that have a poisoned page mapped and then isolate
 177 * the page.
 178 *
 179 * General strategy:
 180 * Find all processes having the page mapped and kill them.
 181 * But we keep a page reference around so that the page is not
 182 * actually freed yet.
 183 * Then stash the page away
 184 *
 185 * There's no convenient way to get back to mapped processes
 186 * from the VMAs. So do a brute-force search over all
 187 * running processes.
 188 *
 189 * Remember that machine checks are not common (or rather
 190 * if they are common you have other problems), so this shouldn't
 191 * be a performance issue.
 192 *
 193 * Also there are some races possible while we get from the
 194 * error detection to actually handle it.
 195 */
 196
 197struct to_kill {
 198        struct list_head nd;
 199        struct task_struct *tsk;
 200        unsigned long addr;
 201        short size_shift;
 202};
 203
 204/*
 205 * Send all the processes who have the page mapped a signal.
 206 * ``action optional'' if they are not immediately affected by the error
 207 * ``action required'' if error happened in current execution context
 208 */
 209static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
 210{
 211        struct task_struct *t = tk->tsk;
 212        short addr_lsb = tk->size_shift;
 213        int ret;
 214
 215        pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
 216                pfn, t->comm, t->pid);
 217
 218        if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
 219                ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr,
 220                                       addr_lsb);
 221        } else {
 222                /*
 223                 * Don't use force here, it's convenient if the signal
 224                 * can be temporarily blocked.
 225                 * This could cause a loop when the user sets SIGBUS
 226                 * to SIG_IGN, but hopefully no one will do that?
 227                 */
 228                ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
 229                                      addr_lsb, t);  /* synchronous? */
 230        }
 231        if (ret < 0)
 232                pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
 233                        t->comm, t->pid, ret);
 234        return ret;
 235}
 236
 237/*
 238 * When a unknown page type is encountered drain as many buffers as possible
 239 * in the hope to turn the page into a LRU or free page, which we can handle.
 240 */
 241void shake_page(struct page *p, int access)
 242{
 243        if (PageHuge(p))
 244                return;
 245
 246        if (!PageSlab(p)) {
 247                lru_add_drain_all();
 248                if (PageLRU(p))
 249                        return;
 250                drain_all_pages(page_zone(p));
 251                if (PageLRU(p) || is_free_buddy_page(p))
 252                        return;
 253        }
 254
 255        /*
 256         * Only call shrink_node_slabs here (which would also shrink
 257         * other caches) if access is not potentially fatal.
 258         */
 259        if (access)
 260                drop_slab_node(page_to_nid(p));
 261}
 262EXPORT_SYMBOL_GPL(shake_page);
 263
 264static unsigned long dev_pagemap_mapping_shift(struct page *page,
 265                struct vm_area_struct *vma)
 266{
 267        unsigned long address = vma_address(page, vma);
 268        pgd_t *pgd;
 269        p4d_t *p4d;
 270        pud_t *pud;
 271        pmd_t *pmd;
 272        pte_t *pte;
 273
 274        pgd = pgd_offset(vma->vm_mm, address);
 275        if (!pgd_present(*pgd))
 276                return 0;
 277        p4d = p4d_offset(pgd, address);
 278        if (!p4d_present(*p4d))
 279                return 0;
 280        pud = pud_offset(p4d, address);
 281        if (!pud_present(*pud))
 282                return 0;
 283        if (pud_devmap(*pud))
 284                return PUD_SHIFT;
 285        pmd = pmd_offset(pud, address);
 286        if (!pmd_present(*pmd))
 287                return 0;
 288        if (pmd_devmap(*pmd))
 289                return PMD_SHIFT;
 290        pte = pte_offset_map(pmd, address);
 291        if (!pte_present(*pte))
 292                return 0;
 293        if (pte_devmap(*pte))
 294                return PAGE_SHIFT;
 295        return 0;
 296}
 297
 298/*
 299 * Failure handling: if we can't find or can't kill a process there's
 300 * not much we can do.  We just print a message and ignore otherwise.
 301 */
 302
 303/*
 304 * Schedule a process for later kill.
 305 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 306 * TBD would GFP_NOIO be enough?
 307 */
 308static void add_to_kill(struct task_struct *tsk, struct page *p,
 309                       struct vm_area_struct *vma,
 310                       struct list_head *to_kill,
 311                       struct to_kill **tkc)
 312{
 313        struct to_kill *tk;
 314
 315        if (*tkc) {
 316                tk = *tkc;
 317                *tkc = NULL;
 318        } else {
 319                tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
 320                if (!tk) {
 321                        pr_err("Memory failure: Out of memory while machine check handling\n");
 322                        return;
 323                }
 324        }
 325        tk->addr = page_address_in_vma(p, vma);
 326        if (is_zone_device_page(p))
 327                tk->size_shift = dev_pagemap_mapping_shift(p, vma);
 328        else
 329                tk->size_shift = compound_order(compound_head(p)) + PAGE_SHIFT;
 330
 331        /*
 332         * Send SIGKILL if "tk->addr == -EFAULT". Also, as
 333         * "tk->size_shift" is always non-zero for !is_zone_device_page(),
 334         * so "tk->size_shift == 0" effectively checks no mapping on
 335         * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
 336         * to a process' address space, it's possible not all N VMAs
 337         * contain mappings for the page, but at least one VMA does.
 338         * Only deliver SIGBUS with payload derived from the VMA that
 339         * has a mapping for the page.
 340         */
 341        if (tk->addr == -EFAULT) {
 342                pr_info("Memory failure: Unable to find user space address %lx in %s\n",
 343                        page_to_pfn(p), tsk->comm);
 344        } else if (tk->size_shift == 0) {
 345                kfree(tk);
 346                return;
 347        }
 348        get_task_struct(tsk);
 349        tk->tsk = tsk;
 350        list_add_tail(&tk->nd, to_kill);
 351}
 352
 353/*
 354 * Kill the processes that have been collected earlier.
 355 *
 356 * Only do anything when DOIT is set, otherwise just free the list
 357 * (this is used for clean pages which do not need killing)
 358 * Also when FAIL is set do a force kill because something went
 359 * wrong earlier.
 360 */
 361static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
 362                unsigned long pfn, int flags)
 363{
 364        struct to_kill *tk, *next;
 365
 366        list_for_each_entry_safe (tk, next, to_kill, nd) {
 367                if (forcekill) {
 368                        /*
 369                         * In case something went wrong with munmapping
 370                         * make sure the process doesn't catch the
 371                         * signal and then access the memory. Just kill it.
 372                         */
 373                        if (fail || tk->addr == -EFAULT) {
 374                                pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
 375                                       pfn, tk->tsk->comm, tk->tsk->pid);
 376                                do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
 377                                                 tk->tsk, PIDTYPE_PID);
 378                        }
 379
 380                        /*
 381                         * In theory the process could have mapped
 382                         * something else on the address in-between. We could
 383                         * check for that, but we need to tell the
 384                         * process anyways.
 385                         */
 386                        else if (kill_proc(tk, pfn, flags) < 0)
 387                                pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
 388                                       pfn, tk->tsk->comm, tk->tsk->pid);
 389                }
 390                put_task_struct(tk->tsk);
 391                kfree(tk);
 392        }
 393}
 394
 395/*
 396 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 397 * on behalf of the thread group. Return task_struct of the (first found)
 398 * dedicated thread if found, and return NULL otherwise.
 399 *
 400 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 401 * have to call rcu_read_lock/unlock() in this function.
 402 */
 403static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
 404{
 405        struct task_struct *t;
 406
 407        for_each_thread(tsk, t)
 408                if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
 409                        return t;
 410        return NULL;
 411}
 412
 413/*
 414 * Determine whether a given process is "early kill" process which expects
 415 * to be signaled when some page under the process is hwpoisoned.
 416 * Return task_struct of the dedicated thread (main thread unless explicitly
 417 * specified) if the process is "early kill," and otherwise returns NULL.
 418 */
 419static struct task_struct *task_early_kill(struct task_struct *tsk,
 420                                           int force_early)
 421{
 422        struct task_struct *t;
 423        if (!tsk->mm)
 424                return NULL;
 425        if (force_early)
 426                return tsk;
 427        t = find_early_kill_thread(tsk);
 428        if (t)
 429                return t;
 430        if (sysctl_memory_failure_early_kill)
 431                return tsk;
 432        return NULL;
 433}
 434
 435/*
 436 * Collect processes when the error hit an anonymous page.
 437 */
 438static void collect_procs_anon(struct page *page, struct list_head *to_kill,
 439                              struct to_kill **tkc, int force_early)
 440{
 441        struct vm_area_struct *vma;
 442        struct task_struct *tsk;
 443        struct anon_vma *av;
 444        pgoff_t pgoff;
 445
 446        av = page_lock_anon_vma_read(page);
 447        if (av == NULL) /* Not actually mapped anymore */
 448                return;
 449
 450        pgoff = page_to_pgoff(page);
 451        read_lock(&tasklist_lock);
 452        for_each_process (tsk) {
 453                struct anon_vma_chain *vmac;
 454                struct task_struct *t = task_early_kill(tsk, force_early);
 455
 456                if (!t)
 457                        continue;
 458                anon_vma_interval_tree_foreach(vmac, &av->rb_root,
 459                                               pgoff, pgoff) {
 460                        vma = vmac->vma;
 461                        if (!page_mapped_in_vma(page, vma))
 462                                continue;
 463                        if (vma->vm_mm == t->mm)
 464                                add_to_kill(t, page, vma, to_kill, tkc);
 465                }
 466        }
 467        read_unlock(&tasklist_lock);
 468        page_unlock_anon_vma_read(av);
 469}
 470
 471/*
 472 * Collect processes when the error hit a file mapped page.
 473 */
 474static void collect_procs_file(struct page *page, struct list_head *to_kill,
 475                              struct to_kill **tkc, int force_early)
 476{
 477        struct vm_area_struct *vma;
 478        struct task_struct *tsk;
 479        struct address_space *mapping = page->mapping;
 480
 481        i_mmap_lock_read(mapping);
 482        read_lock(&tasklist_lock);
 483        for_each_process(tsk) {
 484                pgoff_t pgoff = page_to_pgoff(page);
 485                struct task_struct *t = task_early_kill(tsk, force_early);
 486
 487                if (!t)
 488                        continue;
 489                vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
 490                                      pgoff) {
 491                        /*
 492                         * Send early kill signal to tasks where a vma covers
 493                         * the page but the corrupted page is not necessarily
 494                         * mapped it in its pte.
 495                         * Assume applications who requested early kill want
 496                         * to be informed of all such data corruptions.
 497                         */
 498                        if (vma->vm_mm == t->mm)
 499                                add_to_kill(t, page, vma, to_kill, tkc);
 500                }
 501        }
 502        read_unlock(&tasklist_lock);
 503        i_mmap_unlock_read(mapping);
 504}
 505
 506/*
 507 * Collect the processes who have the corrupted page mapped to kill.
 508 * This is done in two steps for locking reasons.
 509 * First preallocate one tokill structure outside the spin locks,
 510 * so that we can kill at least one process reasonably reliable.
 511 */
 512static void collect_procs(struct page *page, struct list_head *tokill,
 513                                int force_early)
 514{
 515        struct to_kill *tk;
 516
 517        if (!page->mapping)
 518                return;
 519
 520        tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
 521        if (!tk)
 522                return;
 523        if (PageAnon(page))
 524                collect_procs_anon(page, tokill, &tk, force_early);
 525        else
 526                collect_procs_file(page, tokill, &tk, force_early);
 527        kfree(tk);
 528}
 529
 530static const char *action_name[] = {
 531        [MF_IGNORED] = "Ignored",
 532        [MF_FAILED] = "Failed",
 533        [MF_DELAYED] = "Delayed",
 534        [MF_RECOVERED] = "Recovered",
 535};
 536
 537static const char * const action_page_types[] = {
 538        [MF_MSG_KERNEL]                 = "reserved kernel page",
 539        [MF_MSG_KERNEL_HIGH_ORDER]      = "high-order kernel page",
 540        [MF_MSG_SLAB]                   = "kernel slab page",
 541        [MF_MSG_DIFFERENT_COMPOUND]     = "different compound page after locking",
 542        [MF_MSG_POISONED_HUGE]          = "huge page already hardware poisoned",
 543        [MF_MSG_HUGE]                   = "huge page",
 544        [MF_MSG_FREE_HUGE]              = "free huge page",
 545        [MF_MSG_NON_PMD_HUGE]           = "non-pmd-sized huge page",
 546        [MF_MSG_UNMAP_FAILED]           = "unmapping failed page",
 547        [MF_MSG_DIRTY_SWAPCACHE]        = "dirty swapcache page",
 548        [MF_MSG_CLEAN_SWAPCACHE]        = "clean swapcache page",
 549        [MF_MSG_DIRTY_MLOCKED_LRU]      = "dirty mlocked LRU page",
 550        [MF_MSG_CLEAN_MLOCKED_LRU]      = "clean mlocked LRU page",
 551        [MF_MSG_DIRTY_UNEVICTABLE_LRU]  = "dirty unevictable LRU page",
 552        [MF_MSG_CLEAN_UNEVICTABLE_LRU]  = "clean unevictable LRU page",
 553        [MF_MSG_DIRTY_LRU]              = "dirty LRU page",
 554        [MF_MSG_CLEAN_LRU]              = "clean LRU page",
 555        [MF_MSG_TRUNCATED_LRU]          = "already truncated LRU page",
 556        [MF_MSG_BUDDY]                  = "free buddy page",
 557        [MF_MSG_BUDDY_2ND]              = "free buddy page (2nd try)",
 558        [MF_MSG_DAX]                    = "dax page",
 559        [MF_MSG_UNKNOWN]                = "unknown page",
 560};
 561
 562/*
 563 * XXX: It is possible that a page is isolated from LRU cache,
 564 * and then kept in swap cache or failed to remove from page cache.
 565 * The page count will stop it from being freed by unpoison.
 566 * Stress tests should be aware of this memory leak problem.
 567 */
 568static int delete_from_lru_cache(struct page *p)
 569{
 570        if (!isolate_lru_page(p)) {
 571                /*
 572                 * Clear sensible page flags, so that the buddy system won't
 573                 * complain when the page is unpoison-and-freed.
 574                 */
 575                ClearPageActive(p);
 576                ClearPageUnevictable(p);
 577
 578                /*
 579                 * Poisoned page might never drop its ref count to 0 so we have
 580                 * to uncharge it manually from its memcg.
 581                 */
 582                mem_cgroup_uncharge(p);
 583
 584                /*
 585                 * drop the page count elevated by isolate_lru_page()
 586                 */
 587                put_page(p);
 588                return 0;
 589        }
 590        return -EIO;
 591}
 592
 593static int truncate_error_page(struct page *p, unsigned long pfn,
 594                                struct address_space *mapping)
 595{
 596        int ret = MF_FAILED;
 597
 598        if (mapping->a_ops->error_remove_page) {
 599                int err = mapping->a_ops->error_remove_page(mapping, p);
 600
 601                if (err != 0) {
 602                        pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
 603                                pfn, err);
 604                } else if (page_has_private(p) &&
 605                           !try_to_release_page(p, GFP_NOIO)) {
 606                        pr_info("Memory failure: %#lx: failed to release buffers\n",
 607                                pfn);
 608                } else {
 609                        ret = MF_RECOVERED;
 610                }
 611        } else {
 612                /*
 613                 * If the file system doesn't support it just invalidate
 614                 * This fails on dirty or anything with private pages
 615                 */
 616                if (invalidate_inode_page(p))
 617                        ret = MF_RECOVERED;
 618                else
 619                        pr_info("Memory failure: %#lx: Failed to invalidate\n",
 620                                pfn);
 621        }
 622
 623        return ret;
 624}
 625
 626/*
 627 * Error hit kernel page.
 628 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 629 * could be more sophisticated.
 630 */
 631static int me_kernel(struct page *p, unsigned long pfn)
 632{
 633        return MF_IGNORED;
 634}
 635
 636/*
 637 * Page in unknown state. Do nothing.
 638 */
 639static int me_unknown(struct page *p, unsigned long pfn)
 640{
 641        pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
 642        return MF_FAILED;
 643}
 644
 645/*
 646 * Clean (or cleaned) page cache page.
 647 */
 648static int me_pagecache_clean(struct page *p, unsigned long pfn)
 649{
 650        struct address_space *mapping;
 651
 652        delete_from_lru_cache(p);
 653
 654        /*
 655         * For anonymous pages we're done the only reference left
 656         * should be the one m_f() holds.
 657         */
 658        if (PageAnon(p))
 659                return MF_RECOVERED;
 660
 661        /*
 662         * Now truncate the page in the page cache. This is really
 663         * more like a "temporary hole punch"
 664         * Don't do this for block devices when someone else
 665         * has a reference, because it could be file system metadata
 666         * and that's not safe to truncate.
 667         */
 668        mapping = page_mapping(p);
 669        if (!mapping) {
 670                /*
 671                 * Page has been teared down in the meanwhile
 672                 */
 673                return MF_FAILED;
 674        }
 675
 676        /*
 677         * Truncation is a bit tricky. Enable it per file system for now.
 678         *
 679         * Open: to take i_mutex or not for this? Right now we don't.
 680         */
 681        return truncate_error_page(p, pfn, mapping);
 682}
 683
 684/*
 685 * Dirty pagecache page
 686 * Issues: when the error hit a hole page the error is not properly
 687 * propagated.
 688 */
 689static int me_pagecache_dirty(struct page *p, unsigned long pfn)
 690{
 691        struct address_space *mapping = page_mapping(p);
 692
 693        SetPageError(p);
 694        /* TBD: print more information about the file. */
 695        if (mapping) {
 696                /*
 697                 * IO error will be reported by write(), fsync(), etc.
 698                 * who check the mapping.
 699                 * This way the application knows that something went
 700                 * wrong with its dirty file data.
 701                 *
 702                 * There's one open issue:
 703                 *
 704                 * The EIO will be only reported on the next IO
 705                 * operation and then cleared through the IO map.
 706                 * Normally Linux has two mechanisms to pass IO error
 707                 * first through the AS_EIO flag in the address space
 708                 * and then through the PageError flag in the page.
 709                 * Since we drop pages on memory failure handling the
 710                 * only mechanism open to use is through AS_AIO.
 711                 *
 712                 * This has the disadvantage that it gets cleared on
 713                 * the first operation that returns an error, while
 714                 * the PageError bit is more sticky and only cleared
 715                 * when the page is reread or dropped.  If an
 716                 * application assumes it will always get error on
 717                 * fsync, but does other operations on the fd before
 718                 * and the page is dropped between then the error
 719                 * will not be properly reported.
 720                 *
 721                 * This can already happen even without hwpoisoned
 722                 * pages: first on metadata IO errors (which only
 723                 * report through AS_EIO) or when the page is dropped
 724                 * at the wrong time.
 725                 *
 726                 * So right now we assume that the application DTRT on
 727                 * the first EIO, but we're not worse than other parts
 728                 * of the kernel.
 729                 */
 730                mapping_set_error(mapping, -EIO);
 731        }
 732
 733        return me_pagecache_clean(p, pfn);
 734}
 735
 736/*
 737 * Clean and dirty swap cache.
 738 *
 739 * Dirty swap cache page is tricky to handle. The page could live both in page
 740 * cache and swap cache(ie. page is freshly swapped in). So it could be
 741 * referenced concurrently by 2 types of PTEs:
 742 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 743 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 744 * and then
 745 *      - clear dirty bit to prevent IO
 746 *      - remove from LRU
 747 *      - but keep in the swap cache, so that when we return to it on
 748 *        a later page fault, we know the application is accessing
 749 *        corrupted data and shall be killed (we installed simple
 750 *        interception code in do_swap_page to catch it).
 751 *
 752 * Clean swap cache pages can be directly isolated. A later page fault will
 753 * bring in the known good data from disk.
 754 */
 755static int me_swapcache_dirty(struct page *p, unsigned long pfn)
 756{
 757        ClearPageDirty(p);
 758        /* Trigger EIO in shmem: */
 759        ClearPageUptodate(p);
 760
 761        if (!delete_from_lru_cache(p))
 762                return MF_DELAYED;
 763        else
 764                return MF_FAILED;
 765}
 766
 767static int me_swapcache_clean(struct page *p, unsigned long pfn)
 768{
 769        delete_from_swap_cache(p);
 770
 771        if (!delete_from_lru_cache(p))
 772                return MF_RECOVERED;
 773        else
 774                return MF_FAILED;
 775}
 776
 777/*
 778 * Huge pages. Needs work.
 779 * Issues:
 780 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 781 *   To narrow down kill region to one page, we need to break up pmd.
 782 */
 783static int me_huge_page(struct page *p, unsigned long pfn)
 784{
 785        int res = 0;
 786        struct page *hpage = compound_head(p);
 787        struct address_space *mapping;
 788
 789        if (!PageHuge(hpage))
 790                return MF_DELAYED;
 791
 792        mapping = page_mapping(hpage);
 793        if (mapping) {
 794                res = truncate_error_page(hpage, pfn, mapping);
 795        } else {
 796                unlock_page(hpage);
 797                /*
 798                 * migration entry prevents later access on error anonymous
 799                 * hugepage, so we can free and dissolve it into buddy to
 800                 * save healthy subpages.
 801                 */
 802                if (PageAnon(hpage))
 803                        put_page(hpage);
 804                dissolve_free_huge_page(p);
 805                res = MF_RECOVERED;
 806                lock_page(hpage);
 807        }
 808
 809        return res;
 810}
 811
 812/*
 813 * Various page states we can handle.
 814 *
 815 * A page state is defined by its current page->flags bits.
 816 * The table matches them in order and calls the right handler.
 817 *
 818 * This is quite tricky because we can access page at any time
 819 * in its live cycle, so all accesses have to be extremely careful.
 820 *
 821 * This is not complete. More states could be added.
 822 * For any missing state don't attempt recovery.
 823 */
 824
 825#define dirty           (1UL << PG_dirty)
 826#define sc              ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
 827#define unevict         (1UL << PG_unevictable)
 828#define mlock           (1UL << PG_mlocked)
 829#define writeback       (1UL << PG_writeback)
 830#define lru             (1UL << PG_lru)
 831#define head            (1UL << PG_head)
 832#define slab            (1UL << PG_slab)
 833#define reserved        (1UL << PG_reserved)
 834
 835static struct page_state {
 836        unsigned long mask;
 837        unsigned long res;
 838        enum mf_action_page_type type;
 839        int (*action)(struct page *p, unsigned long pfn);
 840} error_states[] = {
 841        { reserved,     reserved,       MF_MSG_KERNEL,  me_kernel },
 842        /*
 843         * free pages are specially detected outside this table:
 844         * PG_buddy pages only make a small fraction of all free pages.
 845         */
 846
 847        /*
 848         * Could in theory check if slab page is free or if we can drop
 849         * currently unused objects without touching them. But just
 850         * treat it as standard kernel for now.
 851         */
 852        { slab,         slab,           MF_MSG_SLAB,    me_kernel },
 853
 854        { head,         head,           MF_MSG_HUGE,            me_huge_page },
 855
 856        { sc|dirty,     sc|dirty,       MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
 857        { sc|dirty,     sc,             MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
 858
 859        { mlock|dirty,  mlock|dirty,    MF_MSG_DIRTY_MLOCKED_LRU,       me_pagecache_dirty },
 860        { mlock|dirty,  mlock,          MF_MSG_CLEAN_MLOCKED_LRU,       me_pagecache_clean },
 861
 862        { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU,   me_pagecache_dirty },
 863        { unevict|dirty, unevict,       MF_MSG_CLEAN_UNEVICTABLE_LRU,   me_pagecache_clean },
 864
 865        { lru|dirty,    lru|dirty,      MF_MSG_DIRTY_LRU,       me_pagecache_dirty },
 866        { lru|dirty,    lru,            MF_MSG_CLEAN_LRU,       me_pagecache_clean },
 867
 868        /*
 869         * Catchall entry: must be at end.
 870         */
 871        { 0,            0,              MF_MSG_UNKNOWN, me_unknown },
 872};
 873
 874#undef dirty
 875#undef sc
 876#undef unevict
 877#undef mlock
 878#undef writeback
 879#undef lru
 880#undef head
 881#undef slab
 882#undef reserved
 883
 884/*
 885 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 886 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 887 */
 888static void action_result(unsigned long pfn, enum mf_action_page_type type,
 889                          enum mf_result result)
 890{
 891        trace_memory_failure_event(pfn, type, result);
 892
 893        pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
 894                pfn, action_page_types[type], action_name[result]);
 895}
 896
 897static int page_action(struct page_state *ps, struct page *p,
 898                        unsigned long pfn)
 899{
 900        int result;
 901        int count;
 902
 903        result = ps->action(p, pfn);
 904
 905        count = page_count(p) - 1;
 906        if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
 907                count--;
 908        if (count > 0) {
 909                pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
 910                       pfn, action_page_types[ps->type], count);
 911                result = MF_FAILED;
 912        }
 913        action_result(pfn, ps->type, result);
 914
 915        /* Could do more checks here if page looks ok */
 916        /*
 917         * Could adjust zone counters here to correct for the missing page.
 918         */
 919
 920        return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
 921}
 922
 923/**
 924 * get_hwpoison_page() - Get refcount for memory error handling:
 925 * @page:       raw error page (hit by memory error)
 926 *
 927 * Return: return 0 if failed to grab the refcount, otherwise true (some
 928 * non-zero value.)
 929 */
 930int get_hwpoison_page(struct page *page)
 931{
 932        struct page *head = compound_head(page);
 933
 934        if (!PageHuge(head) && PageTransHuge(head)) {
 935                /*
 936                 * Non anonymous thp exists only in allocation/free time. We
 937                 * can't handle such a case correctly, so let's give it up.
 938                 * This should be better than triggering BUG_ON when kernel
 939                 * tries to touch the "partially handled" page.
 940                 */
 941                if (!PageAnon(head)) {
 942                        pr_err("Memory failure: %#lx: non anonymous thp\n",
 943                                page_to_pfn(page));
 944                        return 0;
 945                }
 946        }
 947
 948        if (get_page_unless_zero(head)) {
 949                if (head == compound_head(page))
 950                        return 1;
 951
 952                pr_info("Memory failure: %#lx cannot catch tail\n",
 953                        page_to_pfn(page));
 954                put_page(head);
 955        }
 956
 957        return 0;
 958}
 959EXPORT_SYMBOL_GPL(get_hwpoison_page);
 960
 961/*
 962 * Do all that is necessary to remove user space mappings. Unmap
 963 * the pages and send SIGBUS to the processes if the data was dirty.
 964 */
 965static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
 966                                  int flags, struct page **hpagep)
 967{
 968        enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
 969        struct address_space *mapping;
 970        LIST_HEAD(tokill);
 971        bool unmap_success;
 972        int kill = 1, forcekill;
 973        struct page *hpage = *hpagep;
 974        bool mlocked = PageMlocked(hpage);
 975
 976        /*
 977         * Here we are interested only in user-mapped pages, so skip any
 978         * other types of pages.
 979         */
 980        if (PageReserved(p) || PageSlab(p))
 981                return true;
 982        if (!(PageLRU(hpage) || PageHuge(p)))
 983                return true;
 984
 985        /*
 986         * This check implies we don't kill processes if their pages
 987         * are in the swap cache early. Those are always late kills.
 988         */
 989        if (!page_mapped(hpage))
 990                return true;
 991
 992        if (PageKsm(p)) {
 993                pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
 994                return false;
 995        }
 996
 997        if (PageSwapCache(p)) {
 998                pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
 999                        pfn);
1000                ttu |= TTU_IGNORE_HWPOISON;
1001        }
1002
1003        /*
1004         * Propagate the dirty bit from PTEs to struct page first, because we
1005         * need this to decide if we should kill or just drop the page.
1006         * XXX: the dirty test could be racy: set_page_dirty() may not always
1007         * be called inside page lock (it's recommended but not enforced).
1008         */
1009        mapping = page_mapping(hpage);
1010        if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1011            mapping_cap_writeback_dirty(mapping)) {
1012                if (page_mkclean(hpage)) {
1013                        SetPageDirty(hpage);
1014                } else {
1015                        kill = 0;
1016                        ttu |= TTU_IGNORE_HWPOISON;
1017                        pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1018                                pfn);
1019                }
1020        }
1021
1022        /*
1023         * First collect all the processes that have the page
1024         * mapped in dirty form.  This has to be done before try_to_unmap,
1025         * because ttu takes the rmap data structures down.
1026         *
1027         * Error handling: We ignore errors here because
1028         * there's nothing that can be done.
1029         */
1030        if (kill)
1031                collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1032
1033        unmap_success = try_to_unmap(hpage, ttu);
1034        if (!unmap_success)
1035                pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1036                       pfn, page_mapcount(hpage));
1037
1038        /*
1039         * try_to_unmap() might put mlocked page in lru cache, so call
1040         * shake_page() again to ensure that it's flushed.
1041         */
1042        if (mlocked)
1043                shake_page(hpage, 0);
1044
1045        /*
1046         * Now that the dirty bit has been propagated to the
1047         * struct page and all unmaps done we can decide if
1048         * killing is needed or not.  Only kill when the page
1049         * was dirty or the process is not restartable,
1050         * otherwise the tokill list is merely
1051         * freed.  When there was a problem unmapping earlier
1052         * use a more force-full uncatchable kill to prevent
1053         * any accesses to the poisoned memory.
1054         */
1055        forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1056        kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1057
1058        return unmap_success;
1059}
1060
1061static int identify_page_state(unsigned long pfn, struct page *p,
1062                                unsigned long page_flags)
1063{
1064        struct page_state *ps;
1065
1066        /*
1067         * The first check uses the current page flags which may not have any
1068         * relevant information. The second check with the saved page flags is
1069         * carried out only if the first check can't determine the page status.
1070         */
1071        for (ps = error_states;; ps++)
1072                if ((p->flags & ps->mask) == ps->res)
1073                        break;
1074
1075        page_flags |= (p->flags & (1UL << PG_dirty));
1076
1077        if (!ps->mask)
1078                for (ps = error_states;; ps++)
1079                        if ((page_flags & ps->mask) == ps->res)
1080                                break;
1081        return page_action(ps, p, pfn);
1082}
1083
1084static int memory_failure_hugetlb(unsigned long pfn, int flags)
1085{
1086        struct page *p = pfn_to_page(pfn);
1087        struct page *head = compound_head(p);
1088        int res;
1089        unsigned long page_flags;
1090
1091        if (TestSetPageHWPoison(head)) {
1092                pr_err("Memory failure: %#lx: already hardware poisoned\n",
1093                       pfn);
1094                return 0;
1095        }
1096
1097        num_poisoned_pages_inc();
1098
1099        if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1100                /*
1101                 * Check "filter hit" and "race with other subpage."
1102                 */
1103                lock_page(head);
1104                if (PageHWPoison(head)) {
1105                        if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1106                            || (p != head && TestSetPageHWPoison(head))) {
1107                                num_poisoned_pages_dec();
1108                                unlock_page(head);
1109                                return 0;
1110                        }
1111                }
1112                unlock_page(head);
1113                dissolve_free_huge_page(p);
1114                action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1115                return 0;
1116        }
1117
1118        lock_page(head);
1119        page_flags = head->flags;
1120
1121        if (!PageHWPoison(head)) {
1122                pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1123                num_poisoned_pages_dec();
1124                unlock_page(head);
1125                put_hwpoison_page(head);
1126                return 0;
1127        }
1128
1129        /*
1130         * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1131         * simply disable it. In order to make it work properly, we need
1132         * make sure that:
1133         *  - conversion of a pud that maps an error hugetlb into hwpoison
1134         *    entry properly works, and
1135         *  - other mm code walking over page table is aware of pud-aligned
1136         *    hwpoison entries.
1137         */
1138        if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1139                action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1140                res = -EBUSY;
1141                goto out;
1142        }
1143
1144        if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1145                action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1146                res = -EBUSY;
1147                goto out;
1148        }
1149
1150        res = identify_page_state(pfn, p, page_flags);
1151out:
1152        unlock_page(head);
1153        return res;
1154}
1155
1156static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1157                struct dev_pagemap *pgmap)
1158{
1159        struct page *page = pfn_to_page(pfn);
1160        const bool unmap_success = true;
1161        unsigned long size = 0;
1162        struct to_kill *tk;
1163        LIST_HEAD(tokill);
1164        int rc = -EBUSY;
1165        loff_t start;
1166        dax_entry_t cookie;
1167
1168        /*
1169         * Prevent the inode from being freed while we are interrogating
1170         * the address_space, typically this would be handled by
1171         * lock_page(), but dax pages do not use the page lock. This
1172         * also prevents changes to the mapping of this pfn until
1173         * poison signaling is complete.
1174         */
1175        cookie = dax_lock_page(page);
1176        if (!cookie)
1177                goto out;
1178
1179        if (hwpoison_filter(page)) {
1180                rc = 0;
1181                goto unlock;
1182        }
1183
1184        if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1185                /*
1186                 * TODO: Handle HMM pages which may need coordination
1187                 * with device-side memory.
1188                 */
1189                goto unlock;
1190        }
1191
1192        /*
1193         * Use this flag as an indication that the dax page has been
1194         * remapped UC to prevent speculative consumption of poison.
1195         */
1196        SetPageHWPoison(page);
1197
1198        /*
1199         * Unlike System-RAM there is no possibility to swap in a
1200         * different physical page at a given virtual address, so all
1201         * userspace consumption of ZONE_DEVICE memory necessitates
1202         * SIGBUS (i.e. MF_MUST_KILL)
1203         */
1204        flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1205        collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1206
1207        list_for_each_entry(tk, &tokill, nd)
1208                if (tk->size_shift)
1209                        size = max(size, 1UL << tk->size_shift);
1210        if (size) {
1211                /*
1212                 * Unmap the largest mapping to avoid breaking up
1213                 * device-dax mappings which are constant size. The
1214                 * actual size of the mapping being torn down is
1215                 * communicated in siginfo, see kill_proc()
1216                 */
1217                start = (page->index << PAGE_SHIFT) & ~(size - 1);
1218                unmap_mapping_range(page->mapping, start, start + size, 0);
1219        }
1220        kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1221        rc = 0;
1222unlock:
1223        dax_unlock_page(page, cookie);
1224out:
1225        /* drop pgmap ref acquired in caller */
1226        put_dev_pagemap(pgmap);
1227        action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1228        return rc;
1229}
1230
1231/**
1232 * memory_failure - Handle memory failure of a page.
1233 * @pfn: Page Number of the corrupted page
1234 * @flags: fine tune action taken
1235 *
1236 * This function is called by the low level machine check code
1237 * of an architecture when it detects hardware memory corruption
1238 * of a page. It tries its best to recover, which includes
1239 * dropping pages, killing processes etc.
1240 *
1241 * The function is primarily of use for corruptions that
1242 * happen outside the current execution context (e.g. when
1243 * detected by a background scrubber)
1244 *
1245 * Must run in process context (e.g. a work queue) with interrupts
1246 * enabled and no spinlocks hold.
1247 */
1248int memory_failure(unsigned long pfn, int flags)
1249{
1250        struct page *p;
1251        struct page *hpage;
1252        struct page *orig_head;
1253        struct dev_pagemap *pgmap;
1254        int res;
1255        unsigned long page_flags;
1256
1257        if (!sysctl_memory_failure_recovery)
1258                panic("Memory failure on page %lx", pfn);
1259
1260        p = pfn_to_online_page(pfn);
1261        if (!p) {
1262                if (pfn_valid(pfn)) {
1263                        pgmap = get_dev_pagemap(pfn, NULL);
1264                        if (pgmap)
1265                                return memory_failure_dev_pagemap(pfn, flags,
1266                                                                  pgmap);
1267                }
1268                pr_err("Memory failure: %#lx: memory outside kernel control\n",
1269                        pfn);
1270                return -ENXIO;
1271        }
1272
1273        if (PageHuge(p))
1274                return memory_failure_hugetlb(pfn, flags);
1275        if (TestSetPageHWPoison(p)) {
1276                pr_err("Memory failure: %#lx: already hardware poisoned\n",
1277                        pfn);
1278                return 0;
1279        }
1280
1281        orig_head = hpage = compound_head(p);
1282        num_poisoned_pages_inc();
1283
1284        /*
1285         * We need/can do nothing about count=0 pages.
1286         * 1) it's a free page, and therefore in safe hand:
1287         *    prep_new_page() will be the gate keeper.
1288         * 2) it's part of a non-compound high order page.
1289         *    Implies some kernel user: cannot stop them from
1290         *    R/W the page; let's pray that the page has been
1291         *    used and will be freed some time later.
1292         * In fact it's dangerous to directly bump up page count from 0,
1293         * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1294         */
1295        if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1296                if (is_free_buddy_page(p)) {
1297                        action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1298                        return 0;
1299                } else {
1300                        action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1301                        return -EBUSY;
1302                }
1303        }
1304
1305        if (PageTransHuge(hpage)) {
1306                lock_page(p);
1307                if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1308                        unlock_page(p);
1309                        if (!PageAnon(p))
1310                                pr_err("Memory failure: %#lx: non anonymous thp\n",
1311                                        pfn);
1312                        else
1313                                pr_err("Memory failure: %#lx: thp split failed\n",
1314                                        pfn);
1315                        if (TestClearPageHWPoison(p))
1316                                num_poisoned_pages_dec();
1317                        put_hwpoison_page(p);
1318                        return -EBUSY;
1319                }
1320                unlock_page(p);
1321                VM_BUG_ON_PAGE(!page_count(p), p);
1322                hpage = compound_head(p);
1323        }
1324
1325        /*
1326         * We ignore non-LRU pages for good reasons.
1327         * - PG_locked is only well defined for LRU pages and a few others
1328         * - to avoid races with __SetPageLocked()
1329         * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1330         * The check (unnecessarily) ignores LRU pages being isolated and
1331         * walked by the page reclaim code, however that's not a big loss.
1332         */
1333        shake_page(p, 0);
1334        /* shake_page could have turned it free. */
1335        if (!PageLRU(p) && is_free_buddy_page(p)) {
1336                if (flags & MF_COUNT_INCREASED)
1337                        action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1338                else
1339                        action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1340                return 0;
1341        }
1342
1343        lock_page(p);
1344
1345        /*
1346         * The page could have changed compound pages during the locking.
1347         * If this happens just bail out.
1348         */
1349        if (PageCompound(p) && compound_head(p) != orig_head) {
1350                action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1351                res = -EBUSY;
1352                goto out;
1353        }
1354
1355        /*
1356         * We use page flags to determine what action should be taken, but
1357         * the flags can be modified by the error containment action.  One
1358         * example is an mlocked page, where PG_mlocked is cleared by
1359         * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1360         * correctly, we save a copy of the page flags at this time.
1361         */
1362        if (PageHuge(p))
1363                page_flags = hpage->flags;
1364        else
1365                page_flags = p->flags;
1366
1367        /*
1368         * unpoison always clear PG_hwpoison inside page lock
1369         */
1370        if (!PageHWPoison(p)) {
1371                pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1372                num_poisoned_pages_dec();
1373                unlock_page(p);
1374                put_hwpoison_page(p);
1375                return 0;
1376        }
1377        if (hwpoison_filter(p)) {
1378                if (TestClearPageHWPoison(p))
1379                        num_poisoned_pages_dec();
1380                unlock_page(p);
1381                put_hwpoison_page(p);
1382                return 0;
1383        }
1384
1385        if (!PageTransTail(p) && !PageLRU(p))
1386                goto identify_page_state;
1387
1388        /*
1389         * It's very difficult to mess with pages currently under IO
1390         * and in many cases impossible, so we just avoid it here.
1391         */
1392        wait_on_page_writeback(p);
1393
1394        /*
1395         * Now take care of user space mappings.
1396         * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1397         *
1398         * When the raw error page is thp tail page, hpage points to the raw
1399         * page after thp split.
1400         */
1401        if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1402                action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1403                res = -EBUSY;
1404                goto out;
1405        }
1406
1407        /*
1408         * Torn down by someone else?
1409         */
1410        if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1411                action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1412                res = -EBUSY;
1413                goto out;
1414        }
1415
1416identify_page_state:
1417        res = identify_page_state(pfn, p, page_flags);
1418out:
1419        unlock_page(p);
1420        return res;
1421}
1422EXPORT_SYMBOL_GPL(memory_failure);
1423
1424#define MEMORY_FAILURE_FIFO_ORDER       4
1425#define MEMORY_FAILURE_FIFO_SIZE        (1 << MEMORY_FAILURE_FIFO_ORDER)
1426
1427struct memory_failure_entry {
1428        unsigned long pfn;
1429        int flags;
1430};
1431
1432struct memory_failure_cpu {
1433        DECLARE_KFIFO(fifo, struct memory_failure_entry,
1434                      MEMORY_FAILURE_FIFO_SIZE);
1435        spinlock_t lock;
1436        struct work_struct work;
1437};
1438
1439static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1440
1441/**
1442 * memory_failure_queue - Schedule handling memory failure of a page.
1443 * @pfn: Page Number of the corrupted page
1444 * @flags: Flags for memory failure handling
1445 *
1446 * This function is called by the low level hardware error handler
1447 * when it detects hardware memory corruption of a page. It schedules
1448 * the recovering of error page, including dropping pages, killing
1449 * processes etc.
1450 *
1451 * The function is primarily of use for corruptions that
1452 * happen outside the current execution context (e.g. when
1453 * detected by a background scrubber)
1454 *
1455 * Can run in IRQ context.
1456 */
1457void memory_failure_queue(unsigned long pfn, int flags)
1458{
1459        struct memory_failure_cpu *mf_cpu;
1460        unsigned long proc_flags;
1461        struct memory_failure_entry entry = {
1462                .pfn =          pfn,
1463                .flags =        flags,
1464        };
1465
1466        mf_cpu = &get_cpu_var(memory_failure_cpu);
1467        spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1468        if (kfifo_put(&mf_cpu->fifo, entry))
1469                schedule_work_on(smp_processor_id(), &mf_cpu->work);
1470        else
1471                pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1472                       pfn);
1473        spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1474        put_cpu_var(memory_failure_cpu);
1475}
1476EXPORT_SYMBOL_GPL(memory_failure_queue);
1477
1478static void memory_failure_work_func(struct work_struct *work)
1479{
1480        struct memory_failure_cpu *mf_cpu;
1481        struct memory_failure_entry entry = { 0, };
1482        unsigned long proc_flags;
1483        int gotten;
1484
1485        mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1486        for (;;) {
1487                spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1488                gotten = kfifo_get(&mf_cpu->fifo, &entry);
1489                spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1490                if (!gotten)
1491                        break;
1492                if (entry.flags & MF_SOFT_OFFLINE)
1493                        soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1494                else
1495                        memory_failure(entry.pfn, entry.flags);
1496        }
1497}
1498
1499static int __init memory_failure_init(void)
1500{
1501        struct memory_failure_cpu *mf_cpu;
1502        int cpu;
1503
1504        for_each_possible_cpu(cpu) {
1505                mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1506                spin_lock_init(&mf_cpu->lock);
1507                INIT_KFIFO(mf_cpu->fifo);
1508                INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1509        }
1510
1511        return 0;
1512}
1513core_initcall(memory_failure_init);
1514
1515#define unpoison_pr_info(fmt, pfn, rs)                  \
1516({                                                      \
1517        if (__ratelimit(rs))                            \
1518                pr_info(fmt, pfn);                      \
1519})
1520
1521/**
1522 * unpoison_memory - Unpoison a previously poisoned page
1523 * @pfn: Page number of the to be unpoisoned page
1524 *
1525 * Software-unpoison a page that has been poisoned by
1526 * memory_failure() earlier.
1527 *
1528 * This is only done on the software-level, so it only works
1529 * for linux injected failures, not real hardware failures
1530 *
1531 * Returns 0 for success, otherwise -errno.
1532 */
1533int unpoison_memory(unsigned long pfn)
1534{
1535        struct page *page;
1536        struct page *p;
1537        int freeit = 0;
1538        static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1539                                        DEFAULT_RATELIMIT_BURST);
1540
1541        if (!pfn_valid(pfn))
1542                return -ENXIO;
1543
1544        p = pfn_to_page(pfn);
1545        page = compound_head(p);
1546
1547        if (!PageHWPoison(p)) {
1548                unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1549                                 pfn, &unpoison_rs);
1550                return 0;
1551        }
1552
1553        if (page_count(page) > 1) {
1554                unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1555                                 pfn, &unpoison_rs);
1556                return 0;
1557        }
1558
1559        if (page_mapped(page)) {
1560                unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1561                                 pfn, &unpoison_rs);
1562                return 0;
1563        }
1564
1565        if (page_mapping(page)) {
1566                unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1567                                 pfn, &unpoison_rs);
1568                return 0;
1569        }
1570
1571        /*
1572         * unpoison_memory() can encounter thp only when the thp is being
1573         * worked by memory_failure() and the page lock is not held yet.
1574         * In such case, we yield to memory_failure() and make unpoison fail.
1575         */
1576        if (!PageHuge(page) && PageTransHuge(page)) {
1577                unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1578                                 pfn, &unpoison_rs);
1579                return 0;
1580        }
1581
1582        if (!get_hwpoison_page(p)) {
1583                if (TestClearPageHWPoison(p))
1584                        num_poisoned_pages_dec();
1585                unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1586                                 pfn, &unpoison_rs);
1587                return 0;
1588        }
1589
1590        lock_page(page);
1591        /*
1592         * This test is racy because PG_hwpoison is set outside of page lock.
1593         * That's acceptable because that won't trigger kernel panic. Instead,
1594         * the PG_hwpoison page will be caught and isolated on the entrance to
1595         * the free buddy page pool.
1596         */
1597        if (TestClearPageHWPoison(page)) {
1598                unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1599                                 pfn, &unpoison_rs);
1600                num_poisoned_pages_dec();
1601                freeit = 1;
1602        }
1603        unlock_page(page);
1604
1605        put_hwpoison_page(page);
1606        if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1607                put_hwpoison_page(page);
1608
1609        return 0;
1610}
1611EXPORT_SYMBOL(unpoison_memory);
1612
1613static struct page *new_page(struct page *p, unsigned long private)
1614{
1615        int nid = page_to_nid(p);
1616
1617        return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1618}
1619
1620/*
1621 * Safely get reference count of an arbitrary page.
1622 * Returns 0 for a free page, -EIO for a zero refcount page
1623 * that is not free, and 1 for any other page type.
1624 * For 1 the page is returned with increased page count, otherwise not.
1625 */
1626static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1627{
1628        int ret;
1629
1630        if (flags & MF_COUNT_INCREASED)
1631                return 1;
1632
1633        /*
1634         * When the target page is a free hugepage, just remove it
1635         * from free hugepage list.
1636         */
1637        if (!get_hwpoison_page(p)) {
1638                if (PageHuge(p)) {
1639                        pr_info("%s: %#lx free huge page\n", __func__, pfn);
1640                        ret = 0;
1641                } else if (is_free_buddy_page(p)) {
1642                        pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1643                        ret = 0;
1644                } else {
1645                        pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1646                                __func__, pfn, p->flags);
1647                        ret = -EIO;
1648                }
1649        } else {
1650                /* Not a free page */
1651                ret = 1;
1652        }
1653        return ret;
1654}
1655
1656static int get_any_page(struct page *page, unsigned long pfn, int flags)
1657{
1658        int ret = __get_any_page(page, pfn, flags);
1659
1660        if (ret == 1 && !PageHuge(page) &&
1661            !PageLRU(page) && !__PageMovable(page)) {
1662                /*
1663                 * Try to free it.
1664                 */
1665                put_hwpoison_page(page);
1666                shake_page(page, 1);
1667
1668                /*
1669                 * Did it turn free?
1670                 */
1671                ret = __get_any_page(page, pfn, 0);
1672                if (ret == 1 && !PageLRU(page)) {
1673                        /* Drop page reference which is from __get_any_page() */
1674                        put_hwpoison_page(page);
1675                        pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1676                                pfn, page->flags, &page->flags);
1677                        return -EIO;
1678                }
1679        }
1680        return ret;
1681}
1682
1683static int soft_offline_huge_page(struct page *page, int flags)
1684{
1685        int ret;
1686        unsigned long pfn = page_to_pfn(page);
1687        struct page *hpage = compound_head(page);
1688        LIST_HEAD(pagelist);
1689
1690        /*
1691         * This double-check of PageHWPoison is to avoid the race with
1692         * memory_failure(). See also comment in __soft_offline_page().
1693         */
1694        lock_page(hpage);
1695        if (PageHWPoison(hpage)) {
1696                unlock_page(hpage);
1697                put_hwpoison_page(hpage);
1698                pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1699                return -EBUSY;
1700        }
1701        unlock_page(hpage);
1702
1703        ret = isolate_huge_page(hpage, &pagelist);
1704        /*
1705         * get_any_page() and isolate_huge_page() takes a refcount each,
1706         * so need to drop one here.
1707         */
1708        put_hwpoison_page(hpage);
1709        if (!ret) {
1710                pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1711                return -EBUSY;
1712        }
1713
1714        ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1715                                MIGRATE_SYNC, MR_MEMORY_FAILURE);
1716        if (ret) {
1717                pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1718                        pfn, ret, page->flags, &page->flags);
1719                if (!list_empty(&pagelist))
1720                        putback_movable_pages(&pagelist);
1721                if (ret > 0)
1722                        ret = -EIO;
1723        } else {
1724                /*
1725                 * We set PG_hwpoison only when the migration source hugepage
1726                 * was successfully dissolved, because otherwise hwpoisoned
1727                 * hugepage remains on free hugepage list, then userspace will
1728                 * find it as SIGBUS by allocation failure. That's not expected
1729                 * in soft-offlining.
1730                 */
1731                ret = dissolve_free_huge_page(page);
1732                if (!ret) {
1733                        if (set_hwpoison_free_buddy_page(page))
1734                                num_poisoned_pages_inc();
1735                        else
1736                                ret = -EBUSY;
1737                }
1738        }
1739        return ret;
1740}
1741
1742static int __soft_offline_page(struct page *page, int flags)
1743{
1744        int ret;
1745        unsigned long pfn = page_to_pfn(page);
1746
1747        /*
1748         * Check PageHWPoison again inside page lock because PageHWPoison
1749         * is set by memory_failure() outside page lock. Note that
1750         * memory_failure() also double-checks PageHWPoison inside page lock,
1751         * so there's no race between soft_offline_page() and memory_failure().
1752         */
1753        lock_page(page);
1754        wait_on_page_writeback(page);
1755        if (PageHWPoison(page)) {
1756                unlock_page(page);
1757                put_hwpoison_page(page);
1758                pr_info("soft offline: %#lx page already poisoned\n", pfn);
1759                return -EBUSY;
1760        }
1761        /*
1762         * Try to invalidate first. This should work for
1763         * non dirty unmapped page cache pages.
1764         */
1765        ret = invalidate_inode_page(page);
1766        unlock_page(page);
1767        /*
1768         * RED-PEN would be better to keep it isolated here, but we
1769         * would need to fix isolation locking first.
1770         */
1771        if (ret == 1) {
1772                put_hwpoison_page(page);
1773                pr_info("soft_offline: %#lx: invalidated\n", pfn);
1774                SetPageHWPoison(page);
1775                num_poisoned_pages_inc();
1776                return 0;
1777        }
1778
1779        /*
1780         * Simple invalidation didn't work.
1781         * Try to migrate to a new page instead. migrate.c
1782         * handles a large number of cases for us.
1783         */
1784        if (PageLRU(page))
1785                ret = isolate_lru_page(page);
1786        else
1787                ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1788        /*
1789         * Drop page reference which is came from get_any_page()
1790         * successful isolate_lru_page() already took another one.
1791         */
1792        put_hwpoison_page(page);
1793        if (!ret) {
1794                LIST_HEAD(pagelist);
1795                /*
1796                 * After isolated lru page, the PageLRU will be cleared,
1797                 * so use !__PageMovable instead for LRU page's mapping
1798                 * cannot have PAGE_MAPPING_MOVABLE.
1799                 */
1800                if (!__PageMovable(page))
1801                        inc_node_page_state(page, NR_ISOLATED_ANON +
1802                                                page_is_file_cache(page));
1803                list_add(&page->lru, &pagelist);
1804                ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1805                                        MIGRATE_SYNC, MR_MEMORY_FAILURE);
1806                if (ret) {
1807                        if (!list_empty(&pagelist))
1808                                putback_movable_pages(&pagelist);
1809
1810                        pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1811                                pfn, ret, page->flags, &page->flags);
1812                        if (ret > 0)
1813                                ret = -EIO;
1814                }
1815        } else {
1816                pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1817                        pfn, ret, page_count(page), page->flags, &page->flags);
1818        }
1819        return ret;
1820}
1821
1822static int soft_offline_in_use_page(struct page *page, int flags)
1823{
1824        int ret;
1825        int mt;
1826        struct page *hpage = compound_head(page);
1827
1828        if (!PageHuge(page) && PageTransHuge(hpage)) {
1829                lock_page(page);
1830                if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1831                        unlock_page(page);
1832                        if (!PageAnon(page))
1833                                pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1834                        else
1835                                pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1836                        put_hwpoison_page(page);
1837                        return -EBUSY;
1838                }
1839                unlock_page(page);
1840        }
1841
1842        /*
1843         * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1844         * to free list immediately (not via pcplist) when released after
1845         * successful page migration. Otherwise we can't guarantee that the
1846         * page is really free after put_page() returns, so
1847         * set_hwpoison_free_buddy_page() highly likely fails.
1848         */
1849        mt = get_pageblock_migratetype(page);
1850        set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1851        if (PageHuge(page))
1852                ret = soft_offline_huge_page(page, flags);
1853        else
1854                ret = __soft_offline_page(page, flags);
1855        set_pageblock_migratetype(page, mt);
1856        return ret;
1857}
1858
1859static int soft_offline_free_page(struct page *page)
1860{
1861        int rc = dissolve_free_huge_page(page);
1862
1863        if (!rc) {
1864                if (set_hwpoison_free_buddy_page(page))
1865                        num_poisoned_pages_inc();
1866                else
1867                        rc = -EBUSY;
1868        }
1869        return rc;
1870}
1871
1872/**
1873 * soft_offline_page - Soft offline a page.
1874 * @page: page to offline
1875 * @flags: flags. Same as memory_failure().
1876 *
1877 * Returns 0 on success, otherwise negated errno.
1878 *
1879 * Soft offline a page, by migration or invalidation,
1880 * without killing anything. This is for the case when
1881 * a page is not corrupted yet (so it's still valid to access),
1882 * but has had a number of corrected errors and is better taken
1883 * out.
1884 *
1885 * The actual policy on when to do that is maintained by
1886 * user space.
1887 *
1888 * This should never impact any application or cause data loss,
1889 * however it might take some time.
1890 *
1891 * This is not a 100% solution for all memory, but tries to be
1892 * ``good enough'' for the majority of memory.
1893 */
1894int soft_offline_page(struct page *page, int flags)
1895{
1896        int ret;
1897        unsigned long pfn = page_to_pfn(page);
1898
1899        if (is_zone_device_page(page)) {
1900                pr_debug_ratelimited("soft_offline: %#lx page is device page\n",
1901                                pfn);
1902                if (flags & MF_COUNT_INCREASED)
1903                        put_page(page);
1904                return -EIO;
1905        }
1906
1907        if (PageHWPoison(page)) {
1908                pr_info("soft offline: %#lx page already poisoned\n", pfn);
1909                if (flags & MF_COUNT_INCREASED)
1910                        put_hwpoison_page(page);
1911                return -EBUSY;
1912        }
1913
1914        get_online_mems();
1915        ret = get_any_page(page, pfn, flags);
1916        put_online_mems();
1917
1918        if (ret > 0)
1919                ret = soft_offline_in_use_page(page, flags);
1920        else if (ret == 0)
1921                ret = soft_offline_free_page(page);
1922
1923        return ret;
1924}
1925