linux/sound/firewire/amdtp-stream.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
   4 * with Common Isochronous Packet (IEC 61883-1) headers
   5 *
   6 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
   7 */
   8
   9#include <linux/device.h>
  10#include <linux/err.h>
  11#include <linux/firewire.h>
  12#include <linux/module.h>
  13#include <linux/slab.h>
  14#include <sound/pcm.h>
  15#include <sound/pcm_params.h>
  16#include "amdtp-stream.h"
  17
  18#define TICKS_PER_CYCLE         3072
  19#define CYCLES_PER_SECOND       8000
  20#define TICKS_PER_SECOND        (TICKS_PER_CYCLE * CYCLES_PER_SECOND)
  21
  22/* Always support Linux tracing subsystem. */
  23#define CREATE_TRACE_POINTS
  24#include "amdtp-stream-trace.h"
  25
  26#define TRANSFER_DELAY_TICKS    0x2e00 /* 479.17 microseconds */
  27
  28/* isochronous header parameters */
  29#define ISO_DATA_LENGTH_SHIFT   16
  30#define TAG_NO_CIP_HEADER       0
  31#define TAG_CIP                 1
  32
  33/* common isochronous packet header parameters */
  34#define CIP_EOH_SHIFT           31
  35#define CIP_EOH                 (1u << CIP_EOH_SHIFT)
  36#define CIP_EOH_MASK            0x80000000
  37#define CIP_SID_SHIFT           24
  38#define CIP_SID_MASK            0x3f000000
  39#define CIP_DBS_MASK            0x00ff0000
  40#define CIP_DBS_SHIFT           16
  41#define CIP_SPH_MASK            0x00000400
  42#define CIP_SPH_SHIFT           10
  43#define CIP_DBC_MASK            0x000000ff
  44#define CIP_FMT_SHIFT           24
  45#define CIP_FMT_MASK            0x3f000000
  46#define CIP_FDF_MASK            0x00ff0000
  47#define CIP_FDF_SHIFT           16
  48#define CIP_SYT_MASK            0x0000ffff
  49#define CIP_SYT_NO_INFO         0xffff
  50
  51/* Audio and Music transfer protocol specific parameters */
  52#define CIP_FMT_AM              0x10
  53#define AMDTP_FDF_NO_DATA       0xff
  54
  55/* TODO: make these configurable */
  56#define INTERRUPT_INTERVAL      16
  57#define QUEUE_LENGTH            48
  58
  59// For iso header, tstamp and 2 CIP header.
  60#define IR_CTX_HEADER_SIZE_CIP          16
  61// For iso header and tstamp.
  62#define IR_CTX_HEADER_SIZE_NO_CIP       8
  63#define HEADER_TSTAMP_MASK      0x0000ffff
  64
  65#define IT_PKT_HEADER_SIZE_CIP          8 // For 2 CIP header.
  66#define IT_PKT_HEADER_SIZE_NO_CIP       0 // Nothing.
  67
  68static void pcm_period_tasklet(unsigned long data);
  69
  70/**
  71 * amdtp_stream_init - initialize an AMDTP stream structure
  72 * @s: the AMDTP stream to initialize
  73 * @unit: the target of the stream
  74 * @dir: the direction of stream
  75 * @flags: the packet transmission method to use
  76 * @fmt: the value of fmt field in CIP header
  77 * @process_ctx_payloads: callback handler to process payloads of isoc context
  78 * @protocol_size: the size to allocate newly for protocol
  79 */
  80int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
  81                      enum amdtp_stream_direction dir, enum cip_flags flags,
  82                      unsigned int fmt,
  83                      amdtp_stream_process_ctx_payloads_t process_ctx_payloads,
  84                      unsigned int protocol_size)
  85{
  86        if (process_ctx_payloads == NULL)
  87                return -EINVAL;
  88
  89        s->protocol = kzalloc(protocol_size, GFP_KERNEL);
  90        if (!s->protocol)
  91                return -ENOMEM;
  92
  93        s->unit = unit;
  94        s->direction = dir;
  95        s->flags = flags;
  96        s->context = ERR_PTR(-1);
  97        mutex_init(&s->mutex);
  98        tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s);
  99        s->packet_index = 0;
 100
 101        init_waitqueue_head(&s->callback_wait);
 102        s->callbacked = false;
 103
 104        s->fmt = fmt;
 105        s->process_ctx_payloads = process_ctx_payloads;
 106
 107        if (dir == AMDTP_OUT_STREAM)
 108                s->ctx_data.rx.syt_override = -1;
 109
 110        return 0;
 111}
 112EXPORT_SYMBOL(amdtp_stream_init);
 113
 114/**
 115 * amdtp_stream_destroy - free stream resources
 116 * @s: the AMDTP stream to destroy
 117 */
 118void amdtp_stream_destroy(struct amdtp_stream *s)
 119{
 120        /* Not initialized. */
 121        if (s->protocol == NULL)
 122                return;
 123
 124        WARN_ON(amdtp_stream_running(s));
 125        kfree(s->protocol);
 126        mutex_destroy(&s->mutex);
 127}
 128EXPORT_SYMBOL(amdtp_stream_destroy);
 129
 130const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
 131        [CIP_SFC_32000]  =  8,
 132        [CIP_SFC_44100]  =  8,
 133        [CIP_SFC_48000]  =  8,
 134        [CIP_SFC_88200]  = 16,
 135        [CIP_SFC_96000]  = 16,
 136        [CIP_SFC_176400] = 32,
 137        [CIP_SFC_192000] = 32,
 138};
 139EXPORT_SYMBOL(amdtp_syt_intervals);
 140
 141const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
 142        [CIP_SFC_32000]  =  32000,
 143        [CIP_SFC_44100]  =  44100,
 144        [CIP_SFC_48000]  =  48000,
 145        [CIP_SFC_88200]  =  88200,
 146        [CIP_SFC_96000]  =  96000,
 147        [CIP_SFC_176400] = 176400,
 148        [CIP_SFC_192000] = 192000,
 149};
 150EXPORT_SYMBOL(amdtp_rate_table);
 151
 152static int apply_constraint_to_size(struct snd_pcm_hw_params *params,
 153                                    struct snd_pcm_hw_rule *rule)
 154{
 155        struct snd_interval *s = hw_param_interval(params, rule->var);
 156        const struct snd_interval *r =
 157                hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
 158        struct snd_interval t = {0};
 159        unsigned int step = 0;
 160        int i;
 161
 162        for (i = 0; i < CIP_SFC_COUNT; ++i) {
 163                if (snd_interval_test(r, amdtp_rate_table[i]))
 164                        step = max(step, amdtp_syt_intervals[i]);
 165        }
 166
 167        t.min = roundup(s->min, step);
 168        t.max = rounddown(s->max, step);
 169        t.integer = 1;
 170
 171        return snd_interval_refine(s, &t);
 172}
 173
 174/**
 175 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
 176 * @s:          the AMDTP stream, which must be initialized.
 177 * @runtime:    the PCM substream runtime
 178 */
 179int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
 180                                        struct snd_pcm_runtime *runtime)
 181{
 182        struct snd_pcm_hardware *hw = &runtime->hw;
 183        int err;
 184
 185        hw->info = SNDRV_PCM_INFO_BATCH |
 186                   SNDRV_PCM_INFO_BLOCK_TRANSFER |
 187                   SNDRV_PCM_INFO_INTERLEAVED |
 188                   SNDRV_PCM_INFO_JOINT_DUPLEX |
 189                   SNDRV_PCM_INFO_MMAP |
 190                   SNDRV_PCM_INFO_MMAP_VALID;
 191
 192        /* SNDRV_PCM_INFO_BATCH */
 193        hw->periods_min = 2;
 194        hw->periods_max = UINT_MAX;
 195
 196        /* bytes for a frame */
 197        hw->period_bytes_min = 4 * hw->channels_max;
 198
 199        /* Just to prevent from allocating much pages. */
 200        hw->period_bytes_max = hw->period_bytes_min * 2048;
 201        hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
 202
 203        /*
 204         * Currently firewire-lib processes 16 packets in one software
 205         * interrupt callback. This equals to 2msec but actually the
 206         * interval of the interrupts has a jitter.
 207         * Additionally, even if adding a constraint to fit period size to
 208         * 2msec, actual calculated frames per period doesn't equal to 2msec,
 209         * depending on sampling rate.
 210         * Anyway, the interval to call snd_pcm_period_elapsed() cannot 2msec.
 211         * Here let us use 5msec for safe period interrupt.
 212         */
 213        err = snd_pcm_hw_constraint_minmax(runtime,
 214                                           SNDRV_PCM_HW_PARAM_PERIOD_TIME,
 215                                           5000, UINT_MAX);
 216        if (err < 0)
 217                goto end;
 218
 219        /* Non-Blocking stream has no more constraints */
 220        if (!(s->flags & CIP_BLOCKING))
 221                goto end;
 222
 223        /*
 224         * One AMDTP packet can include some frames. In blocking mode, the
 225         * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
 226         * depending on its sampling rate. For accurate period interrupt, it's
 227         * preferrable to align period/buffer sizes to current SYT_INTERVAL.
 228         */
 229        err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
 230                                  apply_constraint_to_size, NULL,
 231                                  SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
 232                                  SNDRV_PCM_HW_PARAM_RATE, -1);
 233        if (err < 0)
 234                goto end;
 235        err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 236                                  apply_constraint_to_size, NULL,
 237                                  SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 238                                  SNDRV_PCM_HW_PARAM_RATE, -1);
 239        if (err < 0)
 240                goto end;
 241end:
 242        return err;
 243}
 244EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
 245
 246/**
 247 * amdtp_stream_set_parameters - set stream parameters
 248 * @s: the AMDTP stream to configure
 249 * @rate: the sample rate
 250 * @data_block_quadlets: the size of a data block in quadlet unit
 251 *
 252 * The parameters must be set before the stream is started, and must not be
 253 * changed while the stream is running.
 254 */
 255int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
 256                                unsigned int data_block_quadlets)
 257{
 258        unsigned int sfc;
 259
 260        for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
 261                if (amdtp_rate_table[sfc] == rate)
 262                        break;
 263        }
 264        if (sfc == ARRAY_SIZE(amdtp_rate_table))
 265                return -EINVAL;
 266
 267        s->sfc = sfc;
 268        s->data_block_quadlets = data_block_quadlets;
 269        s->syt_interval = amdtp_syt_intervals[sfc];
 270
 271        // default buffering in the device.
 272        if (s->direction == AMDTP_OUT_STREAM) {
 273                s->ctx_data.rx.transfer_delay =
 274                                        TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
 275
 276                if (s->flags & CIP_BLOCKING) {
 277                        // additional buffering needed to adjust for no-data
 278                        // packets.
 279                        s->ctx_data.rx.transfer_delay +=
 280                                TICKS_PER_SECOND * s->syt_interval / rate;
 281                }
 282        }
 283
 284        return 0;
 285}
 286EXPORT_SYMBOL(amdtp_stream_set_parameters);
 287
 288/**
 289 * amdtp_stream_get_max_payload - get the stream's packet size
 290 * @s: the AMDTP stream
 291 *
 292 * This function must not be called before the stream has been configured
 293 * with amdtp_stream_set_parameters().
 294 */
 295unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
 296{
 297        unsigned int multiplier = 1;
 298        unsigned int cip_header_size = 0;
 299
 300        if (s->flags & CIP_JUMBO_PAYLOAD)
 301                multiplier = 5;
 302        if (!(s->flags & CIP_NO_HEADER))
 303                cip_header_size = sizeof(__be32) * 2;
 304
 305        return cip_header_size +
 306                s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier;
 307}
 308EXPORT_SYMBOL(amdtp_stream_get_max_payload);
 309
 310/**
 311 * amdtp_stream_pcm_prepare - prepare PCM device for running
 312 * @s: the AMDTP stream
 313 *
 314 * This function should be called from the PCM device's .prepare callback.
 315 */
 316void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
 317{
 318        tasklet_kill(&s->period_tasklet);
 319        s->pcm_buffer_pointer = 0;
 320        s->pcm_period_pointer = 0;
 321}
 322EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
 323
 324static unsigned int calculate_data_blocks(struct amdtp_stream *s,
 325                                          unsigned int syt)
 326{
 327        unsigned int phase, data_blocks;
 328
 329        /* Blocking mode. */
 330        if (s->flags & CIP_BLOCKING) {
 331                /* This module generate empty packet for 'no data'. */
 332                if (syt == CIP_SYT_NO_INFO)
 333                        data_blocks = 0;
 334                else
 335                        data_blocks = s->syt_interval;
 336        /* Non-blocking mode. */
 337        } else {
 338                if (!cip_sfc_is_base_44100(s->sfc)) {
 339                        // Sample_rate / 8000 is an integer, and precomputed.
 340                        data_blocks = s->ctx_data.rx.data_block_state;
 341                } else {
 342                        phase = s->ctx_data.rx.data_block_state;
 343
 344                /*
 345                 * This calculates the number of data blocks per packet so that
 346                 * 1) the overall rate is correct and exactly synchronized to
 347                 *    the bus clock, and
 348                 * 2) packets with a rounded-up number of blocks occur as early
 349                 *    as possible in the sequence (to prevent underruns of the
 350                 *    device's buffer).
 351                 */
 352                        if (s->sfc == CIP_SFC_44100)
 353                                /* 6 6 5 6 5 6 5 ... */
 354                                data_blocks = 5 + ((phase & 1) ^
 355                                                   (phase == 0 || phase >= 40));
 356                        else
 357                                /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
 358                                data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
 359                        if (++phase >= (80 >> (s->sfc >> 1)))
 360                                phase = 0;
 361                        s->ctx_data.rx.data_block_state = phase;
 362                }
 363        }
 364
 365        return data_blocks;
 366}
 367
 368static unsigned int calculate_syt(struct amdtp_stream *s,
 369                                  unsigned int cycle)
 370{
 371        unsigned int syt_offset, phase, index, syt;
 372
 373        if (s->ctx_data.rx.last_syt_offset < TICKS_PER_CYCLE) {
 374                if (!cip_sfc_is_base_44100(s->sfc))
 375                        syt_offset = s->ctx_data.rx.last_syt_offset +
 376                                     s->ctx_data.rx.syt_offset_state;
 377                else {
 378                /*
 379                 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
 380                 *   n * SYT_INTERVAL * 24576000 / sample_rate
 381                 * Modulo TICKS_PER_CYCLE, the difference between successive
 382                 * elements is about 1386.23.  Rounding the results of this
 383                 * formula to the SYT precision results in a sequence of
 384                 * differences that begins with:
 385                 *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
 386                 * This code generates _exactly_ the same sequence.
 387                 */
 388                        phase = s->ctx_data.rx.syt_offset_state;
 389                        index = phase % 13;
 390                        syt_offset = s->ctx_data.rx.last_syt_offset;
 391                        syt_offset += 1386 + ((index && !(index & 3)) ||
 392                                              phase == 146);
 393                        if (++phase >= 147)
 394                                phase = 0;
 395                        s->ctx_data.rx.syt_offset_state = phase;
 396                }
 397        } else
 398                syt_offset = s->ctx_data.rx.last_syt_offset - TICKS_PER_CYCLE;
 399        s->ctx_data.rx.last_syt_offset = syt_offset;
 400
 401        if (syt_offset < TICKS_PER_CYCLE) {
 402                syt_offset += s->ctx_data.rx.transfer_delay;
 403                syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
 404                syt += syt_offset % TICKS_PER_CYCLE;
 405
 406                return syt & CIP_SYT_MASK;
 407        } else {
 408                return CIP_SYT_NO_INFO;
 409        }
 410}
 411
 412static void update_pcm_pointers(struct amdtp_stream *s,
 413                                struct snd_pcm_substream *pcm,
 414                                unsigned int frames)
 415{
 416        unsigned int ptr;
 417
 418        ptr = s->pcm_buffer_pointer + frames;
 419        if (ptr >= pcm->runtime->buffer_size)
 420                ptr -= pcm->runtime->buffer_size;
 421        WRITE_ONCE(s->pcm_buffer_pointer, ptr);
 422
 423        s->pcm_period_pointer += frames;
 424        if (s->pcm_period_pointer >= pcm->runtime->period_size) {
 425                s->pcm_period_pointer -= pcm->runtime->period_size;
 426                tasklet_hi_schedule(&s->period_tasklet);
 427        }
 428}
 429
 430static void pcm_period_tasklet(unsigned long data)
 431{
 432        struct amdtp_stream *s = (void *)data;
 433        struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
 434
 435        if (pcm)
 436                snd_pcm_period_elapsed(pcm);
 437}
 438
 439static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params)
 440{
 441        int err;
 442
 443        params->interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL);
 444        params->tag = s->tag;
 445        params->sy = 0;
 446
 447        err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer,
 448                                   s->buffer.packets[s->packet_index].offset);
 449        if (err < 0) {
 450                dev_err(&s->unit->device, "queueing error: %d\n", err);
 451                goto end;
 452        }
 453
 454        if (++s->packet_index >= QUEUE_LENGTH)
 455                s->packet_index = 0;
 456end:
 457        return err;
 458}
 459
 460static inline int queue_out_packet(struct amdtp_stream *s,
 461                                   struct fw_iso_packet *params)
 462{
 463        params->skip =
 464                !!(params->header_length == 0 && params->payload_length == 0);
 465        return queue_packet(s, params);
 466}
 467
 468static inline int queue_in_packet(struct amdtp_stream *s,
 469                                  struct fw_iso_packet *params)
 470{
 471        // Queue one packet for IR context.
 472        params->header_length = s->ctx_data.tx.ctx_header_size;
 473        params->payload_length = s->ctx_data.tx.max_ctx_payload_length;
 474        params->skip = false;
 475        return queue_packet(s, params);
 476}
 477
 478static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2],
 479                        unsigned int data_block_counter, unsigned int syt)
 480{
 481        cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
 482                                (s->data_block_quadlets << CIP_DBS_SHIFT) |
 483                                ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
 484                                data_block_counter);
 485        cip_header[1] = cpu_to_be32(CIP_EOH |
 486                        ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
 487                        ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
 488                        (syt & CIP_SYT_MASK));
 489}
 490
 491static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle,
 492                                struct fw_iso_packet *params,
 493                                unsigned int data_blocks,
 494                                unsigned int data_block_counter,
 495                                unsigned int syt, unsigned int index)
 496{
 497        unsigned int payload_length;
 498        __be32 *cip_header;
 499
 500        payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets;
 501        params->payload_length = payload_length;
 502
 503        if (!(s->flags & CIP_NO_HEADER)) {
 504                cip_header = (__be32 *)params->header;
 505                generate_cip_header(s, cip_header, data_block_counter, syt);
 506                params->header_length = 2 * sizeof(__be32);
 507                payload_length += params->header_length;
 508        } else {
 509                cip_header = NULL;
 510        }
 511
 512        trace_amdtp_packet(s, cycle, cip_header, payload_length, data_blocks,
 513                           data_block_counter, index);
 514}
 515
 516static int check_cip_header(struct amdtp_stream *s, const __be32 *buf,
 517                            unsigned int payload_length,
 518                            unsigned int *data_blocks,
 519                            unsigned int *data_block_counter, unsigned int *syt)
 520{
 521        u32 cip_header[2];
 522        unsigned int sph;
 523        unsigned int fmt;
 524        unsigned int fdf;
 525        unsigned int dbc;
 526        bool lost;
 527
 528        cip_header[0] = be32_to_cpu(buf[0]);
 529        cip_header[1] = be32_to_cpu(buf[1]);
 530
 531        /*
 532         * This module supports 'Two-quadlet CIP header with SYT field'.
 533         * For convenience, also check FMT field is AM824 or not.
 534         */
 535        if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
 536             ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
 537            (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
 538                dev_info_ratelimited(&s->unit->device,
 539                                "Invalid CIP header for AMDTP: %08X:%08X\n",
 540                                cip_header[0], cip_header[1]);
 541                return -EAGAIN;
 542        }
 543
 544        /* Check valid protocol or not. */
 545        sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
 546        fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
 547        if (sph != s->sph || fmt != s->fmt) {
 548                dev_info_ratelimited(&s->unit->device,
 549                                     "Detect unexpected protocol: %08x %08x\n",
 550                                     cip_header[0], cip_header[1]);
 551                return -EAGAIN;
 552        }
 553
 554        /* Calculate data blocks */
 555        fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
 556        if (payload_length < sizeof(__be32) * 2 ||
 557            (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
 558                *data_blocks = 0;
 559        } else {
 560                unsigned int data_block_quadlets =
 561                                (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
 562                /* avoid division by zero */
 563                if (data_block_quadlets == 0) {
 564                        dev_err(&s->unit->device,
 565                                "Detect invalid value in dbs field: %08X\n",
 566                                cip_header[0]);
 567                        return -EPROTO;
 568                }
 569                if (s->flags & CIP_WRONG_DBS)
 570                        data_block_quadlets = s->data_block_quadlets;
 571
 572                *data_blocks = (payload_length / sizeof(__be32) - 2) /
 573                                                        data_block_quadlets;
 574        }
 575
 576        /* Check data block counter continuity */
 577        dbc = cip_header[0] & CIP_DBC_MASK;
 578        if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
 579            *data_block_counter != UINT_MAX)
 580                dbc = *data_block_counter;
 581
 582        if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) ||
 583            *data_block_counter == UINT_MAX) {
 584                lost = false;
 585        } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
 586                lost = dbc != *data_block_counter;
 587        } else {
 588                unsigned int dbc_interval;
 589
 590                if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0)
 591                        dbc_interval = s->ctx_data.tx.dbc_interval;
 592                else
 593                        dbc_interval = *data_blocks;
 594
 595                lost = dbc != ((*data_block_counter + dbc_interval) & 0xff);
 596        }
 597
 598        if (lost) {
 599                dev_err(&s->unit->device,
 600                        "Detect discontinuity of CIP: %02X %02X\n",
 601                        *data_block_counter, dbc);
 602                return -EIO;
 603        }
 604
 605        *data_block_counter = dbc;
 606
 607        *syt = cip_header[1] & CIP_SYT_MASK;
 608
 609        return 0;
 610}
 611
 612static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle,
 613                               const __be32 *ctx_header,
 614                               unsigned int *payload_length,
 615                               unsigned int *data_blocks,
 616                               unsigned int *data_block_counter,
 617                               unsigned int *syt, unsigned int index)
 618{
 619        const __be32 *cip_header;
 620        int err;
 621
 622        *payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT;
 623        if (*payload_length > s->ctx_data.tx.ctx_header_size +
 624                                        s->ctx_data.tx.max_ctx_payload_length) {
 625                dev_err(&s->unit->device,
 626                        "Detect jumbo payload: %04x %04x\n",
 627                        *payload_length, s->ctx_data.tx.max_ctx_payload_length);
 628                return -EIO;
 629        }
 630
 631        if (!(s->flags & CIP_NO_HEADER)) {
 632                cip_header = ctx_header + 2;
 633                err = check_cip_header(s, cip_header, *payload_length,
 634                                       data_blocks, data_block_counter, syt);
 635                if (err < 0)
 636                        return err;
 637        } else {
 638                cip_header = NULL;
 639                err = 0;
 640                *data_blocks = *payload_length / sizeof(__be32) /
 641                               s->data_block_quadlets;
 642                *syt = 0;
 643
 644                if (*data_block_counter == UINT_MAX)
 645                        *data_block_counter = 0;
 646        }
 647
 648        trace_amdtp_packet(s, cycle, cip_header, *payload_length, *data_blocks,
 649                           *data_block_counter, index);
 650
 651        return err;
 652}
 653
 654// In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
 655// the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
 656// it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
 657static inline u32 compute_cycle_count(__be32 ctx_header_tstamp)
 658{
 659        u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK;
 660        return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff);
 661}
 662
 663static inline u32 increment_cycle_count(u32 cycle, unsigned int addend)
 664{
 665        cycle += addend;
 666        if (cycle >= 8 * CYCLES_PER_SECOND)
 667                cycle -= 8 * CYCLES_PER_SECOND;
 668        return cycle;
 669}
 670
 671// Align to actual cycle count for the packet which is going to be scheduled.
 672// This module queued the same number of isochronous cycle as QUEUE_LENGTH to
 673// skip isochronous cycle, therefore it's OK to just increment the cycle by
 674// QUEUE_LENGTH for scheduled cycle.
 675static inline u32 compute_it_cycle(const __be32 ctx_header_tstamp)
 676{
 677        u32 cycle = compute_cycle_count(ctx_header_tstamp);
 678        return increment_cycle_count(cycle, QUEUE_LENGTH);
 679}
 680
 681static int generate_device_pkt_descs(struct amdtp_stream *s,
 682                                     struct pkt_desc *descs,
 683                                     const __be32 *ctx_header,
 684                                     unsigned int packets)
 685{
 686        unsigned int dbc = s->data_block_counter;
 687        int i;
 688        int err;
 689
 690        for (i = 0; i < packets; ++i) {
 691                struct pkt_desc *desc = descs + i;
 692                unsigned int index = (s->packet_index + i) % QUEUE_LENGTH;
 693                unsigned int cycle;
 694                unsigned int payload_length;
 695                unsigned int data_blocks;
 696                unsigned int syt;
 697
 698                cycle = compute_cycle_count(ctx_header[1]);
 699
 700                err = parse_ir_ctx_header(s, cycle, ctx_header, &payload_length,
 701                                          &data_blocks, &dbc, &syt, i);
 702                if (err < 0)
 703                        return err;
 704
 705                desc->cycle = cycle;
 706                desc->syt = syt;
 707                desc->data_blocks = data_blocks;
 708                desc->data_block_counter = dbc;
 709                desc->ctx_payload = s->buffer.packets[index].buffer;
 710
 711                if (!(s->flags & CIP_DBC_IS_END_EVENT))
 712                        dbc = (dbc + desc->data_blocks) & 0xff;
 713
 714                ctx_header +=
 715                        s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
 716        }
 717
 718        s->data_block_counter = dbc;
 719
 720        return 0;
 721}
 722
 723static void generate_ideal_pkt_descs(struct amdtp_stream *s,
 724                                     struct pkt_desc *descs,
 725                                     const __be32 *ctx_header,
 726                                     unsigned int packets)
 727{
 728        unsigned int dbc = s->data_block_counter;
 729        int i;
 730
 731        for (i = 0; i < packets; ++i) {
 732                struct pkt_desc *desc = descs + i;
 733                unsigned int index = (s->packet_index + i) % QUEUE_LENGTH;
 734
 735                desc->cycle = compute_it_cycle(*ctx_header);
 736                desc->syt = calculate_syt(s, desc->cycle);
 737                desc->data_blocks = calculate_data_blocks(s, desc->syt);
 738
 739                if (s->flags & CIP_DBC_IS_END_EVENT)
 740                        dbc = (dbc + desc->data_blocks) & 0xff;
 741
 742                desc->data_block_counter = dbc;
 743
 744                if (!(s->flags & CIP_DBC_IS_END_EVENT))
 745                        dbc = (dbc + desc->data_blocks) & 0xff;
 746
 747                desc->ctx_payload = s->buffer.packets[index].buffer;
 748
 749                ++ctx_header;
 750        }
 751
 752        s->data_block_counter = dbc;
 753}
 754
 755static inline void cancel_stream(struct amdtp_stream *s)
 756{
 757        s->packet_index = -1;
 758        if (in_interrupt())
 759                amdtp_stream_pcm_abort(s);
 760        WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
 761}
 762
 763static void process_ctx_payloads(struct amdtp_stream *s,
 764                                 const struct pkt_desc *descs,
 765                                 unsigned int packets)
 766{
 767        struct snd_pcm_substream *pcm;
 768        unsigned int pcm_frames;
 769
 770        pcm = READ_ONCE(s->pcm);
 771        pcm_frames = s->process_ctx_payloads(s, descs, packets, pcm);
 772        if (pcm)
 773                update_pcm_pointers(s, pcm, pcm_frames);
 774}
 775
 776static void out_stream_callback(struct fw_iso_context *context, u32 tstamp,
 777                                size_t header_length, void *header,
 778                                void *private_data)
 779{
 780        struct amdtp_stream *s = private_data;
 781        const __be32 *ctx_header = header;
 782        unsigned int packets = header_length / sizeof(*ctx_header);
 783        int i;
 784
 785        if (s->packet_index < 0)
 786                return;
 787
 788        generate_ideal_pkt_descs(s, s->pkt_descs, ctx_header, packets);
 789
 790        process_ctx_payloads(s, s->pkt_descs, packets);
 791
 792        for (i = 0; i < packets; ++i) {
 793                const struct pkt_desc *desc = s->pkt_descs + i;
 794                unsigned int syt;
 795                struct {
 796                        struct fw_iso_packet params;
 797                        __be32 header[IT_PKT_HEADER_SIZE_CIP / sizeof(__be32)];
 798                } template = { {0}, {0} };
 799
 800                if (s->ctx_data.rx.syt_override < 0)
 801                        syt = desc->syt;
 802                else
 803                        syt = s->ctx_data.rx.syt_override;
 804
 805                build_it_pkt_header(s, desc->cycle, &template.params,
 806                                    desc->data_blocks, desc->data_block_counter,
 807                                    syt, i);
 808
 809                if (queue_out_packet(s, &template.params) < 0) {
 810                        cancel_stream(s);
 811                        return;
 812                }
 813        }
 814
 815        fw_iso_context_queue_flush(s->context);
 816}
 817
 818static void in_stream_callback(struct fw_iso_context *context, u32 tstamp,
 819                               size_t header_length, void *header,
 820                               void *private_data)
 821{
 822        struct amdtp_stream *s = private_data;
 823        unsigned int packets;
 824        __be32 *ctx_header = header;
 825        int i;
 826        int err;
 827
 828        if (s->packet_index < 0)
 829                return;
 830
 831        // The number of packets in buffer.
 832        packets = header_length / s->ctx_data.tx.ctx_header_size;
 833
 834        err = generate_device_pkt_descs(s, s->pkt_descs, ctx_header, packets);
 835        if (err < 0) {
 836                if (err != -EAGAIN) {
 837                        cancel_stream(s);
 838                        return;
 839                }
 840        } else {
 841                process_ctx_payloads(s, s->pkt_descs, packets);
 842        }
 843
 844        for (i = 0; i < packets; ++i) {
 845                struct fw_iso_packet params = {0};
 846
 847                if (queue_in_packet(s, &params) < 0) {
 848                        cancel_stream(s);
 849                        return;
 850                }
 851        }
 852
 853        fw_iso_context_queue_flush(s->context);
 854}
 855
 856/* this is executed one time */
 857static void amdtp_stream_first_callback(struct fw_iso_context *context,
 858                                        u32 tstamp, size_t header_length,
 859                                        void *header, void *private_data)
 860{
 861        struct amdtp_stream *s = private_data;
 862        const __be32 *ctx_header = header;
 863        u32 cycle;
 864
 865        /*
 866         * For in-stream, first packet has come.
 867         * For out-stream, prepared to transmit first packet
 868         */
 869        s->callbacked = true;
 870        wake_up(&s->callback_wait);
 871
 872        if (s->direction == AMDTP_IN_STREAM) {
 873                cycle = compute_cycle_count(ctx_header[1]);
 874
 875                context->callback.sc = in_stream_callback;
 876        } else {
 877                cycle = compute_it_cycle(*ctx_header);
 878
 879                context->callback.sc = out_stream_callback;
 880        }
 881
 882        s->start_cycle = cycle;
 883
 884        context->callback.sc(context, tstamp, header_length, header, s);
 885}
 886
 887/**
 888 * amdtp_stream_start - start transferring packets
 889 * @s: the AMDTP stream to start
 890 * @channel: the isochronous channel on the bus
 891 * @speed: firewire speed code
 892 *
 893 * The stream cannot be started until it has been configured with
 894 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
 895 * device can be started.
 896 */
 897static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed)
 898{
 899        static const struct {
 900                unsigned int data_block;
 901                unsigned int syt_offset;
 902        } *entry, initial_state[] = {
 903                [CIP_SFC_32000]  = {  4, 3072 },
 904                [CIP_SFC_48000]  = {  6, 1024 },
 905                [CIP_SFC_96000]  = { 12, 1024 },
 906                [CIP_SFC_192000] = { 24, 1024 },
 907                [CIP_SFC_44100]  = {  0,   67 },
 908                [CIP_SFC_88200]  = {  0,   67 },
 909                [CIP_SFC_176400] = {  0,   67 },
 910        };
 911        unsigned int ctx_header_size;
 912        unsigned int max_ctx_payload_size;
 913        enum dma_data_direction dir;
 914        int type, tag, err;
 915
 916        mutex_lock(&s->mutex);
 917
 918        if (WARN_ON(amdtp_stream_running(s) ||
 919                    (s->data_block_quadlets < 1))) {
 920                err = -EBADFD;
 921                goto err_unlock;
 922        }
 923
 924        if (s->direction == AMDTP_IN_STREAM) {
 925                s->data_block_counter = UINT_MAX;
 926        } else {
 927                entry = &initial_state[s->sfc];
 928
 929                s->data_block_counter = 0;
 930                s->ctx_data.rx.data_block_state = entry->data_block;
 931                s->ctx_data.rx.syt_offset_state = entry->syt_offset;
 932                s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE;
 933        }
 934
 935        /* initialize packet buffer */
 936        if (s->direction == AMDTP_IN_STREAM) {
 937                dir = DMA_FROM_DEVICE;
 938                type = FW_ISO_CONTEXT_RECEIVE;
 939                if (!(s->flags & CIP_NO_HEADER))
 940                        ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
 941                else
 942                        ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
 943
 944                max_ctx_payload_size = amdtp_stream_get_max_payload(s) -
 945                                       ctx_header_size;
 946        } else {
 947                dir = DMA_TO_DEVICE;
 948                type = FW_ISO_CONTEXT_TRANSMIT;
 949                ctx_header_size = 0;    // No effect for IT context.
 950
 951                max_ctx_payload_size = amdtp_stream_get_max_payload(s);
 952                if (!(s->flags & CIP_NO_HEADER))
 953                        max_ctx_payload_size -= IT_PKT_HEADER_SIZE_CIP;
 954        }
 955
 956        err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH,
 957                                      max_ctx_payload_size, dir);
 958        if (err < 0)
 959                goto err_unlock;
 960
 961        s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
 962                                          type, channel, speed, ctx_header_size,
 963                                          amdtp_stream_first_callback, s);
 964        if (IS_ERR(s->context)) {
 965                err = PTR_ERR(s->context);
 966                if (err == -EBUSY)
 967                        dev_err(&s->unit->device,
 968                                "no free stream on this controller\n");
 969                goto err_buffer;
 970        }
 971
 972        amdtp_stream_update(s);
 973
 974        if (s->direction == AMDTP_IN_STREAM) {
 975                s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size;
 976                s->ctx_data.tx.ctx_header_size = ctx_header_size;
 977        }
 978
 979        if (s->flags & CIP_NO_HEADER)
 980                s->tag = TAG_NO_CIP_HEADER;
 981        else
 982                s->tag = TAG_CIP;
 983
 984        s->pkt_descs = kcalloc(INTERRUPT_INTERVAL, sizeof(*s->pkt_descs),
 985                               GFP_KERNEL);
 986        if (!s->pkt_descs) {
 987                err = -ENOMEM;
 988                goto err_context;
 989        }
 990
 991        s->packet_index = 0;
 992        do {
 993                struct fw_iso_packet params;
 994                if (s->direction == AMDTP_IN_STREAM) {
 995                        err = queue_in_packet(s, &params);
 996                } else {
 997                        params.header_length = 0;
 998                        params.payload_length = 0;
 999                        err = queue_out_packet(s, &params);
1000                }
1001                if (err < 0)
1002                        goto err_pkt_descs;
1003        } while (s->packet_index > 0);
1004
1005        /* NOTE: TAG1 matches CIP. This just affects in stream. */
1006        tag = FW_ISO_CONTEXT_MATCH_TAG1;
1007        if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
1008                tag |= FW_ISO_CONTEXT_MATCH_TAG0;
1009
1010        s->callbacked = false;
1011        err = fw_iso_context_start(s->context, -1, 0, tag);
1012        if (err < 0)
1013                goto err_pkt_descs;
1014
1015        mutex_unlock(&s->mutex);
1016
1017        return 0;
1018err_pkt_descs:
1019        kfree(s->pkt_descs);
1020err_context:
1021        fw_iso_context_destroy(s->context);
1022        s->context = ERR_PTR(-1);
1023err_buffer:
1024        iso_packets_buffer_destroy(&s->buffer, s->unit);
1025err_unlock:
1026        mutex_unlock(&s->mutex);
1027
1028        return err;
1029}
1030
1031/**
1032 * amdtp_stream_pcm_pointer - get the PCM buffer position
1033 * @s: the AMDTP stream that transports the PCM data
1034 *
1035 * Returns the current buffer position, in frames.
1036 */
1037unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s)
1038{
1039        /*
1040         * This function is called in software IRQ context of period_tasklet or
1041         * process context.
1042         *
1043         * When the software IRQ context was scheduled by software IRQ context
1044         * of IR/IT contexts, queued packets were already handled. Therefore,
1045         * no need to flush the queue in buffer anymore.
1046         *
1047         * When the process context reach here, some packets will be already
1048         * queued in the buffer. These packets should be handled immediately
1049         * to keep better granularity of PCM pointer.
1050         *
1051         * Later, the process context will sometimes schedules software IRQ
1052         * context of the period_tasklet. Then, no need to flush the queue by
1053         * the same reason as described for IR/IT contexts.
1054         */
1055        if (!in_interrupt() && amdtp_stream_running(s))
1056                fw_iso_context_flush_completions(s->context);
1057
1058        return READ_ONCE(s->pcm_buffer_pointer);
1059}
1060EXPORT_SYMBOL(amdtp_stream_pcm_pointer);
1061
1062/**
1063 * amdtp_stream_pcm_ack - acknowledge queued PCM frames
1064 * @s: the AMDTP stream that transfers the PCM frames
1065 *
1066 * Returns zero always.
1067 */
1068int amdtp_stream_pcm_ack(struct amdtp_stream *s)
1069{
1070        /*
1071         * Process isochronous packets for recent isochronous cycle to handle
1072         * queued PCM frames.
1073         */
1074        if (amdtp_stream_running(s))
1075                fw_iso_context_flush_completions(s->context);
1076
1077        return 0;
1078}
1079EXPORT_SYMBOL(amdtp_stream_pcm_ack);
1080
1081/**
1082 * amdtp_stream_update - update the stream after a bus reset
1083 * @s: the AMDTP stream
1084 */
1085void amdtp_stream_update(struct amdtp_stream *s)
1086{
1087        /* Precomputing. */
1088        WRITE_ONCE(s->source_node_id_field,
1089                   (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
1090}
1091EXPORT_SYMBOL(amdtp_stream_update);
1092
1093/**
1094 * amdtp_stream_stop - stop sending packets
1095 * @s: the AMDTP stream to stop
1096 *
1097 * All PCM and MIDI devices of the stream must be stopped before the stream
1098 * itself can be stopped.
1099 */
1100static void amdtp_stream_stop(struct amdtp_stream *s)
1101{
1102        mutex_lock(&s->mutex);
1103
1104        if (!amdtp_stream_running(s)) {
1105                mutex_unlock(&s->mutex);
1106                return;
1107        }
1108
1109        tasklet_kill(&s->period_tasklet);
1110        fw_iso_context_stop(s->context);
1111        fw_iso_context_destroy(s->context);
1112        s->context = ERR_PTR(-1);
1113        iso_packets_buffer_destroy(&s->buffer, s->unit);
1114        kfree(s->pkt_descs);
1115
1116        s->callbacked = false;
1117
1118        mutex_unlock(&s->mutex);
1119}
1120
1121/**
1122 * amdtp_stream_pcm_abort - abort the running PCM device
1123 * @s: the AMDTP stream about to be stopped
1124 *
1125 * If the isochronous stream needs to be stopped asynchronously, call this
1126 * function first to stop the PCM device.
1127 */
1128void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1129{
1130        struct snd_pcm_substream *pcm;
1131
1132        pcm = READ_ONCE(s->pcm);
1133        if (pcm)
1134                snd_pcm_stop_xrun(pcm);
1135}
1136EXPORT_SYMBOL(amdtp_stream_pcm_abort);
1137
1138/**
1139 * amdtp_domain_init - initialize an AMDTP domain structure
1140 * @d: the AMDTP domain to initialize.
1141 */
1142int amdtp_domain_init(struct amdtp_domain *d)
1143{
1144        INIT_LIST_HEAD(&d->streams);
1145
1146        return 0;
1147}
1148EXPORT_SYMBOL_GPL(amdtp_domain_init);
1149
1150/**
1151 * amdtp_domain_destroy - destroy an AMDTP domain structure
1152 * @d: the AMDTP domain to destroy.
1153 */
1154void amdtp_domain_destroy(struct amdtp_domain *d)
1155{
1156        // At present nothing to do.
1157        return;
1158}
1159EXPORT_SYMBOL_GPL(amdtp_domain_destroy);
1160
1161/**
1162 * amdtp_domain_add_stream - register isoc context into the domain.
1163 * @d: the AMDTP domain.
1164 * @s: the AMDTP stream.
1165 * @channel: the isochronous channel on the bus.
1166 * @speed: firewire speed code.
1167 */
1168int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s,
1169                            int channel, int speed)
1170{
1171        struct amdtp_stream *tmp;
1172
1173        list_for_each_entry(tmp, &d->streams, list) {
1174                if (s == tmp)
1175                        return -EBUSY;
1176        }
1177
1178        list_add(&s->list, &d->streams);
1179
1180        s->channel = channel;
1181        s->speed = speed;
1182
1183        return 0;
1184}
1185EXPORT_SYMBOL_GPL(amdtp_domain_add_stream);
1186
1187/**
1188 * amdtp_domain_start - start sending packets for isoc context in the domain.
1189 * @d: the AMDTP domain.
1190 */
1191int amdtp_domain_start(struct amdtp_domain *d)
1192{
1193        struct amdtp_stream *s;
1194        int err = 0;
1195
1196        list_for_each_entry(s, &d->streams, list) {
1197                err = amdtp_stream_start(s, s->channel, s->speed);
1198                if (err < 0)
1199                        break;
1200        }
1201
1202        if (err < 0) {
1203                list_for_each_entry(s, &d->streams, list)
1204                        amdtp_stream_stop(s);
1205        }
1206
1207        return err;
1208}
1209EXPORT_SYMBOL_GPL(amdtp_domain_start);
1210
1211/**
1212 * amdtp_domain_stop - stop sending packets for isoc context in the same domain.
1213 * @d: the AMDTP domain to which the isoc contexts belong.
1214 */
1215void amdtp_domain_stop(struct amdtp_domain *d)
1216{
1217        struct amdtp_stream *s, *next;
1218
1219        list_for_each_entry_safe(s, next, &d->streams, list) {
1220                list_del(&s->list);
1221
1222                amdtp_stream_stop(s);
1223        }
1224}
1225EXPORT_SYMBOL_GPL(amdtp_domain_stop);
1226