linux/security/keys/keyring.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Keyring handling
   3 *
   4 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
   5 * Written by David Howells (dhowells@redhat.com)
   6 */
   7
   8#include <linux/export.h>
   9#include <linux/init.h>
  10#include <linux/sched.h>
  11#include <linux/slab.h>
  12#include <linux/security.h>
  13#include <linux/seq_file.h>
  14#include <linux/err.h>
  15#include <linux/user_namespace.h>
  16#include <linux/nsproxy.h>
  17#include <keys/keyring-type.h>
  18#include <keys/user-type.h>
  19#include <linux/assoc_array_priv.h>
  20#include <linux/uaccess.h>
  21#include <net/net_namespace.h>
  22#include "internal.h"
  23
  24/*
  25 * When plumbing the depths of the key tree, this sets a hard limit
  26 * set on how deep we're willing to go.
  27 */
  28#define KEYRING_SEARCH_MAX_DEPTH 6
  29
  30/*
  31 * We mark pointers we pass to the associative array with bit 1 set if
  32 * they're keyrings and clear otherwise.
  33 */
  34#define KEYRING_PTR_SUBTYPE     0x2UL
  35
  36static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
  37{
  38        return (unsigned long)x & KEYRING_PTR_SUBTYPE;
  39}
  40static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
  41{
  42        void *object = assoc_array_ptr_to_leaf(x);
  43        return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
  44}
  45static inline void *keyring_key_to_ptr(struct key *key)
  46{
  47        if (key->type == &key_type_keyring)
  48                return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
  49        return key;
  50}
  51
  52static DEFINE_RWLOCK(keyring_name_lock);
  53
  54/*
  55 * Clean up the bits of user_namespace that belong to us.
  56 */
  57void key_free_user_ns(struct user_namespace *ns)
  58{
  59        write_lock(&keyring_name_lock);
  60        list_del_init(&ns->keyring_name_list);
  61        write_unlock(&keyring_name_lock);
  62
  63        key_put(ns->user_keyring_register);
  64#ifdef CONFIG_PERSISTENT_KEYRINGS
  65        key_put(ns->persistent_keyring_register);
  66#endif
  67}
  68
  69/*
  70 * The keyring key type definition.  Keyrings are simply keys of this type and
  71 * can be treated as ordinary keys in addition to having their own special
  72 * operations.
  73 */
  74static int keyring_preparse(struct key_preparsed_payload *prep);
  75static void keyring_free_preparse(struct key_preparsed_payload *prep);
  76static int keyring_instantiate(struct key *keyring,
  77                               struct key_preparsed_payload *prep);
  78static void keyring_revoke(struct key *keyring);
  79static void keyring_destroy(struct key *keyring);
  80static void keyring_describe(const struct key *keyring, struct seq_file *m);
  81static long keyring_read(const struct key *keyring,
  82                         char __user *buffer, size_t buflen);
  83
  84struct key_type key_type_keyring = {
  85        .name           = "keyring",
  86        .def_datalen    = 0,
  87        .preparse       = keyring_preparse,
  88        .free_preparse  = keyring_free_preparse,
  89        .instantiate    = keyring_instantiate,
  90        .revoke         = keyring_revoke,
  91        .destroy        = keyring_destroy,
  92        .describe       = keyring_describe,
  93        .read           = keyring_read,
  94};
  95EXPORT_SYMBOL(key_type_keyring);
  96
  97/*
  98 * Semaphore to serialise link/link calls to prevent two link calls in parallel
  99 * introducing a cycle.
 100 */
 101static DEFINE_MUTEX(keyring_serialise_link_lock);
 102
 103/*
 104 * Publish the name of a keyring so that it can be found by name (if it has
 105 * one and it doesn't begin with a dot).
 106 */
 107static void keyring_publish_name(struct key *keyring)
 108{
 109        struct user_namespace *ns = current_user_ns();
 110
 111        if (keyring->description &&
 112            keyring->description[0] &&
 113            keyring->description[0] != '.') {
 114                write_lock(&keyring_name_lock);
 115                list_add_tail(&keyring->name_link, &ns->keyring_name_list);
 116                write_unlock(&keyring_name_lock);
 117        }
 118}
 119
 120/*
 121 * Preparse a keyring payload
 122 */
 123static int keyring_preparse(struct key_preparsed_payload *prep)
 124{
 125        return prep->datalen != 0 ? -EINVAL : 0;
 126}
 127
 128/*
 129 * Free a preparse of a user defined key payload
 130 */
 131static void keyring_free_preparse(struct key_preparsed_payload *prep)
 132{
 133}
 134
 135/*
 136 * Initialise a keyring.
 137 *
 138 * Returns 0 on success, -EINVAL if given any data.
 139 */
 140static int keyring_instantiate(struct key *keyring,
 141                               struct key_preparsed_payload *prep)
 142{
 143        assoc_array_init(&keyring->keys);
 144        /* make the keyring available by name if it has one */
 145        keyring_publish_name(keyring);
 146        return 0;
 147}
 148
 149/*
 150 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
 151 * fold the carry back too, but that requires inline asm.
 152 */
 153static u64 mult_64x32_and_fold(u64 x, u32 y)
 154{
 155        u64 hi = (u64)(u32)(x >> 32) * y;
 156        u64 lo = (u64)(u32)(x) * y;
 157        return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
 158}
 159
 160/*
 161 * Hash a key type and description.
 162 */
 163static void hash_key_type_and_desc(struct keyring_index_key *index_key)
 164{
 165        const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
 166        const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
 167        const char *description = index_key->description;
 168        unsigned long hash, type;
 169        u32 piece;
 170        u64 acc;
 171        int n, desc_len = index_key->desc_len;
 172
 173        type = (unsigned long)index_key->type;
 174        acc = mult_64x32_and_fold(type, desc_len + 13);
 175        acc = mult_64x32_and_fold(acc, 9207);
 176        piece = (unsigned long)index_key->domain_tag;
 177        acc = mult_64x32_and_fold(acc, piece);
 178        acc = mult_64x32_and_fold(acc, 9207);
 179
 180        for (;;) {
 181                n = desc_len;
 182                if (n <= 0)
 183                        break;
 184                if (n > 4)
 185                        n = 4;
 186                piece = 0;
 187                memcpy(&piece, description, n);
 188                description += n;
 189                desc_len -= n;
 190                acc = mult_64x32_and_fold(acc, piece);
 191                acc = mult_64x32_and_fold(acc, 9207);
 192        }
 193
 194        /* Fold the hash down to 32 bits if need be. */
 195        hash = acc;
 196        if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
 197                hash ^= acc >> 32;
 198
 199        /* Squidge all the keyrings into a separate part of the tree to
 200         * ordinary keys by making sure the lowest level segment in the hash is
 201         * zero for keyrings and non-zero otherwise.
 202         */
 203        if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
 204                hash |= (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
 205        else if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
 206                hash = (hash + (hash << level_shift)) & ~fan_mask;
 207        index_key->hash = hash;
 208}
 209
 210/*
 211 * Finalise an index key to include a part of the description actually in the
 212 * index key, to set the domain tag and to calculate the hash.
 213 */
 214void key_set_index_key(struct keyring_index_key *index_key)
 215{
 216        static struct key_tag default_domain_tag = { .usage = REFCOUNT_INIT(1), };
 217        size_t n = min_t(size_t, index_key->desc_len, sizeof(index_key->desc));
 218
 219        memcpy(index_key->desc, index_key->description, n);
 220
 221        if (!index_key->domain_tag) {
 222                if (index_key->type->flags & KEY_TYPE_NET_DOMAIN)
 223                        index_key->domain_tag = current->nsproxy->net_ns->key_domain;
 224                else
 225                        index_key->domain_tag = &default_domain_tag;
 226        }
 227
 228        hash_key_type_and_desc(index_key);
 229}
 230
 231/**
 232 * key_put_tag - Release a ref on a tag.
 233 * @tag: The tag to release.
 234 *
 235 * This releases a reference the given tag and returns true if that ref was the
 236 * last one.
 237 */
 238bool key_put_tag(struct key_tag *tag)
 239{
 240        if (refcount_dec_and_test(&tag->usage)) {
 241                kfree_rcu(tag, rcu);
 242                return true;
 243        }
 244
 245        return false;
 246}
 247
 248/**
 249 * key_remove_domain - Kill off a key domain and gc its keys
 250 * @domain_tag: The domain tag to release.
 251 *
 252 * This marks a domain tag as being dead and releases a ref on it.  If that
 253 * wasn't the last reference, the garbage collector is poked to try and delete
 254 * all keys that were in the domain.
 255 */
 256void key_remove_domain(struct key_tag *domain_tag)
 257{
 258        domain_tag->removed = true;
 259        if (!key_put_tag(domain_tag))
 260                key_schedule_gc_links();
 261}
 262
 263/*
 264 * Build the next index key chunk.
 265 *
 266 * We return it one word-sized chunk at a time.
 267 */
 268static unsigned long keyring_get_key_chunk(const void *data, int level)
 269{
 270        const struct keyring_index_key *index_key = data;
 271        unsigned long chunk = 0;
 272        const u8 *d;
 273        int desc_len = index_key->desc_len, n = sizeof(chunk);
 274
 275        level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
 276        switch (level) {
 277        case 0:
 278                return index_key->hash;
 279        case 1:
 280                return index_key->x;
 281        case 2:
 282                return (unsigned long)index_key->type;
 283        case 3:
 284                return (unsigned long)index_key->domain_tag;
 285        default:
 286                level -= 4;
 287                if (desc_len <= sizeof(index_key->desc))
 288                        return 0;
 289
 290                d = index_key->description + sizeof(index_key->desc);
 291                d += level * sizeof(long);
 292                desc_len -= sizeof(index_key->desc);
 293                if (desc_len > n)
 294                        desc_len = n;
 295                do {
 296                        chunk <<= 8;
 297                        chunk |= *d++;
 298                } while (--desc_len > 0);
 299                return chunk;
 300        }
 301}
 302
 303static unsigned long keyring_get_object_key_chunk(const void *object, int level)
 304{
 305        const struct key *key = keyring_ptr_to_key(object);
 306        return keyring_get_key_chunk(&key->index_key, level);
 307}
 308
 309static bool keyring_compare_object(const void *object, const void *data)
 310{
 311        const struct keyring_index_key *index_key = data;
 312        const struct key *key = keyring_ptr_to_key(object);
 313
 314        return key->index_key.type == index_key->type &&
 315                key->index_key.domain_tag == index_key->domain_tag &&
 316                key->index_key.desc_len == index_key->desc_len &&
 317                memcmp(key->index_key.description, index_key->description,
 318                       index_key->desc_len) == 0;
 319}
 320
 321/*
 322 * Compare the index keys of a pair of objects and determine the bit position
 323 * at which they differ - if they differ.
 324 */
 325static int keyring_diff_objects(const void *object, const void *data)
 326{
 327        const struct key *key_a = keyring_ptr_to_key(object);
 328        const struct keyring_index_key *a = &key_a->index_key;
 329        const struct keyring_index_key *b = data;
 330        unsigned long seg_a, seg_b;
 331        int level, i;
 332
 333        level = 0;
 334        seg_a = a->hash;
 335        seg_b = b->hash;
 336        if ((seg_a ^ seg_b) != 0)
 337                goto differ;
 338        level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
 339
 340        /* The number of bits contributed by the hash is controlled by a
 341         * constant in the assoc_array headers.  Everything else thereafter we
 342         * can deal with as being machine word-size dependent.
 343         */
 344        seg_a = a->x;
 345        seg_b = b->x;
 346        if ((seg_a ^ seg_b) != 0)
 347                goto differ;
 348        level += sizeof(unsigned long);
 349
 350        /* The next bit may not work on big endian */
 351        seg_a = (unsigned long)a->type;
 352        seg_b = (unsigned long)b->type;
 353        if ((seg_a ^ seg_b) != 0)
 354                goto differ;
 355        level += sizeof(unsigned long);
 356
 357        seg_a = (unsigned long)a->domain_tag;
 358        seg_b = (unsigned long)b->domain_tag;
 359        if ((seg_a ^ seg_b) != 0)
 360                goto differ;
 361        level += sizeof(unsigned long);
 362
 363        i = sizeof(a->desc);
 364        if (a->desc_len <= i)
 365                goto same;
 366
 367        for (; i < a->desc_len; i++) {
 368                seg_a = *(unsigned char *)(a->description + i);
 369                seg_b = *(unsigned char *)(b->description + i);
 370                if ((seg_a ^ seg_b) != 0)
 371                        goto differ_plus_i;
 372        }
 373
 374same:
 375        return -1;
 376
 377differ_plus_i:
 378        level += i;
 379differ:
 380        i = level * 8 + __ffs(seg_a ^ seg_b);
 381        return i;
 382}
 383
 384/*
 385 * Free an object after stripping the keyring flag off of the pointer.
 386 */
 387static void keyring_free_object(void *object)
 388{
 389        key_put(keyring_ptr_to_key(object));
 390}
 391
 392/*
 393 * Operations for keyring management by the index-tree routines.
 394 */
 395static const struct assoc_array_ops keyring_assoc_array_ops = {
 396        .get_key_chunk          = keyring_get_key_chunk,
 397        .get_object_key_chunk   = keyring_get_object_key_chunk,
 398        .compare_object         = keyring_compare_object,
 399        .diff_objects           = keyring_diff_objects,
 400        .free_object            = keyring_free_object,
 401};
 402
 403/*
 404 * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
 405 * and dispose of its data.
 406 *
 407 * The garbage collector detects the final key_put(), removes the keyring from
 408 * the serial number tree and then does RCU synchronisation before coming here,
 409 * so we shouldn't need to worry about code poking around here with the RCU
 410 * readlock held by this time.
 411 */
 412static void keyring_destroy(struct key *keyring)
 413{
 414        if (keyring->description) {
 415                write_lock(&keyring_name_lock);
 416
 417                if (keyring->name_link.next != NULL &&
 418                    !list_empty(&keyring->name_link))
 419                        list_del(&keyring->name_link);
 420
 421                write_unlock(&keyring_name_lock);
 422        }
 423
 424        if (keyring->restrict_link) {
 425                struct key_restriction *keyres = keyring->restrict_link;
 426
 427                key_put(keyres->key);
 428                kfree(keyres);
 429        }
 430
 431        assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
 432}
 433
 434/*
 435 * Describe a keyring for /proc.
 436 */
 437static void keyring_describe(const struct key *keyring, struct seq_file *m)
 438{
 439        if (keyring->description)
 440                seq_puts(m, keyring->description);
 441        else
 442                seq_puts(m, "[anon]");
 443
 444        if (key_is_positive(keyring)) {
 445                if (keyring->keys.nr_leaves_on_tree != 0)
 446                        seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
 447                else
 448                        seq_puts(m, ": empty");
 449        }
 450}
 451
 452struct keyring_read_iterator_context {
 453        size_t                  buflen;
 454        size_t                  count;
 455        key_serial_t __user     *buffer;
 456};
 457
 458static int keyring_read_iterator(const void *object, void *data)
 459{
 460        struct keyring_read_iterator_context *ctx = data;
 461        const struct key *key = keyring_ptr_to_key(object);
 462        int ret;
 463
 464        kenter("{%s,%d},,{%zu/%zu}",
 465               key->type->name, key->serial, ctx->count, ctx->buflen);
 466
 467        if (ctx->count >= ctx->buflen)
 468                return 1;
 469
 470        ret = put_user(key->serial, ctx->buffer);
 471        if (ret < 0)
 472                return ret;
 473        ctx->buffer++;
 474        ctx->count += sizeof(key->serial);
 475        return 0;
 476}
 477
 478/*
 479 * Read a list of key IDs from the keyring's contents in binary form
 480 *
 481 * The keyring's semaphore is read-locked by the caller.  This prevents someone
 482 * from modifying it under us - which could cause us to read key IDs multiple
 483 * times.
 484 */
 485static long keyring_read(const struct key *keyring,
 486                         char __user *buffer, size_t buflen)
 487{
 488        struct keyring_read_iterator_context ctx;
 489        long ret;
 490
 491        kenter("{%d},,%zu", key_serial(keyring), buflen);
 492
 493        if (buflen & (sizeof(key_serial_t) - 1))
 494                return -EINVAL;
 495
 496        /* Copy as many key IDs as fit into the buffer */
 497        if (buffer && buflen) {
 498                ctx.buffer = (key_serial_t __user *)buffer;
 499                ctx.buflen = buflen;
 500                ctx.count = 0;
 501                ret = assoc_array_iterate(&keyring->keys,
 502                                          keyring_read_iterator, &ctx);
 503                if (ret < 0) {
 504                        kleave(" = %ld [iterate]", ret);
 505                        return ret;
 506                }
 507        }
 508
 509        /* Return the size of the buffer needed */
 510        ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
 511        if (ret <= buflen)
 512                kleave("= %ld [ok]", ret);
 513        else
 514                kleave("= %ld [buffer too small]", ret);
 515        return ret;
 516}
 517
 518/*
 519 * Allocate a keyring and link into the destination keyring.
 520 */
 521struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
 522                          const struct cred *cred, key_perm_t perm,
 523                          unsigned long flags,
 524                          struct key_restriction *restrict_link,
 525                          struct key *dest)
 526{
 527        struct key *keyring;
 528        int ret;
 529
 530        keyring = key_alloc(&key_type_keyring, description,
 531                            uid, gid, cred, perm, flags, restrict_link);
 532        if (!IS_ERR(keyring)) {
 533                ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
 534                if (ret < 0) {
 535                        key_put(keyring);
 536                        keyring = ERR_PTR(ret);
 537                }
 538        }
 539
 540        return keyring;
 541}
 542EXPORT_SYMBOL(keyring_alloc);
 543
 544/**
 545 * restrict_link_reject - Give -EPERM to restrict link
 546 * @keyring: The keyring being added to.
 547 * @type: The type of key being added.
 548 * @payload: The payload of the key intended to be added.
 549 * @restriction_key: Keys providing additional data for evaluating restriction.
 550 *
 551 * Reject the addition of any links to a keyring.  It can be overridden by
 552 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
 553 * adding a key to a keyring.
 554 *
 555 * This is meant to be stored in a key_restriction structure which is passed
 556 * in the restrict_link parameter to keyring_alloc().
 557 */
 558int restrict_link_reject(struct key *keyring,
 559                         const struct key_type *type,
 560                         const union key_payload *payload,
 561                         struct key *restriction_key)
 562{
 563        return -EPERM;
 564}
 565
 566/*
 567 * By default, we keys found by getting an exact match on their descriptions.
 568 */
 569bool key_default_cmp(const struct key *key,
 570                     const struct key_match_data *match_data)
 571{
 572        return strcmp(key->description, match_data->raw_data) == 0;
 573}
 574
 575/*
 576 * Iteration function to consider each key found.
 577 */
 578static int keyring_search_iterator(const void *object, void *iterator_data)
 579{
 580        struct keyring_search_context *ctx = iterator_data;
 581        const struct key *key = keyring_ptr_to_key(object);
 582        unsigned long kflags = READ_ONCE(key->flags);
 583        short state = READ_ONCE(key->state);
 584
 585        kenter("{%d}", key->serial);
 586
 587        /* ignore keys not of this type */
 588        if (key->type != ctx->index_key.type) {
 589                kleave(" = 0 [!type]");
 590                return 0;
 591        }
 592
 593        /* skip invalidated, revoked and expired keys */
 594        if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
 595                time64_t expiry = READ_ONCE(key->expiry);
 596
 597                if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
 598                              (1 << KEY_FLAG_REVOKED))) {
 599                        ctx->result = ERR_PTR(-EKEYREVOKED);
 600                        kleave(" = %d [invrev]", ctx->skipped_ret);
 601                        goto skipped;
 602                }
 603
 604                if (expiry && ctx->now >= expiry) {
 605                        if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
 606                                ctx->result = ERR_PTR(-EKEYEXPIRED);
 607                        kleave(" = %d [expire]", ctx->skipped_ret);
 608                        goto skipped;
 609                }
 610        }
 611
 612        /* keys that don't match */
 613        if (!ctx->match_data.cmp(key, &ctx->match_data)) {
 614                kleave(" = 0 [!match]");
 615                return 0;
 616        }
 617
 618        /* key must have search permissions */
 619        if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
 620            key_task_permission(make_key_ref(key, ctx->possessed),
 621                                ctx->cred, KEY_NEED_SEARCH) < 0) {
 622                ctx->result = ERR_PTR(-EACCES);
 623                kleave(" = %d [!perm]", ctx->skipped_ret);
 624                goto skipped;
 625        }
 626
 627        if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
 628                /* we set a different error code if we pass a negative key */
 629                if (state < 0) {
 630                        ctx->result = ERR_PTR(state);
 631                        kleave(" = %d [neg]", ctx->skipped_ret);
 632                        goto skipped;
 633                }
 634        }
 635
 636        /* Found */
 637        ctx->result = make_key_ref(key, ctx->possessed);
 638        kleave(" = 1 [found]");
 639        return 1;
 640
 641skipped:
 642        return ctx->skipped_ret;
 643}
 644
 645/*
 646 * Search inside a keyring for a key.  We can search by walking to it
 647 * directly based on its index-key or we can iterate over the entire
 648 * tree looking for it, based on the match function.
 649 */
 650static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
 651{
 652        if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
 653                const void *object;
 654
 655                object = assoc_array_find(&keyring->keys,
 656                                          &keyring_assoc_array_ops,
 657                                          &ctx->index_key);
 658                return object ? ctx->iterator(object, ctx) : 0;
 659        }
 660        return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
 661}
 662
 663/*
 664 * Search a tree of keyrings that point to other keyrings up to the maximum
 665 * depth.
 666 */
 667static bool search_nested_keyrings(struct key *keyring,
 668                                   struct keyring_search_context *ctx)
 669{
 670        struct {
 671                struct key *keyring;
 672                struct assoc_array_node *node;
 673                int slot;
 674        } stack[KEYRING_SEARCH_MAX_DEPTH];
 675
 676        struct assoc_array_shortcut *shortcut;
 677        struct assoc_array_node *node;
 678        struct assoc_array_ptr *ptr;
 679        struct key *key;
 680        int sp = 0, slot;
 681
 682        kenter("{%d},{%s,%s}",
 683               keyring->serial,
 684               ctx->index_key.type->name,
 685               ctx->index_key.description);
 686
 687#define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
 688        BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
 689               (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
 690
 691        if (ctx->index_key.description)
 692                key_set_index_key(&ctx->index_key);
 693
 694        /* Check to see if this top-level keyring is what we are looking for
 695         * and whether it is valid or not.
 696         */
 697        if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
 698            keyring_compare_object(keyring, &ctx->index_key)) {
 699                ctx->skipped_ret = 2;
 700                switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
 701                case 1:
 702                        goto found;
 703                case 2:
 704                        return false;
 705                default:
 706                        break;
 707                }
 708        }
 709
 710        ctx->skipped_ret = 0;
 711
 712        /* Start processing a new keyring */
 713descend_to_keyring:
 714        kdebug("descend to %d", keyring->serial);
 715        if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
 716                              (1 << KEY_FLAG_REVOKED)))
 717                goto not_this_keyring;
 718
 719        /* Search through the keys in this keyring before its searching its
 720         * subtrees.
 721         */
 722        if (search_keyring(keyring, ctx))
 723                goto found;
 724
 725        /* Then manually iterate through the keyrings nested in this one.
 726         *
 727         * Start from the root node of the index tree.  Because of the way the
 728         * hash function has been set up, keyrings cluster on the leftmost
 729         * branch of the root node (root slot 0) or in the root node itself.
 730         * Non-keyrings avoid the leftmost branch of the root entirely (root
 731         * slots 1-15).
 732         */
 733        if (!(ctx->flags & KEYRING_SEARCH_RECURSE))
 734                goto not_this_keyring;
 735
 736        ptr = READ_ONCE(keyring->keys.root);
 737        if (!ptr)
 738                goto not_this_keyring;
 739
 740        if (assoc_array_ptr_is_shortcut(ptr)) {
 741                /* If the root is a shortcut, either the keyring only contains
 742                 * keyring pointers (everything clusters behind root slot 0) or
 743                 * doesn't contain any keyring pointers.
 744                 */
 745                shortcut = assoc_array_ptr_to_shortcut(ptr);
 746                if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
 747                        goto not_this_keyring;
 748
 749                ptr = READ_ONCE(shortcut->next_node);
 750                node = assoc_array_ptr_to_node(ptr);
 751                goto begin_node;
 752        }
 753
 754        node = assoc_array_ptr_to_node(ptr);
 755        ptr = node->slots[0];
 756        if (!assoc_array_ptr_is_meta(ptr))
 757                goto begin_node;
 758
 759descend_to_node:
 760        /* Descend to a more distal node in this keyring's content tree and go
 761         * through that.
 762         */
 763        kdebug("descend");
 764        if (assoc_array_ptr_is_shortcut(ptr)) {
 765                shortcut = assoc_array_ptr_to_shortcut(ptr);
 766                ptr = READ_ONCE(shortcut->next_node);
 767                BUG_ON(!assoc_array_ptr_is_node(ptr));
 768        }
 769        node = assoc_array_ptr_to_node(ptr);
 770
 771begin_node:
 772        kdebug("begin_node");
 773        slot = 0;
 774ascend_to_node:
 775        /* Go through the slots in a node */
 776        for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
 777                ptr = READ_ONCE(node->slots[slot]);
 778
 779                if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
 780                        goto descend_to_node;
 781
 782                if (!keyring_ptr_is_keyring(ptr))
 783                        continue;
 784
 785                key = keyring_ptr_to_key(ptr);
 786
 787                if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
 788                        if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
 789                                ctx->result = ERR_PTR(-ELOOP);
 790                                return false;
 791                        }
 792                        goto not_this_keyring;
 793                }
 794
 795                /* Search a nested keyring */
 796                if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
 797                    key_task_permission(make_key_ref(key, ctx->possessed),
 798                                        ctx->cred, KEY_NEED_SEARCH) < 0)
 799                        continue;
 800
 801                /* stack the current position */
 802                stack[sp].keyring = keyring;
 803                stack[sp].node = node;
 804                stack[sp].slot = slot;
 805                sp++;
 806
 807                /* begin again with the new keyring */
 808                keyring = key;
 809                goto descend_to_keyring;
 810        }
 811
 812        /* We've dealt with all the slots in the current node, so now we need
 813         * to ascend to the parent and continue processing there.
 814         */
 815        ptr = READ_ONCE(node->back_pointer);
 816        slot = node->parent_slot;
 817
 818        if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
 819                shortcut = assoc_array_ptr_to_shortcut(ptr);
 820                ptr = READ_ONCE(shortcut->back_pointer);
 821                slot = shortcut->parent_slot;
 822        }
 823        if (!ptr)
 824                goto not_this_keyring;
 825        node = assoc_array_ptr_to_node(ptr);
 826        slot++;
 827
 828        /* If we've ascended to the root (zero backpointer), we must have just
 829         * finished processing the leftmost branch rather than the root slots -
 830         * so there can't be any more keyrings for us to find.
 831         */
 832        if (node->back_pointer) {
 833                kdebug("ascend %d", slot);
 834                goto ascend_to_node;
 835        }
 836
 837        /* The keyring we're looking at was disqualified or didn't contain a
 838         * matching key.
 839         */
 840not_this_keyring:
 841        kdebug("not_this_keyring %d", sp);
 842        if (sp <= 0) {
 843                kleave(" = false");
 844                return false;
 845        }
 846
 847        /* Resume the processing of a keyring higher up in the tree */
 848        sp--;
 849        keyring = stack[sp].keyring;
 850        node = stack[sp].node;
 851        slot = stack[sp].slot + 1;
 852        kdebug("ascend to %d [%d]", keyring->serial, slot);
 853        goto ascend_to_node;
 854
 855        /* We found a viable match */
 856found:
 857        key = key_ref_to_ptr(ctx->result);
 858        key_check(key);
 859        if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
 860                key->last_used_at = ctx->now;
 861                keyring->last_used_at = ctx->now;
 862                while (sp > 0)
 863                        stack[--sp].keyring->last_used_at = ctx->now;
 864        }
 865        kleave(" = true");
 866        return true;
 867}
 868
 869/**
 870 * keyring_search_rcu - Search a keyring tree for a matching key under RCU
 871 * @keyring_ref: A pointer to the keyring with possession indicator.
 872 * @ctx: The keyring search context.
 873 *
 874 * Search the supplied keyring tree for a key that matches the criteria given.
 875 * The root keyring and any linked keyrings must grant Search permission to the
 876 * caller to be searchable and keys can only be found if they too grant Search
 877 * to the caller. The possession flag on the root keyring pointer controls use
 878 * of the possessor bits in permissions checking of the entire tree.  In
 879 * addition, the LSM gets to forbid keyring searches and key matches.
 880 *
 881 * The search is performed as a breadth-then-depth search up to the prescribed
 882 * limit (KEYRING_SEARCH_MAX_DEPTH).  The caller must hold the RCU read lock to
 883 * prevent keyrings from being destroyed or rearranged whilst they are being
 884 * searched.
 885 *
 886 * Keys are matched to the type provided and are then filtered by the match
 887 * function, which is given the description to use in any way it sees fit.  The
 888 * match function may use any attributes of a key that it wishes to to
 889 * determine the match.  Normally the match function from the key type would be
 890 * used.
 891 *
 892 * RCU can be used to prevent the keyring key lists from disappearing without
 893 * the need to take lots of locks.
 894 *
 895 * Returns a pointer to the found key and increments the key usage count if
 896 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
 897 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
 898 * specified keyring wasn't a keyring.
 899 *
 900 * In the case of a successful return, the possession attribute from
 901 * @keyring_ref is propagated to the returned key reference.
 902 */
 903key_ref_t keyring_search_rcu(key_ref_t keyring_ref,
 904                             struct keyring_search_context *ctx)
 905{
 906        struct key *keyring;
 907        long err;
 908
 909        ctx->iterator = keyring_search_iterator;
 910        ctx->possessed = is_key_possessed(keyring_ref);
 911        ctx->result = ERR_PTR(-EAGAIN);
 912
 913        keyring = key_ref_to_ptr(keyring_ref);
 914        key_check(keyring);
 915
 916        if (keyring->type != &key_type_keyring)
 917                return ERR_PTR(-ENOTDIR);
 918
 919        if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
 920                err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
 921                if (err < 0)
 922                        return ERR_PTR(err);
 923        }
 924
 925        ctx->now = ktime_get_real_seconds();
 926        if (search_nested_keyrings(keyring, ctx))
 927                __key_get(key_ref_to_ptr(ctx->result));
 928        return ctx->result;
 929}
 930
 931/**
 932 * keyring_search - Search the supplied keyring tree for a matching key
 933 * @keyring: The root of the keyring tree to be searched.
 934 * @type: The type of keyring we want to find.
 935 * @description: The name of the keyring we want to find.
 936 * @recurse: True to search the children of @keyring also
 937 *
 938 * As keyring_search_rcu() above, but using the current task's credentials and
 939 * type's default matching function and preferred search method.
 940 */
 941key_ref_t keyring_search(key_ref_t keyring,
 942                         struct key_type *type,
 943                         const char *description,
 944                         bool recurse)
 945{
 946        struct keyring_search_context ctx = {
 947                .index_key.type         = type,
 948                .index_key.description  = description,
 949                .index_key.desc_len     = strlen(description),
 950                .cred                   = current_cred(),
 951                .match_data.cmp         = key_default_cmp,
 952                .match_data.raw_data    = description,
 953                .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
 954                .flags                  = KEYRING_SEARCH_DO_STATE_CHECK,
 955        };
 956        key_ref_t key;
 957        int ret;
 958
 959        if (recurse)
 960                ctx.flags |= KEYRING_SEARCH_RECURSE;
 961        if (type->match_preparse) {
 962                ret = type->match_preparse(&ctx.match_data);
 963                if (ret < 0)
 964                        return ERR_PTR(ret);
 965        }
 966
 967        rcu_read_lock();
 968        key = keyring_search_rcu(keyring, &ctx);
 969        rcu_read_unlock();
 970
 971        if (type->match_free)
 972                type->match_free(&ctx.match_data);
 973        return key;
 974}
 975EXPORT_SYMBOL(keyring_search);
 976
 977static struct key_restriction *keyring_restriction_alloc(
 978        key_restrict_link_func_t check)
 979{
 980        struct key_restriction *keyres =
 981                kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
 982
 983        if (!keyres)
 984                return ERR_PTR(-ENOMEM);
 985
 986        keyres->check = check;
 987
 988        return keyres;
 989}
 990
 991/*
 992 * Semaphore to serialise restriction setup to prevent reference count
 993 * cycles through restriction key pointers.
 994 */
 995static DECLARE_RWSEM(keyring_serialise_restrict_sem);
 996
 997/*
 998 * Check for restriction cycles that would prevent keyring garbage collection.
 999 * keyring_serialise_restrict_sem must be held.
1000 */
1001static bool keyring_detect_restriction_cycle(const struct key *dest_keyring,
1002                                             struct key_restriction *keyres)
1003{
1004        while (keyres && keyres->key &&
1005               keyres->key->type == &key_type_keyring) {
1006                if (keyres->key == dest_keyring)
1007                        return true;
1008
1009                keyres = keyres->key->restrict_link;
1010        }
1011
1012        return false;
1013}
1014
1015/**
1016 * keyring_restrict - Look up and apply a restriction to a keyring
1017 * @keyring_ref: The keyring to be restricted
1018 * @type: The key type that will provide the restriction checker.
1019 * @restriction: The restriction options to apply to the keyring
1020 *
1021 * Look up a keyring and apply a restriction to it.  The restriction is managed
1022 * by the specific key type, but can be configured by the options specified in
1023 * the restriction string.
1024 */
1025int keyring_restrict(key_ref_t keyring_ref, const char *type,
1026                     const char *restriction)
1027{
1028        struct key *keyring;
1029        struct key_type *restrict_type = NULL;
1030        struct key_restriction *restrict_link;
1031        int ret = 0;
1032
1033        keyring = key_ref_to_ptr(keyring_ref);
1034        key_check(keyring);
1035
1036        if (keyring->type != &key_type_keyring)
1037                return -ENOTDIR;
1038
1039        if (!type) {
1040                restrict_link = keyring_restriction_alloc(restrict_link_reject);
1041        } else {
1042                restrict_type = key_type_lookup(type);
1043
1044                if (IS_ERR(restrict_type))
1045                        return PTR_ERR(restrict_type);
1046
1047                if (!restrict_type->lookup_restriction) {
1048                        ret = -ENOENT;
1049                        goto error;
1050                }
1051
1052                restrict_link = restrict_type->lookup_restriction(restriction);
1053        }
1054
1055        if (IS_ERR(restrict_link)) {
1056                ret = PTR_ERR(restrict_link);
1057                goto error;
1058        }
1059
1060        down_write(&keyring->sem);
1061        down_write(&keyring_serialise_restrict_sem);
1062
1063        if (keyring->restrict_link)
1064                ret = -EEXIST;
1065        else if (keyring_detect_restriction_cycle(keyring, restrict_link))
1066                ret = -EDEADLK;
1067        else
1068                keyring->restrict_link = restrict_link;
1069
1070        up_write(&keyring_serialise_restrict_sem);
1071        up_write(&keyring->sem);
1072
1073        if (ret < 0) {
1074                key_put(restrict_link->key);
1075                kfree(restrict_link);
1076        }
1077
1078error:
1079        if (restrict_type)
1080                key_type_put(restrict_type);
1081
1082        return ret;
1083}
1084EXPORT_SYMBOL(keyring_restrict);
1085
1086/*
1087 * Search the given keyring for a key that might be updated.
1088 *
1089 * The caller must guarantee that the keyring is a keyring and that the
1090 * permission is granted to modify the keyring as no check is made here.  The
1091 * caller must also hold a lock on the keyring semaphore.
1092 *
1093 * Returns a pointer to the found key with usage count incremented if
1094 * successful and returns NULL if not found.  Revoked and invalidated keys are
1095 * skipped over.
1096 *
1097 * If successful, the possession indicator is propagated from the keyring ref
1098 * to the returned key reference.
1099 */
1100key_ref_t find_key_to_update(key_ref_t keyring_ref,
1101                             const struct keyring_index_key *index_key)
1102{
1103        struct key *keyring, *key;
1104        const void *object;
1105
1106        keyring = key_ref_to_ptr(keyring_ref);
1107
1108        kenter("{%d},{%s,%s}",
1109               keyring->serial, index_key->type->name, index_key->description);
1110
1111        object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
1112                                  index_key);
1113
1114        if (object)
1115                goto found;
1116
1117        kleave(" = NULL");
1118        return NULL;
1119
1120found:
1121        key = keyring_ptr_to_key(object);
1122        if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
1123                          (1 << KEY_FLAG_REVOKED))) {
1124                kleave(" = NULL [x]");
1125                return NULL;
1126        }
1127        __key_get(key);
1128        kleave(" = {%d}", key->serial);
1129        return make_key_ref(key, is_key_possessed(keyring_ref));
1130}
1131
1132/*
1133 * Find a keyring with the specified name.
1134 *
1135 * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
1136 * user in the current user namespace are considered.  If @uid_keyring is %true,
1137 * the keyring additionally must have been allocated as a user or user session
1138 * keyring; otherwise, it must grant Search permission directly to the caller.
1139 *
1140 * Returns a pointer to the keyring with the keyring's refcount having being
1141 * incremented on success.  -ENOKEY is returned if a key could not be found.
1142 */
1143struct key *find_keyring_by_name(const char *name, bool uid_keyring)
1144{
1145        struct user_namespace *ns = current_user_ns();
1146        struct key *keyring;
1147
1148        if (!name)
1149                return ERR_PTR(-EINVAL);
1150
1151        read_lock(&keyring_name_lock);
1152
1153        /* Search this hash bucket for a keyring with a matching name that
1154         * grants Search permission and that hasn't been revoked
1155         */
1156        list_for_each_entry(keyring, &ns->keyring_name_list, name_link) {
1157                if (!kuid_has_mapping(ns, keyring->user->uid))
1158                        continue;
1159
1160                if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1161                        continue;
1162
1163                if (strcmp(keyring->description, name) != 0)
1164                        continue;
1165
1166                if (uid_keyring) {
1167                        if (!test_bit(KEY_FLAG_UID_KEYRING,
1168                                      &keyring->flags))
1169                                continue;
1170                } else {
1171                        if (key_permission(make_key_ref(keyring, 0),
1172                                           KEY_NEED_SEARCH) < 0)
1173                                continue;
1174                }
1175
1176                /* we've got a match but we might end up racing with
1177                 * key_cleanup() if the keyring is currently 'dead'
1178                 * (ie. it has a zero usage count) */
1179                if (!refcount_inc_not_zero(&keyring->usage))
1180                        continue;
1181                keyring->last_used_at = ktime_get_real_seconds();
1182                goto out;
1183        }
1184
1185        keyring = ERR_PTR(-ENOKEY);
1186out:
1187        read_unlock(&keyring_name_lock);
1188        return keyring;
1189}
1190
1191static int keyring_detect_cycle_iterator(const void *object,
1192                                         void *iterator_data)
1193{
1194        struct keyring_search_context *ctx = iterator_data;
1195        const struct key *key = keyring_ptr_to_key(object);
1196
1197        kenter("{%d}", key->serial);
1198
1199        /* We might get a keyring with matching index-key that is nonetheless a
1200         * different keyring. */
1201        if (key != ctx->match_data.raw_data)
1202                return 0;
1203
1204        ctx->result = ERR_PTR(-EDEADLK);
1205        return 1;
1206}
1207
1208/*
1209 * See if a cycle will will be created by inserting acyclic tree B in acyclic
1210 * tree A at the topmost level (ie: as a direct child of A).
1211 *
1212 * Since we are adding B to A at the top level, checking for cycles should just
1213 * be a matter of seeing if node A is somewhere in tree B.
1214 */
1215static int keyring_detect_cycle(struct key *A, struct key *B)
1216{
1217        struct keyring_search_context ctx = {
1218                .index_key              = A->index_key,
1219                .match_data.raw_data    = A,
1220                .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1221                .iterator               = keyring_detect_cycle_iterator,
1222                .flags                  = (KEYRING_SEARCH_NO_STATE_CHECK |
1223                                           KEYRING_SEARCH_NO_UPDATE_TIME |
1224                                           KEYRING_SEARCH_NO_CHECK_PERM |
1225                                           KEYRING_SEARCH_DETECT_TOO_DEEP |
1226                                           KEYRING_SEARCH_RECURSE),
1227        };
1228
1229        rcu_read_lock();
1230        search_nested_keyrings(B, &ctx);
1231        rcu_read_unlock();
1232        return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1233}
1234
1235/*
1236 * Lock keyring for link.
1237 */
1238int __key_link_lock(struct key *keyring,
1239                    const struct keyring_index_key *index_key)
1240        __acquires(&keyring->sem)
1241        __acquires(&keyring_serialise_link_lock)
1242{
1243        if (keyring->type != &key_type_keyring)
1244                return -ENOTDIR;
1245
1246        down_write(&keyring->sem);
1247
1248        /* Serialise link/link calls to prevent parallel calls causing a cycle
1249         * when linking two keyring in opposite orders.
1250         */
1251        if (index_key->type == &key_type_keyring)
1252                mutex_lock(&keyring_serialise_link_lock);
1253
1254        return 0;
1255}
1256
1257/*
1258 * Lock keyrings for move (link/unlink combination).
1259 */
1260int __key_move_lock(struct key *l_keyring, struct key *u_keyring,
1261                    const struct keyring_index_key *index_key)
1262        __acquires(&l_keyring->sem)
1263        __acquires(&u_keyring->sem)
1264        __acquires(&keyring_serialise_link_lock)
1265{
1266        if (l_keyring->type != &key_type_keyring ||
1267            u_keyring->type != &key_type_keyring)
1268                return -ENOTDIR;
1269
1270        /* We have to be very careful here to take the keyring locks in the
1271         * right order, lest we open ourselves to deadlocking against another
1272         * move operation.
1273         */
1274        if (l_keyring < u_keyring) {
1275                down_write(&l_keyring->sem);
1276                down_write_nested(&u_keyring->sem, 1);
1277        } else {
1278                down_write(&u_keyring->sem);
1279                down_write_nested(&l_keyring->sem, 1);
1280        }
1281
1282        /* Serialise link/link calls to prevent parallel calls causing a cycle
1283         * when linking two keyring in opposite orders.
1284         */
1285        if (index_key->type == &key_type_keyring)
1286                mutex_lock(&keyring_serialise_link_lock);
1287
1288        return 0;
1289}
1290
1291/*
1292 * Preallocate memory so that a key can be linked into to a keyring.
1293 */
1294int __key_link_begin(struct key *keyring,
1295                     const struct keyring_index_key *index_key,
1296                     struct assoc_array_edit **_edit)
1297{
1298        struct assoc_array_edit *edit;
1299        int ret;
1300
1301        kenter("%d,%s,%s,",
1302               keyring->serial, index_key->type->name, index_key->description);
1303
1304        BUG_ON(index_key->desc_len == 0);
1305        BUG_ON(*_edit != NULL);
1306
1307        *_edit = NULL;
1308
1309        ret = -EKEYREVOKED;
1310        if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1311                goto error;
1312
1313        /* Create an edit script that will insert/replace the key in the
1314         * keyring tree.
1315         */
1316        edit = assoc_array_insert(&keyring->keys,
1317                                  &keyring_assoc_array_ops,
1318                                  index_key,
1319                                  NULL);
1320        if (IS_ERR(edit)) {
1321                ret = PTR_ERR(edit);
1322                goto error;
1323        }
1324
1325        /* If we're not replacing a link in-place then we're going to need some
1326         * extra quota.
1327         */
1328        if (!edit->dead_leaf) {
1329                ret = key_payload_reserve(keyring,
1330                                          keyring->datalen + KEYQUOTA_LINK_BYTES);
1331                if (ret < 0)
1332                        goto error_cancel;
1333        }
1334
1335        *_edit = edit;
1336        kleave(" = 0");
1337        return 0;
1338
1339error_cancel:
1340        assoc_array_cancel_edit(edit);
1341error:
1342        kleave(" = %d", ret);
1343        return ret;
1344}
1345
1346/*
1347 * Check already instantiated keys aren't going to be a problem.
1348 *
1349 * The caller must have called __key_link_begin(). Don't need to call this for
1350 * keys that were created since __key_link_begin() was called.
1351 */
1352int __key_link_check_live_key(struct key *keyring, struct key *key)
1353{
1354        if (key->type == &key_type_keyring)
1355                /* check that we aren't going to create a cycle by linking one
1356                 * keyring to another */
1357                return keyring_detect_cycle(keyring, key);
1358        return 0;
1359}
1360
1361/*
1362 * Link a key into to a keyring.
1363 *
1364 * Must be called with __key_link_begin() having being called.  Discards any
1365 * already extant link to matching key if there is one, so that each keyring
1366 * holds at most one link to any given key of a particular type+description
1367 * combination.
1368 */
1369void __key_link(struct key *key, struct assoc_array_edit **_edit)
1370{
1371        __key_get(key);
1372        assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1373        assoc_array_apply_edit(*_edit);
1374        *_edit = NULL;
1375}
1376
1377/*
1378 * Finish linking a key into to a keyring.
1379 *
1380 * Must be called with __key_link_begin() having being called.
1381 */
1382void __key_link_end(struct key *keyring,
1383                    const struct keyring_index_key *index_key,
1384                    struct assoc_array_edit *edit)
1385        __releases(&keyring->sem)
1386        __releases(&keyring_serialise_link_lock)
1387{
1388        BUG_ON(index_key->type == NULL);
1389        kenter("%d,%s,", keyring->serial, index_key->type->name);
1390
1391        if (edit) {
1392                if (!edit->dead_leaf) {
1393                        key_payload_reserve(keyring,
1394                                keyring->datalen - KEYQUOTA_LINK_BYTES);
1395                }
1396                assoc_array_cancel_edit(edit);
1397        }
1398        up_write(&keyring->sem);
1399
1400        if (index_key->type == &key_type_keyring)
1401                mutex_unlock(&keyring_serialise_link_lock);
1402}
1403
1404/*
1405 * Check addition of keys to restricted keyrings.
1406 */
1407static int __key_link_check_restriction(struct key *keyring, struct key *key)
1408{
1409        if (!keyring->restrict_link || !keyring->restrict_link->check)
1410                return 0;
1411        return keyring->restrict_link->check(keyring, key->type, &key->payload,
1412                                             keyring->restrict_link->key);
1413}
1414
1415/**
1416 * key_link - Link a key to a keyring
1417 * @keyring: The keyring to make the link in.
1418 * @key: The key to link to.
1419 *
1420 * Make a link in a keyring to a key, such that the keyring holds a reference
1421 * on that key and the key can potentially be found by searching that keyring.
1422 *
1423 * This function will write-lock the keyring's semaphore and will consume some
1424 * of the user's key data quota to hold the link.
1425 *
1426 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1427 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1428 * full, -EDQUOT if there is insufficient key data quota remaining to add
1429 * another link or -ENOMEM if there's insufficient memory.
1430 *
1431 * It is assumed that the caller has checked that it is permitted for a link to
1432 * be made (the keyring should have Write permission and the key Link
1433 * permission).
1434 */
1435int key_link(struct key *keyring, struct key *key)
1436{
1437        struct assoc_array_edit *edit = NULL;
1438        int ret;
1439
1440        kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1441
1442        key_check(keyring);
1443        key_check(key);
1444
1445        ret = __key_link_lock(keyring, &key->index_key);
1446        if (ret < 0)
1447                goto error;
1448
1449        ret = __key_link_begin(keyring, &key->index_key, &edit);
1450        if (ret < 0)
1451                goto error_end;
1452
1453        kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1454        ret = __key_link_check_restriction(keyring, key);
1455        if (ret == 0)
1456                ret = __key_link_check_live_key(keyring, key);
1457        if (ret == 0)
1458                __key_link(key, &edit);
1459
1460error_end:
1461        __key_link_end(keyring, &key->index_key, edit);
1462error:
1463        kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage));
1464        return ret;
1465}
1466EXPORT_SYMBOL(key_link);
1467
1468/*
1469 * Lock a keyring for unlink.
1470 */
1471static int __key_unlink_lock(struct key *keyring)
1472        __acquires(&keyring->sem)
1473{
1474        if (keyring->type != &key_type_keyring)
1475                return -ENOTDIR;
1476
1477        down_write(&keyring->sem);
1478        return 0;
1479}
1480
1481/*
1482 * Begin the process of unlinking a key from a keyring.
1483 */
1484static int __key_unlink_begin(struct key *keyring, struct key *key,
1485                              struct assoc_array_edit **_edit)
1486{
1487        struct assoc_array_edit *edit;
1488
1489        BUG_ON(*_edit != NULL);
1490        
1491        edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1492                                  &key->index_key);
1493        if (IS_ERR(edit))
1494                return PTR_ERR(edit);
1495
1496        if (!edit)
1497                return -ENOENT;
1498
1499        *_edit = edit;
1500        return 0;
1501}
1502
1503/*
1504 * Apply an unlink change.
1505 */
1506static void __key_unlink(struct key *keyring, struct key *key,
1507                         struct assoc_array_edit **_edit)
1508{
1509        assoc_array_apply_edit(*_edit);
1510        *_edit = NULL;
1511        key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1512}
1513
1514/*
1515 * Finish unlinking a key from to a keyring.
1516 */
1517static void __key_unlink_end(struct key *keyring,
1518                             struct key *key,
1519                             struct assoc_array_edit *edit)
1520        __releases(&keyring->sem)
1521{
1522        if (edit)
1523                assoc_array_cancel_edit(edit);
1524        up_write(&keyring->sem);
1525}
1526
1527/**
1528 * key_unlink - Unlink the first link to a key from a keyring.
1529 * @keyring: The keyring to remove the link from.
1530 * @key: The key the link is to.
1531 *
1532 * Remove a link from a keyring to a key.
1533 *
1534 * This function will write-lock the keyring's semaphore.
1535 *
1536 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1537 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1538 * memory.
1539 *
1540 * It is assumed that the caller has checked that it is permitted for a link to
1541 * be removed (the keyring should have Write permission; no permissions are
1542 * required on the key).
1543 */
1544int key_unlink(struct key *keyring, struct key *key)
1545{
1546        struct assoc_array_edit *edit = NULL;
1547        int ret;
1548
1549        key_check(keyring);
1550        key_check(key);
1551
1552        ret = __key_unlink_lock(keyring);
1553        if (ret < 0)
1554                return ret;
1555
1556        ret = __key_unlink_begin(keyring, key, &edit);
1557        if (ret == 0)
1558                __key_unlink(keyring, key, &edit);
1559        __key_unlink_end(keyring, key, edit);
1560        return ret;
1561}
1562EXPORT_SYMBOL(key_unlink);
1563
1564/**
1565 * key_move - Move a key from one keyring to another
1566 * @key: The key to move
1567 * @from_keyring: The keyring to remove the link from.
1568 * @to_keyring: The keyring to make the link in.
1569 * @flags: Qualifying flags, such as KEYCTL_MOVE_EXCL.
1570 *
1571 * Make a link in @to_keyring to a key, such that the keyring holds a reference
1572 * on that key and the key can potentially be found by searching that keyring
1573 * whilst simultaneously removing a link to the key from @from_keyring.
1574 *
1575 * This function will write-lock both keyring's semaphores and will consume
1576 * some of the user's key data quota to hold the link on @to_keyring.
1577 *
1578 * Returns 0 if successful, -ENOTDIR if either keyring isn't a keyring,
1579 * -EKEYREVOKED if either keyring has been revoked, -ENFILE if the second
1580 * keyring is full, -EDQUOT if there is insufficient key data quota remaining
1581 * to add another link or -ENOMEM if there's insufficient memory.  If
1582 * KEYCTL_MOVE_EXCL is set, then -EEXIST will be returned if there's already a
1583 * matching key in @to_keyring.
1584 *
1585 * It is assumed that the caller has checked that it is permitted for a link to
1586 * be made (the keyring should have Write permission and the key Link
1587 * permission).
1588 */
1589int key_move(struct key *key,
1590             struct key *from_keyring,
1591             struct key *to_keyring,
1592             unsigned int flags)
1593{
1594        struct assoc_array_edit *from_edit = NULL, *to_edit = NULL;
1595        int ret;
1596
1597        kenter("%d,%d,%d", key->serial, from_keyring->serial, to_keyring->serial);
1598
1599        if (from_keyring == to_keyring)
1600                return 0;
1601
1602        key_check(key);
1603        key_check(from_keyring);
1604        key_check(to_keyring);
1605
1606        ret = __key_move_lock(from_keyring, to_keyring, &key->index_key);
1607        if (ret < 0)
1608                goto out;
1609        ret = __key_unlink_begin(from_keyring, key, &from_edit);
1610        if (ret < 0)
1611                goto error;
1612        ret = __key_link_begin(to_keyring, &key->index_key, &to_edit);
1613        if (ret < 0)
1614                goto error;
1615
1616        ret = -EEXIST;
1617        if (to_edit->dead_leaf && (flags & KEYCTL_MOVE_EXCL))
1618                goto error;
1619
1620        ret = __key_link_check_restriction(to_keyring, key);
1621        if (ret < 0)
1622                goto error;
1623        ret = __key_link_check_live_key(to_keyring, key);
1624        if (ret < 0)
1625                goto error;
1626
1627        __key_unlink(from_keyring, key, &from_edit);
1628        __key_link(key, &to_edit);
1629error:
1630        __key_link_end(to_keyring, &key->index_key, to_edit);
1631        __key_unlink_end(from_keyring, key, from_edit);
1632out:
1633        kleave(" = %d", ret);
1634        return ret;
1635}
1636EXPORT_SYMBOL(key_move);
1637
1638/**
1639 * keyring_clear - Clear a keyring
1640 * @keyring: The keyring to clear.
1641 *
1642 * Clear the contents of the specified keyring.
1643 *
1644 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1645 */
1646int keyring_clear(struct key *keyring)
1647{
1648        struct assoc_array_edit *edit;
1649        int ret;
1650
1651        if (keyring->type != &key_type_keyring)
1652                return -ENOTDIR;
1653
1654        down_write(&keyring->sem);
1655
1656        edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1657        if (IS_ERR(edit)) {
1658                ret = PTR_ERR(edit);
1659        } else {
1660                if (edit)
1661                        assoc_array_apply_edit(edit);
1662                key_payload_reserve(keyring, 0);
1663                ret = 0;
1664        }
1665
1666        up_write(&keyring->sem);
1667        return ret;
1668}
1669EXPORT_SYMBOL(keyring_clear);
1670
1671/*
1672 * Dispose of the links from a revoked keyring.
1673 *
1674 * This is called with the key sem write-locked.
1675 */
1676static void keyring_revoke(struct key *keyring)
1677{
1678        struct assoc_array_edit *edit;
1679
1680        edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1681        if (!IS_ERR(edit)) {
1682                if (edit)
1683                        assoc_array_apply_edit(edit);
1684                key_payload_reserve(keyring, 0);
1685        }
1686}
1687
1688static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1689{
1690        struct key *key = keyring_ptr_to_key(object);
1691        time64_t *limit = iterator_data;
1692
1693        if (key_is_dead(key, *limit))
1694                return false;
1695        key_get(key);
1696        return true;
1697}
1698
1699static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1700{
1701        const struct key *key = keyring_ptr_to_key(object);
1702        time64_t *limit = iterator_data;
1703
1704        key_check(key);
1705        return key_is_dead(key, *limit);
1706}
1707
1708/*
1709 * Garbage collect pointers from a keyring.
1710 *
1711 * Not called with any locks held.  The keyring's key struct will not be
1712 * deallocated under us as only our caller may deallocate it.
1713 */
1714void keyring_gc(struct key *keyring, time64_t limit)
1715{
1716        int result;
1717
1718        kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1719
1720        if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1721                              (1 << KEY_FLAG_REVOKED)))
1722                goto dont_gc;
1723
1724        /* scan the keyring looking for dead keys */
1725        rcu_read_lock();
1726        result = assoc_array_iterate(&keyring->keys,
1727                                     keyring_gc_check_iterator, &limit);
1728        rcu_read_unlock();
1729        if (result == true)
1730                goto do_gc;
1731
1732dont_gc:
1733        kleave(" [no gc]");
1734        return;
1735
1736do_gc:
1737        down_write(&keyring->sem);
1738        assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1739                       keyring_gc_select_iterator, &limit);
1740        up_write(&keyring->sem);
1741        kleave(" [gc]");
1742}
1743
1744/*
1745 * Garbage collect restriction pointers from a keyring.
1746 *
1747 * Keyring restrictions are associated with a key type, and must be cleaned
1748 * up if the key type is unregistered. The restriction is altered to always
1749 * reject additional keys so a keyring cannot be opened up by unregistering
1750 * a key type.
1751 *
1752 * Not called with any keyring locks held. The keyring's key struct will not
1753 * be deallocated under us as only our caller may deallocate it.
1754 *
1755 * The caller is required to hold key_types_sem and dead_type->sem. This is
1756 * fulfilled by key_gc_keytype() holding the locks on behalf of
1757 * key_garbage_collector(), which it invokes on a workqueue.
1758 */
1759void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type)
1760{
1761        struct key_restriction *keyres;
1762
1763        kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1764
1765        /*
1766         * keyring->restrict_link is only assigned at key allocation time
1767         * or with the key type locked, so the only values that could be
1768         * concurrently assigned to keyring->restrict_link are for key
1769         * types other than dead_type. Given this, it's ok to check
1770         * the key type before acquiring keyring->sem.
1771         */
1772        if (!dead_type || !keyring->restrict_link ||
1773            keyring->restrict_link->keytype != dead_type) {
1774                kleave(" [no restriction gc]");
1775                return;
1776        }
1777
1778        /* Lock the keyring to ensure that a link is not in progress */
1779        down_write(&keyring->sem);
1780
1781        keyres = keyring->restrict_link;
1782
1783        keyres->check = restrict_link_reject;
1784
1785        key_put(keyres->key);
1786        keyres->key = NULL;
1787        keyres->keytype = NULL;
1788
1789        up_write(&keyring->sem);
1790
1791        kleave(" [restriction gc]");
1792}
1793