linux/tools/perf/util/header.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <errno.h>
   3#include <inttypes.h>
   4#include "string2.h"
   5#include <sys/param.h>
   6#include <sys/types.h>
   7#include <byteswap.h>
   8#include <unistd.h>
   9#include <stdio.h>
  10#include <stdlib.h>
  11#include <linux/compiler.h>
  12#include <linux/list.h>
  13#include <linux/kernel.h>
  14#include <linux/bitops.h>
  15#include <linux/string.h>
  16#include <linux/stringify.h>
  17#include <linux/zalloc.h>
  18#include <sys/stat.h>
  19#include <sys/utsname.h>
  20#include <linux/time64.h>
  21#include <dirent.h>
  22#include <bpf/libbpf.h>
  23#include <perf/cpumap.h>
  24
  25#include "dso.h"
  26#include "evlist.h"
  27#include "evsel.h"
  28#include "util/evsel_fprintf.h"
  29#include "header.h"
  30#include "memswap.h"
  31#include "trace-event.h"
  32#include "session.h"
  33#include "symbol.h"
  34#include "debug.h"
  35#include "cpumap.h"
  36#include "pmu.h"
  37#include "vdso.h"
  38#include "strbuf.h"
  39#include "build-id.h"
  40#include "data.h"
  41#include <api/fs/fs.h>
  42#include "asm/bug.h"
  43#include "tool.h"
  44#include "time-utils.h"
  45#include "units.h"
  46#include "util/util.h" // perf_exe()
  47#include "cputopo.h"
  48#include "bpf-event.h"
  49
  50#include <linux/ctype.h>
  51#include <internal/lib.h>
  52
  53/*
  54 * magic2 = "PERFILE2"
  55 * must be a numerical value to let the endianness
  56 * determine the memory layout. That way we are able
  57 * to detect endianness when reading the perf.data file
  58 * back.
  59 *
  60 * we check for legacy (PERFFILE) format.
  61 */
  62static const char *__perf_magic1 = "PERFFILE";
  63static const u64 __perf_magic2    = 0x32454c4946524550ULL;
  64static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
  65
  66#define PERF_MAGIC      __perf_magic2
  67
  68const char perf_version_string[] = PERF_VERSION;
  69
  70struct perf_file_attr {
  71        struct perf_event_attr  attr;
  72        struct perf_file_section        ids;
  73};
  74
  75void perf_header__set_feat(struct perf_header *header, int feat)
  76{
  77        set_bit(feat, header->adds_features);
  78}
  79
  80void perf_header__clear_feat(struct perf_header *header, int feat)
  81{
  82        clear_bit(feat, header->adds_features);
  83}
  84
  85bool perf_header__has_feat(const struct perf_header *header, int feat)
  86{
  87        return test_bit(feat, header->adds_features);
  88}
  89
  90static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
  91{
  92        ssize_t ret = writen(ff->fd, buf, size);
  93
  94        if (ret != (ssize_t)size)
  95                return ret < 0 ? (int)ret : -1;
  96        return 0;
  97}
  98
  99static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
 100{
 101        /* struct perf_event_header::size is u16 */
 102        const size_t max_size = 0xffff - sizeof(struct perf_event_header);
 103        size_t new_size = ff->size;
 104        void *addr;
 105
 106        if (size + ff->offset > max_size)
 107                return -E2BIG;
 108
 109        while (size > (new_size - ff->offset))
 110                new_size <<= 1;
 111        new_size = min(max_size, new_size);
 112
 113        if (ff->size < new_size) {
 114                addr = realloc(ff->buf, new_size);
 115                if (!addr)
 116                        return -ENOMEM;
 117                ff->buf = addr;
 118                ff->size = new_size;
 119        }
 120
 121        memcpy(ff->buf + ff->offset, buf, size);
 122        ff->offset += size;
 123
 124        return 0;
 125}
 126
 127/* Return: 0 if succeded, -ERR if failed. */
 128int do_write(struct feat_fd *ff, const void *buf, size_t size)
 129{
 130        if (!ff->buf)
 131                return __do_write_fd(ff, buf, size);
 132        return __do_write_buf(ff, buf, size);
 133}
 134
 135/* Return: 0 if succeded, -ERR if failed. */
 136static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
 137{
 138        u64 *p = (u64 *) set;
 139        int i, ret;
 140
 141        ret = do_write(ff, &size, sizeof(size));
 142        if (ret < 0)
 143                return ret;
 144
 145        for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 146                ret = do_write(ff, p + i, sizeof(*p));
 147                if (ret < 0)
 148                        return ret;
 149        }
 150
 151        return 0;
 152}
 153
 154/* Return: 0 if succeded, -ERR if failed. */
 155int write_padded(struct feat_fd *ff, const void *bf,
 156                 size_t count, size_t count_aligned)
 157{
 158        static const char zero_buf[NAME_ALIGN];
 159        int err = do_write(ff, bf, count);
 160
 161        if (!err)
 162                err = do_write(ff, zero_buf, count_aligned - count);
 163
 164        return err;
 165}
 166
 167#define string_size(str)                                                \
 168        (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
 169
 170/* Return: 0 if succeded, -ERR if failed. */
 171static int do_write_string(struct feat_fd *ff, const char *str)
 172{
 173        u32 len, olen;
 174        int ret;
 175
 176        olen = strlen(str) + 1;
 177        len = PERF_ALIGN(olen, NAME_ALIGN);
 178
 179        /* write len, incl. \0 */
 180        ret = do_write(ff, &len, sizeof(len));
 181        if (ret < 0)
 182                return ret;
 183
 184        return write_padded(ff, str, olen, len);
 185}
 186
 187static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
 188{
 189        ssize_t ret = readn(ff->fd, addr, size);
 190
 191        if (ret != size)
 192                return ret < 0 ? (int)ret : -1;
 193        return 0;
 194}
 195
 196static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
 197{
 198        if (size > (ssize_t)ff->size - ff->offset)
 199                return -1;
 200
 201        memcpy(addr, ff->buf + ff->offset, size);
 202        ff->offset += size;
 203
 204        return 0;
 205
 206}
 207
 208static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
 209{
 210        if (!ff->buf)
 211                return __do_read_fd(ff, addr, size);
 212        return __do_read_buf(ff, addr, size);
 213}
 214
 215static int do_read_u32(struct feat_fd *ff, u32 *addr)
 216{
 217        int ret;
 218
 219        ret = __do_read(ff, addr, sizeof(*addr));
 220        if (ret)
 221                return ret;
 222
 223        if (ff->ph->needs_swap)
 224                *addr = bswap_32(*addr);
 225        return 0;
 226}
 227
 228static int do_read_u64(struct feat_fd *ff, u64 *addr)
 229{
 230        int ret;
 231
 232        ret = __do_read(ff, addr, sizeof(*addr));
 233        if (ret)
 234                return ret;
 235
 236        if (ff->ph->needs_swap)
 237                *addr = bswap_64(*addr);
 238        return 0;
 239}
 240
 241static char *do_read_string(struct feat_fd *ff)
 242{
 243        u32 len;
 244        char *buf;
 245
 246        if (do_read_u32(ff, &len))
 247                return NULL;
 248
 249        buf = malloc(len);
 250        if (!buf)
 251                return NULL;
 252
 253        if (!__do_read(ff, buf, len)) {
 254                /*
 255                 * strings are padded by zeroes
 256                 * thus the actual strlen of buf
 257                 * may be less than len
 258                 */
 259                return buf;
 260        }
 261
 262        free(buf);
 263        return NULL;
 264}
 265
 266/* Return: 0 if succeded, -ERR if failed. */
 267static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
 268{
 269        unsigned long *set;
 270        u64 size, *p;
 271        int i, ret;
 272
 273        ret = do_read_u64(ff, &size);
 274        if (ret)
 275                return ret;
 276
 277        set = bitmap_alloc(size);
 278        if (!set)
 279                return -ENOMEM;
 280
 281        p = (u64 *) set;
 282
 283        for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 284                ret = do_read_u64(ff, p + i);
 285                if (ret < 0) {
 286                        free(set);
 287                        return ret;
 288                }
 289        }
 290
 291        *pset  = set;
 292        *psize = size;
 293        return 0;
 294}
 295
 296static int write_tracing_data(struct feat_fd *ff,
 297                              struct evlist *evlist)
 298{
 299        if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 300                return -1;
 301
 302        return read_tracing_data(ff->fd, &evlist->core.entries);
 303}
 304
 305static int write_build_id(struct feat_fd *ff,
 306                          struct evlist *evlist __maybe_unused)
 307{
 308        struct perf_session *session;
 309        int err;
 310
 311        session = container_of(ff->ph, struct perf_session, header);
 312
 313        if (!perf_session__read_build_ids(session, true))
 314                return -1;
 315
 316        if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 317                return -1;
 318
 319        err = perf_session__write_buildid_table(session, ff);
 320        if (err < 0) {
 321                pr_debug("failed to write buildid table\n");
 322                return err;
 323        }
 324        perf_session__cache_build_ids(session);
 325
 326        return 0;
 327}
 328
 329static int write_hostname(struct feat_fd *ff,
 330                          struct evlist *evlist __maybe_unused)
 331{
 332        struct utsname uts;
 333        int ret;
 334
 335        ret = uname(&uts);
 336        if (ret < 0)
 337                return -1;
 338
 339        return do_write_string(ff, uts.nodename);
 340}
 341
 342static int write_osrelease(struct feat_fd *ff,
 343                           struct evlist *evlist __maybe_unused)
 344{
 345        struct utsname uts;
 346        int ret;
 347
 348        ret = uname(&uts);
 349        if (ret < 0)
 350                return -1;
 351
 352        return do_write_string(ff, uts.release);
 353}
 354
 355static int write_arch(struct feat_fd *ff,
 356                      struct evlist *evlist __maybe_unused)
 357{
 358        struct utsname uts;
 359        int ret;
 360
 361        ret = uname(&uts);
 362        if (ret < 0)
 363                return -1;
 364
 365        return do_write_string(ff, uts.machine);
 366}
 367
 368static int write_version(struct feat_fd *ff,
 369                         struct evlist *evlist __maybe_unused)
 370{
 371        return do_write_string(ff, perf_version_string);
 372}
 373
 374static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
 375{
 376        FILE *file;
 377        char *buf = NULL;
 378        char *s, *p;
 379        const char *search = cpuinfo_proc;
 380        size_t len = 0;
 381        int ret = -1;
 382
 383        if (!search)
 384                return -1;
 385
 386        file = fopen("/proc/cpuinfo", "r");
 387        if (!file)
 388                return -1;
 389
 390        while (getline(&buf, &len, file) > 0) {
 391                ret = strncmp(buf, search, strlen(search));
 392                if (!ret)
 393                        break;
 394        }
 395
 396        if (ret) {
 397                ret = -1;
 398                goto done;
 399        }
 400
 401        s = buf;
 402
 403        p = strchr(buf, ':');
 404        if (p && *(p+1) == ' ' && *(p+2))
 405                s = p + 2;
 406        p = strchr(s, '\n');
 407        if (p)
 408                *p = '\0';
 409
 410        /* squash extra space characters (branding string) */
 411        p = s;
 412        while (*p) {
 413                if (isspace(*p)) {
 414                        char *r = p + 1;
 415                        char *q = skip_spaces(r);
 416                        *p = ' ';
 417                        if (q != (p+1))
 418                                while ((*r++ = *q++));
 419                }
 420                p++;
 421        }
 422        ret = do_write_string(ff, s);
 423done:
 424        free(buf);
 425        fclose(file);
 426        return ret;
 427}
 428
 429static int write_cpudesc(struct feat_fd *ff,
 430                       struct evlist *evlist __maybe_unused)
 431{
 432#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
 433#define CPUINFO_PROC    { "cpu", }
 434#elif defined(__s390__)
 435#define CPUINFO_PROC    { "vendor_id", }
 436#elif defined(__sh__)
 437#define CPUINFO_PROC    { "cpu type", }
 438#elif defined(__alpha__) || defined(__mips__)
 439#define CPUINFO_PROC    { "cpu model", }
 440#elif defined(__arm__)
 441#define CPUINFO_PROC    { "model name", "Processor", }
 442#elif defined(__arc__)
 443#define CPUINFO_PROC    { "Processor", }
 444#elif defined(__xtensa__)
 445#define CPUINFO_PROC    { "core ID", }
 446#else
 447#define CPUINFO_PROC    { "model name", }
 448#endif
 449        const char *cpuinfo_procs[] = CPUINFO_PROC;
 450#undef CPUINFO_PROC
 451        unsigned int i;
 452
 453        for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
 454                int ret;
 455                ret = __write_cpudesc(ff, cpuinfo_procs[i]);
 456                if (ret >= 0)
 457                        return ret;
 458        }
 459        return -1;
 460}
 461
 462
 463static int write_nrcpus(struct feat_fd *ff,
 464                        struct evlist *evlist __maybe_unused)
 465{
 466        long nr;
 467        u32 nrc, nra;
 468        int ret;
 469
 470        nrc = cpu__max_present_cpu();
 471
 472        nr = sysconf(_SC_NPROCESSORS_ONLN);
 473        if (nr < 0)
 474                return -1;
 475
 476        nra = (u32)(nr & UINT_MAX);
 477
 478        ret = do_write(ff, &nrc, sizeof(nrc));
 479        if (ret < 0)
 480                return ret;
 481
 482        return do_write(ff, &nra, sizeof(nra));
 483}
 484
 485static int write_event_desc(struct feat_fd *ff,
 486                            struct evlist *evlist)
 487{
 488        struct evsel *evsel;
 489        u32 nre, nri, sz;
 490        int ret;
 491
 492        nre = evlist->core.nr_entries;
 493
 494        /*
 495         * write number of events
 496         */
 497        ret = do_write(ff, &nre, sizeof(nre));
 498        if (ret < 0)
 499                return ret;
 500
 501        /*
 502         * size of perf_event_attr struct
 503         */
 504        sz = (u32)sizeof(evsel->core.attr);
 505        ret = do_write(ff, &sz, sizeof(sz));
 506        if (ret < 0)
 507                return ret;
 508
 509        evlist__for_each_entry(evlist, evsel) {
 510                ret = do_write(ff, &evsel->core.attr, sz);
 511                if (ret < 0)
 512                        return ret;
 513                /*
 514                 * write number of unique id per event
 515                 * there is one id per instance of an event
 516                 *
 517                 * copy into an nri to be independent of the
 518                 * type of ids,
 519                 */
 520                nri = evsel->core.ids;
 521                ret = do_write(ff, &nri, sizeof(nri));
 522                if (ret < 0)
 523                        return ret;
 524
 525                /*
 526                 * write event string as passed on cmdline
 527                 */
 528                ret = do_write_string(ff, perf_evsel__name(evsel));
 529                if (ret < 0)
 530                        return ret;
 531                /*
 532                 * write unique ids for this event
 533                 */
 534                ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
 535                if (ret < 0)
 536                        return ret;
 537        }
 538        return 0;
 539}
 540
 541static int write_cmdline(struct feat_fd *ff,
 542                         struct evlist *evlist __maybe_unused)
 543{
 544        char pbuf[MAXPATHLEN], *buf;
 545        int i, ret, n;
 546
 547        /* actual path to perf binary */
 548        buf = perf_exe(pbuf, MAXPATHLEN);
 549
 550        /* account for binary path */
 551        n = perf_env.nr_cmdline + 1;
 552
 553        ret = do_write(ff, &n, sizeof(n));
 554        if (ret < 0)
 555                return ret;
 556
 557        ret = do_write_string(ff, buf);
 558        if (ret < 0)
 559                return ret;
 560
 561        for (i = 0 ; i < perf_env.nr_cmdline; i++) {
 562                ret = do_write_string(ff, perf_env.cmdline_argv[i]);
 563                if (ret < 0)
 564                        return ret;
 565        }
 566        return 0;
 567}
 568
 569
 570static int write_cpu_topology(struct feat_fd *ff,
 571                              struct evlist *evlist __maybe_unused)
 572{
 573        struct cpu_topology *tp;
 574        u32 i;
 575        int ret, j;
 576
 577        tp = cpu_topology__new();
 578        if (!tp)
 579                return -1;
 580
 581        ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
 582        if (ret < 0)
 583                goto done;
 584
 585        for (i = 0; i < tp->core_sib; i++) {
 586                ret = do_write_string(ff, tp->core_siblings[i]);
 587                if (ret < 0)
 588                        goto done;
 589        }
 590        ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
 591        if (ret < 0)
 592                goto done;
 593
 594        for (i = 0; i < tp->thread_sib; i++) {
 595                ret = do_write_string(ff, tp->thread_siblings[i]);
 596                if (ret < 0)
 597                        break;
 598        }
 599
 600        ret = perf_env__read_cpu_topology_map(&perf_env);
 601        if (ret < 0)
 602                goto done;
 603
 604        for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 605                ret = do_write(ff, &perf_env.cpu[j].core_id,
 606                               sizeof(perf_env.cpu[j].core_id));
 607                if (ret < 0)
 608                        return ret;
 609                ret = do_write(ff, &perf_env.cpu[j].socket_id,
 610                               sizeof(perf_env.cpu[j].socket_id));
 611                if (ret < 0)
 612                        return ret;
 613        }
 614
 615        if (!tp->die_sib)
 616                goto done;
 617
 618        ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
 619        if (ret < 0)
 620                goto done;
 621
 622        for (i = 0; i < tp->die_sib; i++) {
 623                ret = do_write_string(ff, tp->die_siblings[i]);
 624                if (ret < 0)
 625                        goto done;
 626        }
 627
 628        for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 629                ret = do_write(ff, &perf_env.cpu[j].die_id,
 630                               sizeof(perf_env.cpu[j].die_id));
 631                if (ret < 0)
 632                        return ret;
 633        }
 634
 635done:
 636        cpu_topology__delete(tp);
 637        return ret;
 638}
 639
 640
 641
 642static int write_total_mem(struct feat_fd *ff,
 643                           struct evlist *evlist __maybe_unused)
 644{
 645        char *buf = NULL;
 646        FILE *fp;
 647        size_t len = 0;
 648        int ret = -1, n;
 649        uint64_t mem;
 650
 651        fp = fopen("/proc/meminfo", "r");
 652        if (!fp)
 653                return -1;
 654
 655        while (getline(&buf, &len, fp) > 0) {
 656                ret = strncmp(buf, "MemTotal:", 9);
 657                if (!ret)
 658                        break;
 659        }
 660        if (!ret) {
 661                n = sscanf(buf, "%*s %"PRIu64, &mem);
 662                if (n == 1)
 663                        ret = do_write(ff, &mem, sizeof(mem));
 664        } else
 665                ret = -1;
 666        free(buf);
 667        fclose(fp);
 668        return ret;
 669}
 670
 671static int write_numa_topology(struct feat_fd *ff,
 672                               struct evlist *evlist __maybe_unused)
 673{
 674        struct numa_topology *tp;
 675        int ret = -1;
 676        u32 i;
 677
 678        tp = numa_topology__new();
 679        if (!tp)
 680                return -ENOMEM;
 681
 682        ret = do_write(ff, &tp->nr, sizeof(u32));
 683        if (ret < 0)
 684                goto err;
 685
 686        for (i = 0; i < tp->nr; i++) {
 687                struct numa_topology_node *n = &tp->nodes[i];
 688
 689                ret = do_write(ff, &n->node, sizeof(u32));
 690                if (ret < 0)
 691                        goto err;
 692
 693                ret = do_write(ff, &n->mem_total, sizeof(u64));
 694                if (ret)
 695                        goto err;
 696
 697                ret = do_write(ff, &n->mem_free, sizeof(u64));
 698                if (ret)
 699                        goto err;
 700
 701                ret = do_write_string(ff, n->cpus);
 702                if (ret < 0)
 703                        goto err;
 704        }
 705
 706        ret = 0;
 707
 708err:
 709        numa_topology__delete(tp);
 710        return ret;
 711}
 712
 713/*
 714 * File format:
 715 *
 716 * struct pmu_mappings {
 717 *      u32     pmu_num;
 718 *      struct pmu_map {
 719 *              u32     type;
 720 *              char    name[];
 721 *      }[pmu_num];
 722 * };
 723 */
 724
 725static int write_pmu_mappings(struct feat_fd *ff,
 726                              struct evlist *evlist __maybe_unused)
 727{
 728        struct perf_pmu *pmu = NULL;
 729        u32 pmu_num = 0;
 730        int ret;
 731
 732        /*
 733         * Do a first pass to count number of pmu to avoid lseek so this
 734         * works in pipe mode as well.
 735         */
 736        while ((pmu = perf_pmu__scan(pmu))) {
 737                if (!pmu->name)
 738                        continue;
 739                pmu_num++;
 740        }
 741
 742        ret = do_write(ff, &pmu_num, sizeof(pmu_num));
 743        if (ret < 0)
 744                return ret;
 745
 746        while ((pmu = perf_pmu__scan(pmu))) {
 747                if (!pmu->name)
 748                        continue;
 749
 750                ret = do_write(ff, &pmu->type, sizeof(pmu->type));
 751                if (ret < 0)
 752                        return ret;
 753
 754                ret = do_write_string(ff, pmu->name);
 755                if (ret < 0)
 756                        return ret;
 757        }
 758
 759        return 0;
 760}
 761
 762/*
 763 * File format:
 764 *
 765 * struct group_descs {
 766 *      u32     nr_groups;
 767 *      struct group_desc {
 768 *              char    name[];
 769 *              u32     leader_idx;
 770 *              u32     nr_members;
 771 *      }[nr_groups];
 772 * };
 773 */
 774static int write_group_desc(struct feat_fd *ff,
 775                            struct evlist *evlist)
 776{
 777        u32 nr_groups = evlist->nr_groups;
 778        struct evsel *evsel;
 779        int ret;
 780
 781        ret = do_write(ff, &nr_groups, sizeof(nr_groups));
 782        if (ret < 0)
 783                return ret;
 784
 785        evlist__for_each_entry(evlist, evsel) {
 786                if (perf_evsel__is_group_leader(evsel) &&
 787                    evsel->core.nr_members > 1) {
 788                        const char *name = evsel->group_name ?: "{anon_group}";
 789                        u32 leader_idx = evsel->idx;
 790                        u32 nr_members = evsel->core.nr_members;
 791
 792                        ret = do_write_string(ff, name);
 793                        if (ret < 0)
 794                                return ret;
 795
 796                        ret = do_write(ff, &leader_idx, sizeof(leader_idx));
 797                        if (ret < 0)
 798                                return ret;
 799
 800                        ret = do_write(ff, &nr_members, sizeof(nr_members));
 801                        if (ret < 0)
 802                                return ret;
 803                }
 804        }
 805        return 0;
 806}
 807
 808/*
 809 * Return the CPU id as a raw string.
 810 *
 811 * Each architecture should provide a more precise id string that
 812 * can be use to match the architecture's "mapfile".
 813 */
 814char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
 815{
 816        return NULL;
 817}
 818
 819/* Return zero when the cpuid from the mapfile.csv matches the
 820 * cpuid string generated on this platform.
 821 * Otherwise return non-zero.
 822 */
 823int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
 824{
 825        regex_t re;
 826        regmatch_t pmatch[1];
 827        int match;
 828
 829        if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
 830                /* Warn unable to generate match particular string. */
 831                pr_info("Invalid regular expression %s\n", mapcpuid);
 832                return 1;
 833        }
 834
 835        match = !regexec(&re, cpuid, 1, pmatch, 0);
 836        regfree(&re);
 837        if (match) {
 838                size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
 839
 840                /* Verify the entire string matched. */
 841                if (match_len == strlen(cpuid))
 842                        return 0;
 843        }
 844        return 1;
 845}
 846
 847/*
 848 * default get_cpuid(): nothing gets recorded
 849 * actual implementation must be in arch/$(SRCARCH)/util/header.c
 850 */
 851int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
 852{
 853        return -1;
 854}
 855
 856static int write_cpuid(struct feat_fd *ff,
 857                       struct evlist *evlist __maybe_unused)
 858{
 859        char buffer[64];
 860        int ret;
 861
 862        ret = get_cpuid(buffer, sizeof(buffer));
 863        if (ret)
 864                return -1;
 865
 866        return do_write_string(ff, buffer);
 867}
 868
 869static int write_branch_stack(struct feat_fd *ff __maybe_unused,
 870                              struct evlist *evlist __maybe_unused)
 871{
 872        return 0;
 873}
 874
 875static int write_auxtrace(struct feat_fd *ff,
 876                          struct evlist *evlist __maybe_unused)
 877{
 878        struct perf_session *session;
 879        int err;
 880
 881        if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 882                return -1;
 883
 884        session = container_of(ff->ph, struct perf_session, header);
 885
 886        err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
 887        if (err < 0)
 888                pr_err("Failed to write auxtrace index\n");
 889        return err;
 890}
 891
 892static int write_clockid(struct feat_fd *ff,
 893                         struct evlist *evlist __maybe_unused)
 894{
 895        return do_write(ff, &ff->ph->env.clockid_res_ns,
 896                        sizeof(ff->ph->env.clockid_res_ns));
 897}
 898
 899static int write_dir_format(struct feat_fd *ff,
 900                            struct evlist *evlist __maybe_unused)
 901{
 902        struct perf_session *session;
 903        struct perf_data *data;
 904
 905        session = container_of(ff->ph, struct perf_session, header);
 906        data = session->data;
 907
 908        if (WARN_ON(!perf_data__is_dir(data)))
 909                return -1;
 910
 911        return do_write(ff, &data->dir.version, sizeof(data->dir.version));
 912}
 913
 914#ifdef HAVE_LIBBPF_SUPPORT
 915static int write_bpf_prog_info(struct feat_fd *ff,
 916                               struct evlist *evlist __maybe_unused)
 917{
 918        struct perf_env *env = &ff->ph->env;
 919        struct rb_root *root;
 920        struct rb_node *next;
 921        int ret;
 922
 923        down_read(&env->bpf_progs.lock);
 924
 925        ret = do_write(ff, &env->bpf_progs.infos_cnt,
 926                       sizeof(env->bpf_progs.infos_cnt));
 927        if (ret < 0)
 928                goto out;
 929
 930        root = &env->bpf_progs.infos;
 931        next = rb_first(root);
 932        while (next) {
 933                struct bpf_prog_info_node *node;
 934                size_t len;
 935
 936                node = rb_entry(next, struct bpf_prog_info_node, rb_node);
 937                next = rb_next(&node->rb_node);
 938                len = sizeof(struct bpf_prog_info_linear) +
 939                        node->info_linear->data_len;
 940
 941                /* before writing to file, translate address to offset */
 942                bpf_program__bpil_addr_to_offs(node->info_linear);
 943                ret = do_write(ff, node->info_linear, len);
 944                /*
 945                 * translate back to address even when do_write() fails,
 946                 * so that this function never changes the data.
 947                 */
 948                bpf_program__bpil_offs_to_addr(node->info_linear);
 949                if (ret < 0)
 950                        goto out;
 951        }
 952out:
 953        up_read(&env->bpf_progs.lock);
 954        return ret;
 955}
 956#else // HAVE_LIBBPF_SUPPORT
 957static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
 958                               struct evlist *evlist __maybe_unused)
 959{
 960        return 0;
 961}
 962#endif // HAVE_LIBBPF_SUPPORT
 963
 964static int write_bpf_btf(struct feat_fd *ff,
 965                         struct evlist *evlist __maybe_unused)
 966{
 967        struct perf_env *env = &ff->ph->env;
 968        struct rb_root *root;
 969        struct rb_node *next;
 970        int ret;
 971
 972        down_read(&env->bpf_progs.lock);
 973
 974        ret = do_write(ff, &env->bpf_progs.btfs_cnt,
 975                       sizeof(env->bpf_progs.btfs_cnt));
 976
 977        if (ret < 0)
 978                goto out;
 979
 980        root = &env->bpf_progs.btfs;
 981        next = rb_first(root);
 982        while (next) {
 983                struct btf_node *node;
 984
 985                node = rb_entry(next, struct btf_node, rb_node);
 986                next = rb_next(&node->rb_node);
 987                ret = do_write(ff, &node->id,
 988                               sizeof(u32) * 2 + node->data_size);
 989                if (ret < 0)
 990                        goto out;
 991        }
 992out:
 993        up_read(&env->bpf_progs.lock);
 994        return ret;
 995}
 996
 997static int cpu_cache_level__sort(const void *a, const void *b)
 998{
 999        struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1000        struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1001
1002        return cache_a->level - cache_b->level;
1003}
1004
1005static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1006{
1007        if (a->level != b->level)
1008                return false;
1009
1010        if (a->line_size != b->line_size)
1011                return false;
1012
1013        if (a->sets != b->sets)
1014                return false;
1015
1016        if (a->ways != b->ways)
1017                return false;
1018
1019        if (strcmp(a->type, b->type))
1020                return false;
1021
1022        if (strcmp(a->size, b->size))
1023                return false;
1024
1025        if (strcmp(a->map, b->map))
1026                return false;
1027
1028        return true;
1029}
1030
1031static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1032{
1033        char path[PATH_MAX], file[PATH_MAX];
1034        struct stat st;
1035        size_t len;
1036
1037        scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1038        scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1039
1040        if (stat(file, &st))
1041                return 1;
1042
1043        scnprintf(file, PATH_MAX, "%s/level", path);
1044        if (sysfs__read_int(file, (int *) &cache->level))
1045                return -1;
1046
1047        scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1048        if (sysfs__read_int(file, (int *) &cache->line_size))
1049                return -1;
1050
1051        scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1052        if (sysfs__read_int(file, (int *) &cache->sets))
1053                return -1;
1054
1055        scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1056        if (sysfs__read_int(file, (int *) &cache->ways))
1057                return -1;
1058
1059        scnprintf(file, PATH_MAX, "%s/type", path);
1060        if (sysfs__read_str(file, &cache->type, &len))
1061                return -1;
1062
1063        cache->type[len] = 0;
1064        cache->type = strim(cache->type);
1065
1066        scnprintf(file, PATH_MAX, "%s/size", path);
1067        if (sysfs__read_str(file, &cache->size, &len)) {
1068                zfree(&cache->type);
1069                return -1;
1070        }
1071
1072        cache->size[len] = 0;
1073        cache->size = strim(cache->size);
1074
1075        scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1076        if (sysfs__read_str(file, &cache->map, &len)) {
1077                zfree(&cache->size);
1078                zfree(&cache->type);
1079                return -1;
1080        }
1081
1082        cache->map[len] = 0;
1083        cache->map = strim(cache->map);
1084        return 0;
1085}
1086
1087static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1088{
1089        fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1090}
1091
1092static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1093{
1094        u32 i, cnt = 0;
1095        long ncpus;
1096        u32 nr, cpu;
1097        u16 level;
1098
1099        ncpus = sysconf(_SC_NPROCESSORS_CONF);
1100        if (ncpus < 0)
1101                return -1;
1102
1103        nr = (u32)(ncpus & UINT_MAX);
1104
1105        for (cpu = 0; cpu < nr; cpu++) {
1106                for (level = 0; level < 10; level++) {
1107                        struct cpu_cache_level c;
1108                        int err;
1109
1110                        err = cpu_cache_level__read(&c, cpu, level);
1111                        if (err < 0)
1112                                return err;
1113
1114                        if (err == 1)
1115                                break;
1116
1117                        for (i = 0; i < cnt; i++) {
1118                                if (cpu_cache_level__cmp(&c, &caches[i]))
1119                                        break;
1120                        }
1121
1122                        if (i == cnt)
1123                                caches[cnt++] = c;
1124                        else
1125                                cpu_cache_level__free(&c);
1126
1127                        if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1128                                goto out;
1129                }
1130        }
1131 out:
1132        *cntp = cnt;
1133        return 0;
1134}
1135
1136#define MAX_CACHE_LVL 4
1137
1138static int write_cache(struct feat_fd *ff,
1139                       struct evlist *evlist __maybe_unused)
1140{
1141        u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1142        struct cpu_cache_level caches[max_caches];
1143        u32 cnt = 0, i, version = 1;
1144        int ret;
1145
1146        ret = build_caches(caches, max_caches, &cnt);
1147        if (ret)
1148                goto out;
1149
1150        qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1151
1152        ret = do_write(ff, &version, sizeof(u32));
1153        if (ret < 0)
1154                goto out;
1155
1156        ret = do_write(ff, &cnt, sizeof(u32));
1157        if (ret < 0)
1158                goto out;
1159
1160        for (i = 0; i < cnt; i++) {
1161                struct cpu_cache_level *c = &caches[i];
1162
1163                #define _W(v)                                   \
1164                        ret = do_write(ff, &c->v, sizeof(u32)); \
1165                        if (ret < 0)                            \
1166                                goto out;
1167
1168                _W(level)
1169                _W(line_size)
1170                _W(sets)
1171                _W(ways)
1172                #undef _W
1173
1174                #define _W(v)                                           \
1175                        ret = do_write_string(ff, (const char *) c->v); \
1176                        if (ret < 0)                                    \
1177                                goto out;
1178
1179                _W(type)
1180                _W(size)
1181                _W(map)
1182                #undef _W
1183        }
1184
1185out:
1186        for (i = 0; i < cnt; i++)
1187                cpu_cache_level__free(&caches[i]);
1188        return ret;
1189}
1190
1191static int write_stat(struct feat_fd *ff __maybe_unused,
1192                      struct evlist *evlist __maybe_unused)
1193{
1194        return 0;
1195}
1196
1197static int write_sample_time(struct feat_fd *ff,
1198                             struct evlist *evlist)
1199{
1200        int ret;
1201
1202        ret = do_write(ff, &evlist->first_sample_time,
1203                       sizeof(evlist->first_sample_time));
1204        if (ret < 0)
1205                return ret;
1206
1207        return do_write(ff, &evlist->last_sample_time,
1208                        sizeof(evlist->last_sample_time));
1209}
1210
1211
1212static int memory_node__read(struct memory_node *n, unsigned long idx)
1213{
1214        unsigned int phys, size = 0;
1215        char path[PATH_MAX];
1216        struct dirent *ent;
1217        DIR *dir;
1218
1219#define for_each_memory(mem, dir)                                       \
1220        while ((ent = readdir(dir)))                                    \
1221                if (strcmp(ent->d_name, ".") &&                         \
1222                    strcmp(ent->d_name, "..") &&                        \
1223                    sscanf(ent->d_name, "memory%u", &mem) == 1)
1224
1225        scnprintf(path, PATH_MAX,
1226                  "%s/devices/system/node/node%lu",
1227                  sysfs__mountpoint(), idx);
1228
1229        dir = opendir(path);
1230        if (!dir) {
1231                pr_warning("failed: cant' open memory sysfs data\n");
1232                return -1;
1233        }
1234
1235        for_each_memory(phys, dir) {
1236                size = max(phys, size);
1237        }
1238
1239        size++;
1240
1241        n->set = bitmap_alloc(size);
1242        if (!n->set) {
1243                closedir(dir);
1244                return -ENOMEM;
1245        }
1246
1247        n->node = idx;
1248        n->size = size;
1249
1250        rewinddir(dir);
1251
1252        for_each_memory(phys, dir) {
1253                set_bit(phys, n->set);
1254        }
1255
1256        closedir(dir);
1257        return 0;
1258}
1259
1260static int memory_node__sort(const void *a, const void *b)
1261{
1262        const struct memory_node *na = a;
1263        const struct memory_node *nb = b;
1264
1265        return na->node - nb->node;
1266}
1267
1268static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1269{
1270        char path[PATH_MAX];
1271        struct dirent *ent;
1272        DIR *dir;
1273        u64 cnt = 0;
1274        int ret = 0;
1275
1276        scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1277                  sysfs__mountpoint());
1278
1279        dir = opendir(path);
1280        if (!dir) {
1281                pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1282                          __func__, path);
1283                return -1;
1284        }
1285
1286        while (!ret && (ent = readdir(dir))) {
1287                unsigned int idx;
1288                int r;
1289
1290                if (!strcmp(ent->d_name, ".") ||
1291                    !strcmp(ent->d_name, ".."))
1292                        continue;
1293
1294                r = sscanf(ent->d_name, "node%u", &idx);
1295                if (r != 1)
1296                        continue;
1297
1298                if (WARN_ONCE(cnt >= size,
1299                        "failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1300                        closedir(dir);
1301                        return -1;
1302                }
1303
1304                ret = memory_node__read(&nodes[cnt++], idx);
1305        }
1306
1307        *cntp = cnt;
1308        closedir(dir);
1309
1310        if (!ret)
1311                qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1312
1313        return ret;
1314}
1315
1316#define MAX_MEMORY_NODES 2000
1317
1318/*
1319 * The MEM_TOPOLOGY holds physical memory map for every
1320 * node in system. The format of data is as follows:
1321 *
1322 *  0 - version          | for future changes
1323 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1324 * 16 - count            | number of nodes
1325 *
1326 * For each node we store map of physical indexes for
1327 * each node:
1328 *
1329 * 32 - node id          | node index
1330 * 40 - size             | size of bitmap
1331 * 48 - bitmap           | bitmap of memory indexes that belongs to node
1332 */
1333static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1334                              struct evlist *evlist __maybe_unused)
1335{
1336        static struct memory_node nodes[MAX_MEMORY_NODES];
1337        u64 bsize, version = 1, i, nr;
1338        int ret;
1339
1340        ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1341                              (unsigned long long *) &bsize);
1342        if (ret)
1343                return ret;
1344
1345        ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1346        if (ret)
1347                return ret;
1348
1349        ret = do_write(ff, &version, sizeof(version));
1350        if (ret < 0)
1351                goto out;
1352
1353        ret = do_write(ff, &bsize, sizeof(bsize));
1354        if (ret < 0)
1355                goto out;
1356
1357        ret = do_write(ff, &nr, sizeof(nr));
1358        if (ret < 0)
1359                goto out;
1360
1361        for (i = 0; i < nr; i++) {
1362                struct memory_node *n = &nodes[i];
1363
1364                #define _W(v)                                           \
1365                        ret = do_write(ff, &n->v, sizeof(n->v));        \
1366                        if (ret < 0)                                    \
1367                                goto out;
1368
1369                _W(node)
1370                _W(size)
1371
1372                #undef _W
1373
1374                ret = do_write_bitmap(ff, n->set, n->size);
1375                if (ret < 0)
1376                        goto out;
1377        }
1378
1379out:
1380        return ret;
1381}
1382
1383static int write_compressed(struct feat_fd *ff __maybe_unused,
1384                            struct evlist *evlist __maybe_unused)
1385{
1386        int ret;
1387
1388        ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1389        if (ret)
1390                return ret;
1391
1392        ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1393        if (ret)
1394                return ret;
1395
1396        ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1397        if (ret)
1398                return ret;
1399
1400        ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1401        if (ret)
1402                return ret;
1403
1404        return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1405}
1406
1407static void print_hostname(struct feat_fd *ff, FILE *fp)
1408{
1409        fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1410}
1411
1412static void print_osrelease(struct feat_fd *ff, FILE *fp)
1413{
1414        fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1415}
1416
1417static void print_arch(struct feat_fd *ff, FILE *fp)
1418{
1419        fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1420}
1421
1422static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1423{
1424        fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1425}
1426
1427static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1428{
1429        fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1430        fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1431}
1432
1433static void print_version(struct feat_fd *ff, FILE *fp)
1434{
1435        fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1436}
1437
1438static void print_cmdline(struct feat_fd *ff, FILE *fp)
1439{
1440        int nr, i;
1441
1442        nr = ff->ph->env.nr_cmdline;
1443
1444        fprintf(fp, "# cmdline : ");
1445
1446        for (i = 0; i < nr; i++) {
1447                char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1448                if (!argv_i) {
1449                        fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1450                } else {
1451                        char *mem = argv_i;
1452                        do {
1453                                char *quote = strchr(argv_i, '\'');
1454                                if (!quote)
1455                                        break;
1456                                *quote++ = '\0';
1457                                fprintf(fp, "%s\\\'", argv_i);
1458                                argv_i = quote;
1459                        } while (1);
1460                        fprintf(fp, "%s ", argv_i);
1461                        free(mem);
1462                }
1463        }
1464        fputc('\n', fp);
1465}
1466
1467static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1468{
1469        struct perf_header *ph = ff->ph;
1470        int cpu_nr = ph->env.nr_cpus_avail;
1471        int nr, i;
1472        char *str;
1473
1474        nr = ph->env.nr_sibling_cores;
1475        str = ph->env.sibling_cores;
1476
1477        for (i = 0; i < nr; i++) {
1478                fprintf(fp, "# sibling sockets : %s\n", str);
1479                str += strlen(str) + 1;
1480        }
1481
1482        if (ph->env.nr_sibling_dies) {
1483                nr = ph->env.nr_sibling_dies;
1484                str = ph->env.sibling_dies;
1485
1486                for (i = 0; i < nr; i++) {
1487                        fprintf(fp, "# sibling dies    : %s\n", str);
1488                        str += strlen(str) + 1;
1489                }
1490        }
1491
1492        nr = ph->env.nr_sibling_threads;
1493        str = ph->env.sibling_threads;
1494
1495        for (i = 0; i < nr; i++) {
1496                fprintf(fp, "# sibling threads : %s\n", str);
1497                str += strlen(str) + 1;
1498        }
1499
1500        if (ph->env.nr_sibling_dies) {
1501                if (ph->env.cpu != NULL) {
1502                        for (i = 0; i < cpu_nr; i++)
1503                                fprintf(fp, "# CPU %d: Core ID %d, "
1504                                            "Die ID %d, Socket ID %d\n",
1505                                            i, ph->env.cpu[i].core_id,
1506                                            ph->env.cpu[i].die_id,
1507                                            ph->env.cpu[i].socket_id);
1508                } else
1509                        fprintf(fp, "# Core ID, Die ID and Socket ID "
1510                                    "information is not available\n");
1511        } else {
1512                if (ph->env.cpu != NULL) {
1513                        for (i = 0; i < cpu_nr; i++)
1514                                fprintf(fp, "# CPU %d: Core ID %d, "
1515                                            "Socket ID %d\n",
1516                                            i, ph->env.cpu[i].core_id,
1517                                            ph->env.cpu[i].socket_id);
1518                } else
1519                        fprintf(fp, "# Core ID and Socket ID "
1520                                    "information is not available\n");
1521        }
1522}
1523
1524static void print_clockid(struct feat_fd *ff, FILE *fp)
1525{
1526        fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1527                ff->ph->env.clockid_res_ns * 1000);
1528}
1529
1530static void print_dir_format(struct feat_fd *ff, FILE *fp)
1531{
1532        struct perf_session *session;
1533        struct perf_data *data;
1534
1535        session = container_of(ff->ph, struct perf_session, header);
1536        data = session->data;
1537
1538        fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1539}
1540
1541static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1542{
1543        struct perf_env *env = &ff->ph->env;
1544        struct rb_root *root;
1545        struct rb_node *next;
1546
1547        down_read(&env->bpf_progs.lock);
1548
1549        root = &env->bpf_progs.infos;
1550        next = rb_first(root);
1551
1552        while (next) {
1553                struct bpf_prog_info_node *node;
1554
1555                node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1556                next = rb_next(&node->rb_node);
1557
1558                bpf_event__print_bpf_prog_info(&node->info_linear->info,
1559                                               env, fp);
1560        }
1561
1562        up_read(&env->bpf_progs.lock);
1563}
1564
1565static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1566{
1567        struct perf_env *env = &ff->ph->env;
1568        struct rb_root *root;
1569        struct rb_node *next;
1570
1571        down_read(&env->bpf_progs.lock);
1572
1573        root = &env->bpf_progs.btfs;
1574        next = rb_first(root);
1575
1576        while (next) {
1577                struct btf_node *node;
1578
1579                node = rb_entry(next, struct btf_node, rb_node);
1580                next = rb_next(&node->rb_node);
1581                fprintf(fp, "# btf info of id %u\n", node->id);
1582        }
1583
1584        up_read(&env->bpf_progs.lock);
1585}
1586
1587static void free_event_desc(struct evsel *events)
1588{
1589        struct evsel *evsel;
1590
1591        if (!events)
1592                return;
1593
1594        for (evsel = events; evsel->core.attr.size; evsel++) {
1595                zfree(&evsel->name);
1596                zfree(&evsel->core.id);
1597        }
1598
1599        free(events);
1600}
1601
1602static struct evsel *read_event_desc(struct feat_fd *ff)
1603{
1604        struct evsel *evsel, *events = NULL;
1605        u64 *id;
1606        void *buf = NULL;
1607        u32 nre, sz, nr, i, j;
1608        size_t msz;
1609
1610        /* number of events */
1611        if (do_read_u32(ff, &nre))
1612                goto error;
1613
1614        if (do_read_u32(ff, &sz))
1615                goto error;
1616
1617        /* buffer to hold on file attr struct */
1618        buf = malloc(sz);
1619        if (!buf)
1620                goto error;
1621
1622        /* the last event terminates with evsel->core.attr.size == 0: */
1623        events = calloc(nre + 1, sizeof(*events));
1624        if (!events)
1625                goto error;
1626
1627        msz = sizeof(evsel->core.attr);
1628        if (sz < msz)
1629                msz = sz;
1630
1631        for (i = 0, evsel = events; i < nre; evsel++, i++) {
1632                evsel->idx = i;
1633
1634                /*
1635                 * must read entire on-file attr struct to
1636                 * sync up with layout.
1637                 */
1638                if (__do_read(ff, buf, sz))
1639                        goto error;
1640
1641                if (ff->ph->needs_swap)
1642                        perf_event__attr_swap(buf);
1643
1644                memcpy(&evsel->core.attr, buf, msz);
1645
1646                if (do_read_u32(ff, &nr))
1647                        goto error;
1648
1649                if (ff->ph->needs_swap)
1650                        evsel->needs_swap = true;
1651
1652                evsel->name = do_read_string(ff);
1653                if (!evsel->name)
1654                        goto error;
1655
1656                if (!nr)
1657                        continue;
1658
1659                id = calloc(nr, sizeof(*id));
1660                if (!id)
1661                        goto error;
1662                evsel->core.ids = nr;
1663                evsel->core.id = id;
1664
1665                for (j = 0 ; j < nr; j++) {
1666                        if (do_read_u64(ff, id))
1667                                goto error;
1668                        id++;
1669                }
1670        }
1671out:
1672        free(buf);
1673        return events;
1674error:
1675        free_event_desc(events);
1676        events = NULL;
1677        goto out;
1678}
1679
1680static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1681                                void *priv __maybe_unused)
1682{
1683        return fprintf(fp, ", %s = %s", name, val);
1684}
1685
1686static void print_event_desc(struct feat_fd *ff, FILE *fp)
1687{
1688        struct evsel *evsel, *events;
1689        u32 j;
1690        u64 *id;
1691
1692        if (ff->events)
1693                events = ff->events;
1694        else
1695                events = read_event_desc(ff);
1696
1697        if (!events) {
1698                fprintf(fp, "# event desc: not available or unable to read\n");
1699                return;
1700        }
1701
1702        for (evsel = events; evsel->core.attr.size; evsel++) {
1703                fprintf(fp, "# event : name = %s, ", evsel->name);
1704
1705                if (evsel->core.ids) {
1706                        fprintf(fp, ", id = {");
1707                        for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1708                                if (j)
1709                                        fputc(',', fp);
1710                                fprintf(fp, " %"PRIu64, *id);
1711                        }
1712                        fprintf(fp, " }");
1713                }
1714
1715                perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1716
1717                fputc('\n', fp);
1718        }
1719
1720        free_event_desc(events);
1721        ff->events = NULL;
1722}
1723
1724static void print_total_mem(struct feat_fd *ff, FILE *fp)
1725{
1726        fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1727}
1728
1729static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1730{
1731        int i;
1732        struct numa_node *n;
1733
1734        for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1735                n = &ff->ph->env.numa_nodes[i];
1736
1737                fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1738                            " free = %"PRIu64" kB\n",
1739                        n->node, n->mem_total, n->mem_free);
1740
1741                fprintf(fp, "# node%u cpu list : ", n->node);
1742                cpu_map__fprintf(n->map, fp);
1743        }
1744}
1745
1746static void print_cpuid(struct feat_fd *ff, FILE *fp)
1747{
1748        fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1749}
1750
1751static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1752{
1753        fprintf(fp, "# contains samples with branch stack\n");
1754}
1755
1756static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1757{
1758        fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1759}
1760
1761static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1762{
1763        fprintf(fp, "# contains stat data\n");
1764}
1765
1766static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1767{
1768        int i;
1769
1770        fprintf(fp, "# CPU cache info:\n");
1771        for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1772                fprintf(fp, "#  ");
1773                cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1774        }
1775}
1776
1777static void print_compressed(struct feat_fd *ff, FILE *fp)
1778{
1779        fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1780                ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1781                ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1782}
1783
1784static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1785{
1786        const char *delimiter = "# pmu mappings: ";
1787        char *str, *tmp;
1788        u32 pmu_num;
1789        u32 type;
1790
1791        pmu_num = ff->ph->env.nr_pmu_mappings;
1792        if (!pmu_num) {
1793                fprintf(fp, "# pmu mappings: not available\n");
1794                return;
1795        }
1796
1797        str = ff->ph->env.pmu_mappings;
1798
1799        while (pmu_num) {
1800                type = strtoul(str, &tmp, 0);
1801                if (*tmp != ':')
1802                        goto error;
1803
1804                str = tmp + 1;
1805                fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1806
1807                delimiter = ", ";
1808                str += strlen(str) + 1;
1809                pmu_num--;
1810        }
1811
1812        fprintf(fp, "\n");
1813
1814        if (!pmu_num)
1815                return;
1816error:
1817        fprintf(fp, "# pmu mappings: unable to read\n");
1818}
1819
1820static void print_group_desc(struct feat_fd *ff, FILE *fp)
1821{
1822        struct perf_session *session;
1823        struct evsel *evsel;
1824        u32 nr = 0;
1825
1826        session = container_of(ff->ph, struct perf_session, header);
1827
1828        evlist__for_each_entry(session->evlist, evsel) {
1829                if (perf_evsel__is_group_leader(evsel) &&
1830                    evsel->core.nr_members > 1) {
1831                        fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1832                                perf_evsel__name(evsel));
1833
1834                        nr = evsel->core.nr_members - 1;
1835                } else if (nr) {
1836                        fprintf(fp, ",%s", perf_evsel__name(evsel));
1837
1838                        if (--nr == 0)
1839                                fprintf(fp, "}\n");
1840                }
1841        }
1842}
1843
1844static void print_sample_time(struct feat_fd *ff, FILE *fp)
1845{
1846        struct perf_session *session;
1847        char time_buf[32];
1848        double d;
1849
1850        session = container_of(ff->ph, struct perf_session, header);
1851
1852        timestamp__scnprintf_usec(session->evlist->first_sample_time,
1853                                  time_buf, sizeof(time_buf));
1854        fprintf(fp, "# time of first sample : %s\n", time_buf);
1855
1856        timestamp__scnprintf_usec(session->evlist->last_sample_time,
1857                                  time_buf, sizeof(time_buf));
1858        fprintf(fp, "# time of last sample : %s\n", time_buf);
1859
1860        d = (double)(session->evlist->last_sample_time -
1861                session->evlist->first_sample_time) / NSEC_PER_MSEC;
1862
1863        fprintf(fp, "# sample duration : %10.3f ms\n", d);
1864}
1865
1866static void memory_node__fprintf(struct memory_node *n,
1867                                 unsigned long long bsize, FILE *fp)
1868{
1869        char buf_map[100], buf_size[50];
1870        unsigned long long size;
1871
1872        size = bsize * bitmap_weight(n->set, n->size);
1873        unit_number__scnprintf(buf_size, 50, size);
1874
1875        bitmap_scnprintf(n->set, n->size, buf_map, 100);
1876        fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1877}
1878
1879static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1880{
1881        struct memory_node *nodes;
1882        int i, nr;
1883
1884        nodes = ff->ph->env.memory_nodes;
1885        nr    = ff->ph->env.nr_memory_nodes;
1886
1887        fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1888                nr, ff->ph->env.memory_bsize);
1889
1890        for (i = 0; i < nr; i++) {
1891                memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1892        }
1893}
1894
1895static int __event_process_build_id(struct perf_record_header_build_id *bev,
1896                                    char *filename,
1897                                    struct perf_session *session)
1898{
1899        int err = -1;
1900        struct machine *machine;
1901        u16 cpumode;
1902        struct dso *dso;
1903        enum dso_kernel_type dso_type;
1904
1905        machine = perf_session__findnew_machine(session, bev->pid);
1906        if (!machine)
1907                goto out;
1908
1909        cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1910
1911        switch (cpumode) {
1912        case PERF_RECORD_MISC_KERNEL:
1913                dso_type = DSO_TYPE_KERNEL;
1914                break;
1915        case PERF_RECORD_MISC_GUEST_KERNEL:
1916                dso_type = DSO_TYPE_GUEST_KERNEL;
1917                break;
1918        case PERF_RECORD_MISC_USER:
1919        case PERF_RECORD_MISC_GUEST_USER:
1920                dso_type = DSO_TYPE_USER;
1921                break;
1922        default:
1923                goto out;
1924        }
1925
1926        dso = machine__findnew_dso(machine, filename);
1927        if (dso != NULL) {
1928                char sbuild_id[SBUILD_ID_SIZE];
1929
1930                dso__set_build_id(dso, &bev->build_id);
1931
1932                if (dso_type != DSO_TYPE_USER) {
1933                        struct kmod_path m = { .name = NULL, };
1934
1935                        if (!kmod_path__parse_name(&m, filename) && m.kmod)
1936                                dso__set_module_info(dso, &m, machine);
1937                        else
1938                                dso->kernel = dso_type;
1939
1940                        free(m.name);
1941                }
1942
1943                build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1944                                  sbuild_id);
1945                pr_debug("build id event received for %s: %s\n",
1946                         dso->long_name, sbuild_id);
1947                dso__put(dso);
1948        }
1949
1950        err = 0;
1951out:
1952        return err;
1953}
1954
1955static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1956                                                 int input, u64 offset, u64 size)
1957{
1958        struct perf_session *session = container_of(header, struct perf_session, header);
1959        struct {
1960                struct perf_event_header   header;
1961                u8                         build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1962                char                       filename[0];
1963        } old_bev;
1964        struct perf_record_header_build_id bev;
1965        char filename[PATH_MAX];
1966        u64 limit = offset + size;
1967
1968        while (offset < limit) {
1969                ssize_t len;
1970
1971                if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1972                        return -1;
1973
1974                if (header->needs_swap)
1975                        perf_event_header__bswap(&old_bev.header);
1976
1977                len = old_bev.header.size - sizeof(old_bev);
1978                if (readn(input, filename, len) != len)
1979                        return -1;
1980
1981                bev.header = old_bev.header;
1982
1983                /*
1984                 * As the pid is the missing value, we need to fill
1985                 * it properly. The header.misc value give us nice hint.
1986                 */
1987                bev.pid = HOST_KERNEL_ID;
1988                if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1989                    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1990                        bev.pid = DEFAULT_GUEST_KERNEL_ID;
1991
1992                memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1993                __event_process_build_id(&bev, filename, session);
1994
1995                offset += bev.header.size;
1996        }
1997
1998        return 0;
1999}
2000
2001static int perf_header__read_build_ids(struct perf_header *header,
2002                                       int input, u64 offset, u64 size)
2003{
2004        struct perf_session *session = container_of(header, struct perf_session, header);
2005        struct perf_record_header_build_id bev;
2006        char filename[PATH_MAX];
2007        u64 limit = offset + size, orig_offset = offset;
2008        int err = -1;
2009
2010        while (offset < limit) {
2011                ssize_t len;
2012
2013                if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2014                        goto out;
2015
2016                if (header->needs_swap)
2017                        perf_event_header__bswap(&bev.header);
2018
2019                len = bev.header.size - sizeof(bev);
2020                if (readn(input, filename, len) != len)
2021                        goto out;
2022                /*
2023                 * The a1645ce1 changeset:
2024                 *
2025                 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2026                 *
2027                 * Added a field to struct perf_record_header_build_id that broke the file
2028                 * format.
2029                 *
2030                 * Since the kernel build-id is the first entry, process the
2031                 * table using the old format if the well known
2032                 * '[kernel.kallsyms]' string for the kernel build-id has the
2033                 * first 4 characters chopped off (where the pid_t sits).
2034                 */
2035                if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2036                        if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2037                                return -1;
2038                        return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2039                }
2040
2041                __event_process_build_id(&bev, filename, session);
2042
2043                offset += bev.header.size;
2044        }
2045        err = 0;
2046out:
2047        return err;
2048}
2049
2050/* Macro for features that simply need to read and store a string. */
2051#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2052static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2053{\
2054        ff->ph->env.__feat_env = do_read_string(ff); \
2055        return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2056}
2057
2058FEAT_PROCESS_STR_FUN(hostname, hostname);
2059FEAT_PROCESS_STR_FUN(osrelease, os_release);
2060FEAT_PROCESS_STR_FUN(version, version);
2061FEAT_PROCESS_STR_FUN(arch, arch);
2062FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2063FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2064
2065static int process_tracing_data(struct feat_fd *ff, void *data)
2066{
2067        ssize_t ret = trace_report(ff->fd, data, false);
2068
2069        return ret < 0 ? -1 : 0;
2070}
2071
2072static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2073{
2074        if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2075                pr_debug("Failed to read buildids, continuing...\n");
2076        return 0;
2077}
2078
2079static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2080{
2081        int ret;
2082        u32 nr_cpus_avail, nr_cpus_online;
2083
2084        ret = do_read_u32(ff, &nr_cpus_avail);
2085        if (ret)
2086                return ret;
2087
2088        ret = do_read_u32(ff, &nr_cpus_online);
2089        if (ret)
2090                return ret;
2091        ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2092        ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2093        return 0;
2094}
2095
2096static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2097{
2098        u64 total_mem;
2099        int ret;
2100
2101        ret = do_read_u64(ff, &total_mem);
2102        if (ret)
2103                return -1;
2104        ff->ph->env.total_mem = (unsigned long long)total_mem;
2105        return 0;
2106}
2107
2108static struct evsel *
2109perf_evlist__find_by_index(struct evlist *evlist, int idx)
2110{
2111        struct evsel *evsel;
2112
2113        evlist__for_each_entry(evlist, evsel) {
2114                if (evsel->idx == idx)
2115                        return evsel;
2116        }
2117
2118        return NULL;
2119}
2120
2121static void
2122perf_evlist__set_event_name(struct evlist *evlist,
2123                            struct evsel *event)
2124{
2125        struct evsel *evsel;
2126
2127        if (!event->name)
2128                return;
2129
2130        evsel = perf_evlist__find_by_index(evlist, event->idx);
2131        if (!evsel)
2132                return;
2133
2134        if (evsel->name)
2135                return;
2136
2137        evsel->name = strdup(event->name);
2138}
2139
2140static int
2141process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2142{
2143        struct perf_session *session;
2144        struct evsel *evsel, *events = read_event_desc(ff);
2145
2146        if (!events)
2147                return 0;
2148
2149        session = container_of(ff->ph, struct perf_session, header);
2150
2151        if (session->data->is_pipe) {
2152                /* Save events for reading later by print_event_desc,
2153                 * since they can't be read again in pipe mode. */
2154                ff->events = events;
2155        }
2156
2157        for (evsel = events; evsel->core.attr.size; evsel++)
2158                perf_evlist__set_event_name(session->evlist, evsel);
2159
2160        if (!session->data->is_pipe)
2161                free_event_desc(events);
2162
2163        return 0;
2164}
2165
2166static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2167{
2168        char *str, *cmdline = NULL, **argv = NULL;
2169        u32 nr, i, len = 0;
2170
2171        if (do_read_u32(ff, &nr))
2172                return -1;
2173
2174        ff->ph->env.nr_cmdline = nr;
2175
2176        cmdline = zalloc(ff->size + nr + 1);
2177        if (!cmdline)
2178                return -1;
2179
2180        argv = zalloc(sizeof(char *) * (nr + 1));
2181        if (!argv)
2182                goto error;
2183
2184        for (i = 0; i < nr; i++) {
2185                str = do_read_string(ff);
2186                if (!str)
2187                        goto error;
2188
2189                argv[i] = cmdline + len;
2190                memcpy(argv[i], str, strlen(str) + 1);
2191                len += strlen(str) + 1;
2192                free(str);
2193        }
2194        ff->ph->env.cmdline = cmdline;
2195        ff->ph->env.cmdline_argv = (const char **) argv;
2196        return 0;
2197
2198error:
2199        free(argv);
2200        free(cmdline);
2201        return -1;
2202}
2203
2204static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2205{
2206        u32 nr, i;
2207        char *str;
2208        struct strbuf sb;
2209        int cpu_nr = ff->ph->env.nr_cpus_avail;
2210        u64 size = 0;
2211        struct perf_header *ph = ff->ph;
2212        bool do_core_id_test = true;
2213
2214        ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2215        if (!ph->env.cpu)
2216                return -1;
2217
2218        if (do_read_u32(ff, &nr))
2219                goto free_cpu;
2220
2221        ph->env.nr_sibling_cores = nr;
2222        size += sizeof(u32);
2223        if (strbuf_init(&sb, 128) < 0)
2224                goto free_cpu;
2225
2226        for (i = 0; i < nr; i++) {
2227                str = do_read_string(ff);
2228                if (!str)
2229                        goto error;
2230
2231                /* include a NULL character at the end */
2232                if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2233                        goto error;
2234                size += string_size(str);
2235                free(str);
2236        }
2237        ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2238
2239        if (do_read_u32(ff, &nr))
2240                return -1;
2241
2242        ph->env.nr_sibling_threads = nr;
2243        size += sizeof(u32);
2244
2245        for (i = 0; i < nr; i++) {
2246                str = do_read_string(ff);
2247                if (!str)
2248                        goto error;
2249
2250                /* include a NULL character at the end */
2251                if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2252                        goto error;
2253                size += string_size(str);
2254                free(str);
2255        }
2256        ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2257
2258        /*
2259         * The header may be from old perf,
2260         * which doesn't include core id and socket id information.
2261         */
2262        if (ff->size <= size) {
2263                zfree(&ph->env.cpu);
2264                return 0;
2265        }
2266
2267        /* On s390 the socket_id number is not related to the numbers of cpus.
2268         * The socket_id number might be higher than the numbers of cpus.
2269         * This depends on the configuration.
2270         * AArch64 is the same.
2271         */
2272        if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2273                          || !strncmp(ph->env.arch, "aarch64", 7)))
2274                do_core_id_test = false;
2275
2276        for (i = 0; i < (u32)cpu_nr; i++) {
2277                if (do_read_u32(ff, &nr))
2278                        goto free_cpu;
2279
2280                ph->env.cpu[i].core_id = nr;
2281                size += sizeof(u32);
2282
2283                if (do_read_u32(ff, &nr))
2284                        goto free_cpu;
2285
2286                if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2287                        pr_debug("socket_id number is too big."
2288                                 "You may need to upgrade the perf tool.\n");
2289                        goto free_cpu;
2290                }
2291
2292                ph->env.cpu[i].socket_id = nr;
2293                size += sizeof(u32);
2294        }
2295
2296        /*
2297         * The header may be from old perf,
2298         * which doesn't include die information.
2299         */
2300        if (ff->size <= size)
2301                return 0;
2302
2303        if (do_read_u32(ff, &nr))
2304                return -1;
2305
2306        ph->env.nr_sibling_dies = nr;
2307        size += sizeof(u32);
2308
2309        for (i = 0; i < nr; i++) {
2310                str = do_read_string(ff);
2311                if (!str)
2312                        goto error;
2313
2314                /* include a NULL character at the end */
2315                if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2316                        goto error;
2317                size += string_size(str);
2318                free(str);
2319        }
2320        ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2321
2322        for (i = 0; i < (u32)cpu_nr; i++) {
2323                if (do_read_u32(ff, &nr))
2324                        goto free_cpu;
2325
2326                ph->env.cpu[i].die_id = nr;
2327        }
2328
2329        return 0;
2330
2331error:
2332        strbuf_release(&sb);
2333free_cpu:
2334        zfree(&ph->env.cpu);
2335        return -1;
2336}
2337
2338static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2339{
2340        struct numa_node *nodes, *n;
2341        u32 nr, i;
2342        char *str;
2343
2344        /* nr nodes */
2345        if (do_read_u32(ff, &nr))
2346                return -1;
2347
2348        nodes = zalloc(sizeof(*nodes) * nr);
2349        if (!nodes)
2350                return -ENOMEM;
2351
2352        for (i = 0; i < nr; i++) {
2353                n = &nodes[i];
2354
2355                /* node number */
2356                if (do_read_u32(ff, &n->node))
2357                        goto error;
2358
2359                if (do_read_u64(ff, &n->mem_total))
2360                        goto error;
2361
2362                if (do_read_u64(ff, &n->mem_free))
2363                        goto error;
2364
2365                str = do_read_string(ff);
2366                if (!str)
2367                        goto error;
2368
2369                n->map = perf_cpu_map__new(str);
2370                if (!n->map)
2371                        goto error;
2372
2373                free(str);
2374        }
2375        ff->ph->env.nr_numa_nodes = nr;
2376        ff->ph->env.numa_nodes = nodes;
2377        return 0;
2378
2379error:
2380        free(nodes);
2381        return -1;
2382}
2383
2384static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2385{
2386        char *name;
2387        u32 pmu_num;
2388        u32 type;
2389        struct strbuf sb;
2390
2391        if (do_read_u32(ff, &pmu_num))
2392                return -1;
2393
2394        if (!pmu_num) {
2395                pr_debug("pmu mappings not available\n");
2396                return 0;
2397        }
2398
2399        ff->ph->env.nr_pmu_mappings = pmu_num;
2400        if (strbuf_init(&sb, 128) < 0)
2401                return -1;
2402
2403        while (pmu_num) {
2404                if (do_read_u32(ff, &type))
2405                        goto error;
2406
2407                name = do_read_string(ff);
2408                if (!name)
2409                        goto error;
2410
2411                if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2412                        goto error;
2413                /* include a NULL character at the end */
2414                if (strbuf_add(&sb, "", 1) < 0)
2415                        goto error;
2416
2417                if (!strcmp(name, "msr"))
2418                        ff->ph->env.msr_pmu_type = type;
2419
2420                free(name);
2421                pmu_num--;
2422        }
2423        ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2424        return 0;
2425
2426error:
2427        strbuf_release(&sb);
2428        return -1;
2429}
2430
2431static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2432{
2433        size_t ret = -1;
2434        u32 i, nr, nr_groups;
2435        struct perf_session *session;
2436        struct evsel *evsel, *leader = NULL;
2437        struct group_desc {
2438                char *name;
2439                u32 leader_idx;
2440                u32 nr_members;
2441        } *desc;
2442
2443        if (do_read_u32(ff, &nr_groups))
2444                return -1;
2445
2446        ff->ph->env.nr_groups = nr_groups;
2447        if (!nr_groups) {
2448                pr_debug("group desc not available\n");
2449                return 0;
2450        }
2451
2452        desc = calloc(nr_groups, sizeof(*desc));
2453        if (!desc)
2454                return -1;
2455
2456        for (i = 0; i < nr_groups; i++) {
2457                desc[i].name = do_read_string(ff);
2458                if (!desc[i].name)
2459                        goto out_free;
2460
2461                if (do_read_u32(ff, &desc[i].leader_idx))
2462                        goto out_free;
2463
2464                if (do_read_u32(ff, &desc[i].nr_members))
2465                        goto out_free;
2466        }
2467
2468        /*
2469         * Rebuild group relationship based on the group_desc
2470         */
2471        session = container_of(ff->ph, struct perf_session, header);
2472        session->evlist->nr_groups = nr_groups;
2473
2474        i = nr = 0;
2475        evlist__for_each_entry(session->evlist, evsel) {
2476                if (evsel->idx == (int) desc[i].leader_idx) {
2477                        evsel->leader = evsel;
2478                        /* {anon_group} is a dummy name */
2479                        if (strcmp(desc[i].name, "{anon_group}")) {
2480                                evsel->group_name = desc[i].name;
2481                                desc[i].name = NULL;
2482                        }
2483                        evsel->core.nr_members = desc[i].nr_members;
2484
2485                        if (i >= nr_groups || nr > 0) {
2486                                pr_debug("invalid group desc\n");
2487                                goto out_free;
2488                        }
2489
2490                        leader = evsel;
2491                        nr = evsel->core.nr_members - 1;
2492                        i++;
2493                } else if (nr) {
2494                        /* This is a group member */
2495                        evsel->leader = leader;
2496
2497                        nr--;
2498                }
2499        }
2500
2501        if (i != nr_groups || nr != 0) {
2502                pr_debug("invalid group desc\n");
2503                goto out_free;
2504        }
2505
2506        ret = 0;
2507out_free:
2508        for (i = 0; i < nr_groups; i++)
2509                zfree(&desc[i].name);
2510        free(desc);
2511
2512        return ret;
2513}
2514
2515static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2516{
2517        struct perf_session *session;
2518        int err;
2519
2520        session = container_of(ff->ph, struct perf_session, header);
2521
2522        err = auxtrace_index__process(ff->fd, ff->size, session,
2523                                      ff->ph->needs_swap);
2524        if (err < 0)
2525                pr_err("Failed to process auxtrace index\n");
2526        return err;
2527}
2528
2529static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2530{
2531        struct cpu_cache_level *caches;
2532        u32 cnt, i, version;
2533
2534        if (do_read_u32(ff, &version))
2535                return -1;
2536
2537        if (version != 1)
2538                return -1;
2539
2540        if (do_read_u32(ff, &cnt))
2541                return -1;
2542
2543        caches = zalloc(sizeof(*caches) * cnt);
2544        if (!caches)
2545                return -1;
2546
2547        for (i = 0; i < cnt; i++) {
2548                struct cpu_cache_level c;
2549
2550                #define _R(v)                                           \
2551                        if (do_read_u32(ff, &c.v))\
2552                                goto out_free_caches;                   \
2553
2554                _R(level)
2555                _R(line_size)
2556                _R(sets)
2557                _R(ways)
2558                #undef _R
2559
2560                #define _R(v)                                   \
2561                        c.v = do_read_string(ff);               \
2562                        if (!c.v)                               \
2563                                goto out_free_caches;
2564
2565                _R(type)
2566                _R(size)
2567                _R(map)
2568                #undef _R
2569
2570                caches[i] = c;
2571        }
2572
2573        ff->ph->env.caches = caches;
2574        ff->ph->env.caches_cnt = cnt;
2575        return 0;
2576out_free_caches:
2577        free(caches);
2578        return -1;
2579}
2580
2581static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2582{
2583        struct perf_session *session;
2584        u64 first_sample_time, last_sample_time;
2585        int ret;
2586
2587        session = container_of(ff->ph, struct perf_session, header);
2588
2589        ret = do_read_u64(ff, &first_sample_time);
2590        if (ret)
2591                return -1;
2592
2593        ret = do_read_u64(ff, &last_sample_time);
2594        if (ret)
2595                return -1;
2596
2597        session->evlist->first_sample_time = first_sample_time;
2598        session->evlist->last_sample_time = last_sample_time;
2599        return 0;
2600}
2601
2602static int process_mem_topology(struct feat_fd *ff,
2603                                void *data __maybe_unused)
2604{
2605        struct memory_node *nodes;
2606        u64 version, i, nr, bsize;
2607        int ret = -1;
2608
2609        if (do_read_u64(ff, &version))
2610                return -1;
2611
2612        if (version != 1)
2613                return -1;
2614
2615        if (do_read_u64(ff, &bsize))
2616                return -1;
2617
2618        if (do_read_u64(ff, &nr))
2619                return -1;
2620
2621        nodes = zalloc(sizeof(*nodes) * nr);
2622        if (!nodes)
2623                return -1;
2624
2625        for (i = 0; i < nr; i++) {
2626                struct memory_node n;
2627
2628                #define _R(v)                           \
2629                        if (do_read_u64(ff, &n.v))      \
2630                                goto out;               \
2631
2632                _R(node)
2633                _R(size)
2634
2635                #undef _R
2636
2637                if (do_read_bitmap(ff, &n.set, &n.size))
2638                        goto out;
2639
2640                nodes[i] = n;
2641        }
2642
2643        ff->ph->env.memory_bsize    = bsize;
2644        ff->ph->env.memory_nodes    = nodes;
2645        ff->ph->env.nr_memory_nodes = nr;
2646        ret = 0;
2647
2648out:
2649        if (ret)
2650                free(nodes);
2651        return ret;
2652}
2653
2654static int process_clockid(struct feat_fd *ff,
2655                           void *data __maybe_unused)
2656{
2657        if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2658                return -1;
2659
2660        return 0;
2661}
2662
2663static int process_dir_format(struct feat_fd *ff,
2664                              void *_data __maybe_unused)
2665{
2666        struct perf_session *session;
2667        struct perf_data *data;
2668
2669        session = container_of(ff->ph, struct perf_session, header);
2670        data = session->data;
2671
2672        if (WARN_ON(!perf_data__is_dir(data)))
2673                return -1;
2674
2675        return do_read_u64(ff, &data->dir.version);
2676}
2677
2678#ifdef HAVE_LIBBPF_SUPPORT
2679static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2680{
2681        struct bpf_prog_info_linear *info_linear;
2682        struct bpf_prog_info_node *info_node;
2683        struct perf_env *env = &ff->ph->env;
2684        u32 count, i;
2685        int err = -1;
2686
2687        if (ff->ph->needs_swap) {
2688                pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2689                return 0;
2690        }
2691
2692        if (do_read_u32(ff, &count))
2693                return -1;
2694
2695        down_write(&env->bpf_progs.lock);
2696
2697        for (i = 0; i < count; ++i) {
2698                u32 info_len, data_len;
2699
2700                info_linear = NULL;
2701                info_node = NULL;
2702                if (do_read_u32(ff, &info_len))
2703                        goto out;
2704                if (do_read_u32(ff, &data_len))
2705                        goto out;
2706
2707                if (info_len > sizeof(struct bpf_prog_info)) {
2708                        pr_warning("detected invalid bpf_prog_info\n");
2709                        goto out;
2710                }
2711
2712                info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2713                                     data_len);
2714                if (!info_linear)
2715                        goto out;
2716                info_linear->info_len = sizeof(struct bpf_prog_info);
2717                info_linear->data_len = data_len;
2718                if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2719                        goto out;
2720                if (__do_read(ff, &info_linear->info, info_len))
2721                        goto out;
2722                if (info_len < sizeof(struct bpf_prog_info))
2723                        memset(((void *)(&info_linear->info)) + info_len, 0,
2724                               sizeof(struct bpf_prog_info) - info_len);
2725
2726                if (__do_read(ff, info_linear->data, data_len))
2727                        goto out;
2728
2729                info_node = malloc(sizeof(struct bpf_prog_info_node));
2730                if (!info_node)
2731                        goto out;
2732
2733                /* after reading from file, translate offset to address */
2734                bpf_program__bpil_offs_to_addr(info_linear);
2735                info_node->info_linear = info_linear;
2736                perf_env__insert_bpf_prog_info(env, info_node);
2737        }
2738
2739        up_write(&env->bpf_progs.lock);
2740        return 0;
2741out:
2742        free(info_linear);
2743        free(info_node);
2744        up_write(&env->bpf_progs.lock);
2745        return err;
2746}
2747#else // HAVE_LIBBPF_SUPPORT
2748static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2749{
2750        return 0;
2751}
2752#endif // HAVE_LIBBPF_SUPPORT
2753
2754static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2755{
2756        struct perf_env *env = &ff->ph->env;
2757        struct btf_node *node = NULL;
2758        u32 count, i;
2759        int err = -1;
2760
2761        if (ff->ph->needs_swap) {
2762                pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2763                return 0;
2764        }
2765
2766        if (do_read_u32(ff, &count))
2767                return -1;
2768
2769        down_write(&env->bpf_progs.lock);
2770
2771        for (i = 0; i < count; ++i) {
2772                u32 id, data_size;
2773
2774                if (do_read_u32(ff, &id))
2775                        goto out;
2776                if (do_read_u32(ff, &data_size))
2777                        goto out;
2778
2779                node = malloc(sizeof(struct btf_node) + data_size);
2780                if (!node)
2781                        goto out;
2782
2783                node->id = id;
2784                node->data_size = data_size;
2785
2786                if (__do_read(ff, node->data, data_size))
2787                        goto out;
2788
2789                perf_env__insert_btf(env, node);
2790                node = NULL;
2791        }
2792
2793        err = 0;
2794out:
2795        up_write(&env->bpf_progs.lock);
2796        free(node);
2797        return err;
2798}
2799
2800static int process_compressed(struct feat_fd *ff,
2801                              void *data __maybe_unused)
2802{
2803        if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2804                return -1;
2805
2806        if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2807                return -1;
2808
2809        if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2810                return -1;
2811
2812        if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
2813                return -1;
2814
2815        if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
2816                return -1;
2817
2818        return 0;
2819}
2820
2821#define FEAT_OPR(n, func, __full_only) \
2822        [HEADER_##n] = {                                        \
2823                .name       = __stringify(n),                   \
2824                .write      = write_##func,                     \
2825                .print      = print_##func,                     \
2826                .full_only  = __full_only,                      \
2827                .process    = process_##func,                   \
2828                .synthesize = true                              \
2829        }
2830
2831#define FEAT_OPN(n, func, __full_only) \
2832        [HEADER_##n] = {                                        \
2833                .name       = __stringify(n),                   \
2834                .write      = write_##func,                     \
2835                .print      = print_##func,                     \
2836                .full_only  = __full_only,                      \
2837                .process    = process_##func                    \
2838        }
2839
2840/* feature_ops not implemented: */
2841#define print_tracing_data      NULL
2842#define print_build_id          NULL
2843
2844#define process_branch_stack    NULL
2845#define process_stat            NULL
2846
2847// Only used in util/synthetic-events.c
2848const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
2849
2850const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2851        FEAT_OPN(TRACING_DATA,  tracing_data,   false),
2852        FEAT_OPN(BUILD_ID,      build_id,       false),
2853        FEAT_OPR(HOSTNAME,      hostname,       false),
2854        FEAT_OPR(OSRELEASE,     osrelease,      false),
2855        FEAT_OPR(VERSION,       version,        false),
2856        FEAT_OPR(ARCH,          arch,           false),
2857        FEAT_OPR(NRCPUS,        nrcpus,         false),
2858        FEAT_OPR(CPUDESC,       cpudesc,        false),
2859        FEAT_OPR(CPUID,         cpuid,          false),
2860        FEAT_OPR(TOTAL_MEM,     total_mem,      false),
2861        FEAT_OPR(EVENT_DESC,    event_desc,     false),
2862        FEAT_OPR(CMDLINE,       cmdline,        false),
2863        FEAT_OPR(CPU_TOPOLOGY,  cpu_topology,   true),
2864        FEAT_OPR(NUMA_TOPOLOGY, numa_topology,  true),
2865        FEAT_OPN(BRANCH_STACK,  branch_stack,   false),
2866        FEAT_OPR(PMU_MAPPINGS,  pmu_mappings,   false),
2867        FEAT_OPR(GROUP_DESC,    group_desc,     false),
2868        FEAT_OPN(AUXTRACE,      auxtrace,       false),
2869        FEAT_OPN(STAT,          stat,           false),
2870        FEAT_OPN(CACHE,         cache,          true),
2871        FEAT_OPR(SAMPLE_TIME,   sample_time,    false),
2872        FEAT_OPR(MEM_TOPOLOGY,  mem_topology,   true),
2873        FEAT_OPR(CLOCKID,       clockid,        false),
2874        FEAT_OPN(DIR_FORMAT,    dir_format,     false),
2875        FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
2876        FEAT_OPR(BPF_BTF,       bpf_btf,        false),
2877        FEAT_OPR(COMPRESSED,    compressed,     false),
2878};
2879
2880struct header_print_data {
2881        FILE *fp;
2882        bool full; /* extended list of headers */
2883};
2884
2885static int perf_file_section__fprintf_info(struct perf_file_section *section,
2886                                           struct perf_header *ph,
2887                                           int feat, int fd, void *data)
2888{
2889        struct header_print_data *hd = data;
2890        struct feat_fd ff;
2891
2892        if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2893                pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2894                                "%d, continuing...\n", section->offset, feat);
2895                return 0;
2896        }
2897        if (feat >= HEADER_LAST_FEATURE) {
2898                pr_warning("unknown feature %d\n", feat);
2899                return 0;
2900        }
2901        if (!feat_ops[feat].print)
2902                return 0;
2903
2904        ff = (struct  feat_fd) {
2905                .fd = fd,
2906                .ph = ph,
2907        };
2908
2909        if (!feat_ops[feat].full_only || hd->full)
2910                feat_ops[feat].print(&ff, hd->fp);
2911        else
2912                fprintf(hd->fp, "# %s info available, use -I to display\n",
2913                        feat_ops[feat].name);
2914
2915        return 0;
2916}
2917
2918int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2919{
2920        struct header_print_data hd;
2921        struct perf_header *header = &session->header;
2922        int fd = perf_data__fd(session->data);
2923        struct stat st;
2924        time_t stctime;
2925        int ret, bit;
2926
2927        hd.fp = fp;
2928        hd.full = full;
2929
2930        ret = fstat(fd, &st);
2931        if (ret == -1)
2932                return -1;
2933
2934        stctime = st.st_ctime;
2935        fprintf(fp, "# captured on    : %s", ctime(&stctime));
2936
2937        fprintf(fp, "# header version : %u\n", header->version);
2938        fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2939        fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2940        fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2941
2942        perf_header__process_sections(header, fd, &hd,
2943                                      perf_file_section__fprintf_info);
2944
2945        if (session->data->is_pipe)
2946                return 0;
2947
2948        fprintf(fp, "# missing features: ");
2949        for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2950                if (bit)
2951                        fprintf(fp, "%s ", feat_ops[bit].name);
2952        }
2953
2954        fprintf(fp, "\n");
2955        return 0;
2956}
2957
2958static int do_write_feat(struct feat_fd *ff, int type,
2959                         struct perf_file_section **p,
2960                         struct evlist *evlist)
2961{
2962        int err;
2963        int ret = 0;
2964
2965        if (perf_header__has_feat(ff->ph, type)) {
2966                if (!feat_ops[type].write)
2967                        return -1;
2968
2969                if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2970                        return -1;
2971
2972                (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2973
2974                err = feat_ops[type].write(ff, evlist);
2975                if (err < 0) {
2976                        pr_debug("failed to write feature %s\n", feat_ops[type].name);
2977
2978                        /* undo anything written */
2979                        lseek(ff->fd, (*p)->offset, SEEK_SET);
2980
2981                        return -1;
2982                }
2983                (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2984                (*p)++;
2985        }
2986        return ret;
2987}
2988
2989static int perf_header__adds_write(struct perf_header *header,
2990                                   struct evlist *evlist, int fd)
2991{
2992        int nr_sections;
2993        struct feat_fd ff;
2994        struct perf_file_section *feat_sec, *p;
2995        int sec_size;
2996        u64 sec_start;
2997        int feat;
2998        int err;
2999
3000        ff = (struct feat_fd){
3001                .fd  = fd,
3002                .ph = header,
3003        };
3004
3005        nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3006        if (!nr_sections)
3007                return 0;
3008
3009        feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3010        if (feat_sec == NULL)
3011                return -ENOMEM;
3012
3013        sec_size = sizeof(*feat_sec) * nr_sections;
3014
3015        sec_start = header->feat_offset;
3016        lseek(fd, sec_start + sec_size, SEEK_SET);
3017
3018        for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3019                if (do_write_feat(&ff, feat, &p, evlist))
3020                        perf_header__clear_feat(header, feat);
3021        }
3022
3023        lseek(fd, sec_start, SEEK_SET);
3024        /*
3025         * may write more than needed due to dropped feature, but
3026         * this is okay, reader will skip the missing entries
3027         */
3028        err = do_write(&ff, feat_sec, sec_size);
3029        if (err < 0)
3030                pr_debug("failed to write feature section\n");
3031        free(feat_sec);
3032        return err;
3033}
3034
3035int perf_header__write_pipe(int fd)
3036{
3037        struct perf_pipe_file_header f_header;
3038        struct feat_fd ff;
3039        int err;
3040
3041        ff = (struct feat_fd){ .fd = fd };
3042
3043        f_header = (struct perf_pipe_file_header){
3044                .magic     = PERF_MAGIC,
3045                .size      = sizeof(f_header),
3046        };
3047
3048        err = do_write(&ff, &f_header, sizeof(f_header));
3049        if (err < 0) {
3050                pr_debug("failed to write perf pipe header\n");
3051                return err;
3052        }
3053
3054        return 0;
3055}
3056
3057int perf_session__write_header(struct perf_session *session,
3058                               struct evlist *evlist,
3059                               int fd, bool at_exit)
3060{
3061        struct perf_file_header f_header;
3062        struct perf_file_attr   f_attr;
3063        struct perf_header *header = &session->header;
3064        struct evsel *evsel;
3065        struct feat_fd ff;
3066        u64 attr_offset;
3067        int err;
3068
3069        ff = (struct feat_fd){ .fd = fd};
3070        lseek(fd, sizeof(f_header), SEEK_SET);
3071
3072        evlist__for_each_entry(session->evlist, evsel) {
3073                evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3074                err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3075                if (err < 0) {
3076                        pr_debug("failed to write perf header\n");
3077                        return err;
3078                }
3079        }
3080
3081        attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3082
3083        evlist__for_each_entry(evlist, evsel) {
3084                f_attr = (struct perf_file_attr){
3085                        .attr = evsel->core.attr,
3086                        .ids  = {
3087                                .offset = evsel->id_offset,
3088                                .size   = evsel->core.ids * sizeof(u64),
3089                        }
3090                };
3091                err = do_write(&ff, &f_attr, sizeof(f_attr));
3092                if (err < 0) {
3093                        pr_debug("failed to write perf header attribute\n");
3094                        return err;
3095                }
3096        }
3097
3098        if (!header->data_offset)
3099                header->data_offset = lseek(fd, 0, SEEK_CUR);
3100        header->feat_offset = header->data_offset + header->data_size;
3101
3102        if (at_exit) {
3103                err = perf_header__adds_write(header, evlist, fd);
3104                if (err < 0)
3105                        return err;
3106        }
3107
3108        f_header = (struct perf_file_header){
3109                .magic     = PERF_MAGIC,
3110                .size      = sizeof(f_header),
3111                .attr_size = sizeof(f_attr),
3112                .attrs = {
3113                        .offset = attr_offset,
3114                        .size   = evlist->core.nr_entries * sizeof(f_attr),
3115                },
3116                .data = {
3117                        .offset = header->data_offset,
3118                        .size   = header->data_size,
3119                },
3120                /* event_types is ignored, store zeros */
3121        };
3122
3123        memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3124
3125        lseek(fd, 0, SEEK_SET);
3126        err = do_write(&ff, &f_header, sizeof(f_header));
3127        if (err < 0) {
3128                pr_debug("failed to write perf header\n");
3129                return err;
3130        }
3131        lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3132
3133        return 0;
3134}
3135
3136static int perf_header__getbuffer64(struct perf_header *header,
3137                                    int fd, void *buf, size_t size)
3138{
3139        if (readn(fd, buf, size) <= 0)
3140                return -1;
3141
3142        if (header->needs_swap)
3143                mem_bswap_64(buf, size);
3144
3145        return 0;
3146}
3147
3148int perf_header__process_sections(struct perf_header *header, int fd,
3149                                  void *data,
3150                                  int (*process)(struct perf_file_section *section,
3151                                                 struct perf_header *ph,
3152                                                 int feat, int fd, void *data))
3153{
3154        struct perf_file_section *feat_sec, *sec;
3155        int nr_sections;
3156        int sec_size;
3157        int feat;
3158        int err;
3159
3160        nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3161        if (!nr_sections)
3162                return 0;
3163
3164        feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3165        if (!feat_sec)
3166                return -1;
3167
3168        sec_size = sizeof(*feat_sec) * nr_sections;
3169
3170        lseek(fd, header->feat_offset, SEEK_SET);
3171
3172        err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3173        if (err < 0)
3174                goto out_free;
3175
3176        for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3177                err = process(sec++, header, feat, fd, data);
3178                if (err < 0)
3179                        goto out_free;
3180        }
3181        err = 0;
3182out_free:
3183        free(feat_sec);
3184        return err;
3185}
3186
3187static const int attr_file_abi_sizes[] = {
3188        [0] = PERF_ATTR_SIZE_VER0,
3189        [1] = PERF_ATTR_SIZE_VER1,
3190        [2] = PERF_ATTR_SIZE_VER2,
3191        [3] = PERF_ATTR_SIZE_VER3,
3192        [4] = PERF_ATTR_SIZE_VER4,
3193        0,
3194};
3195
3196/*
3197 * In the legacy file format, the magic number is not used to encode endianness.
3198 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3199 * on ABI revisions, we need to try all combinations for all endianness to
3200 * detect the endianness.
3201 */
3202static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3203{
3204        uint64_t ref_size, attr_size;
3205        int i;
3206
3207        for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3208                ref_size = attr_file_abi_sizes[i]
3209                         + sizeof(struct perf_file_section);
3210                if (hdr_sz != ref_size) {
3211                        attr_size = bswap_64(hdr_sz);
3212                        if (attr_size != ref_size)
3213                                continue;
3214
3215                        ph->needs_swap = true;
3216                }
3217                pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3218                         i,
3219                         ph->needs_swap);
3220                return 0;
3221        }
3222        /* could not determine endianness */
3223        return -1;
3224}
3225
3226#define PERF_PIPE_HDR_VER0      16
3227
3228static const size_t attr_pipe_abi_sizes[] = {
3229        [0] = PERF_PIPE_HDR_VER0,
3230        0,
3231};
3232
3233/*
3234 * In the legacy pipe format, there is an implicit assumption that endiannesss
3235 * between host recording the samples, and host parsing the samples is the
3236 * same. This is not always the case given that the pipe output may always be
3237 * redirected into a file and analyzed on a different machine with possibly a
3238 * different endianness and perf_event ABI revsions in the perf tool itself.
3239 */
3240static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3241{
3242        u64 attr_size;
3243        int i;
3244
3245        for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3246                if (hdr_sz != attr_pipe_abi_sizes[i]) {
3247                        attr_size = bswap_64(hdr_sz);
3248                        if (attr_size != hdr_sz)
3249                                continue;
3250
3251                        ph->needs_swap = true;
3252                }
3253                pr_debug("Pipe ABI%d perf.data file detected\n", i);
3254                return 0;
3255        }
3256        return -1;
3257}
3258
3259bool is_perf_magic(u64 magic)
3260{
3261        if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3262                || magic == __perf_magic2
3263                || magic == __perf_magic2_sw)
3264                return true;
3265
3266        return false;
3267}
3268
3269static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3270                              bool is_pipe, struct perf_header *ph)
3271{
3272        int ret;
3273
3274        /* check for legacy format */
3275        ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3276        if (ret == 0) {
3277                ph->version = PERF_HEADER_VERSION_1;
3278                pr_debug("legacy perf.data format\n");
3279                if (is_pipe)
3280                        return try_all_pipe_abis(hdr_sz, ph);
3281
3282                return try_all_file_abis(hdr_sz, ph);
3283        }
3284        /*
3285         * the new magic number serves two purposes:
3286         * - unique number to identify actual perf.data files
3287         * - encode endianness of file
3288         */
3289        ph->version = PERF_HEADER_VERSION_2;
3290
3291        /* check magic number with one endianness */
3292        if (magic == __perf_magic2)
3293                return 0;
3294
3295        /* check magic number with opposite endianness */
3296        if (magic != __perf_magic2_sw)
3297                return -1;
3298
3299        ph->needs_swap = true;
3300
3301        return 0;
3302}
3303
3304int perf_file_header__read(struct perf_file_header *header,
3305                           struct perf_header *ph, int fd)
3306{
3307        ssize_t ret;
3308
3309        lseek(fd, 0, SEEK_SET);
3310
3311        ret = readn(fd, header, sizeof(*header));
3312        if (ret <= 0)
3313                return -1;
3314
3315        if (check_magic_endian(header->magic,
3316                               header->attr_size, false, ph) < 0) {
3317                pr_debug("magic/endian check failed\n");
3318                return -1;
3319        }
3320
3321        if (ph->needs_swap) {
3322                mem_bswap_64(header, offsetof(struct perf_file_header,
3323                             adds_features));
3324        }
3325
3326        if (header->size != sizeof(*header)) {
3327                /* Support the previous format */
3328                if (header->size == offsetof(typeof(*header), adds_features))
3329                        bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3330                else
3331                        return -1;
3332        } else if (ph->needs_swap) {
3333                /*
3334                 * feature bitmap is declared as an array of unsigned longs --
3335                 * not good since its size can differ between the host that
3336                 * generated the data file and the host analyzing the file.
3337                 *
3338                 * We need to handle endianness, but we don't know the size of
3339                 * the unsigned long where the file was generated. Take a best
3340                 * guess at determining it: try 64-bit swap first (ie., file
3341                 * created on a 64-bit host), and check if the hostname feature
3342                 * bit is set (this feature bit is forced on as of fbe96f2).
3343                 * If the bit is not, undo the 64-bit swap and try a 32-bit
3344                 * swap. If the hostname bit is still not set (e.g., older data
3345                 * file), punt and fallback to the original behavior --
3346                 * clearing all feature bits and setting buildid.
3347                 */
3348                mem_bswap_64(&header->adds_features,
3349                            BITS_TO_U64(HEADER_FEAT_BITS));
3350
3351                if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3352                        /* unswap as u64 */
3353                        mem_bswap_64(&header->adds_features,
3354                                    BITS_TO_U64(HEADER_FEAT_BITS));
3355
3356                        /* unswap as u32 */
3357                        mem_bswap_32(&header->adds_features,
3358                                    BITS_TO_U32(HEADER_FEAT_BITS));
3359                }
3360
3361                if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3362                        bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3363                        set_bit(HEADER_BUILD_ID, header->adds_features);
3364                }
3365        }
3366
3367        memcpy(&ph->adds_features, &header->adds_features,
3368               sizeof(ph->adds_features));
3369
3370        ph->data_offset  = header->data.offset;
3371        ph->data_size    = header->data.size;
3372        ph->feat_offset  = header->data.offset + header->data.size;
3373        return 0;
3374}
3375
3376static int perf_file_section__process(struct perf_file_section *section,
3377                                      struct perf_header *ph,
3378                                      int feat, int fd, void *data)
3379{
3380        struct feat_fd fdd = {
3381                .fd     = fd,
3382                .ph     = ph,
3383                .size   = section->size,
3384                .offset = section->offset,
3385        };
3386
3387        if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3388                pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3389                          "%d, continuing...\n", section->offset, feat);
3390                return 0;
3391        }
3392
3393        if (feat >= HEADER_LAST_FEATURE) {
3394                pr_debug("unknown feature %d, continuing...\n", feat);
3395                return 0;
3396        }
3397
3398        if (!feat_ops[feat].process)
3399                return 0;
3400
3401        return feat_ops[feat].process(&fdd, data);
3402}
3403
3404static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3405                                       struct perf_header *ph, int fd,
3406                                       bool repipe)
3407{
3408        struct feat_fd ff = {
3409                .fd = STDOUT_FILENO,
3410                .ph = ph,
3411        };
3412        ssize_t ret;
3413
3414        ret = readn(fd, header, sizeof(*header));
3415        if (ret <= 0)
3416                return -1;
3417
3418        if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3419                pr_debug("endian/magic failed\n");
3420                return -1;
3421        }
3422
3423        if (ph->needs_swap)
3424                header->size = bswap_64(header->size);
3425
3426        if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3427                return -1;
3428
3429        return 0;
3430}
3431
3432static int perf_header__read_pipe(struct perf_session *session)
3433{
3434        struct perf_header *header = &session->header;
3435        struct perf_pipe_file_header f_header;
3436
3437        if (perf_file_header__read_pipe(&f_header, header,
3438                                        perf_data__fd(session->data),
3439                                        session->repipe) < 0) {
3440                pr_debug("incompatible file format\n");
3441                return -EINVAL;
3442        }
3443
3444        return 0;
3445}
3446
3447static int read_attr(int fd, struct perf_header *ph,
3448                     struct perf_file_attr *f_attr)
3449{
3450        struct perf_event_attr *attr = &f_attr->attr;
3451        size_t sz, left;
3452        size_t our_sz = sizeof(f_attr->attr);
3453        ssize_t ret;
3454
3455        memset(f_attr, 0, sizeof(*f_attr));
3456
3457        /* read minimal guaranteed structure */
3458        ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3459        if (ret <= 0) {
3460                pr_debug("cannot read %d bytes of header attr\n",
3461                         PERF_ATTR_SIZE_VER0);
3462                return -1;
3463        }
3464
3465        /* on file perf_event_attr size */
3466        sz = attr->size;
3467
3468        if (ph->needs_swap)
3469                sz = bswap_32(sz);
3470
3471        if (sz == 0) {
3472                /* assume ABI0 */
3473                sz =  PERF_ATTR_SIZE_VER0;
3474        } else if (sz > our_sz) {
3475                pr_debug("file uses a more recent and unsupported ABI"
3476                         " (%zu bytes extra)\n", sz - our_sz);
3477                return -1;
3478        }
3479        /* what we have not yet read and that we know about */
3480        left = sz - PERF_ATTR_SIZE_VER0;
3481        if (left) {
3482                void *ptr = attr;
3483                ptr += PERF_ATTR_SIZE_VER0;
3484
3485                ret = readn(fd, ptr, left);
3486        }
3487        /* read perf_file_section, ids are read in caller */
3488        ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3489
3490        return ret <= 0 ? -1 : 0;
3491}
3492
3493static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3494                                                struct tep_handle *pevent)
3495{
3496        struct tep_event *event;
3497        char bf[128];
3498
3499        /* already prepared */
3500        if (evsel->tp_format)
3501                return 0;
3502
3503        if (pevent == NULL) {
3504                pr_debug("broken or missing trace data\n");
3505                return -1;
3506        }
3507
3508        event = tep_find_event(pevent, evsel->core.attr.config);
3509        if (event == NULL) {
3510                pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3511                return -1;
3512        }
3513
3514        if (!evsel->name) {
3515                snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3516                evsel->name = strdup(bf);
3517                if (evsel->name == NULL)
3518                        return -1;
3519        }
3520
3521        evsel->tp_format = event;
3522        return 0;
3523}
3524
3525static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3526                                                  struct tep_handle *pevent)
3527{
3528        struct evsel *pos;
3529
3530        evlist__for_each_entry(evlist, pos) {
3531                if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3532                    perf_evsel__prepare_tracepoint_event(pos, pevent))
3533                        return -1;
3534        }
3535
3536        return 0;
3537}
3538
3539int perf_session__read_header(struct perf_session *session)
3540{
3541        struct perf_data *data = session->data;
3542        struct perf_header *header = &session->header;
3543        struct perf_file_header f_header;
3544        struct perf_file_attr   f_attr;
3545        u64                     f_id;
3546        int nr_attrs, nr_ids, i, j;
3547        int fd = perf_data__fd(data);
3548
3549        session->evlist = evlist__new();
3550        if (session->evlist == NULL)
3551                return -ENOMEM;
3552
3553        session->evlist->env = &header->env;
3554        session->machines.host.env = &header->env;
3555        if (perf_data__is_pipe(data))
3556                return perf_header__read_pipe(session);
3557
3558        if (perf_file_header__read(&f_header, header, fd) < 0)
3559                return -EINVAL;
3560
3561        /*
3562         * Sanity check that perf.data was written cleanly; data size is
3563         * initialized to 0 and updated only if the on_exit function is run.
3564         * If data size is still 0 then the file contains only partial
3565         * information.  Just warn user and process it as much as it can.
3566         */
3567        if (f_header.data.size == 0) {
3568                pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3569                           "Was the 'perf record' command properly terminated?\n",
3570                           data->file.path);
3571        }
3572
3573        if (f_header.attr_size == 0) {
3574                pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3575                       "Was the 'perf record' command properly terminated?\n",
3576                       data->file.path);
3577                return -EINVAL;
3578        }
3579
3580        nr_attrs = f_header.attrs.size / f_header.attr_size;
3581        lseek(fd, f_header.attrs.offset, SEEK_SET);
3582
3583        for (i = 0; i < nr_attrs; i++) {
3584                struct evsel *evsel;
3585                off_t tmp;
3586
3587                if (read_attr(fd, header, &f_attr) < 0)
3588                        goto out_errno;
3589
3590                if (header->needs_swap) {
3591                        f_attr.ids.size   = bswap_64(f_attr.ids.size);
3592                        f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3593                        perf_event__attr_swap(&f_attr.attr);
3594                }
3595
3596                tmp = lseek(fd, 0, SEEK_CUR);
3597                evsel = evsel__new(&f_attr.attr);
3598
3599                if (evsel == NULL)
3600                        goto out_delete_evlist;
3601
3602                evsel->needs_swap = header->needs_swap;
3603                /*
3604                 * Do it before so that if perf_evsel__alloc_id fails, this
3605                 * entry gets purged too at evlist__delete().
3606                 */
3607                evlist__add(session->evlist, evsel);
3608
3609                nr_ids = f_attr.ids.size / sizeof(u64);
3610                /*
3611                 * We don't have the cpu and thread maps on the header, so
3612                 * for allocating the perf_sample_id table we fake 1 cpu and
3613                 * hattr->ids threads.
3614                 */
3615                if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3616                        goto out_delete_evlist;
3617
3618                lseek(fd, f_attr.ids.offset, SEEK_SET);
3619
3620                for (j = 0; j < nr_ids; j++) {
3621                        if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3622                                goto out_errno;
3623
3624                        perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3625                }
3626
3627                lseek(fd, tmp, SEEK_SET);
3628        }
3629
3630        perf_header__process_sections(header, fd, &session->tevent,
3631                                      perf_file_section__process);
3632
3633        if (perf_evlist__prepare_tracepoint_events(session->evlist,
3634                                                   session->tevent.pevent))
3635                goto out_delete_evlist;
3636
3637        return 0;
3638out_errno:
3639        return -errno;
3640
3641out_delete_evlist:
3642        evlist__delete(session->evlist);
3643        session->evlist = NULL;
3644        return -ENOMEM;
3645}
3646
3647int perf_event__process_feature(struct perf_session *session,
3648                                union perf_event *event)
3649{
3650        struct perf_tool *tool = session->tool;
3651        struct feat_fd ff = { .fd = 0 };
3652        struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3653        int type = fe->header.type;
3654        u64 feat = fe->feat_id;
3655
3656        if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3657                pr_warning("invalid record type %d in pipe-mode\n", type);
3658                return 0;
3659        }
3660        if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3661                pr_warning("invalid record type %d in pipe-mode\n", type);
3662                return -1;
3663        }
3664
3665        if (!feat_ops[feat].process)
3666                return 0;
3667
3668        ff.buf  = (void *)fe->data;
3669        ff.size = event->header.size - sizeof(*fe);
3670        ff.ph = &session->header;
3671
3672        if (feat_ops[feat].process(&ff, NULL))
3673                return -1;
3674
3675        if (!feat_ops[feat].print || !tool->show_feat_hdr)
3676                return 0;
3677
3678        if (!feat_ops[feat].full_only ||
3679            tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3680                feat_ops[feat].print(&ff, stdout);
3681        } else {
3682                fprintf(stdout, "# %s info available, use -I to display\n",
3683                        feat_ops[feat].name);
3684        }
3685
3686        return 0;
3687}
3688
3689size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3690{
3691        struct perf_record_event_update *ev = &event->event_update;
3692        struct perf_record_event_update_scale *ev_scale;
3693        struct perf_record_event_update_cpus *ev_cpus;
3694        struct perf_cpu_map *map;
3695        size_t ret;
3696
3697        ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3698
3699        switch (ev->type) {
3700        case PERF_EVENT_UPDATE__SCALE:
3701                ev_scale = (struct perf_record_event_update_scale *)ev->data;
3702                ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3703                break;
3704        case PERF_EVENT_UPDATE__UNIT:
3705                ret += fprintf(fp, "... unit:  %s\n", ev->data);
3706                break;
3707        case PERF_EVENT_UPDATE__NAME:
3708                ret += fprintf(fp, "... name:  %s\n", ev->data);
3709                break;
3710        case PERF_EVENT_UPDATE__CPUS:
3711                ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3712                ret += fprintf(fp, "... ");
3713
3714                map = cpu_map__new_data(&ev_cpus->cpus);
3715                if (map)
3716                        ret += cpu_map__fprintf(map, fp);
3717                else
3718                        ret += fprintf(fp, "failed to get cpus\n");
3719                break;
3720        default:
3721                ret += fprintf(fp, "... unknown type\n");
3722                break;
3723        }
3724
3725        return ret;
3726}
3727
3728int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3729                             union perf_event *event,
3730                             struct evlist **pevlist)
3731{
3732        u32 i, ids, n_ids;
3733        struct evsel *evsel;
3734        struct evlist *evlist = *pevlist;
3735
3736        if (evlist == NULL) {
3737                *pevlist = evlist = evlist__new();
3738                if (evlist == NULL)
3739                        return -ENOMEM;
3740        }
3741
3742        evsel = evsel__new(&event->attr.attr);
3743        if (evsel == NULL)
3744                return -ENOMEM;
3745
3746        evlist__add(evlist, evsel);
3747
3748        ids = event->header.size;
3749        ids -= (void *)&event->attr.id - (void *)event;
3750        n_ids = ids / sizeof(u64);
3751        /*
3752         * We don't have the cpu and thread maps on the header, so
3753         * for allocating the perf_sample_id table we fake 1 cpu and
3754         * hattr->ids threads.
3755         */
3756        if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
3757                return -ENOMEM;
3758
3759        for (i = 0; i < n_ids; i++) {
3760                perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
3761        }
3762
3763        return 0;
3764}
3765
3766int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3767                                     union perf_event *event,
3768                                     struct evlist **pevlist)
3769{
3770        struct perf_record_event_update *ev = &event->event_update;
3771        struct perf_record_event_update_scale *ev_scale;
3772        struct perf_record_event_update_cpus *ev_cpus;
3773        struct evlist *evlist;
3774        struct evsel *evsel;
3775        struct perf_cpu_map *map;
3776
3777        if (!pevlist || *pevlist == NULL)
3778                return -EINVAL;
3779
3780        evlist = *pevlist;
3781
3782        evsel = perf_evlist__id2evsel(evlist, ev->id);
3783        if (evsel == NULL)
3784                return -EINVAL;
3785
3786        switch (ev->type) {
3787        case PERF_EVENT_UPDATE__UNIT:
3788                evsel->unit = strdup(ev->data);
3789                break;
3790        case PERF_EVENT_UPDATE__NAME:
3791                evsel->name = strdup(ev->data);
3792                break;
3793        case PERF_EVENT_UPDATE__SCALE:
3794                ev_scale = (struct perf_record_event_update_scale *)ev->data;
3795                evsel->scale = ev_scale->scale;
3796                break;
3797        case PERF_EVENT_UPDATE__CPUS:
3798                ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3799
3800                map = cpu_map__new_data(&ev_cpus->cpus);
3801                if (map)
3802                        evsel->core.own_cpus = map;
3803                else
3804                        pr_err("failed to get event_update cpus\n");
3805        default:
3806                break;
3807        }
3808
3809        return 0;
3810}
3811
3812int perf_event__process_tracing_data(struct perf_session *session,
3813                                     union perf_event *event)
3814{
3815        ssize_t size_read, padding, size = event->tracing_data.size;
3816        int fd = perf_data__fd(session->data);
3817        off_t offset = lseek(fd, 0, SEEK_CUR);
3818        char buf[BUFSIZ];
3819
3820        /* setup for reading amidst mmap */
3821        lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
3822              SEEK_SET);
3823
3824        size_read = trace_report(fd, &session->tevent,
3825                                 session->repipe);
3826        padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3827
3828        if (readn(fd, buf, padding) < 0) {
3829                pr_err("%s: reading input file", __func__);
3830                return -1;
3831        }
3832        if (session->repipe) {
3833                int retw = write(STDOUT_FILENO, buf, padding);
3834                if (retw <= 0 || retw != padding) {
3835                        pr_err("%s: repiping tracing data padding", __func__);
3836                        return -1;
3837                }
3838        }
3839
3840        if (size_read + padding != size) {
3841                pr_err("%s: tracing data size mismatch", __func__);
3842                return -1;
3843        }
3844
3845        perf_evlist__prepare_tracepoint_events(session->evlist,
3846                                               session->tevent.pevent);
3847
3848        return size_read + padding;
3849}
3850
3851int perf_event__process_build_id(struct perf_session *session,
3852                                 union perf_event *event)
3853{
3854        __event_process_build_id(&event->build_id,
3855                                 event->build_id.filename,
3856                                 session);
3857        return 0;
3858}
3859