linux/virt/kvm/arm/vgic/vgic-mmio-v3.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * VGICv3 MMIO handling functions
   4 */
   5
   6#include <linux/irqchip/arm-gic-v3.h>
   7#include <linux/kvm.h>
   8#include <linux/kvm_host.h>
   9#include <kvm/iodev.h>
  10#include <kvm/arm_vgic.h>
  11
  12#include <asm/kvm_emulate.h>
  13#include <asm/kvm_arm.h>
  14#include <asm/kvm_mmu.h>
  15
  16#include "vgic.h"
  17#include "vgic-mmio.h"
  18
  19/* extract @num bytes at @offset bytes offset in data */
  20unsigned long extract_bytes(u64 data, unsigned int offset,
  21                            unsigned int num)
  22{
  23        return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
  24}
  25
  26/* allows updates of any half of a 64-bit register (or the whole thing) */
  27u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
  28                     unsigned long val)
  29{
  30        int lower = (offset & 4) * 8;
  31        int upper = lower + 8 * len - 1;
  32
  33        reg &= ~GENMASK_ULL(upper, lower);
  34        val &= GENMASK_ULL(len * 8 - 1, 0);
  35
  36        return reg | ((u64)val << lower);
  37}
  38
  39bool vgic_has_its(struct kvm *kvm)
  40{
  41        struct vgic_dist *dist = &kvm->arch.vgic;
  42
  43        if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
  44                return false;
  45
  46        return dist->has_its;
  47}
  48
  49bool vgic_supports_direct_msis(struct kvm *kvm)
  50{
  51        return kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm);
  52}
  53
  54/*
  55 * The Revision field in the IIDR have the following meanings:
  56 *
  57 * Revision 2: Interrupt groups are guest-configurable and signaled using
  58 *             their configured groups.
  59 */
  60
  61static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
  62                                            gpa_t addr, unsigned int len)
  63{
  64        struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
  65        u32 value = 0;
  66
  67        switch (addr & 0x0c) {
  68        case GICD_CTLR:
  69                if (vgic->enabled)
  70                        value |= GICD_CTLR_ENABLE_SS_G1;
  71                value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
  72                break;
  73        case GICD_TYPER:
  74                value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
  75                value = (value >> 5) - 1;
  76                if (vgic_has_its(vcpu->kvm)) {
  77                        value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
  78                        value |= GICD_TYPER_LPIS;
  79                } else {
  80                        value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
  81                }
  82                break;
  83        case GICD_IIDR:
  84                value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
  85                        (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
  86                        (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
  87                break;
  88        default:
  89                return 0;
  90        }
  91
  92        return value;
  93}
  94
  95static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
  96                                    gpa_t addr, unsigned int len,
  97                                    unsigned long val)
  98{
  99        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 100        bool was_enabled = dist->enabled;
 101
 102        switch (addr & 0x0c) {
 103        case GICD_CTLR:
 104                dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
 105
 106                if (!was_enabled && dist->enabled)
 107                        vgic_kick_vcpus(vcpu->kvm);
 108                break;
 109        case GICD_TYPER:
 110        case GICD_IIDR:
 111                return;
 112        }
 113}
 114
 115static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
 116                                           gpa_t addr, unsigned int len,
 117                                           unsigned long val)
 118{
 119        switch (addr & 0x0c) {
 120        case GICD_IIDR:
 121                if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
 122                        return -EINVAL;
 123        }
 124
 125        vgic_mmio_write_v3_misc(vcpu, addr, len, val);
 126        return 0;
 127}
 128
 129static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
 130                                            gpa_t addr, unsigned int len)
 131{
 132        int intid = VGIC_ADDR_TO_INTID(addr, 64);
 133        struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
 134        unsigned long ret = 0;
 135
 136        if (!irq)
 137                return 0;
 138
 139        /* The upper word is RAZ for us. */
 140        if (!(addr & 4))
 141                ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
 142
 143        vgic_put_irq(vcpu->kvm, irq);
 144        return ret;
 145}
 146
 147static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
 148                                    gpa_t addr, unsigned int len,
 149                                    unsigned long val)
 150{
 151        int intid = VGIC_ADDR_TO_INTID(addr, 64);
 152        struct vgic_irq *irq;
 153        unsigned long flags;
 154
 155        /* The upper word is WI for us since we don't implement Aff3. */
 156        if (addr & 4)
 157                return;
 158
 159        irq = vgic_get_irq(vcpu->kvm, NULL, intid);
 160
 161        if (!irq)
 162                return;
 163
 164        raw_spin_lock_irqsave(&irq->irq_lock, flags);
 165
 166        /* We only care about and preserve Aff0, Aff1 and Aff2. */
 167        irq->mpidr = val & GENMASK(23, 0);
 168        irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
 169
 170        raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 171        vgic_put_irq(vcpu->kvm, irq);
 172}
 173
 174static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
 175                                             gpa_t addr, unsigned int len)
 176{
 177        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 178
 179        return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
 180}
 181
 182
 183static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
 184                                     gpa_t addr, unsigned int len,
 185                                     unsigned long val)
 186{
 187        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 188        bool was_enabled = vgic_cpu->lpis_enabled;
 189
 190        if (!vgic_has_its(vcpu->kvm))
 191                return;
 192
 193        vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
 194
 195        if (was_enabled && !vgic_cpu->lpis_enabled) {
 196                vgic_flush_pending_lpis(vcpu);
 197                vgic_its_invalidate_cache(vcpu->kvm);
 198        }
 199
 200        if (!was_enabled && vgic_cpu->lpis_enabled)
 201                vgic_enable_lpis(vcpu);
 202}
 203
 204static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
 205                                              gpa_t addr, unsigned int len)
 206{
 207        unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
 208        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 209        struct vgic_redist_region *rdreg = vgic_cpu->rdreg;
 210        int target_vcpu_id = vcpu->vcpu_id;
 211        gpa_t last_rdist_typer = rdreg->base + GICR_TYPER +
 212                        (rdreg->free_index - 1) * KVM_VGIC_V3_REDIST_SIZE;
 213        u64 value;
 214
 215        value = (u64)(mpidr & GENMASK(23, 0)) << 32;
 216        value |= ((target_vcpu_id & 0xffff) << 8);
 217
 218        if (addr == last_rdist_typer)
 219                value |= GICR_TYPER_LAST;
 220        if (vgic_has_its(vcpu->kvm))
 221                value |= GICR_TYPER_PLPIS;
 222
 223        return extract_bytes(value, addr & 7, len);
 224}
 225
 226static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
 227                                             gpa_t addr, unsigned int len)
 228{
 229        return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
 230}
 231
 232static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
 233                                              gpa_t addr, unsigned int len)
 234{
 235        switch (addr & 0xffff) {
 236        case GICD_PIDR2:
 237                /* report a GICv3 compliant implementation */
 238                return 0x3b;
 239        }
 240
 241        return 0;
 242}
 243
 244static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
 245                                                  gpa_t addr, unsigned int len)
 246{
 247        u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
 248        u32 value = 0;
 249        int i;
 250
 251        /*
 252         * pending state of interrupt is latched in pending_latch variable.
 253         * Userspace will save and restore pending state and line_level
 254         * separately.
 255         * Refer to Documentation/virt/kvm/devices/arm-vgic-v3.txt
 256         * for handling of ISPENDR and ICPENDR.
 257         */
 258        for (i = 0; i < len * 8; i++) {
 259                struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
 260
 261                if (irq->pending_latch)
 262                        value |= (1U << i);
 263
 264                vgic_put_irq(vcpu->kvm, irq);
 265        }
 266
 267        return value;
 268}
 269
 270static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
 271                                         gpa_t addr, unsigned int len,
 272                                         unsigned long val)
 273{
 274        u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
 275        int i;
 276        unsigned long flags;
 277
 278        for (i = 0; i < len * 8; i++) {
 279                struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
 280
 281                raw_spin_lock_irqsave(&irq->irq_lock, flags);
 282                if (test_bit(i, &val)) {
 283                        /*
 284                         * pending_latch is set irrespective of irq type
 285                         * (level or edge) to avoid dependency that VM should
 286                         * restore irq config before pending info.
 287                         */
 288                        irq->pending_latch = true;
 289                        vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
 290                } else {
 291                        irq->pending_latch = false;
 292                        raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 293                }
 294
 295                vgic_put_irq(vcpu->kvm, irq);
 296        }
 297
 298        return 0;
 299}
 300
 301/* We want to avoid outer shareable. */
 302u64 vgic_sanitise_shareability(u64 field)
 303{
 304        switch (field) {
 305        case GIC_BASER_OuterShareable:
 306                return GIC_BASER_InnerShareable;
 307        default:
 308                return field;
 309        }
 310}
 311
 312/* Avoid any inner non-cacheable mapping. */
 313u64 vgic_sanitise_inner_cacheability(u64 field)
 314{
 315        switch (field) {
 316        case GIC_BASER_CACHE_nCnB:
 317        case GIC_BASER_CACHE_nC:
 318                return GIC_BASER_CACHE_RaWb;
 319        default:
 320                return field;
 321        }
 322}
 323
 324/* Non-cacheable or same-as-inner are OK. */
 325u64 vgic_sanitise_outer_cacheability(u64 field)
 326{
 327        switch (field) {
 328        case GIC_BASER_CACHE_SameAsInner:
 329        case GIC_BASER_CACHE_nC:
 330                return field;
 331        default:
 332                return GIC_BASER_CACHE_nC;
 333        }
 334}
 335
 336u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
 337                        u64 (*sanitise_fn)(u64))
 338{
 339        u64 field = (reg & field_mask) >> field_shift;
 340
 341        field = sanitise_fn(field) << field_shift;
 342        return (reg & ~field_mask) | field;
 343}
 344
 345#define PROPBASER_RES0_MASK                                             \
 346        (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
 347#define PENDBASER_RES0_MASK                                             \
 348        (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |      \
 349         GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
 350
 351static u64 vgic_sanitise_pendbaser(u64 reg)
 352{
 353        reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
 354                                  GICR_PENDBASER_SHAREABILITY_SHIFT,
 355                                  vgic_sanitise_shareability);
 356        reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
 357                                  GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
 358                                  vgic_sanitise_inner_cacheability);
 359        reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
 360                                  GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
 361                                  vgic_sanitise_outer_cacheability);
 362
 363        reg &= ~PENDBASER_RES0_MASK;
 364
 365        return reg;
 366}
 367
 368static u64 vgic_sanitise_propbaser(u64 reg)
 369{
 370        reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
 371                                  GICR_PROPBASER_SHAREABILITY_SHIFT,
 372                                  vgic_sanitise_shareability);
 373        reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
 374                                  GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
 375                                  vgic_sanitise_inner_cacheability);
 376        reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
 377                                  GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
 378                                  vgic_sanitise_outer_cacheability);
 379
 380        reg &= ~PROPBASER_RES0_MASK;
 381        return reg;
 382}
 383
 384static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
 385                                             gpa_t addr, unsigned int len)
 386{
 387        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 388
 389        return extract_bytes(dist->propbaser, addr & 7, len);
 390}
 391
 392static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
 393                                     gpa_t addr, unsigned int len,
 394                                     unsigned long val)
 395{
 396        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 397        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 398        u64 old_propbaser, propbaser;
 399
 400        /* Storing a value with LPIs already enabled is undefined */
 401        if (vgic_cpu->lpis_enabled)
 402                return;
 403
 404        do {
 405                old_propbaser = READ_ONCE(dist->propbaser);
 406                propbaser = old_propbaser;
 407                propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
 408                propbaser = vgic_sanitise_propbaser(propbaser);
 409        } while (cmpxchg64(&dist->propbaser, old_propbaser,
 410                           propbaser) != old_propbaser);
 411}
 412
 413static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
 414                                             gpa_t addr, unsigned int len)
 415{
 416        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 417
 418        return extract_bytes(vgic_cpu->pendbaser, addr & 7, len);
 419}
 420
 421static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
 422                                     gpa_t addr, unsigned int len,
 423                                     unsigned long val)
 424{
 425        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 426        u64 old_pendbaser, pendbaser;
 427
 428        /* Storing a value with LPIs already enabled is undefined */
 429        if (vgic_cpu->lpis_enabled)
 430                return;
 431
 432        do {
 433                old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
 434                pendbaser = old_pendbaser;
 435                pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
 436                pendbaser = vgic_sanitise_pendbaser(pendbaser);
 437        } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
 438                           pendbaser) != old_pendbaser);
 439}
 440
 441/*
 442 * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
 443 * redistributors, while SPIs are covered by registers in the distributor
 444 * block. Trying to set private IRQs in this block gets ignored.
 445 * We take some special care here to fix the calculation of the register
 446 * offset.
 447 */
 448#define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
 449        {                                                               \
 450                .reg_offset = off,                                      \
 451                .bits_per_irq = bpi,                                    \
 452                .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,                \
 453                .access_flags = acc,                                    \
 454                .read = vgic_mmio_read_raz,                             \
 455                .write = vgic_mmio_write_wi,                            \
 456        }, {                                                            \
 457                .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,   \
 458                .bits_per_irq = bpi,                                    \
 459                .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,       \
 460                .access_flags = acc,                                    \
 461                .read = rd,                                             \
 462                .write = wr,                                            \
 463                .uaccess_read = ur,                                     \
 464                .uaccess_write = uw,                                    \
 465        }
 466
 467static const struct vgic_register_region vgic_v3_dist_registers[] = {
 468        REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
 469                vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
 470                NULL, vgic_mmio_uaccess_write_v3_misc,
 471                16, VGIC_ACCESS_32bit),
 472        REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
 473                vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
 474                VGIC_ACCESS_32bit),
 475        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
 476                vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
 477                VGIC_ACCESS_32bit),
 478        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
 479                vgic_mmio_read_enable, vgic_mmio_write_senable, NULL, NULL, 1,
 480                VGIC_ACCESS_32bit),
 481        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
 482                vgic_mmio_read_enable, vgic_mmio_write_cenable, NULL, NULL, 1,
 483                VGIC_ACCESS_32bit),
 484        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
 485                vgic_mmio_read_pending, vgic_mmio_write_spending,
 486                vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
 487                VGIC_ACCESS_32bit),
 488        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
 489                vgic_mmio_read_pending, vgic_mmio_write_cpending,
 490                vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
 491                VGIC_ACCESS_32bit),
 492        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
 493                vgic_mmio_read_active, vgic_mmio_write_sactive,
 494                NULL, vgic_mmio_uaccess_write_sactive, 1,
 495                VGIC_ACCESS_32bit),
 496        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
 497                vgic_mmio_read_active, vgic_mmio_write_cactive,
 498                NULL, vgic_mmio_uaccess_write_cactive,
 499                1, VGIC_ACCESS_32bit),
 500        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
 501                vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
 502                8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
 503        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
 504                vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
 505                VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
 506        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
 507                vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
 508                VGIC_ACCESS_32bit),
 509        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
 510                vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
 511                VGIC_ACCESS_32bit),
 512        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
 513                vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
 514                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
 515        REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
 516                vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
 517                VGIC_ACCESS_32bit),
 518};
 519
 520static const struct vgic_register_region vgic_v3_rd_registers[] = {
 521        /* RD_base registers */
 522        REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
 523                vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
 524                VGIC_ACCESS_32bit),
 525        REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
 526                vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
 527                VGIC_ACCESS_32bit),
 528        REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
 529                vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
 530                VGIC_ACCESS_32bit),
 531        REGISTER_DESC_WITH_LENGTH(GICR_TYPER,
 532                vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8,
 533                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
 534        REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
 535                vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
 536                VGIC_ACCESS_32bit),
 537        REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
 538                vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
 539                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
 540        REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
 541                vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
 542                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
 543        REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
 544                vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
 545                VGIC_ACCESS_32bit),
 546        /* SGI_base registers */
 547        REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
 548                vgic_mmio_read_group, vgic_mmio_write_group, 4,
 549                VGIC_ACCESS_32bit),
 550        REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ISENABLER0,
 551                vgic_mmio_read_enable, vgic_mmio_write_senable, 4,
 552                VGIC_ACCESS_32bit),
 553        REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICENABLER0,
 554                vgic_mmio_read_enable, vgic_mmio_write_cenable, 4,
 555                VGIC_ACCESS_32bit),
 556        REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
 557                vgic_mmio_read_pending, vgic_mmio_write_spending,
 558                vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
 559                VGIC_ACCESS_32bit),
 560        REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
 561                vgic_mmio_read_pending, vgic_mmio_write_cpending,
 562                vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
 563                VGIC_ACCESS_32bit),
 564        REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
 565                vgic_mmio_read_active, vgic_mmio_write_sactive,
 566                NULL, vgic_mmio_uaccess_write_sactive,
 567                4, VGIC_ACCESS_32bit),
 568        REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
 569                vgic_mmio_read_active, vgic_mmio_write_cactive,
 570                NULL, vgic_mmio_uaccess_write_cactive,
 571                4, VGIC_ACCESS_32bit),
 572        REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
 573                vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
 574                VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
 575        REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
 576                vgic_mmio_read_config, vgic_mmio_write_config, 8,
 577                VGIC_ACCESS_32bit),
 578        REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
 579                vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
 580                VGIC_ACCESS_32bit),
 581        REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
 582                vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
 583                VGIC_ACCESS_32bit),
 584};
 585
 586unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
 587{
 588        dev->regions = vgic_v3_dist_registers;
 589        dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
 590
 591        kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
 592
 593        return SZ_64K;
 594}
 595
 596/**
 597 * vgic_register_redist_iodev - register a single redist iodev
 598 * @vcpu:    The VCPU to which the redistributor belongs
 599 *
 600 * Register a KVM iodev for this VCPU's redistributor using the address
 601 * provided.
 602 *
 603 * Return 0 on success, -ERRNO otherwise.
 604 */
 605int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
 606{
 607        struct kvm *kvm = vcpu->kvm;
 608        struct vgic_dist *vgic = &kvm->arch.vgic;
 609        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 610        struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
 611        struct vgic_redist_region *rdreg;
 612        gpa_t rd_base;
 613        int ret;
 614
 615        if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
 616                return 0;
 617
 618        /*
 619         * We may be creating VCPUs before having set the base address for the
 620         * redistributor region, in which case we will come back to this
 621         * function for all VCPUs when the base address is set.  Just return
 622         * without doing any work for now.
 623         */
 624        rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
 625        if (!rdreg)
 626                return 0;
 627
 628        if (!vgic_v3_check_base(kvm))
 629                return -EINVAL;
 630
 631        vgic_cpu->rdreg = rdreg;
 632
 633        rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
 634
 635        kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
 636        rd_dev->base_addr = rd_base;
 637        rd_dev->iodev_type = IODEV_REDIST;
 638        rd_dev->regions = vgic_v3_rd_registers;
 639        rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
 640        rd_dev->redist_vcpu = vcpu;
 641
 642        mutex_lock(&kvm->slots_lock);
 643        ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
 644                                      2 * SZ_64K, &rd_dev->dev);
 645        mutex_unlock(&kvm->slots_lock);
 646
 647        if (ret)
 648                return ret;
 649
 650        rdreg->free_index++;
 651        return 0;
 652}
 653
 654static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
 655{
 656        struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
 657
 658        kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
 659}
 660
 661static int vgic_register_all_redist_iodevs(struct kvm *kvm)
 662{
 663        struct kvm_vcpu *vcpu;
 664        int c, ret = 0;
 665
 666        kvm_for_each_vcpu(c, vcpu, kvm) {
 667                ret = vgic_register_redist_iodev(vcpu);
 668                if (ret)
 669                        break;
 670        }
 671
 672        if (ret) {
 673                /* The current c failed, so we start with the previous one. */
 674                mutex_lock(&kvm->slots_lock);
 675                for (c--; c >= 0; c--) {
 676                        vcpu = kvm_get_vcpu(kvm, c);
 677                        vgic_unregister_redist_iodev(vcpu);
 678                }
 679                mutex_unlock(&kvm->slots_lock);
 680        }
 681
 682        return ret;
 683}
 684
 685/**
 686 * vgic_v3_insert_redist_region - Insert a new redistributor region
 687 *
 688 * Performs various checks before inserting the rdist region in the list.
 689 * Those tests depend on whether the size of the rdist region is known
 690 * (ie. count != 0). The list is sorted by rdist region index.
 691 *
 692 * @kvm: kvm handle
 693 * @index: redist region index
 694 * @base: base of the new rdist region
 695 * @count: number of redistributors the region is made of (0 in the old style
 696 * single region, whose size is induced from the number of vcpus)
 697 *
 698 * Return 0 on success, < 0 otherwise
 699 */
 700static int vgic_v3_insert_redist_region(struct kvm *kvm, uint32_t index,
 701                                        gpa_t base, uint32_t count)
 702{
 703        struct vgic_dist *d = &kvm->arch.vgic;
 704        struct vgic_redist_region *rdreg;
 705        struct list_head *rd_regions = &d->rd_regions;
 706        size_t size = count * KVM_VGIC_V3_REDIST_SIZE;
 707        int ret;
 708
 709        /* single rdist region already set ?*/
 710        if (!count && !list_empty(rd_regions))
 711                return -EINVAL;
 712
 713        /* cross the end of memory ? */
 714        if (base + size < base)
 715                return -EINVAL;
 716
 717        if (list_empty(rd_regions)) {
 718                if (index != 0)
 719                        return -EINVAL;
 720        } else {
 721                rdreg = list_last_entry(rd_regions,
 722                                        struct vgic_redist_region, list);
 723                if (index != rdreg->index + 1)
 724                        return -EINVAL;
 725
 726                /* Cannot add an explicitly sized regions after legacy region */
 727                if (!rdreg->count)
 728                        return -EINVAL;
 729        }
 730
 731        /*
 732         * For legacy single-region redistributor regions (!count),
 733         * check that the redistributor region does not overlap with the
 734         * distributor's address space.
 735         */
 736        if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
 737                vgic_dist_overlap(kvm, base, size))
 738                return -EINVAL;
 739
 740        /* collision with any other rdist region? */
 741        if (vgic_v3_rdist_overlap(kvm, base, size))
 742                return -EINVAL;
 743
 744        rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL);
 745        if (!rdreg)
 746                return -ENOMEM;
 747
 748        rdreg->base = VGIC_ADDR_UNDEF;
 749
 750        ret = vgic_check_ioaddr(kvm, &rdreg->base, base, SZ_64K);
 751        if (ret)
 752                goto free;
 753
 754        rdreg->base = base;
 755        rdreg->count = count;
 756        rdreg->free_index = 0;
 757        rdreg->index = index;
 758
 759        list_add_tail(&rdreg->list, rd_regions);
 760        return 0;
 761free:
 762        kfree(rdreg);
 763        return ret;
 764}
 765
 766int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
 767{
 768        int ret;
 769
 770        ret = vgic_v3_insert_redist_region(kvm, index, addr, count);
 771        if (ret)
 772                return ret;
 773
 774        /*
 775         * Register iodevs for each existing VCPU.  Adding more VCPUs
 776         * afterwards will register the iodevs when needed.
 777         */
 778        ret = vgic_register_all_redist_iodevs(kvm);
 779        if (ret)
 780                return ret;
 781
 782        return 0;
 783}
 784
 785int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
 786{
 787        const struct vgic_register_region *region;
 788        struct vgic_io_device iodev;
 789        struct vgic_reg_attr reg_attr;
 790        struct kvm_vcpu *vcpu;
 791        gpa_t addr;
 792        int ret;
 793
 794        ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
 795        if (ret)
 796                return ret;
 797
 798        vcpu = reg_attr.vcpu;
 799        addr = reg_attr.addr;
 800
 801        switch (attr->group) {
 802        case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
 803                iodev.regions = vgic_v3_dist_registers;
 804                iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
 805                iodev.base_addr = 0;
 806                break;
 807        case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
 808                iodev.regions = vgic_v3_rd_registers;
 809                iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
 810                iodev.base_addr = 0;
 811                break;
 812        }
 813        case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
 814                u64 reg, id;
 815
 816                id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
 817                return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
 818        }
 819        default:
 820                return -ENXIO;
 821        }
 822
 823        /* We only support aligned 32-bit accesses. */
 824        if (addr & 3)
 825                return -ENXIO;
 826
 827        region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
 828        if (!region)
 829                return -ENXIO;
 830
 831        return 0;
 832}
 833/*
 834 * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
 835 * generation register ICC_SGI1R_EL1) with a given VCPU.
 836 * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
 837 * return -1.
 838 */
 839static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
 840{
 841        unsigned long affinity;
 842        int level0;
 843
 844        /*
 845         * Split the current VCPU's MPIDR into affinity level 0 and the
 846         * rest as this is what we have to compare against.
 847         */
 848        affinity = kvm_vcpu_get_mpidr_aff(vcpu);
 849        level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
 850        affinity &= ~MPIDR_LEVEL_MASK;
 851
 852        /* bail out if the upper three levels don't match */
 853        if (sgi_aff != affinity)
 854                return -1;
 855
 856        /* Is this VCPU's bit set in the mask ? */
 857        if (!(sgi_cpu_mask & BIT(level0)))
 858                return -1;
 859
 860        return level0;
 861}
 862
 863/*
 864 * The ICC_SGI* registers encode the affinity differently from the MPIDR,
 865 * so provide a wrapper to use the existing defines to isolate a certain
 866 * affinity level.
 867 */
 868#define SGI_AFFINITY_LEVEL(reg, level) \
 869        ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
 870        >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
 871
 872/**
 873 * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
 874 * @vcpu: The VCPU requesting a SGI
 875 * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
 876 * @allow_group1: Does the sysreg access allow generation of G1 SGIs
 877 *
 878 * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
 879 * This will trap in sys_regs.c and call this function.
 880 * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
 881 * target processors as well as a bitmask of 16 Aff0 CPUs.
 882 * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
 883 * check for matching ones. If this bit is set, we signal all, but not the
 884 * calling VCPU.
 885 */
 886void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
 887{
 888        struct kvm *kvm = vcpu->kvm;
 889        struct kvm_vcpu *c_vcpu;
 890        u16 target_cpus;
 891        u64 mpidr;
 892        int sgi, c;
 893        int vcpu_id = vcpu->vcpu_id;
 894        bool broadcast;
 895        unsigned long flags;
 896
 897        sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
 898        broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
 899        target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
 900        mpidr = SGI_AFFINITY_LEVEL(reg, 3);
 901        mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
 902        mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
 903
 904        /*
 905         * We iterate over all VCPUs to find the MPIDRs matching the request.
 906         * If we have handled one CPU, we clear its bit to detect early
 907         * if we are already finished. This avoids iterating through all
 908         * VCPUs when most of the times we just signal a single VCPU.
 909         */
 910        kvm_for_each_vcpu(c, c_vcpu, kvm) {
 911                struct vgic_irq *irq;
 912
 913                /* Exit early if we have dealt with all requested CPUs */
 914                if (!broadcast && target_cpus == 0)
 915                        break;
 916
 917                /* Don't signal the calling VCPU */
 918                if (broadcast && c == vcpu_id)
 919                        continue;
 920
 921                if (!broadcast) {
 922                        int level0;
 923
 924                        level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
 925                        if (level0 == -1)
 926                                continue;
 927
 928                        /* remove this matching VCPU from the mask */
 929                        target_cpus &= ~BIT(level0);
 930                }
 931
 932                irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
 933
 934                raw_spin_lock_irqsave(&irq->irq_lock, flags);
 935
 936                /*
 937                 * An access targetting Group0 SGIs can only generate
 938                 * those, while an access targetting Group1 SGIs can
 939                 * generate interrupts of either group.
 940                 */
 941                if (!irq->group || allow_group1) {
 942                        irq->pending_latch = true;
 943                        vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
 944                } else {
 945                        raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 946                }
 947
 948                vgic_put_irq(vcpu->kvm, irq);
 949        }
 950}
 951
 952int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
 953                         int offset, u32 *val)
 954{
 955        struct vgic_io_device dev = {
 956                .regions = vgic_v3_dist_registers,
 957                .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
 958        };
 959
 960        return vgic_uaccess(vcpu, &dev, is_write, offset, val);
 961}
 962
 963int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
 964                           int offset, u32 *val)
 965{
 966        struct vgic_io_device rd_dev = {
 967                .regions = vgic_v3_rd_registers,
 968                .nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
 969        };
 970
 971        return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
 972}
 973
 974int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
 975                                    u32 intid, u64 *val)
 976{
 977        if (intid % 32)
 978                return -EINVAL;
 979
 980        if (is_write)
 981                vgic_write_irq_line_level_info(vcpu, intid, *val);
 982        else
 983                *val = vgic_read_irq_line_level_info(vcpu, intid);
 984
 985        return 0;
 986}
 987