linux/mm/util.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/mm.h>
   3#include <linux/slab.h>
   4#include <linux/string.h>
   5#include <linux/compiler.h>
   6#include <linux/export.h>
   7#include <linux/err.h>
   8#include <linux/sched.h>
   9#include <linux/sched/mm.h>
  10#include <linux/sched/signal.h>
  11#include <linux/sched/task_stack.h>
  12#include <linux/security.h>
  13#include <linux/swap.h>
  14#include <linux/swapops.h>
  15#include <linux/mman.h>
  16#include <linux/hugetlb.h>
  17#include <linux/vmalloc.h>
  18#include <linux/userfaultfd_k.h>
  19#include <linux/elf.h>
  20#include <linux/elf-randomize.h>
  21#include <linux/personality.h>
  22#include <linux/random.h>
  23#include <linux/processor.h>
  24#include <linux/sizes.h>
  25#include <linux/compat.h>
  26
  27#include <linux/uaccess.h>
  28
  29#include "internal.h"
  30
  31/**
  32 * kfree_const - conditionally free memory
  33 * @x: pointer to the memory
  34 *
  35 * Function calls kfree only if @x is not in .rodata section.
  36 */
  37void kfree_const(const void *x)
  38{
  39        if (!is_kernel_rodata((unsigned long)x))
  40                kfree(x);
  41}
  42EXPORT_SYMBOL(kfree_const);
  43
  44/**
  45 * kstrdup - allocate space for and copy an existing string
  46 * @s: the string to duplicate
  47 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  48 *
  49 * Return: newly allocated copy of @s or %NULL in case of error
  50 */
  51char *kstrdup(const char *s, gfp_t gfp)
  52{
  53        size_t len;
  54        char *buf;
  55
  56        if (!s)
  57                return NULL;
  58
  59        len = strlen(s) + 1;
  60        buf = kmalloc_track_caller(len, gfp);
  61        if (buf)
  62                memcpy(buf, s, len);
  63        return buf;
  64}
  65EXPORT_SYMBOL(kstrdup);
  66
  67/**
  68 * kstrdup_const - conditionally duplicate an existing const string
  69 * @s: the string to duplicate
  70 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  71 *
  72 * Note: Strings allocated by kstrdup_const should be freed by kfree_const.
  73 *
  74 * Return: source string if it is in .rodata section otherwise
  75 * fallback to kstrdup.
  76 */
  77const char *kstrdup_const(const char *s, gfp_t gfp)
  78{
  79        if (is_kernel_rodata((unsigned long)s))
  80                return s;
  81
  82        return kstrdup(s, gfp);
  83}
  84EXPORT_SYMBOL(kstrdup_const);
  85
  86/**
  87 * kstrndup - allocate space for and copy an existing string
  88 * @s: the string to duplicate
  89 * @max: read at most @max chars from @s
  90 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  91 *
  92 * Note: Use kmemdup_nul() instead if the size is known exactly.
  93 *
  94 * Return: newly allocated copy of @s or %NULL in case of error
  95 */
  96char *kstrndup(const char *s, size_t max, gfp_t gfp)
  97{
  98        size_t len;
  99        char *buf;
 100
 101        if (!s)
 102                return NULL;
 103
 104        len = strnlen(s, max);
 105        buf = kmalloc_track_caller(len+1, gfp);
 106        if (buf) {
 107                memcpy(buf, s, len);
 108                buf[len] = '\0';
 109        }
 110        return buf;
 111}
 112EXPORT_SYMBOL(kstrndup);
 113
 114/**
 115 * kmemdup - duplicate region of memory
 116 *
 117 * @src: memory region to duplicate
 118 * @len: memory region length
 119 * @gfp: GFP mask to use
 120 *
 121 * Return: newly allocated copy of @src or %NULL in case of error
 122 */
 123void *kmemdup(const void *src, size_t len, gfp_t gfp)
 124{
 125        void *p;
 126
 127        p = kmalloc_track_caller(len, gfp);
 128        if (p)
 129                memcpy(p, src, len);
 130        return p;
 131}
 132EXPORT_SYMBOL(kmemdup);
 133
 134/**
 135 * kmemdup_nul - Create a NUL-terminated string from unterminated data
 136 * @s: The data to stringify
 137 * @len: The size of the data
 138 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 139 *
 140 * Return: newly allocated copy of @s with NUL-termination or %NULL in
 141 * case of error
 142 */
 143char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
 144{
 145        char *buf;
 146
 147        if (!s)
 148                return NULL;
 149
 150        buf = kmalloc_track_caller(len + 1, gfp);
 151        if (buf) {
 152                memcpy(buf, s, len);
 153                buf[len] = '\0';
 154        }
 155        return buf;
 156}
 157EXPORT_SYMBOL(kmemdup_nul);
 158
 159/**
 160 * memdup_user - duplicate memory region from user space
 161 *
 162 * @src: source address in user space
 163 * @len: number of bytes to copy
 164 *
 165 * Return: an ERR_PTR() on failure.  Result is physically
 166 * contiguous, to be freed by kfree().
 167 */
 168void *memdup_user(const void __user *src, size_t len)
 169{
 170        void *p;
 171
 172        p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
 173        if (!p)
 174                return ERR_PTR(-ENOMEM);
 175
 176        if (copy_from_user(p, src, len)) {
 177                kfree(p);
 178                return ERR_PTR(-EFAULT);
 179        }
 180
 181        return p;
 182}
 183EXPORT_SYMBOL(memdup_user);
 184
 185/**
 186 * vmemdup_user - duplicate memory region from user space
 187 *
 188 * @src: source address in user space
 189 * @len: number of bytes to copy
 190 *
 191 * Return: an ERR_PTR() on failure.  Result may be not
 192 * physically contiguous.  Use kvfree() to free.
 193 */
 194void *vmemdup_user(const void __user *src, size_t len)
 195{
 196        void *p;
 197
 198        p = kvmalloc(len, GFP_USER);
 199        if (!p)
 200                return ERR_PTR(-ENOMEM);
 201
 202        if (copy_from_user(p, src, len)) {
 203                kvfree(p);
 204                return ERR_PTR(-EFAULT);
 205        }
 206
 207        return p;
 208}
 209EXPORT_SYMBOL(vmemdup_user);
 210
 211/**
 212 * strndup_user - duplicate an existing string from user space
 213 * @s: The string to duplicate
 214 * @n: Maximum number of bytes to copy, including the trailing NUL.
 215 *
 216 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
 217 */
 218char *strndup_user(const char __user *s, long n)
 219{
 220        char *p;
 221        long length;
 222
 223        length = strnlen_user(s, n);
 224
 225        if (!length)
 226                return ERR_PTR(-EFAULT);
 227
 228        if (length > n)
 229                return ERR_PTR(-EINVAL);
 230
 231        p = memdup_user(s, length);
 232
 233        if (IS_ERR(p))
 234                return p;
 235
 236        p[length - 1] = '\0';
 237
 238        return p;
 239}
 240EXPORT_SYMBOL(strndup_user);
 241
 242/**
 243 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
 244 *
 245 * @src: source address in user space
 246 * @len: number of bytes to copy
 247 *
 248 * Return: an ERR_PTR() on failure.
 249 */
 250void *memdup_user_nul(const void __user *src, size_t len)
 251{
 252        char *p;
 253
 254        /*
 255         * Always use GFP_KERNEL, since copy_from_user() can sleep and
 256         * cause pagefault, which makes it pointless to use GFP_NOFS
 257         * or GFP_ATOMIC.
 258         */
 259        p = kmalloc_track_caller(len + 1, GFP_KERNEL);
 260        if (!p)
 261                return ERR_PTR(-ENOMEM);
 262
 263        if (copy_from_user(p, src, len)) {
 264                kfree(p);
 265                return ERR_PTR(-EFAULT);
 266        }
 267        p[len] = '\0';
 268
 269        return p;
 270}
 271EXPORT_SYMBOL(memdup_user_nul);
 272
 273void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
 274                struct vm_area_struct *prev, struct rb_node *rb_parent)
 275{
 276        struct vm_area_struct *next;
 277
 278        vma->vm_prev = prev;
 279        if (prev) {
 280                next = prev->vm_next;
 281                prev->vm_next = vma;
 282        } else {
 283                mm->mmap = vma;
 284                if (rb_parent)
 285                        next = rb_entry(rb_parent,
 286                                        struct vm_area_struct, vm_rb);
 287                else
 288                        next = NULL;
 289        }
 290        vma->vm_next = next;
 291        if (next)
 292                next->vm_prev = vma;
 293}
 294
 295/* Check if the vma is being used as a stack by this task */
 296int vma_is_stack_for_current(struct vm_area_struct *vma)
 297{
 298        struct task_struct * __maybe_unused t = current;
 299
 300        return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
 301}
 302
 303#ifndef STACK_RND_MASK
 304#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
 305#endif
 306
 307unsigned long randomize_stack_top(unsigned long stack_top)
 308{
 309        unsigned long random_variable = 0;
 310
 311        if (current->flags & PF_RANDOMIZE) {
 312                random_variable = get_random_long();
 313                random_variable &= STACK_RND_MASK;
 314                random_variable <<= PAGE_SHIFT;
 315        }
 316#ifdef CONFIG_STACK_GROWSUP
 317        return PAGE_ALIGN(stack_top) + random_variable;
 318#else
 319        return PAGE_ALIGN(stack_top) - random_variable;
 320#endif
 321}
 322
 323#ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
 324unsigned long arch_randomize_brk(struct mm_struct *mm)
 325{
 326        /* Is the current task 32bit ? */
 327        if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
 328                return randomize_page(mm->brk, SZ_32M);
 329
 330        return randomize_page(mm->brk, SZ_1G);
 331}
 332
 333unsigned long arch_mmap_rnd(void)
 334{
 335        unsigned long rnd;
 336
 337#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
 338        if (is_compat_task())
 339                rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
 340        else
 341#endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
 342                rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
 343
 344        return rnd << PAGE_SHIFT;
 345}
 346
 347static int mmap_is_legacy(struct rlimit *rlim_stack)
 348{
 349        if (current->personality & ADDR_COMPAT_LAYOUT)
 350                return 1;
 351
 352        if (rlim_stack->rlim_cur == RLIM_INFINITY)
 353                return 1;
 354
 355        return sysctl_legacy_va_layout;
 356}
 357
 358/*
 359 * Leave enough space between the mmap area and the stack to honour ulimit in
 360 * the face of randomisation.
 361 */
 362#define MIN_GAP         (SZ_128M)
 363#define MAX_GAP         (STACK_TOP / 6 * 5)
 364
 365static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
 366{
 367        unsigned long gap = rlim_stack->rlim_cur;
 368        unsigned long pad = stack_guard_gap;
 369
 370        /* Account for stack randomization if necessary */
 371        if (current->flags & PF_RANDOMIZE)
 372                pad += (STACK_RND_MASK << PAGE_SHIFT);
 373
 374        /* Values close to RLIM_INFINITY can overflow. */
 375        if (gap + pad > gap)
 376                gap += pad;
 377
 378        if (gap < MIN_GAP)
 379                gap = MIN_GAP;
 380        else if (gap > MAX_GAP)
 381                gap = MAX_GAP;
 382
 383        return PAGE_ALIGN(STACK_TOP - gap - rnd);
 384}
 385
 386void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
 387{
 388        unsigned long random_factor = 0UL;
 389
 390        if (current->flags & PF_RANDOMIZE)
 391                random_factor = arch_mmap_rnd();
 392
 393        if (mmap_is_legacy(rlim_stack)) {
 394                mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
 395                mm->get_unmapped_area = arch_get_unmapped_area;
 396        } else {
 397                mm->mmap_base = mmap_base(random_factor, rlim_stack);
 398                mm->get_unmapped_area = arch_get_unmapped_area_topdown;
 399        }
 400}
 401#elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
 402void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
 403{
 404        mm->mmap_base = TASK_UNMAPPED_BASE;
 405        mm->get_unmapped_area = arch_get_unmapped_area;
 406}
 407#endif
 408
 409/**
 410 * __account_locked_vm - account locked pages to an mm's locked_vm
 411 * @mm:          mm to account against
 412 * @pages:       number of pages to account
 413 * @inc:         %true if @pages should be considered positive, %false if not
 414 * @task:        task used to check RLIMIT_MEMLOCK
 415 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
 416 *
 417 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
 418 * that mmap_sem is held as writer.
 419 *
 420 * Return:
 421 * * 0       on success
 422 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
 423 */
 424int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
 425                        struct task_struct *task, bool bypass_rlim)
 426{
 427        unsigned long locked_vm, limit;
 428        int ret = 0;
 429
 430        lockdep_assert_held_write(&mm->mmap_sem);
 431
 432        locked_vm = mm->locked_vm;
 433        if (inc) {
 434                if (!bypass_rlim) {
 435                        limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
 436                        if (locked_vm + pages > limit)
 437                                ret = -ENOMEM;
 438                }
 439                if (!ret)
 440                        mm->locked_vm = locked_vm + pages;
 441        } else {
 442                WARN_ON_ONCE(pages > locked_vm);
 443                mm->locked_vm = locked_vm - pages;
 444        }
 445
 446        pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
 447                 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
 448                 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
 449                 ret ? " - exceeded" : "");
 450
 451        return ret;
 452}
 453EXPORT_SYMBOL_GPL(__account_locked_vm);
 454
 455/**
 456 * account_locked_vm - account locked pages to an mm's locked_vm
 457 * @mm:          mm to account against, may be NULL
 458 * @pages:       number of pages to account
 459 * @inc:         %true if @pages should be considered positive, %false if not
 460 *
 461 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
 462 *
 463 * Return:
 464 * * 0       on success, or if mm is NULL
 465 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
 466 */
 467int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
 468{
 469        int ret;
 470
 471        if (pages == 0 || !mm)
 472                return 0;
 473
 474        down_write(&mm->mmap_sem);
 475        ret = __account_locked_vm(mm, pages, inc, current,
 476                                  capable(CAP_IPC_LOCK));
 477        up_write(&mm->mmap_sem);
 478
 479        return ret;
 480}
 481EXPORT_SYMBOL_GPL(account_locked_vm);
 482
 483unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
 484        unsigned long len, unsigned long prot,
 485        unsigned long flag, unsigned long pgoff)
 486{
 487        unsigned long ret;
 488        struct mm_struct *mm = current->mm;
 489        unsigned long populate;
 490        LIST_HEAD(uf);
 491
 492        ret = security_mmap_file(file, prot, flag);
 493        if (!ret) {
 494                if (down_write_killable(&mm->mmap_sem))
 495                        return -EINTR;
 496                ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
 497                                    &populate, &uf);
 498                up_write(&mm->mmap_sem);
 499                userfaultfd_unmap_complete(mm, &uf);
 500                if (populate)
 501                        mm_populate(ret, populate);
 502        }
 503        return ret;
 504}
 505
 506unsigned long vm_mmap(struct file *file, unsigned long addr,
 507        unsigned long len, unsigned long prot,
 508        unsigned long flag, unsigned long offset)
 509{
 510        if (unlikely(offset + PAGE_ALIGN(len) < offset))
 511                return -EINVAL;
 512        if (unlikely(offset_in_page(offset)))
 513                return -EINVAL;
 514
 515        return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
 516}
 517EXPORT_SYMBOL(vm_mmap);
 518
 519/**
 520 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
 521 * failure, fall back to non-contiguous (vmalloc) allocation.
 522 * @size: size of the request.
 523 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
 524 * @node: numa node to allocate from
 525 *
 526 * Uses kmalloc to get the memory but if the allocation fails then falls back
 527 * to the vmalloc allocator. Use kvfree for freeing the memory.
 528 *
 529 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
 530 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
 531 * preferable to the vmalloc fallback, due to visible performance drawbacks.
 532 *
 533 * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
 534 * fall back to vmalloc.
 535 *
 536 * Return: pointer to the allocated memory of %NULL in case of failure
 537 */
 538void *kvmalloc_node(size_t size, gfp_t flags, int node)
 539{
 540        gfp_t kmalloc_flags = flags;
 541        void *ret;
 542
 543        /*
 544         * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
 545         * so the given set of flags has to be compatible.
 546         */
 547        if ((flags & GFP_KERNEL) != GFP_KERNEL)
 548                return kmalloc_node(size, flags, node);
 549
 550        /*
 551         * We want to attempt a large physically contiguous block first because
 552         * it is less likely to fragment multiple larger blocks and therefore
 553         * contribute to a long term fragmentation less than vmalloc fallback.
 554         * However make sure that larger requests are not too disruptive - no
 555         * OOM killer and no allocation failure warnings as we have a fallback.
 556         */
 557        if (size > PAGE_SIZE) {
 558                kmalloc_flags |= __GFP_NOWARN;
 559
 560                if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
 561                        kmalloc_flags |= __GFP_NORETRY;
 562        }
 563
 564        ret = kmalloc_node(size, kmalloc_flags, node);
 565
 566        /*
 567         * It doesn't really make sense to fallback to vmalloc for sub page
 568         * requests
 569         */
 570        if (ret || size <= PAGE_SIZE)
 571                return ret;
 572
 573        return __vmalloc_node_flags_caller(size, node, flags,
 574                        __builtin_return_address(0));
 575}
 576EXPORT_SYMBOL(kvmalloc_node);
 577
 578/**
 579 * kvfree() - Free memory.
 580 * @addr: Pointer to allocated memory.
 581 *
 582 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
 583 * It is slightly more efficient to use kfree() or vfree() if you are certain
 584 * that you know which one to use.
 585 *
 586 * Context: Either preemptible task context or not-NMI interrupt.
 587 */
 588void kvfree(const void *addr)
 589{
 590        if (is_vmalloc_addr(addr))
 591                vfree(addr);
 592        else
 593                kfree(addr);
 594}
 595EXPORT_SYMBOL(kvfree);
 596
 597static inline void *__page_rmapping(struct page *page)
 598{
 599        unsigned long mapping;
 600
 601        mapping = (unsigned long)page->mapping;
 602        mapping &= ~PAGE_MAPPING_FLAGS;
 603
 604        return (void *)mapping;
 605}
 606
 607/* Neutral page->mapping pointer to address_space or anon_vma or other */
 608void *page_rmapping(struct page *page)
 609{
 610        page = compound_head(page);
 611        return __page_rmapping(page);
 612}
 613
 614/*
 615 * Return true if this page is mapped into pagetables.
 616 * For compound page it returns true if any subpage of compound page is mapped.
 617 */
 618bool page_mapped(struct page *page)
 619{
 620        int i;
 621
 622        if (likely(!PageCompound(page)))
 623                return atomic_read(&page->_mapcount) >= 0;
 624        page = compound_head(page);
 625        if (atomic_read(compound_mapcount_ptr(page)) >= 0)
 626                return true;
 627        if (PageHuge(page))
 628                return false;
 629        for (i = 0; i < compound_nr(page); i++) {
 630                if (atomic_read(&page[i]._mapcount) >= 0)
 631                        return true;
 632        }
 633        return false;
 634}
 635EXPORT_SYMBOL(page_mapped);
 636
 637struct anon_vma *page_anon_vma(struct page *page)
 638{
 639        unsigned long mapping;
 640
 641        page = compound_head(page);
 642        mapping = (unsigned long)page->mapping;
 643        if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 644                return NULL;
 645        return __page_rmapping(page);
 646}
 647
 648struct address_space *page_mapping(struct page *page)
 649{
 650        struct address_space *mapping;
 651
 652        page = compound_head(page);
 653
 654        /* This happens if someone calls flush_dcache_page on slab page */
 655        if (unlikely(PageSlab(page)))
 656                return NULL;
 657
 658        if (unlikely(PageSwapCache(page))) {
 659                swp_entry_t entry;
 660
 661                entry.val = page_private(page);
 662                return swap_address_space(entry);
 663        }
 664
 665        mapping = page->mapping;
 666        if ((unsigned long)mapping & PAGE_MAPPING_ANON)
 667                return NULL;
 668
 669        return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
 670}
 671EXPORT_SYMBOL(page_mapping);
 672
 673/*
 674 * For file cache pages, return the address_space, otherwise return NULL
 675 */
 676struct address_space *page_mapping_file(struct page *page)
 677{
 678        if (unlikely(PageSwapCache(page)))
 679                return NULL;
 680        return page_mapping(page);
 681}
 682
 683/* Slow path of page_mapcount() for compound pages */
 684int __page_mapcount(struct page *page)
 685{
 686        int ret;
 687
 688        ret = atomic_read(&page->_mapcount) + 1;
 689        /*
 690         * For file THP page->_mapcount contains total number of mapping
 691         * of the page: no need to look into compound_mapcount.
 692         */
 693        if (!PageAnon(page) && !PageHuge(page))
 694                return ret;
 695        page = compound_head(page);
 696        ret += atomic_read(compound_mapcount_ptr(page)) + 1;
 697        if (PageDoubleMap(page))
 698                ret--;
 699        return ret;
 700}
 701EXPORT_SYMBOL_GPL(__page_mapcount);
 702
 703int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
 704int sysctl_overcommit_ratio __read_mostly = 50;
 705unsigned long sysctl_overcommit_kbytes __read_mostly;
 706int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
 707unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
 708unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
 709
 710int overcommit_ratio_handler(struct ctl_table *table, int write,
 711                             void __user *buffer, size_t *lenp,
 712                             loff_t *ppos)
 713{
 714        int ret;
 715
 716        ret = proc_dointvec(table, write, buffer, lenp, ppos);
 717        if (ret == 0 && write)
 718                sysctl_overcommit_kbytes = 0;
 719        return ret;
 720}
 721
 722int overcommit_kbytes_handler(struct ctl_table *table, int write,
 723                             void __user *buffer, size_t *lenp,
 724                             loff_t *ppos)
 725{
 726        int ret;
 727
 728        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 729        if (ret == 0 && write)
 730                sysctl_overcommit_ratio = 0;
 731        return ret;
 732}
 733
 734/*
 735 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
 736 */
 737unsigned long vm_commit_limit(void)
 738{
 739        unsigned long allowed;
 740
 741        if (sysctl_overcommit_kbytes)
 742                allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
 743        else
 744                allowed = ((totalram_pages() - hugetlb_total_pages())
 745                           * sysctl_overcommit_ratio / 100);
 746        allowed += total_swap_pages;
 747
 748        return allowed;
 749}
 750
 751/*
 752 * Make sure vm_committed_as in one cacheline and not cacheline shared with
 753 * other variables. It can be updated by several CPUs frequently.
 754 */
 755struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
 756
 757/*
 758 * The global memory commitment made in the system can be a metric
 759 * that can be used to drive ballooning decisions when Linux is hosted
 760 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
 761 * balancing memory across competing virtual machines that are hosted.
 762 * Several metrics drive this policy engine including the guest reported
 763 * memory commitment.
 764 */
 765unsigned long vm_memory_committed(void)
 766{
 767        return percpu_counter_read_positive(&vm_committed_as);
 768}
 769EXPORT_SYMBOL_GPL(vm_memory_committed);
 770
 771/*
 772 * Check that a process has enough memory to allocate a new virtual
 773 * mapping. 0 means there is enough memory for the allocation to
 774 * succeed and -ENOMEM implies there is not.
 775 *
 776 * We currently support three overcommit policies, which are set via the
 777 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting.rst
 778 *
 779 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
 780 * Additional code 2002 Jul 20 by Robert Love.
 781 *
 782 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
 783 *
 784 * Note this is a helper function intended to be used by LSMs which
 785 * wish to use this logic.
 786 */
 787int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
 788{
 789        long allowed;
 790
 791        VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
 792                        -(s64)vm_committed_as_batch * num_online_cpus(),
 793                        "memory commitment underflow");
 794
 795        vm_acct_memory(pages);
 796
 797        /*
 798         * Sometimes we want to use more memory than we have
 799         */
 800        if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
 801                return 0;
 802
 803        if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
 804                if (pages > totalram_pages() + total_swap_pages)
 805                        goto error;
 806                return 0;
 807        }
 808
 809        allowed = vm_commit_limit();
 810        /*
 811         * Reserve some for root
 812         */
 813        if (!cap_sys_admin)
 814                allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
 815
 816        /*
 817         * Don't let a single process grow so big a user can't recover
 818         */
 819        if (mm) {
 820                long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
 821
 822                allowed -= min_t(long, mm->total_vm / 32, reserve);
 823        }
 824
 825        if (percpu_counter_read_positive(&vm_committed_as) < allowed)
 826                return 0;
 827error:
 828        vm_unacct_memory(pages);
 829
 830        return -ENOMEM;
 831}
 832
 833/**
 834 * get_cmdline() - copy the cmdline value to a buffer.
 835 * @task:     the task whose cmdline value to copy.
 836 * @buffer:   the buffer to copy to.
 837 * @buflen:   the length of the buffer. Larger cmdline values are truncated
 838 *            to this length.
 839 *
 840 * Return: the size of the cmdline field copied. Note that the copy does
 841 * not guarantee an ending NULL byte.
 842 */
 843int get_cmdline(struct task_struct *task, char *buffer, int buflen)
 844{
 845        int res = 0;
 846        unsigned int len;
 847        struct mm_struct *mm = get_task_mm(task);
 848        unsigned long arg_start, arg_end, env_start, env_end;
 849        if (!mm)
 850                goto out;
 851        if (!mm->arg_end)
 852                goto out_mm;    /* Shh! No looking before we're done */
 853
 854        spin_lock(&mm->arg_lock);
 855        arg_start = mm->arg_start;
 856        arg_end = mm->arg_end;
 857        env_start = mm->env_start;
 858        env_end = mm->env_end;
 859        spin_unlock(&mm->arg_lock);
 860
 861        len = arg_end - arg_start;
 862
 863        if (len > buflen)
 864                len = buflen;
 865
 866        res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
 867
 868        /*
 869         * If the nul at the end of args has been overwritten, then
 870         * assume application is using setproctitle(3).
 871         */
 872        if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
 873                len = strnlen(buffer, res);
 874                if (len < res) {
 875                        res = len;
 876                } else {
 877                        len = env_end - env_start;
 878                        if (len > buflen - res)
 879                                len = buflen - res;
 880                        res += access_process_vm(task, env_start,
 881                                                 buffer+res, len,
 882                                                 FOLL_FORCE);
 883                        res = strnlen(buffer, res);
 884                }
 885        }
 886out_mm:
 887        mmput(mm);
 888out:
 889        return res;
 890}
 891
 892int memcmp_pages(struct page *page1, struct page *page2)
 893{
 894        char *addr1, *addr2;
 895        int ret;
 896
 897        addr1 = kmap_atomic(page1);
 898        addr2 = kmap_atomic(page2);
 899        ret = memcmp(addr1, addr2, PAGE_SIZE);
 900        kunmap_atomic(addr2);
 901        kunmap_atomic(addr1);
 902        return ret;
 903}
 904