linux/mm/slab.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/slab.c
   4 * Written by Mark Hemment, 1996/97.
   5 * (markhe@nextd.demon.co.uk)
   6 *
   7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   8 *
   9 * Major cleanup, different bufctl logic, per-cpu arrays
  10 *      (c) 2000 Manfred Spraul
  11 *
  12 * Cleanup, make the head arrays unconditional, preparation for NUMA
  13 *      (c) 2002 Manfred Spraul
  14 *
  15 * An implementation of the Slab Allocator as described in outline in;
  16 *      UNIX Internals: The New Frontiers by Uresh Vahalia
  17 *      Pub: Prentice Hall      ISBN 0-13-101908-2
  18 * or with a little more detail in;
  19 *      The Slab Allocator: An Object-Caching Kernel Memory Allocator
  20 *      Jeff Bonwick (Sun Microsystems).
  21 *      Presented at: USENIX Summer 1994 Technical Conference
  22 *
  23 * The memory is organized in caches, one cache for each object type.
  24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  25 * Each cache consists out of many slabs (they are small (usually one
  26 * page long) and always contiguous), and each slab contains multiple
  27 * initialized objects.
  28 *
  29 * This means, that your constructor is used only for newly allocated
  30 * slabs and you must pass objects with the same initializations to
  31 * kmem_cache_free.
  32 *
  33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  34 * normal). If you need a special memory type, then must create a new
  35 * cache for that memory type.
  36 *
  37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  38 *   full slabs with 0 free objects
  39 *   partial slabs
  40 *   empty slabs with no allocated objects
  41 *
  42 * If partial slabs exist, then new allocations come from these slabs,
  43 * otherwise from empty slabs or new slabs are allocated.
  44 *
  45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  47 *
  48 * Each cache has a short per-cpu head array, most allocs
  49 * and frees go into that array, and if that array overflows, then 1/2
  50 * of the entries in the array are given back into the global cache.
  51 * The head array is strictly LIFO and should improve the cache hit rates.
  52 * On SMP, it additionally reduces the spinlock operations.
  53 *
  54 * The c_cpuarray may not be read with enabled local interrupts -
  55 * it's changed with a smp_call_function().
  56 *
  57 * SMP synchronization:
  58 *  constructors and destructors are called without any locking.
  59 *  Several members in struct kmem_cache and struct slab never change, they
  60 *      are accessed without any locking.
  61 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  62 *      and local interrupts are disabled so slab code is preempt-safe.
  63 *  The non-constant members are protected with a per-cache irq spinlock.
  64 *
  65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  66 * in 2000 - many ideas in the current implementation are derived from
  67 * his patch.
  68 *
  69 * Further notes from the original documentation:
  70 *
  71 * 11 April '97.  Started multi-threading - markhe
  72 *      The global cache-chain is protected by the mutex 'slab_mutex'.
  73 *      The sem is only needed when accessing/extending the cache-chain, which
  74 *      can never happen inside an interrupt (kmem_cache_create(),
  75 *      kmem_cache_shrink() and kmem_cache_reap()).
  76 *
  77 *      At present, each engine can be growing a cache.  This should be blocked.
  78 *
  79 * 15 March 2005. NUMA slab allocator.
  80 *      Shai Fultheim <shai@scalex86.org>.
  81 *      Shobhit Dayal <shobhit@calsoftinc.com>
  82 *      Alok N Kataria <alokk@calsoftinc.com>
  83 *      Christoph Lameter <christoph@lameter.com>
  84 *
  85 *      Modified the slab allocator to be node aware on NUMA systems.
  86 *      Each node has its own list of partial, free and full slabs.
  87 *      All object allocations for a node occur from node specific slab lists.
  88 */
  89
  90#include        <linux/slab.h>
  91#include        <linux/mm.h>
  92#include        <linux/poison.h>
  93#include        <linux/swap.h>
  94#include        <linux/cache.h>
  95#include        <linux/interrupt.h>
  96#include        <linux/init.h>
  97#include        <linux/compiler.h>
  98#include        <linux/cpuset.h>
  99#include        <linux/proc_fs.h>
 100#include        <linux/seq_file.h>
 101#include        <linux/notifier.h>
 102#include        <linux/kallsyms.h>
 103#include        <linux/cpu.h>
 104#include        <linux/sysctl.h>
 105#include        <linux/module.h>
 106#include        <linux/rcupdate.h>
 107#include        <linux/string.h>
 108#include        <linux/uaccess.h>
 109#include        <linux/nodemask.h>
 110#include        <linux/kmemleak.h>
 111#include        <linux/mempolicy.h>
 112#include        <linux/mutex.h>
 113#include        <linux/fault-inject.h>
 114#include        <linux/rtmutex.h>
 115#include        <linux/reciprocal_div.h>
 116#include        <linux/debugobjects.h>
 117#include        <linux/memory.h>
 118#include        <linux/prefetch.h>
 119#include        <linux/sched/task_stack.h>
 120
 121#include        <net/sock.h>
 122
 123#include        <asm/cacheflush.h>
 124#include        <asm/tlbflush.h>
 125#include        <asm/page.h>
 126
 127#include <trace/events/kmem.h>
 128
 129#include        "internal.h"
 130
 131#include        "slab.h"
 132
 133/*
 134 * DEBUG        - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 135 *                0 for faster, smaller code (especially in the critical paths).
 136 *
 137 * STATS        - 1 to collect stats for /proc/slabinfo.
 138 *                0 for faster, smaller code (especially in the critical paths).
 139 *
 140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 141 */
 142
 143#ifdef CONFIG_DEBUG_SLAB
 144#define DEBUG           1
 145#define STATS           1
 146#define FORCED_DEBUG    1
 147#else
 148#define DEBUG           0
 149#define STATS           0
 150#define FORCED_DEBUG    0
 151#endif
 152
 153/* Shouldn't this be in a header file somewhere? */
 154#define BYTES_PER_WORD          sizeof(void *)
 155#define REDZONE_ALIGN           max(BYTES_PER_WORD, __alignof__(unsigned long long))
 156
 157#ifndef ARCH_KMALLOC_FLAGS
 158#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 159#endif
 160
 161#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
 162                                <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
 163
 164#if FREELIST_BYTE_INDEX
 165typedef unsigned char freelist_idx_t;
 166#else
 167typedef unsigned short freelist_idx_t;
 168#endif
 169
 170#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
 171
 172/*
 173 * struct array_cache
 174 *
 175 * Purpose:
 176 * - LIFO ordering, to hand out cache-warm objects from _alloc
 177 * - reduce the number of linked list operations
 178 * - reduce spinlock operations
 179 *
 180 * The limit is stored in the per-cpu structure to reduce the data cache
 181 * footprint.
 182 *
 183 */
 184struct array_cache {
 185        unsigned int avail;
 186        unsigned int limit;
 187        unsigned int batchcount;
 188        unsigned int touched;
 189        void *entry[];  /*
 190                         * Must have this definition in here for the proper
 191                         * alignment of array_cache. Also simplifies accessing
 192                         * the entries.
 193                         */
 194};
 195
 196struct alien_cache {
 197        spinlock_t lock;
 198        struct array_cache ac;
 199};
 200
 201/*
 202 * Need this for bootstrapping a per node allocator.
 203 */
 204#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
 205static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
 206#define CACHE_CACHE 0
 207#define SIZE_NODE (MAX_NUMNODES)
 208
 209static int drain_freelist(struct kmem_cache *cache,
 210                        struct kmem_cache_node *n, int tofree);
 211static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 212                        int node, struct list_head *list);
 213static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
 214static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 215static void cache_reap(struct work_struct *unused);
 216
 217static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
 218                                                void **list);
 219static inline void fixup_slab_list(struct kmem_cache *cachep,
 220                                struct kmem_cache_node *n, struct page *page,
 221                                void **list);
 222static int slab_early_init = 1;
 223
 224#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
 225
 226static void kmem_cache_node_init(struct kmem_cache_node *parent)
 227{
 228        INIT_LIST_HEAD(&parent->slabs_full);
 229        INIT_LIST_HEAD(&parent->slabs_partial);
 230        INIT_LIST_HEAD(&parent->slabs_free);
 231        parent->total_slabs = 0;
 232        parent->free_slabs = 0;
 233        parent->shared = NULL;
 234        parent->alien = NULL;
 235        parent->colour_next = 0;
 236        spin_lock_init(&parent->list_lock);
 237        parent->free_objects = 0;
 238        parent->free_touched = 0;
 239}
 240
 241#define MAKE_LIST(cachep, listp, slab, nodeid)                          \
 242        do {                                                            \
 243                INIT_LIST_HEAD(listp);                                  \
 244                list_splice(&get_node(cachep, nodeid)->slab, listp);    \
 245        } while (0)
 246
 247#define MAKE_ALL_LISTS(cachep, ptr, nodeid)                             \
 248        do {                                                            \
 249        MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);  \
 250        MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 251        MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);  \
 252        } while (0)
 253
 254#define CFLGS_OBJFREELIST_SLAB  ((slab_flags_t __force)0x40000000U)
 255#define CFLGS_OFF_SLAB          ((slab_flags_t __force)0x80000000U)
 256#define OBJFREELIST_SLAB(x)     ((x)->flags & CFLGS_OBJFREELIST_SLAB)
 257#define OFF_SLAB(x)     ((x)->flags & CFLGS_OFF_SLAB)
 258
 259#define BATCHREFILL_LIMIT       16
 260/*
 261 * Optimization question: fewer reaps means less probability for unnessary
 262 * cpucache drain/refill cycles.
 263 *
 264 * OTOH the cpuarrays can contain lots of objects,
 265 * which could lock up otherwise freeable slabs.
 266 */
 267#define REAPTIMEOUT_AC          (2*HZ)
 268#define REAPTIMEOUT_NODE        (4*HZ)
 269
 270#if STATS
 271#define STATS_INC_ACTIVE(x)     ((x)->num_active++)
 272#define STATS_DEC_ACTIVE(x)     ((x)->num_active--)
 273#define STATS_INC_ALLOCED(x)    ((x)->num_allocations++)
 274#define STATS_INC_GROWN(x)      ((x)->grown++)
 275#define STATS_ADD_REAPED(x,y)   ((x)->reaped += (y))
 276#define STATS_SET_HIGH(x)                                               \
 277        do {                                                            \
 278                if ((x)->num_active > (x)->high_mark)                   \
 279                        (x)->high_mark = (x)->num_active;               \
 280        } while (0)
 281#define STATS_INC_ERR(x)        ((x)->errors++)
 282#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
 283#define STATS_INC_NODEFREES(x)  ((x)->node_frees++)
 284#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 285#define STATS_SET_FREEABLE(x, i)                                        \
 286        do {                                                            \
 287                if ((x)->max_freeable < i)                              \
 288                        (x)->max_freeable = i;                          \
 289        } while (0)
 290#define STATS_INC_ALLOCHIT(x)   atomic_inc(&(x)->allochit)
 291#define STATS_INC_ALLOCMISS(x)  atomic_inc(&(x)->allocmiss)
 292#define STATS_INC_FREEHIT(x)    atomic_inc(&(x)->freehit)
 293#define STATS_INC_FREEMISS(x)   atomic_inc(&(x)->freemiss)
 294#else
 295#define STATS_INC_ACTIVE(x)     do { } while (0)
 296#define STATS_DEC_ACTIVE(x)     do { } while (0)
 297#define STATS_INC_ALLOCED(x)    do { } while (0)
 298#define STATS_INC_GROWN(x)      do { } while (0)
 299#define STATS_ADD_REAPED(x,y)   do { (void)(y); } while (0)
 300#define STATS_SET_HIGH(x)       do { } while (0)
 301#define STATS_INC_ERR(x)        do { } while (0)
 302#define STATS_INC_NODEALLOCS(x) do { } while (0)
 303#define STATS_INC_NODEFREES(x)  do { } while (0)
 304#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 305#define STATS_SET_FREEABLE(x, i) do { } while (0)
 306#define STATS_INC_ALLOCHIT(x)   do { } while (0)
 307#define STATS_INC_ALLOCMISS(x)  do { } while (0)
 308#define STATS_INC_FREEHIT(x)    do { } while (0)
 309#define STATS_INC_FREEMISS(x)   do { } while (0)
 310#endif
 311
 312#if DEBUG
 313
 314/*
 315 * memory layout of objects:
 316 * 0            : objp
 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 318 *              the end of an object is aligned with the end of the real
 319 *              allocation. Catches writes behind the end of the allocation.
 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 321 *              redzone word.
 322 * cachep->obj_offset: The real object.
 323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 324 * cachep->size - 1* BYTES_PER_WORD: last caller address
 325 *                                      [BYTES_PER_WORD long]
 326 */
 327static int obj_offset(struct kmem_cache *cachep)
 328{
 329        return cachep->obj_offset;
 330}
 331
 332static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 333{
 334        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 335        return (unsigned long long*) (objp + obj_offset(cachep) -
 336                                      sizeof(unsigned long long));
 337}
 338
 339static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 340{
 341        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 342        if (cachep->flags & SLAB_STORE_USER)
 343                return (unsigned long long *)(objp + cachep->size -
 344                                              sizeof(unsigned long long) -
 345                                              REDZONE_ALIGN);
 346        return (unsigned long long *) (objp + cachep->size -
 347                                       sizeof(unsigned long long));
 348}
 349
 350static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 351{
 352        BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 353        return (void **)(objp + cachep->size - BYTES_PER_WORD);
 354}
 355
 356#else
 357
 358#define obj_offset(x)                   0
 359#define dbg_redzone1(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 360#define dbg_redzone2(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 361#define dbg_userword(cachep, objp)      ({BUG(); (void **)NULL;})
 362
 363#endif
 364
 365/*
 366 * Do not go above this order unless 0 objects fit into the slab or
 367 * overridden on the command line.
 368 */
 369#define SLAB_MAX_ORDER_HI       1
 370#define SLAB_MAX_ORDER_LO       0
 371static int slab_max_order = SLAB_MAX_ORDER_LO;
 372static bool slab_max_order_set __initdata;
 373
 374static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
 375                                 unsigned int idx)
 376{
 377        return page->s_mem + cache->size * idx;
 378}
 379
 380#define BOOT_CPUCACHE_ENTRIES   1
 381/* internal cache of cache description objs */
 382static struct kmem_cache kmem_cache_boot = {
 383        .batchcount = 1,
 384        .limit = BOOT_CPUCACHE_ENTRIES,
 385        .shared = 1,
 386        .size = sizeof(struct kmem_cache),
 387        .name = "kmem_cache",
 388};
 389
 390static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 391
 392static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 393{
 394        return this_cpu_ptr(cachep->cpu_cache);
 395}
 396
 397/*
 398 * Calculate the number of objects and left-over bytes for a given buffer size.
 399 */
 400static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
 401                slab_flags_t flags, size_t *left_over)
 402{
 403        unsigned int num;
 404        size_t slab_size = PAGE_SIZE << gfporder;
 405
 406        /*
 407         * The slab management structure can be either off the slab or
 408         * on it. For the latter case, the memory allocated for a
 409         * slab is used for:
 410         *
 411         * - @buffer_size bytes for each object
 412         * - One freelist_idx_t for each object
 413         *
 414         * We don't need to consider alignment of freelist because
 415         * freelist will be at the end of slab page. The objects will be
 416         * at the correct alignment.
 417         *
 418         * If the slab management structure is off the slab, then the
 419         * alignment will already be calculated into the size. Because
 420         * the slabs are all pages aligned, the objects will be at the
 421         * correct alignment when allocated.
 422         */
 423        if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
 424                num = slab_size / buffer_size;
 425                *left_over = slab_size % buffer_size;
 426        } else {
 427                num = slab_size / (buffer_size + sizeof(freelist_idx_t));
 428                *left_over = slab_size %
 429                        (buffer_size + sizeof(freelist_idx_t));
 430        }
 431
 432        return num;
 433}
 434
 435#if DEBUG
 436#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 437
 438static void __slab_error(const char *function, struct kmem_cache *cachep,
 439                        char *msg)
 440{
 441        pr_err("slab error in %s(): cache `%s': %s\n",
 442               function, cachep->name, msg);
 443        dump_stack();
 444        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 445}
 446#endif
 447
 448/*
 449 * By default on NUMA we use alien caches to stage the freeing of
 450 * objects allocated from other nodes. This causes massive memory
 451 * inefficiencies when using fake NUMA setup to split memory into a
 452 * large number of small nodes, so it can be disabled on the command
 453 * line
 454  */
 455
 456static int use_alien_caches __read_mostly = 1;
 457static int __init noaliencache_setup(char *s)
 458{
 459        use_alien_caches = 0;
 460        return 1;
 461}
 462__setup("noaliencache", noaliencache_setup);
 463
 464static int __init slab_max_order_setup(char *str)
 465{
 466        get_option(&str, &slab_max_order);
 467        slab_max_order = slab_max_order < 0 ? 0 :
 468                                min(slab_max_order, MAX_ORDER - 1);
 469        slab_max_order_set = true;
 470
 471        return 1;
 472}
 473__setup("slab_max_order=", slab_max_order_setup);
 474
 475#ifdef CONFIG_NUMA
 476/*
 477 * Special reaping functions for NUMA systems called from cache_reap().
 478 * These take care of doing round robin flushing of alien caches (containing
 479 * objects freed on different nodes from which they were allocated) and the
 480 * flushing of remote pcps by calling drain_node_pages.
 481 */
 482static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 483
 484static void init_reap_node(int cpu)
 485{
 486        per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
 487                                                    node_online_map);
 488}
 489
 490static void next_reap_node(void)
 491{
 492        int node = __this_cpu_read(slab_reap_node);
 493
 494        node = next_node_in(node, node_online_map);
 495        __this_cpu_write(slab_reap_node, node);
 496}
 497
 498#else
 499#define init_reap_node(cpu) do { } while (0)
 500#define next_reap_node(void) do { } while (0)
 501#endif
 502
 503/*
 504 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 505 * via the workqueue/eventd.
 506 * Add the CPU number into the expiration time to minimize the possibility of
 507 * the CPUs getting into lockstep and contending for the global cache chain
 508 * lock.
 509 */
 510static void start_cpu_timer(int cpu)
 511{
 512        struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 513
 514        if (reap_work->work.func == NULL) {
 515                init_reap_node(cpu);
 516                INIT_DEFERRABLE_WORK(reap_work, cache_reap);
 517                schedule_delayed_work_on(cpu, reap_work,
 518                                        __round_jiffies_relative(HZ, cpu));
 519        }
 520}
 521
 522static void init_arraycache(struct array_cache *ac, int limit, int batch)
 523{
 524        if (ac) {
 525                ac->avail = 0;
 526                ac->limit = limit;
 527                ac->batchcount = batch;
 528                ac->touched = 0;
 529        }
 530}
 531
 532static struct array_cache *alloc_arraycache(int node, int entries,
 533                                            int batchcount, gfp_t gfp)
 534{
 535        size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 536        struct array_cache *ac = NULL;
 537
 538        ac = kmalloc_node(memsize, gfp, node);
 539        /*
 540         * The array_cache structures contain pointers to free object.
 541         * However, when such objects are allocated or transferred to another
 542         * cache the pointers are not cleared and they could be counted as
 543         * valid references during a kmemleak scan. Therefore, kmemleak must
 544         * not scan such objects.
 545         */
 546        kmemleak_no_scan(ac);
 547        init_arraycache(ac, entries, batchcount);
 548        return ac;
 549}
 550
 551static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
 552                                        struct page *page, void *objp)
 553{
 554        struct kmem_cache_node *n;
 555        int page_node;
 556        LIST_HEAD(list);
 557
 558        page_node = page_to_nid(page);
 559        n = get_node(cachep, page_node);
 560
 561        spin_lock(&n->list_lock);
 562        free_block(cachep, &objp, 1, page_node, &list);
 563        spin_unlock(&n->list_lock);
 564
 565        slabs_destroy(cachep, &list);
 566}
 567
 568/*
 569 * Transfer objects in one arraycache to another.
 570 * Locking must be handled by the caller.
 571 *
 572 * Return the number of entries transferred.
 573 */
 574static int transfer_objects(struct array_cache *to,
 575                struct array_cache *from, unsigned int max)
 576{
 577        /* Figure out how many entries to transfer */
 578        int nr = min3(from->avail, max, to->limit - to->avail);
 579
 580        if (!nr)
 581                return 0;
 582
 583        memcpy(to->entry + to->avail, from->entry + from->avail -nr,
 584                        sizeof(void *) *nr);
 585
 586        from->avail -= nr;
 587        to->avail += nr;
 588        return nr;
 589}
 590
 591#ifndef CONFIG_NUMA
 592
 593#define drain_alien_cache(cachep, alien) do { } while (0)
 594#define reap_alien(cachep, n) do { } while (0)
 595
 596static inline struct alien_cache **alloc_alien_cache(int node,
 597                                                int limit, gfp_t gfp)
 598{
 599        return NULL;
 600}
 601
 602static inline void free_alien_cache(struct alien_cache **ac_ptr)
 603{
 604}
 605
 606static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 607{
 608        return 0;
 609}
 610
 611static inline void *alternate_node_alloc(struct kmem_cache *cachep,
 612                gfp_t flags)
 613{
 614        return NULL;
 615}
 616
 617static inline void *____cache_alloc_node(struct kmem_cache *cachep,
 618                 gfp_t flags, int nodeid)
 619{
 620        return NULL;
 621}
 622
 623static inline gfp_t gfp_exact_node(gfp_t flags)
 624{
 625        return flags & ~__GFP_NOFAIL;
 626}
 627
 628#else   /* CONFIG_NUMA */
 629
 630static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
 631static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 632
 633static struct alien_cache *__alloc_alien_cache(int node, int entries,
 634                                                int batch, gfp_t gfp)
 635{
 636        size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
 637        struct alien_cache *alc = NULL;
 638
 639        alc = kmalloc_node(memsize, gfp, node);
 640        if (alc) {
 641                kmemleak_no_scan(alc);
 642                init_arraycache(&alc->ac, entries, batch);
 643                spin_lock_init(&alc->lock);
 644        }
 645        return alc;
 646}
 647
 648static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 649{
 650        struct alien_cache **alc_ptr;
 651        int i;
 652
 653        if (limit > 1)
 654                limit = 12;
 655        alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
 656        if (!alc_ptr)
 657                return NULL;
 658
 659        for_each_node(i) {
 660                if (i == node || !node_online(i))
 661                        continue;
 662                alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
 663                if (!alc_ptr[i]) {
 664                        for (i--; i >= 0; i--)
 665                                kfree(alc_ptr[i]);
 666                        kfree(alc_ptr);
 667                        return NULL;
 668                }
 669        }
 670        return alc_ptr;
 671}
 672
 673static void free_alien_cache(struct alien_cache **alc_ptr)
 674{
 675        int i;
 676
 677        if (!alc_ptr)
 678                return;
 679        for_each_node(i)
 680            kfree(alc_ptr[i]);
 681        kfree(alc_ptr);
 682}
 683
 684static void __drain_alien_cache(struct kmem_cache *cachep,
 685                                struct array_cache *ac, int node,
 686                                struct list_head *list)
 687{
 688        struct kmem_cache_node *n = get_node(cachep, node);
 689
 690        if (ac->avail) {
 691                spin_lock(&n->list_lock);
 692                /*
 693                 * Stuff objects into the remote nodes shared array first.
 694                 * That way we could avoid the overhead of putting the objects
 695                 * into the free lists and getting them back later.
 696                 */
 697                if (n->shared)
 698                        transfer_objects(n->shared, ac, ac->limit);
 699
 700                free_block(cachep, ac->entry, ac->avail, node, list);
 701                ac->avail = 0;
 702                spin_unlock(&n->list_lock);
 703        }
 704}
 705
 706/*
 707 * Called from cache_reap() to regularly drain alien caches round robin.
 708 */
 709static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
 710{
 711        int node = __this_cpu_read(slab_reap_node);
 712
 713        if (n->alien) {
 714                struct alien_cache *alc = n->alien[node];
 715                struct array_cache *ac;
 716
 717                if (alc) {
 718                        ac = &alc->ac;
 719                        if (ac->avail && spin_trylock_irq(&alc->lock)) {
 720                                LIST_HEAD(list);
 721
 722                                __drain_alien_cache(cachep, ac, node, &list);
 723                                spin_unlock_irq(&alc->lock);
 724                                slabs_destroy(cachep, &list);
 725                        }
 726                }
 727        }
 728}
 729
 730static void drain_alien_cache(struct kmem_cache *cachep,
 731                                struct alien_cache **alien)
 732{
 733        int i = 0;
 734        struct alien_cache *alc;
 735        struct array_cache *ac;
 736        unsigned long flags;
 737
 738        for_each_online_node(i) {
 739                alc = alien[i];
 740                if (alc) {
 741                        LIST_HEAD(list);
 742
 743                        ac = &alc->ac;
 744                        spin_lock_irqsave(&alc->lock, flags);
 745                        __drain_alien_cache(cachep, ac, i, &list);
 746                        spin_unlock_irqrestore(&alc->lock, flags);
 747                        slabs_destroy(cachep, &list);
 748                }
 749        }
 750}
 751
 752static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
 753                                int node, int page_node)
 754{
 755        struct kmem_cache_node *n;
 756        struct alien_cache *alien = NULL;
 757        struct array_cache *ac;
 758        LIST_HEAD(list);
 759
 760        n = get_node(cachep, node);
 761        STATS_INC_NODEFREES(cachep);
 762        if (n->alien && n->alien[page_node]) {
 763                alien = n->alien[page_node];
 764                ac = &alien->ac;
 765                spin_lock(&alien->lock);
 766                if (unlikely(ac->avail == ac->limit)) {
 767                        STATS_INC_ACOVERFLOW(cachep);
 768                        __drain_alien_cache(cachep, ac, page_node, &list);
 769                }
 770                ac->entry[ac->avail++] = objp;
 771                spin_unlock(&alien->lock);
 772                slabs_destroy(cachep, &list);
 773        } else {
 774                n = get_node(cachep, page_node);
 775                spin_lock(&n->list_lock);
 776                free_block(cachep, &objp, 1, page_node, &list);
 777                spin_unlock(&n->list_lock);
 778                slabs_destroy(cachep, &list);
 779        }
 780        return 1;
 781}
 782
 783static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 784{
 785        int page_node = page_to_nid(virt_to_page(objp));
 786        int node = numa_mem_id();
 787        /*
 788         * Make sure we are not freeing a object from another node to the array
 789         * cache on this cpu.
 790         */
 791        if (likely(node == page_node))
 792                return 0;
 793
 794        return __cache_free_alien(cachep, objp, node, page_node);
 795}
 796
 797/*
 798 * Construct gfp mask to allocate from a specific node but do not reclaim or
 799 * warn about failures.
 800 */
 801static inline gfp_t gfp_exact_node(gfp_t flags)
 802{
 803        return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
 804}
 805#endif
 806
 807static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
 808{
 809        struct kmem_cache_node *n;
 810
 811        /*
 812         * Set up the kmem_cache_node for cpu before we can
 813         * begin anything. Make sure some other cpu on this
 814         * node has not already allocated this
 815         */
 816        n = get_node(cachep, node);
 817        if (n) {
 818                spin_lock_irq(&n->list_lock);
 819                n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
 820                                cachep->num;
 821                spin_unlock_irq(&n->list_lock);
 822
 823                return 0;
 824        }
 825
 826        n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
 827        if (!n)
 828                return -ENOMEM;
 829
 830        kmem_cache_node_init(n);
 831        n->next_reap = jiffies + REAPTIMEOUT_NODE +
 832                    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
 833
 834        n->free_limit =
 835                (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
 836
 837        /*
 838         * The kmem_cache_nodes don't come and go as CPUs
 839         * come and go.  slab_mutex is sufficient
 840         * protection here.
 841         */
 842        cachep->node[node] = n;
 843
 844        return 0;
 845}
 846
 847#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
 848/*
 849 * Allocates and initializes node for a node on each slab cache, used for
 850 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
 851 * will be allocated off-node since memory is not yet online for the new node.
 852 * When hotplugging memory or a cpu, existing node are not replaced if
 853 * already in use.
 854 *
 855 * Must hold slab_mutex.
 856 */
 857static int init_cache_node_node(int node)
 858{
 859        int ret;
 860        struct kmem_cache *cachep;
 861
 862        list_for_each_entry(cachep, &slab_caches, list) {
 863                ret = init_cache_node(cachep, node, GFP_KERNEL);
 864                if (ret)
 865                        return ret;
 866        }
 867
 868        return 0;
 869}
 870#endif
 871
 872static int setup_kmem_cache_node(struct kmem_cache *cachep,
 873                                int node, gfp_t gfp, bool force_change)
 874{
 875        int ret = -ENOMEM;
 876        struct kmem_cache_node *n;
 877        struct array_cache *old_shared = NULL;
 878        struct array_cache *new_shared = NULL;
 879        struct alien_cache **new_alien = NULL;
 880        LIST_HEAD(list);
 881
 882        if (use_alien_caches) {
 883                new_alien = alloc_alien_cache(node, cachep->limit, gfp);
 884                if (!new_alien)
 885                        goto fail;
 886        }
 887
 888        if (cachep->shared) {
 889                new_shared = alloc_arraycache(node,
 890                        cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
 891                if (!new_shared)
 892                        goto fail;
 893        }
 894
 895        ret = init_cache_node(cachep, node, gfp);
 896        if (ret)
 897                goto fail;
 898
 899        n = get_node(cachep, node);
 900        spin_lock_irq(&n->list_lock);
 901        if (n->shared && force_change) {
 902                free_block(cachep, n->shared->entry,
 903                                n->shared->avail, node, &list);
 904                n->shared->avail = 0;
 905        }
 906
 907        if (!n->shared || force_change) {
 908                old_shared = n->shared;
 909                n->shared = new_shared;
 910                new_shared = NULL;
 911        }
 912
 913        if (!n->alien) {
 914                n->alien = new_alien;
 915                new_alien = NULL;
 916        }
 917
 918        spin_unlock_irq(&n->list_lock);
 919        slabs_destroy(cachep, &list);
 920
 921        /*
 922         * To protect lockless access to n->shared during irq disabled context.
 923         * If n->shared isn't NULL in irq disabled context, accessing to it is
 924         * guaranteed to be valid until irq is re-enabled, because it will be
 925         * freed after synchronize_rcu().
 926         */
 927        if (old_shared && force_change)
 928                synchronize_rcu();
 929
 930fail:
 931        kfree(old_shared);
 932        kfree(new_shared);
 933        free_alien_cache(new_alien);
 934
 935        return ret;
 936}
 937
 938#ifdef CONFIG_SMP
 939
 940static void cpuup_canceled(long cpu)
 941{
 942        struct kmem_cache *cachep;
 943        struct kmem_cache_node *n = NULL;
 944        int node = cpu_to_mem(cpu);
 945        const struct cpumask *mask = cpumask_of_node(node);
 946
 947        list_for_each_entry(cachep, &slab_caches, list) {
 948                struct array_cache *nc;
 949                struct array_cache *shared;
 950                struct alien_cache **alien;
 951                LIST_HEAD(list);
 952
 953                n = get_node(cachep, node);
 954                if (!n)
 955                        continue;
 956
 957                spin_lock_irq(&n->list_lock);
 958
 959                /* Free limit for this kmem_cache_node */
 960                n->free_limit -= cachep->batchcount;
 961
 962                /* cpu is dead; no one can alloc from it. */
 963                nc = per_cpu_ptr(cachep->cpu_cache, cpu);
 964                free_block(cachep, nc->entry, nc->avail, node, &list);
 965                nc->avail = 0;
 966
 967                if (!cpumask_empty(mask)) {
 968                        spin_unlock_irq(&n->list_lock);
 969                        goto free_slab;
 970                }
 971
 972                shared = n->shared;
 973                if (shared) {
 974                        free_block(cachep, shared->entry,
 975                                   shared->avail, node, &list);
 976                        n->shared = NULL;
 977                }
 978
 979                alien = n->alien;
 980                n->alien = NULL;
 981
 982                spin_unlock_irq(&n->list_lock);
 983
 984                kfree(shared);
 985                if (alien) {
 986                        drain_alien_cache(cachep, alien);
 987                        free_alien_cache(alien);
 988                }
 989
 990free_slab:
 991                slabs_destroy(cachep, &list);
 992        }
 993        /*
 994         * In the previous loop, all the objects were freed to
 995         * the respective cache's slabs,  now we can go ahead and
 996         * shrink each nodelist to its limit.
 997         */
 998        list_for_each_entry(cachep, &slab_caches, list) {
 999                n = get_node(cachep, node);
1000                if (!n)
1001                        continue;
1002                drain_freelist(cachep, n, INT_MAX);
1003        }
1004}
1005
1006static int cpuup_prepare(long cpu)
1007{
1008        struct kmem_cache *cachep;
1009        int node = cpu_to_mem(cpu);
1010        int err;
1011
1012        /*
1013         * We need to do this right in the beginning since
1014         * alloc_arraycache's are going to use this list.
1015         * kmalloc_node allows us to add the slab to the right
1016         * kmem_cache_node and not this cpu's kmem_cache_node
1017         */
1018        err = init_cache_node_node(node);
1019        if (err < 0)
1020                goto bad;
1021
1022        /*
1023         * Now we can go ahead with allocating the shared arrays and
1024         * array caches
1025         */
1026        list_for_each_entry(cachep, &slab_caches, list) {
1027                err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1028                if (err)
1029                        goto bad;
1030        }
1031
1032        return 0;
1033bad:
1034        cpuup_canceled(cpu);
1035        return -ENOMEM;
1036}
1037
1038int slab_prepare_cpu(unsigned int cpu)
1039{
1040        int err;
1041
1042        mutex_lock(&slab_mutex);
1043        err = cpuup_prepare(cpu);
1044        mutex_unlock(&slab_mutex);
1045        return err;
1046}
1047
1048/*
1049 * This is called for a failed online attempt and for a successful
1050 * offline.
1051 *
1052 * Even if all the cpus of a node are down, we don't free the
1053 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1054 * a kmalloc allocation from another cpu for memory from the node of
1055 * the cpu going down.  The list3 structure is usually allocated from
1056 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1057 */
1058int slab_dead_cpu(unsigned int cpu)
1059{
1060        mutex_lock(&slab_mutex);
1061        cpuup_canceled(cpu);
1062        mutex_unlock(&slab_mutex);
1063        return 0;
1064}
1065#endif
1066
1067static int slab_online_cpu(unsigned int cpu)
1068{
1069        start_cpu_timer(cpu);
1070        return 0;
1071}
1072
1073static int slab_offline_cpu(unsigned int cpu)
1074{
1075        /*
1076         * Shutdown cache reaper. Note that the slab_mutex is held so
1077         * that if cache_reap() is invoked it cannot do anything
1078         * expensive but will only modify reap_work and reschedule the
1079         * timer.
1080         */
1081        cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1082        /* Now the cache_reaper is guaranteed to be not running. */
1083        per_cpu(slab_reap_work, cpu).work.func = NULL;
1084        return 0;
1085}
1086
1087#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1088/*
1089 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1090 * Returns -EBUSY if all objects cannot be drained so that the node is not
1091 * removed.
1092 *
1093 * Must hold slab_mutex.
1094 */
1095static int __meminit drain_cache_node_node(int node)
1096{
1097        struct kmem_cache *cachep;
1098        int ret = 0;
1099
1100        list_for_each_entry(cachep, &slab_caches, list) {
1101                struct kmem_cache_node *n;
1102
1103                n = get_node(cachep, node);
1104                if (!n)
1105                        continue;
1106
1107                drain_freelist(cachep, n, INT_MAX);
1108
1109                if (!list_empty(&n->slabs_full) ||
1110                    !list_empty(&n->slabs_partial)) {
1111                        ret = -EBUSY;
1112                        break;
1113                }
1114        }
1115        return ret;
1116}
1117
1118static int __meminit slab_memory_callback(struct notifier_block *self,
1119                                        unsigned long action, void *arg)
1120{
1121        struct memory_notify *mnb = arg;
1122        int ret = 0;
1123        int nid;
1124
1125        nid = mnb->status_change_nid;
1126        if (nid < 0)
1127                goto out;
1128
1129        switch (action) {
1130        case MEM_GOING_ONLINE:
1131                mutex_lock(&slab_mutex);
1132                ret = init_cache_node_node(nid);
1133                mutex_unlock(&slab_mutex);
1134                break;
1135        case MEM_GOING_OFFLINE:
1136                mutex_lock(&slab_mutex);
1137                ret = drain_cache_node_node(nid);
1138                mutex_unlock(&slab_mutex);
1139                break;
1140        case MEM_ONLINE:
1141        case MEM_OFFLINE:
1142        case MEM_CANCEL_ONLINE:
1143        case MEM_CANCEL_OFFLINE:
1144                break;
1145        }
1146out:
1147        return notifier_from_errno(ret);
1148}
1149#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1150
1151/*
1152 * swap the static kmem_cache_node with kmalloced memory
1153 */
1154static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1155                                int nodeid)
1156{
1157        struct kmem_cache_node *ptr;
1158
1159        ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1160        BUG_ON(!ptr);
1161
1162        memcpy(ptr, list, sizeof(struct kmem_cache_node));
1163        /*
1164         * Do not assume that spinlocks can be initialized via memcpy:
1165         */
1166        spin_lock_init(&ptr->list_lock);
1167
1168        MAKE_ALL_LISTS(cachep, ptr, nodeid);
1169        cachep->node[nodeid] = ptr;
1170}
1171
1172/*
1173 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1174 * size of kmem_cache_node.
1175 */
1176static void __init set_up_node(struct kmem_cache *cachep, int index)
1177{
1178        int node;
1179
1180        for_each_online_node(node) {
1181                cachep->node[node] = &init_kmem_cache_node[index + node];
1182                cachep->node[node]->next_reap = jiffies +
1183                    REAPTIMEOUT_NODE +
1184                    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1185        }
1186}
1187
1188/*
1189 * Initialisation.  Called after the page allocator have been initialised and
1190 * before smp_init().
1191 */
1192void __init kmem_cache_init(void)
1193{
1194        int i;
1195
1196        kmem_cache = &kmem_cache_boot;
1197
1198        if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1199                use_alien_caches = 0;
1200
1201        for (i = 0; i < NUM_INIT_LISTS; i++)
1202                kmem_cache_node_init(&init_kmem_cache_node[i]);
1203
1204        /*
1205         * Fragmentation resistance on low memory - only use bigger
1206         * page orders on machines with more than 32MB of memory if
1207         * not overridden on the command line.
1208         */
1209        if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1210                slab_max_order = SLAB_MAX_ORDER_HI;
1211
1212        /* Bootstrap is tricky, because several objects are allocated
1213         * from caches that do not exist yet:
1214         * 1) initialize the kmem_cache cache: it contains the struct
1215         *    kmem_cache structures of all caches, except kmem_cache itself:
1216         *    kmem_cache is statically allocated.
1217         *    Initially an __init data area is used for the head array and the
1218         *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1219         *    array at the end of the bootstrap.
1220         * 2) Create the first kmalloc cache.
1221         *    The struct kmem_cache for the new cache is allocated normally.
1222         *    An __init data area is used for the head array.
1223         * 3) Create the remaining kmalloc caches, with minimally sized
1224         *    head arrays.
1225         * 4) Replace the __init data head arrays for kmem_cache and the first
1226         *    kmalloc cache with kmalloc allocated arrays.
1227         * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1228         *    the other cache's with kmalloc allocated memory.
1229         * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1230         */
1231
1232        /* 1) create the kmem_cache */
1233
1234        /*
1235         * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1236         */
1237        create_boot_cache(kmem_cache, "kmem_cache",
1238                offsetof(struct kmem_cache, node) +
1239                                  nr_node_ids * sizeof(struct kmem_cache_node *),
1240                                  SLAB_HWCACHE_ALIGN, 0, 0);
1241        list_add(&kmem_cache->list, &slab_caches);
1242        memcg_link_cache(kmem_cache, NULL);
1243        slab_state = PARTIAL;
1244
1245        /*
1246         * Initialize the caches that provide memory for the  kmem_cache_node
1247         * structures first.  Without this, further allocations will bug.
1248         */
1249        kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1250                                kmalloc_info[INDEX_NODE].name,
1251                                kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
1252                                0, kmalloc_size(INDEX_NODE));
1253        slab_state = PARTIAL_NODE;
1254        setup_kmalloc_cache_index_table();
1255
1256        slab_early_init = 0;
1257
1258        /* 5) Replace the bootstrap kmem_cache_node */
1259        {
1260                int nid;
1261
1262                for_each_online_node(nid) {
1263                        init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1264
1265                        init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1266                                          &init_kmem_cache_node[SIZE_NODE + nid], nid);
1267                }
1268        }
1269
1270        create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1271}
1272
1273void __init kmem_cache_init_late(void)
1274{
1275        struct kmem_cache *cachep;
1276
1277        /* 6) resize the head arrays to their final sizes */
1278        mutex_lock(&slab_mutex);
1279        list_for_each_entry(cachep, &slab_caches, list)
1280                if (enable_cpucache(cachep, GFP_NOWAIT))
1281                        BUG();
1282        mutex_unlock(&slab_mutex);
1283
1284        /* Done! */
1285        slab_state = FULL;
1286
1287#ifdef CONFIG_NUMA
1288        /*
1289         * Register a memory hotplug callback that initializes and frees
1290         * node.
1291         */
1292        hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1293#endif
1294
1295        /*
1296         * The reap timers are started later, with a module init call: That part
1297         * of the kernel is not yet operational.
1298         */
1299}
1300
1301static int __init cpucache_init(void)
1302{
1303        int ret;
1304
1305        /*
1306         * Register the timers that return unneeded pages to the page allocator
1307         */
1308        ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1309                                slab_online_cpu, slab_offline_cpu);
1310        WARN_ON(ret < 0);
1311
1312        return 0;
1313}
1314__initcall(cpucache_init);
1315
1316static noinline void
1317slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1318{
1319#if DEBUG
1320        struct kmem_cache_node *n;
1321        unsigned long flags;
1322        int node;
1323        static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1324                                      DEFAULT_RATELIMIT_BURST);
1325
1326        if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1327                return;
1328
1329        pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1330                nodeid, gfpflags, &gfpflags);
1331        pr_warn("  cache: %s, object size: %d, order: %d\n",
1332                cachep->name, cachep->size, cachep->gfporder);
1333
1334        for_each_kmem_cache_node(cachep, node, n) {
1335                unsigned long total_slabs, free_slabs, free_objs;
1336
1337                spin_lock_irqsave(&n->list_lock, flags);
1338                total_slabs = n->total_slabs;
1339                free_slabs = n->free_slabs;
1340                free_objs = n->free_objects;
1341                spin_unlock_irqrestore(&n->list_lock, flags);
1342
1343                pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1344                        node, total_slabs - free_slabs, total_slabs,
1345                        (total_slabs * cachep->num) - free_objs,
1346                        total_slabs * cachep->num);
1347        }
1348#endif
1349}
1350
1351/*
1352 * Interface to system's page allocator. No need to hold the
1353 * kmem_cache_node ->list_lock.
1354 *
1355 * If we requested dmaable memory, we will get it. Even if we
1356 * did not request dmaable memory, we might get it, but that
1357 * would be relatively rare and ignorable.
1358 */
1359static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1360                                                                int nodeid)
1361{
1362        struct page *page;
1363
1364        flags |= cachep->allocflags;
1365
1366        page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1367        if (!page) {
1368                slab_out_of_memory(cachep, flags, nodeid);
1369                return NULL;
1370        }
1371
1372        if (charge_slab_page(page, flags, cachep->gfporder, cachep)) {
1373                __free_pages(page, cachep->gfporder);
1374                return NULL;
1375        }
1376
1377        __SetPageSlab(page);
1378        /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1379        if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1380                SetPageSlabPfmemalloc(page);
1381
1382        return page;
1383}
1384
1385/*
1386 * Interface to system's page release.
1387 */
1388static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1389{
1390        int order = cachep->gfporder;
1391
1392        BUG_ON(!PageSlab(page));
1393        __ClearPageSlabPfmemalloc(page);
1394        __ClearPageSlab(page);
1395        page_mapcount_reset(page);
1396        page->mapping = NULL;
1397
1398        if (current->reclaim_state)
1399                current->reclaim_state->reclaimed_slab += 1 << order;
1400        uncharge_slab_page(page, order, cachep);
1401        __free_pages(page, order);
1402}
1403
1404static void kmem_rcu_free(struct rcu_head *head)
1405{
1406        struct kmem_cache *cachep;
1407        struct page *page;
1408
1409        page = container_of(head, struct page, rcu_head);
1410        cachep = page->slab_cache;
1411
1412        kmem_freepages(cachep, page);
1413}
1414
1415#if DEBUG
1416static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1417{
1418        if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1419                (cachep->size % PAGE_SIZE) == 0)
1420                return true;
1421
1422        return false;
1423}
1424
1425#ifdef CONFIG_DEBUG_PAGEALLOC
1426static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
1427{
1428        if (!is_debug_pagealloc_cache(cachep))
1429                return;
1430
1431        kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1432}
1433
1434#else
1435static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1436                                int map) {}
1437
1438#endif
1439
1440static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1441{
1442        int size = cachep->object_size;
1443        addr = &((char *)addr)[obj_offset(cachep)];
1444
1445        memset(addr, val, size);
1446        *(unsigned char *)(addr + size - 1) = POISON_END;
1447}
1448
1449static void dump_line(char *data, int offset, int limit)
1450{
1451        int i;
1452        unsigned char error = 0;
1453        int bad_count = 0;
1454
1455        pr_err("%03x: ", offset);
1456        for (i = 0; i < limit; i++) {
1457                if (data[offset + i] != POISON_FREE) {
1458                        error = data[offset + i];
1459                        bad_count++;
1460                }
1461        }
1462        print_hex_dump(KERN_CONT, "", 0, 16, 1,
1463                        &data[offset], limit, 1);
1464
1465        if (bad_count == 1) {
1466                error ^= POISON_FREE;
1467                if (!(error & (error - 1))) {
1468                        pr_err("Single bit error detected. Probably bad RAM.\n");
1469#ifdef CONFIG_X86
1470                        pr_err("Run memtest86+ or a similar memory test tool.\n");
1471#else
1472                        pr_err("Run a memory test tool.\n");
1473#endif
1474                }
1475        }
1476}
1477#endif
1478
1479#if DEBUG
1480
1481static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1482{
1483        int i, size;
1484        char *realobj;
1485
1486        if (cachep->flags & SLAB_RED_ZONE) {
1487                pr_err("Redzone: 0x%llx/0x%llx\n",
1488                       *dbg_redzone1(cachep, objp),
1489                       *dbg_redzone2(cachep, objp));
1490        }
1491
1492        if (cachep->flags & SLAB_STORE_USER)
1493                pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1494        realobj = (char *)objp + obj_offset(cachep);
1495        size = cachep->object_size;
1496        for (i = 0; i < size && lines; i += 16, lines--) {
1497                int limit;
1498                limit = 16;
1499                if (i + limit > size)
1500                        limit = size - i;
1501                dump_line(realobj, i, limit);
1502        }
1503}
1504
1505static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1506{
1507        char *realobj;
1508        int size, i;
1509        int lines = 0;
1510
1511        if (is_debug_pagealloc_cache(cachep))
1512                return;
1513
1514        realobj = (char *)objp + obj_offset(cachep);
1515        size = cachep->object_size;
1516
1517        for (i = 0; i < size; i++) {
1518                char exp = POISON_FREE;
1519                if (i == size - 1)
1520                        exp = POISON_END;
1521                if (realobj[i] != exp) {
1522                        int limit;
1523                        /* Mismatch ! */
1524                        /* Print header */
1525                        if (lines == 0) {
1526                                pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1527                                       print_tainted(), cachep->name,
1528                                       realobj, size);
1529                                print_objinfo(cachep, objp, 0);
1530                        }
1531                        /* Hexdump the affected line */
1532                        i = (i / 16) * 16;
1533                        limit = 16;
1534                        if (i + limit > size)
1535                                limit = size - i;
1536                        dump_line(realobj, i, limit);
1537                        i += 16;
1538                        lines++;
1539                        /* Limit to 5 lines */
1540                        if (lines > 5)
1541                                break;
1542                }
1543        }
1544        if (lines != 0) {
1545                /* Print some data about the neighboring objects, if they
1546                 * exist:
1547                 */
1548                struct page *page = virt_to_head_page(objp);
1549                unsigned int objnr;
1550
1551                objnr = obj_to_index(cachep, page, objp);
1552                if (objnr) {
1553                        objp = index_to_obj(cachep, page, objnr - 1);
1554                        realobj = (char *)objp + obj_offset(cachep);
1555                        pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1556                        print_objinfo(cachep, objp, 2);
1557                }
1558                if (objnr + 1 < cachep->num) {
1559                        objp = index_to_obj(cachep, page, objnr + 1);
1560                        realobj = (char *)objp + obj_offset(cachep);
1561                        pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1562                        print_objinfo(cachep, objp, 2);
1563                }
1564        }
1565}
1566#endif
1567
1568#if DEBUG
1569static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1570                                                struct page *page)
1571{
1572        int i;
1573
1574        if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1575                poison_obj(cachep, page->freelist - obj_offset(cachep),
1576                        POISON_FREE);
1577        }
1578
1579        for (i = 0; i < cachep->num; i++) {
1580                void *objp = index_to_obj(cachep, page, i);
1581
1582                if (cachep->flags & SLAB_POISON) {
1583                        check_poison_obj(cachep, objp);
1584                        slab_kernel_map(cachep, objp, 1);
1585                }
1586                if (cachep->flags & SLAB_RED_ZONE) {
1587                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1588                                slab_error(cachep, "start of a freed object was overwritten");
1589                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1590                                slab_error(cachep, "end of a freed object was overwritten");
1591                }
1592        }
1593}
1594#else
1595static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1596                                                struct page *page)
1597{
1598}
1599#endif
1600
1601/**
1602 * slab_destroy - destroy and release all objects in a slab
1603 * @cachep: cache pointer being destroyed
1604 * @page: page pointer being destroyed
1605 *
1606 * Destroy all the objs in a slab page, and release the mem back to the system.
1607 * Before calling the slab page must have been unlinked from the cache. The
1608 * kmem_cache_node ->list_lock is not held/needed.
1609 */
1610static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1611{
1612        void *freelist;
1613
1614        freelist = page->freelist;
1615        slab_destroy_debugcheck(cachep, page);
1616        if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1617                call_rcu(&page->rcu_head, kmem_rcu_free);
1618        else
1619                kmem_freepages(cachep, page);
1620
1621        /*
1622         * From now on, we don't use freelist
1623         * although actual page can be freed in rcu context
1624         */
1625        if (OFF_SLAB(cachep))
1626                kmem_cache_free(cachep->freelist_cache, freelist);
1627}
1628
1629static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1630{
1631        struct page *page, *n;
1632
1633        list_for_each_entry_safe(page, n, list, slab_list) {
1634                list_del(&page->slab_list);
1635                slab_destroy(cachep, page);
1636        }
1637}
1638
1639/**
1640 * calculate_slab_order - calculate size (page order) of slabs
1641 * @cachep: pointer to the cache that is being created
1642 * @size: size of objects to be created in this cache.
1643 * @flags: slab allocation flags
1644 *
1645 * Also calculates the number of objects per slab.
1646 *
1647 * This could be made much more intelligent.  For now, try to avoid using
1648 * high order pages for slabs.  When the gfp() functions are more friendly
1649 * towards high-order requests, this should be changed.
1650 *
1651 * Return: number of left-over bytes in a slab
1652 */
1653static size_t calculate_slab_order(struct kmem_cache *cachep,
1654                                size_t size, slab_flags_t flags)
1655{
1656        size_t left_over = 0;
1657        int gfporder;
1658
1659        for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1660                unsigned int num;
1661                size_t remainder;
1662
1663                num = cache_estimate(gfporder, size, flags, &remainder);
1664                if (!num)
1665                        continue;
1666
1667                /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1668                if (num > SLAB_OBJ_MAX_NUM)
1669                        break;
1670
1671                if (flags & CFLGS_OFF_SLAB) {
1672                        struct kmem_cache *freelist_cache;
1673                        size_t freelist_size;
1674
1675                        freelist_size = num * sizeof(freelist_idx_t);
1676                        freelist_cache = kmalloc_slab(freelist_size, 0u);
1677                        if (!freelist_cache)
1678                                continue;
1679
1680                        /*
1681                         * Needed to avoid possible looping condition
1682                         * in cache_grow_begin()
1683                         */
1684                        if (OFF_SLAB(freelist_cache))
1685                                continue;
1686
1687                        /* check if off slab has enough benefit */
1688                        if (freelist_cache->size > cachep->size / 2)
1689                                continue;
1690                }
1691
1692                /* Found something acceptable - save it away */
1693                cachep->num = num;
1694                cachep->gfporder = gfporder;
1695                left_over = remainder;
1696
1697                /*
1698                 * A VFS-reclaimable slab tends to have most allocations
1699                 * as GFP_NOFS and we really don't want to have to be allocating
1700                 * higher-order pages when we are unable to shrink dcache.
1701                 */
1702                if (flags & SLAB_RECLAIM_ACCOUNT)
1703                        break;
1704
1705                /*
1706                 * Large number of objects is good, but very large slabs are
1707                 * currently bad for the gfp()s.
1708                 */
1709                if (gfporder >= slab_max_order)
1710                        break;
1711
1712                /*
1713                 * Acceptable internal fragmentation?
1714                 */
1715                if (left_over * 8 <= (PAGE_SIZE << gfporder))
1716                        break;
1717        }
1718        return left_over;
1719}
1720
1721static struct array_cache __percpu *alloc_kmem_cache_cpus(
1722                struct kmem_cache *cachep, int entries, int batchcount)
1723{
1724        int cpu;
1725        size_t size;
1726        struct array_cache __percpu *cpu_cache;
1727
1728        size = sizeof(void *) * entries + sizeof(struct array_cache);
1729        cpu_cache = __alloc_percpu(size, sizeof(void *));
1730
1731        if (!cpu_cache)
1732                return NULL;
1733
1734        for_each_possible_cpu(cpu) {
1735                init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1736                                entries, batchcount);
1737        }
1738
1739        return cpu_cache;
1740}
1741
1742static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1743{
1744        if (slab_state >= FULL)
1745                return enable_cpucache(cachep, gfp);
1746
1747        cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1748        if (!cachep->cpu_cache)
1749                return 1;
1750
1751        if (slab_state == DOWN) {
1752                /* Creation of first cache (kmem_cache). */
1753                set_up_node(kmem_cache, CACHE_CACHE);
1754        } else if (slab_state == PARTIAL) {
1755                /* For kmem_cache_node */
1756                set_up_node(cachep, SIZE_NODE);
1757        } else {
1758                int node;
1759
1760                for_each_online_node(node) {
1761                        cachep->node[node] = kmalloc_node(
1762                                sizeof(struct kmem_cache_node), gfp, node);
1763                        BUG_ON(!cachep->node[node]);
1764                        kmem_cache_node_init(cachep->node[node]);
1765                }
1766        }
1767
1768        cachep->node[numa_mem_id()]->next_reap =
1769                        jiffies + REAPTIMEOUT_NODE +
1770                        ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1771
1772        cpu_cache_get(cachep)->avail = 0;
1773        cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1774        cpu_cache_get(cachep)->batchcount = 1;
1775        cpu_cache_get(cachep)->touched = 0;
1776        cachep->batchcount = 1;
1777        cachep->limit = BOOT_CPUCACHE_ENTRIES;
1778        return 0;
1779}
1780
1781slab_flags_t kmem_cache_flags(unsigned int object_size,
1782        slab_flags_t flags, const char *name,
1783        void (*ctor)(void *))
1784{
1785        return flags;
1786}
1787
1788struct kmem_cache *
1789__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1790                   slab_flags_t flags, void (*ctor)(void *))
1791{
1792        struct kmem_cache *cachep;
1793
1794        cachep = find_mergeable(size, align, flags, name, ctor);
1795        if (cachep) {
1796                cachep->refcount++;
1797
1798                /*
1799                 * Adjust the object sizes so that we clear
1800                 * the complete object on kzalloc.
1801                 */
1802                cachep->object_size = max_t(int, cachep->object_size, size);
1803        }
1804        return cachep;
1805}
1806
1807static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1808                        size_t size, slab_flags_t flags)
1809{
1810        size_t left;
1811
1812        cachep->num = 0;
1813
1814        /*
1815         * If slab auto-initialization on free is enabled, store the freelist
1816         * off-slab, so that its contents don't end up in one of the allocated
1817         * objects.
1818         */
1819        if (unlikely(slab_want_init_on_free(cachep)))
1820                return false;
1821
1822        if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1823                return false;
1824
1825        left = calculate_slab_order(cachep, size,
1826                        flags | CFLGS_OBJFREELIST_SLAB);
1827        if (!cachep->num)
1828                return false;
1829
1830        if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1831                return false;
1832
1833        cachep->colour = left / cachep->colour_off;
1834
1835        return true;
1836}
1837
1838static bool set_off_slab_cache(struct kmem_cache *cachep,
1839                        size_t size, slab_flags_t flags)
1840{
1841        size_t left;
1842
1843        cachep->num = 0;
1844
1845        /*
1846         * Always use on-slab management when SLAB_NOLEAKTRACE
1847         * to avoid recursive calls into kmemleak.
1848         */
1849        if (flags & SLAB_NOLEAKTRACE)
1850                return false;
1851
1852        /*
1853         * Size is large, assume best to place the slab management obj
1854         * off-slab (should allow better packing of objs).
1855         */
1856        left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1857        if (!cachep->num)
1858                return false;
1859
1860        /*
1861         * If the slab has been placed off-slab, and we have enough space then
1862         * move it on-slab. This is at the expense of any extra colouring.
1863         */
1864        if (left >= cachep->num * sizeof(freelist_idx_t))
1865                return false;
1866
1867        cachep->colour = left / cachep->colour_off;
1868
1869        return true;
1870}
1871
1872static bool set_on_slab_cache(struct kmem_cache *cachep,
1873                        size_t size, slab_flags_t flags)
1874{
1875        size_t left;
1876
1877        cachep->num = 0;
1878
1879        left = calculate_slab_order(cachep, size, flags);
1880        if (!cachep->num)
1881                return false;
1882
1883        cachep->colour = left / cachep->colour_off;
1884
1885        return true;
1886}
1887
1888/**
1889 * __kmem_cache_create - Create a cache.
1890 * @cachep: cache management descriptor
1891 * @flags: SLAB flags
1892 *
1893 * Returns a ptr to the cache on success, NULL on failure.
1894 * Cannot be called within a int, but can be interrupted.
1895 * The @ctor is run when new pages are allocated by the cache.
1896 *
1897 * The flags are
1898 *
1899 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1900 * to catch references to uninitialised memory.
1901 *
1902 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1903 * for buffer overruns.
1904 *
1905 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1906 * cacheline.  This can be beneficial if you're counting cycles as closely
1907 * as davem.
1908 *
1909 * Return: a pointer to the created cache or %NULL in case of error
1910 */
1911int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1912{
1913        size_t ralign = BYTES_PER_WORD;
1914        gfp_t gfp;
1915        int err;
1916        unsigned int size = cachep->size;
1917
1918#if DEBUG
1919#if FORCED_DEBUG
1920        /*
1921         * Enable redzoning and last user accounting, except for caches with
1922         * large objects, if the increased size would increase the object size
1923         * above the next power of two: caches with object sizes just above a
1924         * power of two have a significant amount of internal fragmentation.
1925         */
1926        if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1927                                                2 * sizeof(unsigned long long)))
1928                flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1929        if (!(flags & SLAB_TYPESAFE_BY_RCU))
1930                flags |= SLAB_POISON;
1931#endif
1932#endif
1933
1934        /*
1935         * Check that size is in terms of words.  This is needed to avoid
1936         * unaligned accesses for some archs when redzoning is used, and makes
1937         * sure any on-slab bufctl's are also correctly aligned.
1938         */
1939        size = ALIGN(size, BYTES_PER_WORD);
1940
1941        if (flags & SLAB_RED_ZONE) {
1942                ralign = REDZONE_ALIGN;
1943                /* If redzoning, ensure that the second redzone is suitably
1944                 * aligned, by adjusting the object size accordingly. */
1945                size = ALIGN(size, REDZONE_ALIGN);
1946        }
1947
1948        /* 3) caller mandated alignment */
1949        if (ralign < cachep->align) {
1950                ralign = cachep->align;
1951        }
1952        /* disable debug if necessary */
1953        if (ralign > __alignof__(unsigned long long))
1954                flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1955        /*
1956         * 4) Store it.
1957         */
1958        cachep->align = ralign;
1959        cachep->colour_off = cache_line_size();
1960        /* Offset must be a multiple of the alignment. */
1961        if (cachep->colour_off < cachep->align)
1962                cachep->colour_off = cachep->align;
1963
1964        if (slab_is_available())
1965                gfp = GFP_KERNEL;
1966        else
1967                gfp = GFP_NOWAIT;
1968
1969#if DEBUG
1970
1971        /*
1972         * Both debugging options require word-alignment which is calculated
1973         * into align above.
1974         */
1975        if (flags & SLAB_RED_ZONE) {
1976                /* add space for red zone words */
1977                cachep->obj_offset += sizeof(unsigned long long);
1978                size += 2 * sizeof(unsigned long long);
1979        }
1980        if (flags & SLAB_STORE_USER) {
1981                /* user store requires one word storage behind the end of
1982                 * the real object. But if the second red zone needs to be
1983                 * aligned to 64 bits, we must allow that much space.
1984                 */
1985                if (flags & SLAB_RED_ZONE)
1986                        size += REDZONE_ALIGN;
1987                else
1988                        size += BYTES_PER_WORD;
1989        }
1990#endif
1991
1992        kasan_cache_create(cachep, &size, &flags);
1993
1994        size = ALIGN(size, cachep->align);
1995        /*
1996         * We should restrict the number of objects in a slab to implement
1997         * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
1998         */
1999        if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2000                size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2001
2002#if DEBUG
2003        /*
2004         * To activate debug pagealloc, off-slab management is necessary
2005         * requirement. In early phase of initialization, small sized slab
2006         * doesn't get initialized so it would not be possible. So, we need
2007         * to check size >= 256. It guarantees that all necessary small
2008         * sized slab is initialized in current slab initialization sequence.
2009         */
2010        if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2011                size >= 256 && cachep->object_size > cache_line_size()) {
2012                if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2013                        size_t tmp_size = ALIGN(size, PAGE_SIZE);
2014
2015                        if (set_off_slab_cache(cachep, tmp_size, flags)) {
2016                                flags |= CFLGS_OFF_SLAB;
2017                                cachep->obj_offset += tmp_size - size;
2018                                size = tmp_size;
2019                                goto done;
2020                        }
2021                }
2022        }
2023#endif
2024
2025        if (set_objfreelist_slab_cache(cachep, size, flags)) {
2026                flags |= CFLGS_OBJFREELIST_SLAB;
2027                goto done;
2028        }
2029
2030        if (set_off_slab_cache(cachep, size, flags)) {
2031                flags |= CFLGS_OFF_SLAB;
2032                goto done;
2033        }
2034
2035        if (set_on_slab_cache(cachep, size, flags))
2036                goto done;
2037
2038        return -E2BIG;
2039
2040done:
2041        cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2042        cachep->flags = flags;
2043        cachep->allocflags = __GFP_COMP;
2044        if (flags & SLAB_CACHE_DMA)
2045                cachep->allocflags |= GFP_DMA;
2046        if (flags & SLAB_CACHE_DMA32)
2047                cachep->allocflags |= GFP_DMA32;
2048        if (flags & SLAB_RECLAIM_ACCOUNT)
2049                cachep->allocflags |= __GFP_RECLAIMABLE;
2050        cachep->size = size;
2051        cachep->reciprocal_buffer_size = reciprocal_value(size);
2052
2053#if DEBUG
2054        /*
2055         * If we're going to use the generic kernel_map_pages()
2056         * poisoning, then it's going to smash the contents of
2057         * the redzone and userword anyhow, so switch them off.
2058         */
2059        if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2060                (cachep->flags & SLAB_POISON) &&
2061                is_debug_pagealloc_cache(cachep))
2062                cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2063#endif
2064
2065        if (OFF_SLAB(cachep)) {
2066                cachep->freelist_cache =
2067                        kmalloc_slab(cachep->freelist_size, 0u);
2068        }
2069
2070        err = setup_cpu_cache(cachep, gfp);
2071        if (err) {
2072                __kmem_cache_release(cachep);
2073                return err;
2074        }
2075
2076        return 0;
2077}
2078
2079#if DEBUG
2080static void check_irq_off(void)
2081{
2082        BUG_ON(!irqs_disabled());
2083}
2084
2085static void check_irq_on(void)
2086{
2087        BUG_ON(irqs_disabled());
2088}
2089
2090static void check_mutex_acquired(void)
2091{
2092        BUG_ON(!mutex_is_locked(&slab_mutex));
2093}
2094
2095static void check_spinlock_acquired(struct kmem_cache *cachep)
2096{
2097#ifdef CONFIG_SMP
2098        check_irq_off();
2099        assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2100#endif
2101}
2102
2103static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2104{
2105#ifdef CONFIG_SMP
2106        check_irq_off();
2107        assert_spin_locked(&get_node(cachep, node)->list_lock);
2108#endif
2109}
2110
2111#else
2112#define check_irq_off() do { } while(0)
2113#define check_irq_on()  do { } while(0)
2114#define check_mutex_acquired()  do { } while(0)
2115#define check_spinlock_acquired(x) do { } while(0)
2116#define check_spinlock_acquired_node(x, y) do { } while(0)
2117#endif
2118
2119static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2120                                int node, bool free_all, struct list_head *list)
2121{
2122        int tofree;
2123
2124        if (!ac || !ac->avail)
2125                return;
2126
2127        tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2128        if (tofree > ac->avail)
2129                tofree = (ac->avail + 1) / 2;
2130
2131        free_block(cachep, ac->entry, tofree, node, list);
2132        ac->avail -= tofree;
2133        memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2134}
2135
2136static void do_drain(void *arg)
2137{
2138        struct kmem_cache *cachep = arg;
2139        struct array_cache *ac;
2140        int node = numa_mem_id();
2141        struct kmem_cache_node *n;
2142        LIST_HEAD(list);
2143
2144        check_irq_off();
2145        ac = cpu_cache_get(cachep);
2146        n = get_node(cachep, node);
2147        spin_lock(&n->list_lock);
2148        free_block(cachep, ac->entry, ac->avail, node, &list);
2149        spin_unlock(&n->list_lock);
2150        slabs_destroy(cachep, &list);
2151        ac->avail = 0;
2152}
2153
2154static void drain_cpu_caches(struct kmem_cache *cachep)
2155{
2156        struct kmem_cache_node *n;
2157        int node;
2158        LIST_HEAD(list);
2159
2160        on_each_cpu(do_drain, cachep, 1);
2161        check_irq_on();
2162        for_each_kmem_cache_node(cachep, node, n)
2163                if (n->alien)
2164                        drain_alien_cache(cachep, n->alien);
2165
2166        for_each_kmem_cache_node(cachep, node, n) {
2167                spin_lock_irq(&n->list_lock);
2168                drain_array_locked(cachep, n->shared, node, true, &list);
2169                spin_unlock_irq(&n->list_lock);
2170
2171                slabs_destroy(cachep, &list);
2172        }
2173}
2174
2175/*
2176 * Remove slabs from the list of free slabs.
2177 * Specify the number of slabs to drain in tofree.
2178 *
2179 * Returns the actual number of slabs released.
2180 */
2181static int drain_freelist(struct kmem_cache *cache,
2182                        struct kmem_cache_node *n, int tofree)
2183{
2184        struct list_head *p;
2185        int nr_freed;
2186        struct page *page;
2187
2188        nr_freed = 0;
2189        while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2190
2191                spin_lock_irq(&n->list_lock);
2192                p = n->slabs_free.prev;
2193                if (p == &n->slabs_free) {
2194                        spin_unlock_irq(&n->list_lock);
2195                        goto out;
2196                }
2197
2198                page = list_entry(p, struct page, slab_list);
2199                list_del(&page->slab_list);
2200                n->free_slabs--;
2201                n->total_slabs--;
2202                /*
2203                 * Safe to drop the lock. The slab is no longer linked
2204                 * to the cache.
2205                 */
2206                n->free_objects -= cache->num;
2207                spin_unlock_irq(&n->list_lock);
2208                slab_destroy(cache, page);
2209                nr_freed++;
2210        }
2211out:
2212        return nr_freed;
2213}
2214
2215bool __kmem_cache_empty(struct kmem_cache *s)
2216{
2217        int node;
2218        struct kmem_cache_node *n;
2219
2220        for_each_kmem_cache_node(s, node, n)
2221                if (!list_empty(&n->slabs_full) ||
2222                    !list_empty(&n->slabs_partial))
2223                        return false;
2224        return true;
2225}
2226
2227int __kmem_cache_shrink(struct kmem_cache *cachep)
2228{
2229        int ret = 0;
2230        int node;
2231        struct kmem_cache_node *n;
2232
2233        drain_cpu_caches(cachep);
2234
2235        check_irq_on();
2236        for_each_kmem_cache_node(cachep, node, n) {
2237                drain_freelist(cachep, n, INT_MAX);
2238
2239                ret += !list_empty(&n->slabs_full) ||
2240                        !list_empty(&n->slabs_partial);
2241        }
2242        return (ret ? 1 : 0);
2243}
2244
2245#ifdef CONFIG_MEMCG
2246void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2247{
2248        __kmem_cache_shrink(cachep);
2249}
2250
2251void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
2252{
2253}
2254#endif
2255
2256int __kmem_cache_shutdown(struct kmem_cache *cachep)
2257{
2258        return __kmem_cache_shrink(cachep);
2259}
2260
2261void __kmem_cache_release(struct kmem_cache *cachep)
2262{
2263        int i;
2264        struct kmem_cache_node *n;
2265
2266        cache_random_seq_destroy(cachep);
2267
2268        free_percpu(cachep->cpu_cache);
2269
2270        /* NUMA: free the node structures */
2271        for_each_kmem_cache_node(cachep, i, n) {
2272                kfree(n->shared);
2273                free_alien_cache(n->alien);
2274                kfree(n);
2275                cachep->node[i] = NULL;
2276        }
2277}
2278
2279/*
2280 * Get the memory for a slab management obj.
2281 *
2282 * For a slab cache when the slab descriptor is off-slab, the
2283 * slab descriptor can't come from the same cache which is being created,
2284 * Because if it is the case, that means we defer the creation of
2285 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2286 * And we eventually call down to __kmem_cache_create(), which
2287 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2288 * This is a "chicken-and-egg" problem.
2289 *
2290 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2291 * which are all initialized during kmem_cache_init().
2292 */
2293static void *alloc_slabmgmt(struct kmem_cache *cachep,
2294                                   struct page *page, int colour_off,
2295                                   gfp_t local_flags, int nodeid)
2296{
2297        void *freelist;
2298        void *addr = page_address(page);
2299
2300        page->s_mem = addr + colour_off;
2301        page->active = 0;
2302
2303        if (OBJFREELIST_SLAB(cachep))
2304                freelist = NULL;
2305        else if (OFF_SLAB(cachep)) {
2306                /* Slab management obj is off-slab. */
2307                freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2308                                              local_flags, nodeid);
2309                if (!freelist)
2310                        return NULL;
2311        } else {
2312                /* We will use last bytes at the slab for freelist */
2313                freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2314                                cachep->freelist_size;
2315        }
2316
2317        return freelist;
2318}
2319
2320static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2321{
2322        return ((freelist_idx_t *)page->freelist)[idx];
2323}
2324
2325static inline void set_free_obj(struct page *page,
2326                                        unsigned int idx, freelist_idx_t val)
2327{
2328        ((freelist_idx_t *)(page->freelist))[idx] = val;
2329}
2330
2331static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2332{
2333#if DEBUG
2334        int i;
2335
2336        for (i = 0; i < cachep->num; i++) {
2337                void *objp = index_to_obj(cachep, page, i);
2338
2339                if (cachep->flags & SLAB_STORE_USER)
2340                        *dbg_userword(cachep, objp) = NULL;
2341
2342                if (cachep->flags & SLAB_RED_ZONE) {
2343                        *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2344                        *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2345                }
2346                /*
2347                 * Constructors are not allowed to allocate memory from the same
2348                 * cache which they are a constructor for.  Otherwise, deadlock.
2349                 * They must also be threaded.
2350                 */
2351                if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2352                        kasan_unpoison_object_data(cachep,
2353                                                   objp + obj_offset(cachep));
2354                        cachep->ctor(objp + obj_offset(cachep));
2355                        kasan_poison_object_data(
2356                                cachep, objp + obj_offset(cachep));
2357                }
2358
2359                if (cachep->flags & SLAB_RED_ZONE) {
2360                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2361                                slab_error(cachep, "constructor overwrote the end of an object");
2362                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2363                                slab_error(cachep, "constructor overwrote the start of an object");
2364                }
2365                /* need to poison the objs? */
2366                if (cachep->flags & SLAB_POISON) {
2367                        poison_obj(cachep, objp, POISON_FREE);
2368                        slab_kernel_map(cachep, objp, 0);
2369                }
2370        }
2371#endif
2372}
2373
2374#ifdef CONFIG_SLAB_FREELIST_RANDOM
2375/* Hold information during a freelist initialization */
2376union freelist_init_state {
2377        struct {
2378                unsigned int pos;
2379                unsigned int *list;
2380                unsigned int count;
2381        };
2382        struct rnd_state rnd_state;
2383};
2384
2385/*
2386 * Initialize the state based on the randomization methode available.
2387 * return true if the pre-computed list is available, false otherwize.
2388 */
2389static bool freelist_state_initialize(union freelist_init_state *state,
2390                                struct kmem_cache *cachep,
2391                                unsigned int count)
2392{
2393        bool ret;
2394        unsigned int rand;
2395
2396        /* Use best entropy available to define a random shift */
2397        rand = get_random_int();
2398
2399        /* Use a random state if the pre-computed list is not available */
2400        if (!cachep->random_seq) {
2401                prandom_seed_state(&state->rnd_state, rand);
2402                ret = false;
2403        } else {
2404                state->list = cachep->random_seq;
2405                state->count = count;
2406                state->pos = rand % count;
2407                ret = true;
2408        }
2409        return ret;
2410}
2411
2412/* Get the next entry on the list and randomize it using a random shift */
2413static freelist_idx_t next_random_slot(union freelist_init_state *state)
2414{
2415        if (state->pos >= state->count)
2416                state->pos = 0;
2417        return state->list[state->pos++];
2418}
2419
2420/* Swap two freelist entries */
2421static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2422{
2423        swap(((freelist_idx_t *)page->freelist)[a],
2424                ((freelist_idx_t *)page->freelist)[b]);
2425}
2426
2427/*
2428 * Shuffle the freelist initialization state based on pre-computed lists.
2429 * return true if the list was successfully shuffled, false otherwise.
2430 */
2431static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2432{
2433        unsigned int objfreelist = 0, i, rand, count = cachep->num;
2434        union freelist_init_state state;
2435        bool precomputed;
2436
2437        if (count < 2)
2438                return false;
2439
2440        precomputed = freelist_state_initialize(&state, cachep, count);
2441
2442        /* Take a random entry as the objfreelist */
2443        if (OBJFREELIST_SLAB(cachep)) {
2444                if (!precomputed)
2445                        objfreelist = count - 1;
2446                else
2447                        objfreelist = next_random_slot(&state);
2448                page->freelist = index_to_obj(cachep, page, objfreelist) +
2449                                                obj_offset(cachep);
2450                count--;
2451        }
2452
2453        /*
2454         * On early boot, generate the list dynamically.
2455         * Later use a pre-computed list for speed.
2456         */
2457        if (!precomputed) {
2458                for (i = 0; i < count; i++)
2459                        set_free_obj(page, i, i);
2460
2461                /* Fisher-Yates shuffle */
2462                for (i = count - 1; i > 0; i--) {
2463                        rand = prandom_u32_state(&state.rnd_state);
2464                        rand %= (i + 1);
2465                        swap_free_obj(page, i, rand);
2466                }
2467        } else {
2468                for (i = 0; i < count; i++)
2469                        set_free_obj(page, i, next_random_slot(&state));
2470        }
2471
2472        if (OBJFREELIST_SLAB(cachep))
2473                set_free_obj(page, cachep->num - 1, objfreelist);
2474
2475        return true;
2476}
2477#else
2478static inline bool shuffle_freelist(struct kmem_cache *cachep,
2479                                struct page *page)
2480{
2481        return false;
2482}
2483#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2484
2485static void cache_init_objs(struct kmem_cache *cachep,
2486                            struct page *page)
2487{
2488        int i;
2489        void *objp;
2490        bool shuffled;
2491
2492        cache_init_objs_debug(cachep, page);
2493
2494        /* Try to randomize the freelist if enabled */
2495        shuffled = shuffle_freelist(cachep, page);
2496
2497        if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2498                page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2499                                                obj_offset(cachep);
2500        }
2501
2502        for (i = 0; i < cachep->num; i++) {
2503                objp = index_to_obj(cachep, page, i);
2504                objp = kasan_init_slab_obj(cachep, objp);
2505
2506                /* constructor could break poison info */
2507                if (DEBUG == 0 && cachep->ctor) {
2508                        kasan_unpoison_object_data(cachep, objp);
2509                        cachep->ctor(objp);
2510                        kasan_poison_object_data(cachep, objp);
2511                }
2512
2513                if (!shuffled)
2514                        set_free_obj(page, i, i);
2515        }
2516}
2517
2518static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2519{
2520        void *objp;
2521
2522        objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2523        page->active++;
2524
2525        return objp;
2526}
2527
2528static void slab_put_obj(struct kmem_cache *cachep,
2529                        struct page *page, void *objp)
2530{
2531        unsigned int objnr = obj_to_index(cachep, page, objp);
2532#if DEBUG
2533        unsigned int i;
2534
2535        /* Verify double free bug */
2536        for (i = page->active; i < cachep->num; i++) {
2537                if (get_free_obj(page, i) == objnr) {
2538                        pr_err("slab: double free detected in cache '%s', objp %px\n",
2539                               cachep->name, objp);
2540                        BUG();
2541                }
2542        }
2543#endif
2544        page->active--;
2545        if (!page->freelist)
2546                page->freelist = objp + obj_offset(cachep);
2547
2548        set_free_obj(page, page->active, objnr);
2549}
2550
2551/*
2552 * Map pages beginning at addr to the given cache and slab. This is required
2553 * for the slab allocator to be able to lookup the cache and slab of a
2554 * virtual address for kfree, ksize, and slab debugging.
2555 */
2556static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2557                           void *freelist)
2558{
2559        page->slab_cache = cache;
2560        page->freelist = freelist;
2561}
2562
2563/*
2564 * Grow (by 1) the number of slabs within a cache.  This is called by
2565 * kmem_cache_alloc() when there are no active objs left in a cache.
2566 */
2567static struct page *cache_grow_begin(struct kmem_cache *cachep,
2568                                gfp_t flags, int nodeid)
2569{
2570        void *freelist;
2571        size_t offset;
2572        gfp_t local_flags;
2573        int page_node;
2574        struct kmem_cache_node *n;
2575        struct page *page;
2576
2577        /*
2578         * Be lazy and only check for valid flags here,  keeping it out of the
2579         * critical path in kmem_cache_alloc().
2580         */
2581        if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2582                gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2583                flags &= ~GFP_SLAB_BUG_MASK;
2584                pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2585                                invalid_mask, &invalid_mask, flags, &flags);
2586                dump_stack();
2587        }
2588        WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2589        local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2590
2591        check_irq_off();
2592        if (gfpflags_allow_blocking(local_flags))
2593                local_irq_enable();
2594
2595        /*
2596         * Get mem for the objs.  Attempt to allocate a physical page from
2597         * 'nodeid'.
2598         */
2599        page = kmem_getpages(cachep, local_flags, nodeid);
2600        if (!page)
2601                goto failed;
2602
2603        page_node = page_to_nid(page);
2604        n = get_node(cachep, page_node);
2605
2606        /* Get colour for the slab, and cal the next value. */
2607        n->colour_next++;
2608        if (n->colour_next >= cachep->colour)
2609                n->colour_next = 0;
2610
2611        offset = n->colour_next;
2612        if (offset >= cachep->colour)
2613                offset = 0;
2614
2615        offset *= cachep->colour_off;
2616
2617        /*
2618         * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2619         * page_address() in the latter returns a non-tagged pointer,
2620         * as it should be for slab pages.
2621         */
2622        kasan_poison_slab(page);
2623
2624        /* Get slab management. */
2625        freelist = alloc_slabmgmt(cachep, page, offset,
2626                        local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2627        if (OFF_SLAB(cachep) && !freelist)
2628                goto opps1;
2629
2630        slab_map_pages(cachep, page, freelist);
2631
2632        cache_init_objs(cachep, page);
2633
2634        if (gfpflags_allow_blocking(local_flags))
2635                local_irq_disable();
2636
2637        return page;
2638
2639opps1:
2640        kmem_freepages(cachep, page);
2641failed:
2642        if (gfpflags_allow_blocking(local_flags))
2643                local_irq_disable();
2644        return NULL;
2645}
2646
2647static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2648{
2649        struct kmem_cache_node *n;
2650        void *list = NULL;
2651
2652        check_irq_off();
2653
2654        if (!page)
2655                return;
2656
2657        INIT_LIST_HEAD(&page->slab_list);
2658        n = get_node(cachep, page_to_nid(page));
2659
2660        spin_lock(&n->list_lock);
2661        n->total_slabs++;
2662        if (!page->active) {
2663                list_add_tail(&page->slab_list, &n->slabs_free);
2664                n->free_slabs++;
2665        } else
2666                fixup_slab_list(cachep, n, page, &list);
2667
2668        STATS_INC_GROWN(cachep);
2669        n->free_objects += cachep->num - page->active;
2670        spin_unlock(&n->list_lock);
2671
2672        fixup_objfreelist_debug(cachep, &list);
2673}
2674
2675#if DEBUG
2676
2677/*
2678 * Perform extra freeing checks:
2679 * - detect bad pointers.
2680 * - POISON/RED_ZONE checking
2681 */
2682static void kfree_debugcheck(const void *objp)
2683{
2684        if (!virt_addr_valid(objp)) {
2685                pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2686                       (unsigned long)objp);
2687                BUG();
2688        }
2689}
2690
2691static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2692{
2693        unsigned long long redzone1, redzone2;
2694
2695        redzone1 = *dbg_redzone1(cache, obj);
2696        redzone2 = *dbg_redzone2(cache, obj);
2697
2698        /*
2699         * Redzone is ok.
2700         */
2701        if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2702                return;
2703
2704        if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2705                slab_error(cache, "double free detected");
2706        else
2707                slab_error(cache, "memory outside object was overwritten");
2708
2709        pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2710               obj, redzone1, redzone2);
2711}
2712
2713static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2714                                   unsigned long caller)
2715{
2716        unsigned int objnr;
2717        struct page *page;
2718
2719        BUG_ON(virt_to_cache(objp) != cachep);
2720
2721        objp -= obj_offset(cachep);
2722        kfree_debugcheck(objp);
2723        page = virt_to_head_page(objp);
2724
2725        if (cachep->flags & SLAB_RED_ZONE) {
2726                verify_redzone_free(cachep, objp);
2727                *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2728                *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2729        }
2730        if (cachep->flags & SLAB_STORE_USER)
2731                *dbg_userword(cachep, objp) = (void *)caller;
2732
2733        objnr = obj_to_index(cachep, page, objp);
2734
2735        BUG_ON(objnr >= cachep->num);
2736        BUG_ON(objp != index_to_obj(cachep, page, objnr));
2737
2738        if (cachep->flags & SLAB_POISON) {
2739                poison_obj(cachep, objp, POISON_FREE);
2740                slab_kernel_map(cachep, objp, 0);
2741        }
2742        return objp;
2743}
2744
2745#else
2746#define kfree_debugcheck(x) do { } while(0)
2747#define cache_free_debugcheck(x,objp,z) (objp)
2748#endif
2749
2750static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2751                                                void **list)
2752{
2753#if DEBUG
2754        void *next = *list;
2755        void *objp;
2756
2757        while (next) {
2758                objp = next - obj_offset(cachep);
2759                next = *(void **)next;
2760                poison_obj(cachep, objp, POISON_FREE);
2761        }
2762#endif
2763}
2764
2765static inline void fixup_slab_list(struct kmem_cache *cachep,
2766                                struct kmem_cache_node *n, struct page *page,
2767                                void **list)
2768{
2769        /* move slabp to correct slabp list: */
2770        list_del(&page->slab_list);
2771        if (page->active == cachep->num) {
2772                list_add(&page->slab_list, &n->slabs_full);
2773                if (OBJFREELIST_SLAB(cachep)) {
2774#if DEBUG
2775                        /* Poisoning will be done without holding the lock */
2776                        if (cachep->flags & SLAB_POISON) {
2777                                void **objp = page->freelist;
2778
2779                                *objp = *list;
2780                                *list = objp;
2781                        }
2782#endif
2783                        page->freelist = NULL;
2784                }
2785        } else
2786                list_add(&page->slab_list, &n->slabs_partial);
2787}
2788
2789/* Try to find non-pfmemalloc slab if needed */
2790static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2791                                        struct page *page, bool pfmemalloc)
2792{
2793        if (!page)
2794                return NULL;
2795
2796        if (pfmemalloc)
2797                return page;
2798
2799        if (!PageSlabPfmemalloc(page))
2800                return page;
2801
2802        /* No need to keep pfmemalloc slab if we have enough free objects */
2803        if (n->free_objects > n->free_limit) {
2804                ClearPageSlabPfmemalloc(page);
2805                return page;
2806        }
2807
2808        /* Move pfmemalloc slab to the end of list to speed up next search */
2809        list_del(&page->slab_list);
2810        if (!page->active) {
2811                list_add_tail(&page->slab_list, &n->slabs_free);
2812                n->free_slabs++;
2813        } else
2814                list_add_tail(&page->slab_list, &n->slabs_partial);
2815
2816        list_for_each_entry(page, &n->slabs_partial, slab_list) {
2817                if (!PageSlabPfmemalloc(page))
2818                        return page;
2819        }
2820
2821        n->free_touched = 1;
2822        list_for_each_entry(page, &n->slabs_free, slab_list) {
2823                if (!PageSlabPfmemalloc(page)) {
2824                        n->free_slabs--;
2825                        return page;
2826                }
2827        }
2828
2829        return NULL;
2830}
2831
2832static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2833{
2834        struct page *page;
2835
2836        assert_spin_locked(&n->list_lock);
2837        page = list_first_entry_or_null(&n->slabs_partial, struct page,
2838                                        slab_list);
2839        if (!page) {
2840                n->free_touched = 1;
2841                page = list_first_entry_or_null(&n->slabs_free, struct page,
2842                                                slab_list);
2843                if (page)
2844                        n->free_slabs--;
2845        }
2846
2847        if (sk_memalloc_socks())
2848                page = get_valid_first_slab(n, page, pfmemalloc);
2849
2850        return page;
2851}
2852
2853static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2854                                struct kmem_cache_node *n, gfp_t flags)
2855{
2856        struct page *page;
2857        void *obj;
2858        void *list = NULL;
2859
2860        if (!gfp_pfmemalloc_allowed(flags))
2861                return NULL;
2862
2863        spin_lock(&n->list_lock);
2864        page = get_first_slab(n, true);
2865        if (!page) {
2866                spin_unlock(&n->list_lock);
2867                return NULL;
2868        }
2869
2870        obj = slab_get_obj(cachep, page);
2871        n->free_objects--;
2872
2873        fixup_slab_list(cachep, n, page, &list);
2874
2875        spin_unlock(&n->list_lock);
2876        fixup_objfreelist_debug(cachep, &list);
2877
2878        return obj;
2879}
2880
2881/*
2882 * Slab list should be fixed up by fixup_slab_list() for existing slab
2883 * or cache_grow_end() for new slab
2884 */
2885static __always_inline int alloc_block(struct kmem_cache *cachep,
2886                struct array_cache *ac, struct page *page, int batchcount)
2887{
2888        /*
2889         * There must be at least one object available for
2890         * allocation.
2891         */
2892        BUG_ON(page->active >= cachep->num);
2893
2894        while (page->active < cachep->num && batchcount--) {
2895                STATS_INC_ALLOCED(cachep);
2896                STATS_INC_ACTIVE(cachep);
2897                STATS_SET_HIGH(cachep);
2898
2899                ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2900        }
2901
2902        return batchcount;
2903}
2904
2905static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2906{
2907        int batchcount;
2908        struct kmem_cache_node *n;
2909        struct array_cache *ac, *shared;
2910        int node;
2911        void *list = NULL;
2912        struct page *page;
2913
2914        check_irq_off();
2915        node = numa_mem_id();
2916
2917        ac = cpu_cache_get(cachep);
2918        batchcount = ac->batchcount;
2919        if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2920                /*
2921                 * If there was little recent activity on this cache, then
2922                 * perform only a partial refill.  Otherwise we could generate
2923                 * refill bouncing.
2924                 */
2925                batchcount = BATCHREFILL_LIMIT;
2926        }
2927        n = get_node(cachep, node);
2928
2929        BUG_ON(ac->avail > 0 || !n);
2930        shared = READ_ONCE(n->shared);
2931        if (!n->free_objects && (!shared || !shared->avail))
2932                goto direct_grow;
2933
2934        spin_lock(&n->list_lock);
2935        shared = READ_ONCE(n->shared);
2936
2937        /* See if we can refill from the shared array */
2938        if (shared && transfer_objects(ac, shared, batchcount)) {
2939                shared->touched = 1;
2940                goto alloc_done;
2941        }
2942
2943        while (batchcount > 0) {
2944                /* Get slab alloc is to come from. */
2945                page = get_first_slab(n, false);
2946                if (!page)
2947                        goto must_grow;
2948
2949                check_spinlock_acquired(cachep);
2950
2951                batchcount = alloc_block(cachep, ac, page, batchcount);
2952                fixup_slab_list(cachep, n, page, &list);
2953        }
2954
2955must_grow:
2956        n->free_objects -= ac->avail;
2957alloc_done:
2958        spin_unlock(&n->list_lock);
2959        fixup_objfreelist_debug(cachep, &list);
2960
2961direct_grow:
2962        if (unlikely(!ac->avail)) {
2963                /* Check if we can use obj in pfmemalloc slab */
2964                if (sk_memalloc_socks()) {
2965                        void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2966
2967                        if (obj)
2968                                return obj;
2969                }
2970
2971                page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
2972
2973                /*
2974                 * cache_grow_begin() can reenable interrupts,
2975                 * then ac could change.
2976                 */
2977                ac = cpu_cache_get(cachep);
2978                if (!ac->avail && page)
2979                        alloc_block(cachep, ac, page, batchcount);
2980                cache_grow_end(cachep, page);
2981
2982                if (!ac->avail)
2983                        return NULL;
2984        }
2985        ac->touched = 1;
2986
2987        return ac->entry[--ac->avail];
2988}
2989
2990static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2991                                                gfp_t flags)
2992{
2993        might_sleep_if(gfpflags_allow_blocking(flags));
2994}
2995
2996#if DEBUG
2997static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2998                                gfp_t flags, void *objp, unsigned long caller)
2999{
3000        WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
3001        if (!objp)
3002                return objp;
3003        if (cachep->flags & SLAB_POISON) {
3004                check_poison_obj(cachep, objp);
3005                slab_kernel_map(cachep, objp, 1);
3006                poison_obj(cachep, objp, POISON_INUSE);
3007        }
3008        if (cachep->flags & SLAB_STORE_USER)
3009                *dbg_userword(cachep, objp) = (void *)caller;
3010
3011        if (cachep->flags & SLAB_RED_ZONE) {
3012                if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3013                                *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3014                        slab_error(cachep, "double free, or memory outside object was overwritten");
3015                        pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3016                               objp, *dbg_redzone1(cachep, objp),
3017                               *dbg_redzone2(cachep, objp));
3018                }
3019                *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3020                *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3021        }
3022
3023        objp += obj_offset(cachep);
3024        if (cachep->ctor && cachep->flags & SLAB_POISON)
3025                cachep->ctor(objp);
3026        if (ARCH_SLAB_MINALIGN &&
3027            ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3028                pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3029                       objp, (int)ARCH_SLAB_MINALIGN);
3030        }
3031        return objp;
3032}
3033#else
3034#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3035#endif
3036
3037static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3038{
3039        void *objp;
3040        struct array_cache *ac;
3041
3042        check_irq_off();
3043
3044        ac = cpu_cache_get(cachep);
3045        if (likely(ac->avail)) {
3046                ac->touched = 1;
3047                objp = ac->entry[--ac->avail];
3048
3049                STATS_INC_ALLOCHIT(cachep);
3050                goto out;
3051        }
3052
3053        STATS_INC_ALLOCMISS(cachep);
3054        objp = cache_alloc_refill(cachep, flags);
3055        /*
3056         * the 'ac' may be updated by cache_alloc_refill(),
3057         * and kmemleak_erase() requires its correct value.
3058         */
3059        ac = cpu_cache_get(cachep);
3060
3061out:
3062        /*
3063         * To avoid a false negative, if an object that is in one of the
3064         * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3065         * treat the array pointers as a reference to the object.
3066         */
3067        if (objp)
3068                kmemleak_erase(&ac->entry[ac->avail]);
3069        return objp;
3070}
3071
3072#ifdef CONFIG_NUMA
3073/*
3074 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3075 *
3076 * If we are in_interrupt, then process context, including cpusets and
3077 * mempolicy, may not apply and should not be used for allocation policy.
3078 */
3079static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3080{
3081        int nid_alloc, nid_here;
3082
3083        if (in_interrupt() || (flags & __GFP_THISNODE))
3084                return NULL;
3085        nid_alloc = nid_here = numa_mem_id();
3086        if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3087                nid_alloc = cpuset_slab_spread_node();
3088        else if (current->mempolicy)
3089                nid_alloc = mempolicy_slab_node();
3090        if (nid_alloc != nid_here)
3091                return ____cache_alloc_node(cachep, flags, nid_alloc);
3092        return NULL;
3093}
3094
3095/*
3096 * Fallback function if there was no memory available and no objects on a
3097 * certain node and fall back is permitted. First we scan all the
3098 * available node for available objects. If that fails then we
3099 * perform an allocation without specifying a node. This allows the page
3100 * allocator to do its reclaim / fallback magic. We then insert the
3101 * slab into the proper nodelist and then allocate from it.
3102 */
3103static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3104{
3105        struct zonelist *zonelist;
3106        struct zoneref *z;
3107        struct zone *zone;
3108        enum zone_type high_zoneidx = gfp_zone(flags);
3109        void *obj = NULL;
3110        struct page *page;
3111        int nid;
3112        unsigned int cpuset_mems_cookie;
3113
3114        if (flags & __GFP_THISNODE)
3115                return NULL;
3116
3117retry_cpuset:
3118        cpuset_mems_cookie = read_mems_allowed_begin();
3119        zonelist = node_zonelist(mempolicy_slab_node(), flags);
3120
3121retry:
3122        /*
3123         * Look through allowed nodes for objects available
3124         * from existing per node queues.
3125         */
3126        for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3127                nid = zone_to_nid(zone);
3128
3129                if (cpuset_zone_allowed(zone, flags) &&
3130                        get_node(cache, nid) &&
3131                        get_node(cache, nid)->free_objects) {
3132                                obj = ____cache_alloc_node(cache,
3133                                        gfp_exact_node(flags), nid);
3134                                if (obj)
3135                                        break;
3136                }
3137        }
3138
3139        if (!obj) {
3140                /*
3141                 * This allocation will be performed within the constraints
3142                 * of the current cpuset / memory policy requirements.
3143                 * We may trigger various forms of reclaim on the allowed
3144                 * set and go into memory reserves if necessary.
3145                 */
3146                page = cache_grow_begin(cache, flags, numa_mem_id());
3147                cache_grow_end(cache, page);
3148                if (page) {
3149                        nid = page_to_nid(page);
3150                        obj = ____cache_alloc_node(cache,
3151                                gfp_exact_node(flags), nid);
3152
3153                        /*
3154                         * Another processor may allocate the objects in
3155                         * the slab since we are not holding any locks.
3156                         */
3157                        if (!obj)
3158                                goto retry;
3159                }
3160        }
3161
3162        if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3163                goto retry_cpuset;
3164        return obj;
3165}
3166
3167/*
3168 * A interface to enable slab creation on nodeid
3169 */
3170static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3171                                int nodeid)
3172{
3173        struct page *page;
3174        struct kmem_cache_node *n;
3175        void *obj = NULL;
3176        void *list = NULL;
3177
3178        VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3179        n = get_node(cachep, nodeid);
3180        BUG_ON(!n);
3181
3182        check_irq_off();
3183        spin_lock(&n->list_lock);
3184        page = get_first_slab(n, false);
3185        if (!page)
3186                goto must_grow;
3187
3188        check_spinlock_acquired_node(cachep, nodeid);
3189
3190        STATS_INC_NODEALLOCS(cachep);
3191        STATS_INC_ACTIVE(cachep);
3192        STATS_SET_HIGH(cachep);
3193
3194        BUG_ON(page->active == cachep->num);
3195
3196        obj = slab_get_obj(cachep, page);
3197        n->free_objects--;
3198
3199        fixup_slab_list(cachep, n, page, &list);
3200
3201        spin_unlock(&n->list_lock);
3202        fixup_objfreelist_debug(cachep, &list);
3203        return obj;
3204
3205must_grow:
3206        spin_unlock(&n->list_lock);
3207        page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3208        if (page) {
3209                /* This slab isn't counted yet so don't update free_objects */
3210                obj = slab_get_obj(cachep, page);
3211        }
3212        cache_grow_end(cachep, page);
3213
3214        return obj ? obj : fallback_alloc(cachep, flags);
3215}
3216
3217static __always_inline void *
3218slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3219                   unsigned long caller)
3220{
3221        unsigned long save_flags;
3222        void *ptr;
3223        int slab_node = numa_mem_id();
3224
3225        flags &= gfp_allowed_mask;
3226        cachep = slab_pre_alloc_hook(cachep, flags);
3227        if (unlikely(!cachep))
3228                return NULL;
3229
3230        cache_alloc_debugcheck_before(cachep, flags);
3231        local_irq_save(save_flags);
3232
3233        if (nodeid == NUMA_NO_NODE)
3234                nodeid = slab_node;
3235
3236        if (unlikely(!get_node(cachep, nodeid))) {
3237                /* Node not bootstrapped yet */
3238                ptr = fallback_alloc(cachep, flags);
3239                goto out;
3240        }
3241
3242        if (nodeid == slab_node) {
3243                /*
3244                 * Use the locally cached objects if possible.
3245                 * However ____cache_alloc does not allow fallback
3246                 * to other nodes. It may fail while we still have
3247                 * objects on other nodes available.
3248                 */
3249                ptr = ____cache_alloc(cachep, flags);
3250                if (ptr)
3251                        goto out;
3252        }
3253        /* ___cache_alloc_node can fall back to other nodes */
3254        ptr = ____cache_alloc_node(cachep, flags, nodeid);
3255  out:
3256        local_irq_restore(save_flags);
3257        ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3258
3259        if (unlikely(slab_want_init_on_alloc(flags, cachep)) && ptr)
3260                memset(ptr, 0, cachep->object_size);
3261
3262        slab_post_alloc_hook(cachep, flags, 1, &ptr);
3263        return ptr;
3264}
3265
3266static __always_inline void *
3267__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3268{
3269        void *objp;
3270
3271        if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3272                objp = alternate_node_alloc(cache, flags);
3273                if (objp)
3274                        goto out;
3275        }
3276        objp = ____cache_alloc(cache, flags);
3277
3278        /*
3279         * We may just have run out of memory on the local node.
3280         * ____cache_alloc_node() knows how to locate memory on other nodes
3281         */
3282        if (!objp)
3283                objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3284
3285  out:
3286        return objp;
3287}
3288#else
3289
3290static __always_inline void *
3291__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3292{
3293        return ____cache_alloc(cachep, flags);
3294}
3295
3296#endif /* CONFIG_NUMA */
3297
3298static __always_inline void *
3299slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3300{
3301        unsigned long save_flags;
3302        void *objp;
3303
3304        flags &= gfp_allowed_mask;
3305        cachep = slab_pre_alloc_hook(cachep, flags);
3306        if (unlikely(!cachep))
3307                return NULL;
3308
3309        cache_alloc_debugcheck_before(cachep, flags);
3310        local_irq_save(save_flags);
3311        objp = __do_cache_alloc(cachep, flags);
3312        local_irq_restore(save_flags);
3313        objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3314        prefetchw(objp);
3315
3316        if (unlikely(slab_want_init_on_alloc(flags, cachep)) && objp)
3317                memset(objp, 0, cachep->object_size);
3318
3319        slab_post_alloc_hook(cachep, flags, 1, &objp);
3320        return objp;
3321}
3322
3323/*
3324 * Caller needs to acquire correct kmem_cache_node's list_lock
3325 * @list: List of detached free slabs should be freed by caller
3326 */
3327static void free_block(struct kmem_cache *cachep, void **objpp,
3328                        int nr_objects, int node, struct list_head *list)
3329{
3330        int i;
3331        struct kmem_cache_node *n = get_node(cachep, node);
3332        struct page *page;
3333
3334        n->free_objects += nr_objects;
3335
3336        for (i = 0; i < nr_objects; i++) {
3337                void *objp;
3338                struct page *page;
3339
3340                objp = objpp[i];
3341
3342                page = virt_to_head_page(objp);
3343                list_del(&page->slab_list);
3344                check_spinlock_acquired_node(cachep, node);
3345                slab_put_obj(cachep, page, objp);
3346                STATS_DEC_ACTIVE(cachep);
3347
3348                /* fixup slab chains */
3349                if (page->active == 0) {
3350                        list_add(&page->slab_list, &n->slabs_free);
3351                        n->free_slabs++;
3352                } else {
3353                        /* Unconditionally move a slab to the end of the
3354                         * partial list on free - maximum time for the
3355                         * other objects to be freed, too.
3356                         */
3357                        list_add_tail(&page->slab_list, &n->slabs_partial);
3358                }
3359        }
3360
3361        while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3362                n->free_objects -= cachep->num;
3363
3364                page = list_last_entry(&n->slabs_free, struct page, slab_list);
3365                list_move(&page->slab_list, list);
3366                n->free_slabs--;
3367                n->total_slabs--;
3368        }
3369}
3370
3371static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3372{
3373        int batchcount;
3374        struct kmem_cache_node *n;
3375        int node = numa_mem_id();
3376        LIST_HEAD(list);
3377
3378        batchcount = ac->batchcount;
3379
3380        check_irq_off();
3381        n = get_node(cachep, node);
3382        spin_lock(&n->list_lock);
3383        if (n->shared) {
3384                struct array_cache *shared_array = n->shared;
3385                int max = shared_array->limit - shared_array->avail;
3386                if (max) {
3387                        if (batchcount > max)
3388                                batchcount = max;
3389                        memcpy(&(shared_array->entry[shared_array->avail]),
3390                               ac->entry, sizeof(void *) * batchcount);
3391                        shared_array->avail += batchcount;
3392                        goto free_done;
3393                }
3394        }
3395
3396        free_block(cachep, ac->entry, batchcount, node, &list);
3397free_done:
3398#if STATS
3399        {
3400                int i = 0;
3401                struct page *page;
3402
3403                list_for_each_entry(page, &n->slabs_free, slab_list) {
3404                        BUG_ON(page->active);
3405
3406                        i++;
3407                }
3408                STATS_SET_FREEABLE(cachep, i);
3409        }
3410#endif
3411        spin_unlock(&n->list_lock);
3412        slabs_destroy(cachep, &list);
3413        ac->avail -= batchcount;
3414        memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3415}
3416
3417/*
3418 * Release an obj back to its cache. If the obj has a constructed state, it must
3419 * be in this state _before_ it is released.  Called with disabled ints.
3420 */
3421static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3422                                         unsigned long caller)
3423{
3424        /* Put the object into the quarantine, don't touch it for now. */
3425        if (kasan_slab_free(cachep, objp, _RET_IP_))
3426                return;
3427
3428        ___cache_free(cachep, objp, caller);
3429}
3430
3431void ___cache_free(struct kmem_cache *cachep, void *objp,
3432                unsigned long caller)
3433{
3434        struct array_cache *ac = cpu_cache_get(cachep);
3435
3436        check_irq_off();
3437        if (unlikely(slab_want_init_on_free(cachep)))
3438                memset(objp, 0, cachep->object_size);
3439        kmemleak_free_recursive(objp, cachep->flags);
3440        objp = cache_free_debugcheck(cachep, objp, caller);
3441
3442        /*
3443         * Skip calling cache_free_alien() when the platform is not numa.
3444         * This will avoid cache misses that happen while accessing slabp (which
3445         * is per page memory  reference) to get nodeid. Instead use a global
3446         * variable to skip the call, which is mostly likely to be present in
3447         * the cache.
3448         */
3449        if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3450                return;
3451
3452        if (ac->avail < ac->limit) {
3453                STATS_INC_FREEHIT(cachep);
3454        } else {
3455                STATS_INC_FREEMISS(cachep);
3456                cache_flusharray(cachep, ac);
3457        }
3458
3459        if (sk_memalloc_socks()) {
3460                struct page *page = virt_to_head_page(objp);
3461
3462                if (unlikely(PageSlabPfmemalloc(page))) {
3463                        cache_free_pfmemalloc(cachep, page, objp);
3464                        return;
3465                }
3466        }
3467
3468        ac->entry[ac->avail++] = objp;
3469}
3470
3471/**
3472 * kmem_cache_alloc - Allocate an object
3473 * @cachep: The cache to allocate from.
3474 * @flags: See kmalloc().
3475 *
3476 * Allocate an object from this cache.  The flags are only relevant
3477 * if the cache has no available objects.
3478 *
3479 * Return: pointer to the new object or %NULL in case of error
3480 */
3481void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3482{
3483        void *ret = slab_alloc(cachep, flags, _RET_IP_);
3484
3485        trace_kmem_cache_alloc(_RET_IP_, ret,
3486                               cachep->object_size, cachep->size, flags);
3487
3488        return ret;
3489}
3490EXPORT_SYMBOL(kmem_cache_alloc);
3491
3492static __always_inline void
3493cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3494                                  size_t size, void **p, unsigned long caller)
3495{
3496        size_t i;
3497
3498        for (i = 0; i < size; i++)
3499                p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3500}
3501
3502int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3503                          void **p)
3504{
3505        size_t i;
3506
3507        s = slab_pre_alloc_hook(s, flags);
3508        if (!s)
3509                return 0;
3510
3511        cache_alloc_debugcheck_before(s, flags);
3512
3513        local_irq_disable();
3514        for (i = 0; i < size; i++) {
3515                void *objp = __do_cache_alloc(s, flags);
3516
3517                if (unlikely(!objp))
3518                        goto error;
3519                p[i] = objp;
3520        }
3521        local_irq_enable();
3522
3523        cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3524
3525        /* Clear memory outside IRQ disabled section */
3526        if (unlikely(slab_want_init_on_alloc(flags, s)))
3527                for (i = 0; i < size; i++)
3528                        memset(p[i], 0, s->object_size);
3529
3530        slab_post_alloc_hook(s, flags, size, p);
3531        /* FIXME: Trace call missing. Christoph would like a bulk variant */
3532        return size;
3533error:
3534        local_irq_enable();
3535        cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3536        slab_post_alloc_hook(s, flags, i, p);
3537        __kmem_cache_free_bulk(s, i, p);
3538        return 0;
3539}
3540EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3541
3542#ifdef CONFIG_TRACING
3543void *
3544kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3545{
3546        void *ret;
3547
3548        ret = slab_alloc(cachep, flags, _RET_IP_);
3549
3550        ret = kasan_kmalloc(cachep, ret, size, flags);
3551        trace_kmalloc(_RET_IP_, ret,
3552                      size, cachep->size, flags);
3553        return ret;
3554}
3555EXPORT_SYMBOL(kmem_cache_alloc_trace);
3556#endif
3557
3558#ifdef CONFIG_NUMA
3559/**
3560 * kmem_cache_alloc_node - Allocate an object on the specified node
3561 * @cachep: The cache to allocate from.
3562 * @flags: See kmalloc().
3563 * @nodeid: node number of the target node.
3564 *
3565 * Identical to kmem_cache_alloc but it will allocate memory on the given
3566 * node, which can improve the performance for cpu bound structures.
3567 *
3568 * Fallback to other node is possible if __GFP_THISNODE is not set.
3569 *
3570 * Return: pointer to the new object or %NULL in case of error
3571 */
3572void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3573{
3574        void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3575
3576        trace_kmem_cache_alloc_node(_RET_IP_, ret,
3577                                    cachep->object_size, cachep->size,
3578                                    flags, nodeid);
3579
3580        return ret;
3581}
3582EXPORT_SYMBOL(kmem_cache_alloc_node);
3583
3584#ifdef CONFIG_TRACING
3585void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3586                                  gfp_t flags,
3587                                  int nodeid,
3588                                  size_t size)
3589{
3590        void *ret;
3591
3592        ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3593
3594        ret = kasan_kmalloc(cachep, ret, size, flags);
3595        trace_kmalloc_node(_RET_IP_, ret,
3596                           size, cachep->size,
3597                           flags, nodeid);
3598        return ret;
3599}
3600EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3601#endif
3602
3603static __always_inline void *
3604__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3605{
3606        struct kmem_cache *cachep;
3607        void *ret;
3608
3609        if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3610                return NULL;
3611        cachep = kmalloc_slab(size, flags);
3612        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3613                return cachep;
3614        ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3615        ret = kasan_kmalloc(cachep, ret, size, flags);
3616
3617        return ret;
3618}
3619
3620void *__kmalloc_node(size_t size, gfp_t flags, int node)
3621{
3622        return __do_kmalloc_node(size, flags, node, _RET_IP_);
3623}
3624EXPORT_SYMBOL(__kmalloc_node);
3625
3626void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3627                int node, unsigned long caller)
3628{
3629        return __do_kmalloc_node(size, flags, node, caller);
3630}
3631EXPORT_SYMBOL(__kmalloc_node_track_caller);
3632#endif /* CONFIG_NUMA */
3633
3634/**
3635 * __do_kmalloc - allocate memory
3636 * @size: how many bytes of memory are required.
3637 * @flags: the type of memory to allocate (see kmalloc).
3638 * @caller: function caller for debug tracking of the caller
3639 *
3640 * Return: pointer to the allocated memory or %NULL in case of error
3641 */
3642static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3643                                          unsigned long caller)
3644{
3645        struct kmem_cache *cachep;
3646        void *ret;
3647
3648        if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3649                return NULL;
3650        cachep = kmalloc_slab(size, flags);
3651        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3652                return cachep;
3653        ret = slab_alloc(cachep, flags, caller);
3654
3655        ret = kasan_kmalloc(cachep, ret, size, flags);
3656        trace_kmalloc(caller, ret,
3657                      size, cachep->size, flags);
3658
3659        return ret;
3660}
3661
3662void *__kmalloc(size_t size, gfp_t flags)
3663{
3664        return __do_kmalloc(size, flags, _RET_IP_);
3665}
3666EXPORT_SYMBOL(__kmalloc);
3667
3668void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3669{
3670        return __do_kmalloc(size, flags, caller);
3671}
3672EXPORT_SYMBOL(__kmalloc_track_caller);
3673
3674/**
3675 * kmem_cache_free - Deallocate an object
3676 * @cachep: The cache the allocation was from.
3677 * @objp: The previously allocated object.
3678 *
3679 * Free an object which was previously allocated from this
3680 * cache.
3681 */
3682void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3683{
3684        unsigned long flags;
3685        cachep = cache_from_obj(cachep, objp);
3686        if (!cachep)
3687                return;
3688
3689        local_irq_save(flags);
3690        debug_check_no_locks_freed(objp, cachep->object_size);
3691        if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3692                debug_check_no_obj_freed(objp, cachep->object_size);
3693        __cache_free(cachep, objp, _RET_IP_);
3694        local_irq_restore(flags);
3695
3696        trace_kmem_cache_free(_RET_IP_, objp);
3697}
3698EXPORT_SYMBOL(kmem_cache_free);
3699
3700void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3701{
3702        struct kmem_cache *s;
3703        size_t i;
3704
3705        local_irq_disable();
3706        for (i = 0; i < size; i++) {
3707                void *objp = p[i];
3708
3709                if (!orig_s) /* called via kfree_bulk */
3710                        s = virt_to_cache(objp);
3711                else
3712                        s = cache_from_obj(orig_s, objp);
3713                if (!s)
3714                        continue;
3715
3716                debug_check_no_locks_freed(objp, s->object_size);
3717                if (!(s->flags & SLAB_DEBUG_OBJECTS))
3718                        debug_check_no_obj_freed(objp, s->object_size);
3719
3720                __cache_free(s, objp, _RET_IP_);
3721        }
3722        local_irq_enable();
3723
3724        /* FIXME: add tracing */
3725}
3726EXPORT_SYMBOL(kmem_cache_free_bulk);
3727
3728/**
3729 * kfree - free previously allocated memory
3730 * @objp: pointer returned by kmalloc.
3731 *
3732 * If @objp is NULL, no operation is performed.
3733 *
3734 * Don't free memory not originally allocated by kmalloc()
3735 * or you will run into trouble.
3736 */
3737void kfree(const void *objp)
3738{
3739        struct kmem_cache *c;
3740        unsigned long flags;
3741
3742        trace_kfree(_RET_IP_, objp);
3743
3744        if (unlikely(ZERO_OR_NULL_PTR(objp)))
3745                return;
3746        local_irq_save(flags);
3747        kfree_debugcheck(objp);
3748        c = virt_to_cache(objp);
3749        if (!c) {
3750                local_irq_restore(flags);
3751                return;
3752        }
3753        debug_check_no_locks_freed(objp, c->object_size);
3754
3755        debug_check_no_obj_freed(objp, c->object_size);
3756        __cache_free(c, (void *)objp, _RET_IP_);
3757        local_irq_restore(flags);
3758}
3759EXPORT_SYMBOL(kfree);
3760
3761/*
3762 * This initializes kmem_cache_node or resizes various caches for all nodes.
3763 */
3764static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3765{
3766        int ret;
3767        int node;
3768        struct kmem_cache_node *n;
3769
3770        for_each_online_node(node) {
3771                ret = setup_kmem_cache_node(cachep, node, gfp, true);
3772                if (ret)
3773                        goto fail;
3774
3775        }
3776
3777        return 0;
3778
3779fail:
3780        if (!cachep->list.next) {
3781                /* Cache is not active yet. Roll back what we did */
3782                node--;
3783                while (node >= 0) {
3784                        n = get_node(cachep, node);
3785                        if (n) {
3786                                kfree(n->shared);
3787                                free_alien_cache(n->alien);
3788                                kfree(n);
3789                                cachep->node[node] = NULL;
3790                        }
3791                        node--;
3792                }
3793        }
3794        return -ENOMEM;
3795}
3796
3797/* Always called with the slab_mutex held */
3798static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3799                                int batchcount, int shared, gfp_t gfp)
3800{
3801        struct array_cache __percpu *cpu_cache, *prev;
3802        int cpu;
3803
3804        cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3805        if (!cpu_cache)
3806                return -ENOMEM;
3807
3808        prev = cachep->cpu_cache;
3809        cachep->cpu_cache = cpu_cache;
3810        /*
3811         * Without a previous cpu_cache there's no need to synchronize remote
3812         * cpus, so skip the IPIs.
3813         */
3814        if (prev)
3815                kick_all_cpus_sync();
3816
3817        check_irq_on();
3818        cachep->batchcount = batchcount;
3819        cachep->limit = limit;
3820        cachep->shared = shared;
3821
3822        if (!prev)
3823                goto setup_node;
3824
3825        for_each_online_cpu(cpu) {
3826                LIST_HEAD(list);
3827                int node;
3828                struct kmem_cache_node *n;
3829                struct array_cache *ac = per_cpu_ptr(prev, cpu);
3830
3831                node = cpu_to_mem(cpu);
3832                n = get_node(cachep, node);
3833                spin_lock_irq(&n->list_lock);
3834                free_block(cachep, ac->entry, ac->avail, node, &list);
3835                spin_unlock_irq(&n->list_lock);
3836                slabs_destroy(cachep, &list);
3837        }
3838        free_percpu(prev);
3839
3840setup_node:
3841        return setup_kmem_cache_nodes(cachep, gfp);
3842}
3843
3844static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3845                                int batchcount, int shared, gfp_t gfp)
3846{
3847        int ret;
3848        struct kmem_cache *c;
3849
3850        ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3851
3852        if (slab_state < FULL)
3853                return ret;
3854
3855        if ((ret < 0) || !is_root_cache(cachep))
3856                return ret;
3857
3858        lockdep_assert_held(&slab_mutex);
3859        for_each_memcg_cache(c, cachep) {
3860                /* return value determined by the root cache only */
3861                __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3862        }
3863
3864        return ret;
3865}
3866
3867/* Called with slab_mutex held always */
3868static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3869{
3870        int err;
3871        int limit = 0;
3872        int shared = 0;
3873        int batchcount = 0;
3874
3875        err = cache_random_seq_create(cachep, cachep->num, gfp);
3876        if (err)
3877                goto end;
3878
3879        if (!is_root_cache(cachep)) {
3880                struct kmem_cache *root = memcg_root_cache(cachep);
3881                limit = root->limit;
3882                shared = root->shared;
3883                batchcount = root->batchcount;
3884        }
3885
3886        if (limit && shared && batchcount)
3887                goto skip_setup;
3888        /*
3889         * The head array serves three purposes:
3890         * - create a LIFO ordering, i.e. return objects that are cache-warm
3891         * - reduce the number of spinlock operations.
3892         * - reduce the number of linked list operations on the slab and
3893         *   bufctl chains: array operations are cheaper.
3894         * The numbers are guessed, we should auto-tune as described by
3895         * Bonwick.
3896         */
3897        if (cachep->size > 131072)
3898                limit = 1;
3899        else if (cachep->size > PAGE_SIZE)
3900                limit = 8;
3901        else if (cachep->size > 1024)
3902                limit = 24;
3903        else if (cachep->size > 256)
3904                limit = 54;
3905        else
3906                limit = 120;
3907
3908        /*
3909         * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3910         * allocation behaviour: Most allocs on one cpu, most free operations
3911         * on another cpu. For these cases, an efficient object passing between
3912         * cpus is necessary. This is provided by a shared array. The array
3913         * replaces Bonwick's magazine layer.
3914         * On uniprocessor, it's functionally equivalent (but less efficient)
3915         * to a larger limit. Thus disabled by default.
3916         */
3917        shared = 0;
3918        if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3919                shared = 8;
3920
3921#if DEBUG
3922        /*
3923         * With debugging enabled, large batchcount lead to excessively long
3924         * periods with disabled local interrupts. Limit the batchcount
3925         */
3926        if (limit > 32)
3927                limit = 32;
3928#endif
3929        batchcount = (limit + 1) / 2;
3930skip_setup:
3931        err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3932end:
3933        if (err)
3934                pr_err("enable_cpucache failed for %s, error %d\n",
3935                       cachep->name, -err);
3936        return err;
3937}
3938
3939/*
3940 * Drain an array if it contains any elements taking the node lock only if
3941 * necessary. Note that the node listlock also protects the array_cache
3942 * if drain_array() is used on the shared array.
3943 */
3944static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3945                         struct array_cache *ac, int node)
3946{
3947        LIST_HEAD(list);
3948
3949        /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3950        check_mutex_acquired();
3951
3952        if (!ac || !ac->avail)
3953                return;
3954
3955        if (ac->touched) {
3956                ac->touched = 0;
3957                return;
3958        }
3959
3960        spin_lock_irq(&n->list_lock);
3961        drain_array_locked(cachep, ac, node, false, &list);
3962        spin_unlock_irq(&n->list_lock);
3963
3964        slabs_destroy(cachep, &list);
3965}
3966
3967/**
3968 * cache_reap - Reclaim memory from caches.
3969 * @w: work descriptor
3970 *
3971 * Called from workqueue/eventd every few seconds.
3972 * Purpose:
3973 * - clear the per-cpu caches for this CPU.
3974 * - return freeable pages to the main free memory pool.
3975 *
3976 * If we cannot acquire the cache chain mutex then just give up - we'll try
3977 * again on the next iteration.
3978 */
3979static void cache_reap(struct work_struct *w)
3980{
3981        struct kmem_cache *searchp;
3982        struct kmem_cache_node *n;
3983        int node = numa_mem_id();
3984        struct delayed_work *work = to_delayed_work(w);
3985
3986        if (!mutex_trylock(&slab_mutex))
3987                /* Give up. Setup the next iteration. */
3988                goto out;
3989
3990        list_for_each_entry(searchp, &slab_caches, list) {
3991                check_irq_on();
3992
3993                /*
3994                 * We only take the node lock if absolutely necessary and we
3995                 * have established with reasonable certainty that
3996                 * we can do some work if the lock was obtained.
3997                 */
3998                n = get_node(searchp, node);
3999
4000                reap_alien(searchp, n);
4001
4002                drain_array(searchp, n, cpu_cache_get(searchp), node);
4003
4004                /*
4005                 * These are racy checks but it does not matter
4006                 * if we skip one check or scan twice.
4007                 */
4008                if (time_after(n->next_reap, jiffies))
4009                        goto next;
4010
4011                n->next_reap = jiffies + REAPTIMEOUT_NODE;
4012
4013                drain_array(searchp, n, n->shared, node);
4014
4015                if (n->free_touched)
4016                        n->free_touched = 0;
4017                else {
4018                        int freed;
4019
4020                        freed = drain_freelist(searchp, n, (n->free_limit +
4021                                5 * searchp->num - 1) / (5 * searchp->num));
4022                        STATS_ADD_REAPED(searchp, freed);
4023                }
4024next:
4025                cond_resched();
4026        }
4027        check_irq_on();
4028        mutex_unlock(&slab_mutex);
4029        next_reap_node();
4030out:
4031        /* Set up the next iteration */
4032        schedule_delayed_work_on(smp_processor_id(), work,
4033                                round_jiffies_relative(REAPTIMEOUT_AC));
4034}
4035
4036void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4037{
4038        unsigned long active_objs, num_objs, active_slabs;
4039        unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4040        unsigned long free_slabs = 0;
4041        int node;
4042        struct kmem_cache_node *n;
4043
4044        for_each_kmem_cache_node(cachep, node, n) {
4045                check_irq_on();
4046                spin_lock_irq(&n->list_lock);
4047
4048                total_slabs += n->total_slabs;
4049                free_slabs += n->free_slabs;
4050                free_objs += n->free_objects;
4051
4052                if (n->shared)
4053                        shared_avail += n->shared->avail;
4054
4055                spin_unlock_irq(&n->list_lock);
4056        }
4057        num_objs = total_slabs * cachep->num;
4058        active_slabs = total_slabs - free_slabs;
4059        active_objs = num_objs - free_objs;
4060
4061        sinfo->active_objs = active_objs;
4062        sinfo->num_objs = num_objs;
4063        sinfo->active_slabs = active_slabs;
4064        sinfo->num_slabs = total_slabs;
4065        sinfo->shared_avail = shared_avail;
4066        sinfo->limit = cachep->limit;
4067        sinfo->batchcount = cachep->batchcount;
4068        sinfo->shared = cachep->shared;
4069        sinfo->objects_per_slab = cachep->num;
4070        sinfo->cache_order = cachep->gfporder;
4071}
4072
4073void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4074{
4075#if STATS
4076        {                       /* node stats */
4077                unsigned long high = cachep->high_mark;
4078                unsigned long allocs = cachep->num_allocations;
4079                unsigned long grown = cachep->grown;
4080                unsigned long reaped = cachep->reaped;
4081                unsigned long errors = cachep->errors;
4082                unsigned long max_freeable = cachep->max_freeable;
4083                unsigned long node_allocs = cachep->node_allocs;
4084                unsigned long node_frees = cachep->node_frees;
4085                unsigned long overflows = cachep->node_overflow;
4086
4087                seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4088                           allocs, high, grown,
4089                           reaped, errors, max_freeable, node_allocs,
4090                           node_frees, overflows);
4091        }
4092        /* cpu stats */
4093        {
4094                unsigned long allochit = atomic_read(&cachep->allochit);
4095                unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4096                unsigned long freehit = atomic_read(&cachep->freehit);
4097                unsigned long freemiss = atomic_read(&cachep->freemiss);
4098
4099                seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4100                           allochit, allocmiss, freehit, freemiss);
4101        }
4102#endif
4103}
4104
4105#define MAX_SLABINFO_WRITE 128
4106/**
4107 * slabinfo_write - Tuning for the slab allocator
4108 * @file: unused
4109 * @buffer: user buffer
4110 * @count: data length
4111 * @ppos: unused
4112 *
4113 * Return: %0 on success, negative error code otherwise.
4114 */
4115ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4116                       size_t count, loff_t *ppos)
4117{
4118        char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4119        int limit, batchcount, shared, res;
4120        struct kmem_cache *cachep;
4121
4122        if (count > MAX_SLABINFO_WRITE)
4123                return -EINVAL;
4124        if (copy_from_user(&kbuf, buffer, count))
4125                return -EFAULT;
4126        kbuf[MAX_SLABINFO_WRITE] = '\0';
4127
4128        tmp = strchr(kbuf, ' ');
4129        if (!tmp)
4130                return -EINVAL;
4131        *tmp = '\0';
4132        tmp++;
4133        if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4134                return -EINVAL;
4135
4136        /* Find the cache in the chain of caches. */
4137        mutex_lock(&slab_mutex);
4138        res = -EINVAL;
4139        list_for_each_entry(cachep, &slab_caches, list) {
4140                if (!strcmp(cachep->name, kbuf)) {
4141                        if (limit < 1 || batchcount < 1 ||
4142                                        batchcount > limit || shared < 0) {
4143                                res = 0;
4144                        } else {
4145                                res = do_tune_cpucache(cachep, limit,
4146                                                       batchcount, shared,
4147                                                       GFP_KERNEL);
4148                        }
4149                        break;
4150                }
4151        }
4152        mutex_unlock(&slab_mutex);
4153        if (res >= 0)
4154                res = count;
4155        return res;
4156}
4157
4158#ifdef CONFIG_HARDENED_USERCOPY
4159/*
4160 * Rejects incorrectly sized objects and objects that are to be copied
4161 * to/from userspace but do not fall entirely within the containing slab
4162 * cache's usercopy region.
4163 *
4164 * Returns NULL if check passes, otherwise const char * to name of cache
4165 * to indicate an error.
4166 */
4167void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4168                         bool to_user)
4169{
4170        struct kmem_cache *cachep;
4171        unsigned int objnr;
4172        unsigned long offset;
4173
4174        ptr = kasan_reset_tag(ptr);
4175
4176        /* Find and validate object. */
4177        cachep = page->slab_cache;
4178        objnr = obj_to_index(cachep, page, (void *)ptr);
4179        BUG_ON(objnr >= cachep->num);
4180
4181        /* Find offset within object. */
4182        offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4183
4184        /* Allow address range falling entirely within usercopy region. */
4185        if (offset >= cachep->useroffset &&
4186            offset - cachep->useroffset <= cachep->usersize &&
4187            n <= cachep->useroffset - offset + cachep->usersize)
4188                return;
4189
4190        /*
4191         * If the copy is still within the allocated object, produce
4192         * a warning instead of rejecting the copy. This is intended
4193         * to be a temporary method to find any missing usercopy
4194         * whitelists.
4195         */
4196        if (usercopy_fallback &&
4197            offset <= cachep->object_size &&
4198            n <= cachep->object_size - offset) {
4199                usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4200                return;
4201        }
4202
4203        usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4204}
4205#endif /* CONFIG_HARDENED_USERCOPY */
4206
4207/**
4208 * __ksize -- Uninstrumented ksize.
4209 * @objp: pointer to the object
4210 *
4211 * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same
4212 * safety checks as ksize() with KASAN instrumentation enabled.
4213 *
4214 * Return: size of the actual memory used by @objp in bytes
4215 */
4216size_t __ksize(const void *objp)
4217{
4218        struct kmem_cache *c;
4219        size_t size;
4220
4221        BUG_ON(!objp);
4222        if (unlikely(objp == ZERO_SIZE_PTR))
4223                return 0;
4224
4225        c = virt_to_cache(objp);
4226        size = c ? c->object_size : 0;
4227
4228        return size;
4229}
4230EXPORT_SYMBOL(__ksize);
4231