linux/arch/alpha/kernel/core_t2.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *      linux/arch/alpha/kernel/core_t2.c
   4 *
   5 * Written by Jay A Estabrook (jestabro@amt.tay1.dec.com).
   6 * December 1996.
   7 *
   8 * based on CIA code by David A Rusling (david.rusling@reo.mts.dec.com)
   9 *
  10 * Code common to all T2 core logic chips.
  11 */
  12
  13#define __EXTERN_INLINE
  14#include <asm/io.h>
  15#include <asm/core_t2.h>
  16#undef __EXTERN_INLINE
  17
  18#include <linux/types.h>
  19#include <linux/pci.h>
  20#include <linux/sched.h>
  21#include <linux/init.h>
  22
  23#include <asm/ptrace.h>
  24#include <asm/delay.h>
  25#include <asm/mce.h>
  26
  27#include "proto.h"
  28#include "pci_impl.h"
  29
  30/* For dumping initial DMA window settings. */
  31#define DEBUG_PRINT_INITIAL_SETTINGS 0
  32
  33/* For dumping final DMA window settings. */
  34#define DEBUG_PRINT_FINAL_SETTINGS 0
  35
  36/*
  37 * By default, we direct-map starting at 2GB, in order to allow the
  38 * maximum size direct-map window (2GB) to match the maximum amount of
  39 * memory (2GB) that can be present on SABLEs. But that limits the
  40 * floppy to DMA only via the scatter/gather window set up for 8MB
  41 * ISA DMA, since the maximum ISA DMA address is 2GB-1.
  42 *
  43 * For now, this seems a reasonable trade-off: even though most SABLEs
  44 * have less than 1GB of memory, floppy usage/performance will not
  45 * really be affected by forcing it to go via scatter/gather...
  46 */
  47#define T2_DIRECTMAP_2G 1
  48
  49#if T2_DIRECTMAP_2G
  50# define T2_DIRECTMAP_START     0x80000000UL
  51# define T2_DIRECTMAP_LENGTH    0x80000000UL
  52#else
  53# define T2_DIRECTMAP_START     0x40000000UL
  54# define T2_DIRECTMAP_LENGTH    0x40000000UL
  55#endif
  56
  57/* The ISA scatter/gather window settings. */
  58#define T2_ISA_SG_START         0x00800000UL
  59#define T2_ISA_SG_LENGTH        0x00800000UL
  60
  61/*
  62 * NOTE: Herein lie back-to-back mb instructions.  They are magic. 
  63 * One plausible explanation is that the i/o controller does not properly
  64 * handle the system transaction.  Another involves timing.  Ho hum.
  65 */
  66
  67/*
  68 * BIOS32-style PCI interface:
  69 */
  70
  71#define DEBUG_CONFIG 0
  72
  73#if DEBUG_CONFIG
  74# define DBG(args)      printk args
  75#else
  76# define DBG(args)
  77#endif
  78
  79static volatile unsigned int t2_mcheck_any_expected;
  80static volatile unsigned int t2_mcheck_last_taken;
  81
  82/* Place to save the DMA Window registers as set up by SRM
  83   for restoration during shutdown. */
  84static struct
  85{
  86        struct {
  87                unsigned long wbase;
  88                unsigned long wmask;
  89                unsigned long tbase;
  90        } window[2];
  91        unsigned long hae_1;
  92        unsigned long hae_2;
  93        unsigned long hae_3;
  94        unsigned long hae_4;
  95        unsigned long hbase;
  96} t2_saved_config __attribute((common));
  97
  98/*
  99 * Given a bus, device, and function number, compute resulting
 100 * configuration space address and setup the T2_HAXR2 register
 101 * accordingly.  It is therefore not safe to have concurrent
 102 * invocations to configuration space access routines, but there
 103 * really shouldn't be any need for this.
 104 *
 105 * Type 0:
 106 *
 107 *  3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 
 108 *  3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0
 109 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 110 * | | |D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|0|
 111 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 112 *
 113 *      31:11   Device select bit.
 114 *      10:8    Function number
 115 *       7:2    Register number
 116 *
 117 * Type 1:
 118 *
 119 *  3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 
 120 *  3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0
 121 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 122 * | | | | | | | | | | |B|B|B|B|B|B|B|B|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|1|
 123 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 124 *
 125 *      31:24   reserved
 126 *      23:16   bus number (8 bits = 128 possible buses)
 127 *      15:11   Device number (5 bits)
 128 *      10:8    function number
 129 *       7:2    register number
 130 *  
 131 * Notes:
 132 *      The function number selects which function of a multi-function device 
 133 *      (e.g., SCSI and Ethernet).
 134 * 
 135 *      The register selects a DWORD (32 bit) register offset.  Hence it
 136 *      doesn't get shifted by 2 bits as we want to "drop" the bottom two
 137 *      bits.
 138 */
 139
 140static int
 141mk_conf_addr(struct pci_bus *pbus, unsigned int device_fn, int where,
 142             unsigned long *pci_addr, unsigned char *type1)
 143{
 144        unsigned long addr;
 145        u8 bus = pbus->number;
 146
 147        DBG(("mk_conf_addr(bus=%d, dfn=0x%x, where=0x%x,"
 148             " addr=0x%lx, type1=0x%x)\n",
 149             bus, device_fn, where, pci_addr, type1));
 150
 151        if (bus == 0) {
 152                int device = device_fn >> 3;
 153
 154                /* Type 0 configuration cycle.  */
 155
 156                if (device > 8) {
 157                        DBG(("mk_conf_addr: device (%d)>20, returning -1\n",
 158                             device));
 159                        return -1;
 160                }
 161
 162                *type1 = 0;
 163                addr = (0x0800L << device) | ((device_fn & 7) << 8) | (where);
 164        } else {
 165                /* Type 1 configuration cycle.  */
 166                *type1 = 1;
 167                addr = (bus << 16) | (device_fn << 8) | (where);
 168        }
 169        *pci_addr = addr;
 170        DBG(("mk_conf_addr: returning pci_addr 0x%lx\n", addr));
 171        return 0;
 172}
 173
 174/*
 175 * NOTE: both conf_read() and conf_write() may set HAE_3 when needing
 176 *       to do type1 access. This is protected by the use of spinlock IRQ
 177 *       primitives in the wrapper functions pci_{read,write}_config_*()
 178 *       defined in drivers/pci/pci.c.
 179 */
 180static unsigned int
 181conf_read(unsigned long addr, unsigned char type1)
 182{
 183        unsigned int value, cpu, taken;
 184        unsigned long t2_cfg = 0;
 185
 186        cpu = smp_processor_id();
 187
 188        DBG(("conf_read(addr=0x%lx, type1=%d)\n", addr, type1));
 189
 190        /* If Type1 access, must set T2 CFG.  */
 191        if (type1) {
 192                t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL;
 193                *(vulp)T2_HAE_3 = 0x40000000UL | t2_cfg;
 194                mb();
 195        }
 196        mb();
 197        draina();
 198
 199        mcheck_expected(cpu) = 1;
 200        mcheck_taken(cpu) = 0;
 201        t2_mcheck_any_expected |= (1 << cpu);
 202        mb();
 203
 204        /* Access configuration space. */
 205        value = *(vuip)addr;
 206        mb();
 207        mb();  /* magic */
 208
 209        /* Wait for possible mcheck. Also, this lets other CPUs clear
 210           their mchecks as well, as they can reliably tell when
 211           another CPU is in the midst of handling a real mcheck via
 212           the "taken" function. */
 213        udelay(100);
 214
 215        if ((taken = mcheck_taken(cpu))) {
 216                mcheck_taken(cpu) = 0;
 217                t2_mcheck_last_taken |= (1 << cpu);
 218                value = 0xffffffffU;
 219                mb();
 220        }
 221        mcheck_expected(cpu) = 0;
 222        t2_mcheck_any_expected = 0;
 223        mb();
 224
 225        /* If Type1 access, must reset T2 CFG so normal IO space ops work.  */
 226        if (type1) {
 227                *(vulp)T2_HAE_3 = t2_cfg;
 228                mb();
 229        }
 230
 231        return value;
 232}
 233
 234static void
 235conf_write(unsigned long addr, unsigned int value, unsigned char type1)
 236{
 237        unsigned int cpu, taken;
 238        unsigned long t2_cfg = 0;
 239
 240        cpu = smp_processor_id();
 241
 242        /* If Type1 access, must set T2 CFG.  */
 243        if (type1) {
 244                t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL;
 245                *(vulp)T2_HAE_3 = t2_cfg | 0x40000000UL;
 246                mb();
 247        }
 248        mb();
 249        draina();
 250
 251        mcheck_expected(cpu) = 1;
 252        mcheck_taken(cpu) = 0;
 253        t2_mcheck_any_expected |= (1 << cpu);
 254        mb();
 255
 256        /* Access configuration space.  */
 257        *(vuip)addr = value;
 258        mb();
 259        mb();  /* magic */
 260
 261        /* Wait for possible mcheck. Also, this lets other CPUs clear
 262           their mchecks as well, as they can reliably tell when
 263           this CPU is in the midst of handling a real mcheck via
 264           the "taken" function. */
 265        udelay(100);
 266
 267        if ((taken = mcheck_taken(cpu))) {
 268                mcheck_taken(cpu) = 0;
 269                t2_mcheck_last_taken |= (1 << cpu);
 270                mb();
 271        }
 272        mcheck_expected(cpu) = 0;
 273        t2_mcheck_any_expected = 0;
 274        mb();
 275
 276        /* If Type1 access, must reset T2 CFG so normal IO space ops work.  */
 277        if (type1) {
 278                *(vulp)T2_HAE_3 = t2_cfg;
 279                mb();
 280        }
 281}
 282
 283static int
 284t2_read_config(struct pci_bus *bus, unsigned int devfn, int where,
 285               int size, u32 *value)
 286{
 287        unsigned long addr, pci_addr;
 288        unsigned char type1;
 289        int shift;
 290        long mask;
 291
 292        if (mk_conf_addr(bus, devfn, where, &pci_addr, &type1))
 293                return PCIBIOS_DEVICE_NOT_FOUND;
 294
 295        mask = (size - 1) * 8;
 296        shift = (where & 3) * 8;
 297        addr = (pci_addr << 5) + mask + T2_CONF;
 298        *value = conf_read(addr, type1) >> (shift);
 299        return PCIBIOS_SUCCESSFUL;
 300}
 301
 302static int 
 303t2_write_config(struct pci_bus *bus, unsigned int devfn, int where, int size,
 304                u32 value)
 305{
 306        unsigned long addr, pci_addr;
 307        unsigned char type1;
 308        long mask;
 309
 310        if (mk_conf_addr(bus, devfn, where, &pci_addr, &type1))
 311                return PCIBIOS_DEVICE_NOT_FOUND;
 312
 313        mask = (size - 1) * 8;
 314        addr = (pci_addr << 5) + mask + T2_CONF;
 315        conf_write(addr, value << ((where & 3) * 8), type1);
 316        return PCIBIOS_SUCCESSFUL;
 317}
 318
 319struct pci_ops t2_pci_ops = 
 320{
 321        .read =         t2_read_config,
 322        .write =        t2_write_config,
 323};
 324
 325static void __init
 326t2_direct_map_window1(unsigned long base, unsigned long length)
 327{
 328        unsigned long temp;
 329
 330        __direct_map_base = base;
 331        __direct_map_size = length;
 332
 333        temp = (base & 0xfff00000UL) | ((base + length - 1) >> 20);
 334        *(vulp)T2_WBASE1 = temp | 0x80000UL; /* OR in ENABLE bit */
 335        temp = (length - 1) & 0xfff00000UL;
 336        *(vulp)T2_WMASK1 = temp;
 337        *(vulp)T2_TBASE1 = 0;
 338
 339#if DEBUG_PRINT_FINAL_SETTINGS
 340        printk("%s: setting WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n",
 341               __func__, *(vulp)T2_WBASE1, *(vulp)T2_WMASK1, *(vulp)T2_TBASE1);
 342#endif
 343}
 344
 345static void __init
 346t2_sg_map_window2(struct pci_controller *hose,
 347                  unsigned long base,
 348                  unsigned long length)
 349{
 350        unsigned long temp;
 351
 352        /* Note we can only do 1 SG window, as the other is for direct, so
 353           do an ISA SG area, especially for the floppy. */
 354        hose->sg_isa = iommu_arena_new(hose, base, length, SMP_CACHE_BYTES);
 355        hose->sg_pci = NULL;
 356
 357        temp = (base & 0xfff00000UL) | ((base + length - 1) >> 20);
 358        *(vulp)T2_WBASE2 = temp | 0xc0000UL; /* OR in ENABLE/SG bits */
 359        temp = (length - 1) & 0xfff00000UL;
 360        *(vulp)T2_WMASK2 = temp;
 361        *(vulp)T2_TBASE2 = virt_to_phys(hose->sg_isa->ptes) >> 1;
 362        mb();
 363
 364        t2_pci_tbi(hose, 0, -1); /* flush TLB all */
 365
 366#if DEBUG_PRINT_FINAL_SETTINGS
 367        printk("%s: setting WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n",
 368               __func__, *(vulp)T2_WBASE2, *(vulp)T2_WMASK2, *(vulp)T2_TBASE2);
 369#endif
 370}
 371
 372static void __init
 373t2_save_configuration(void)
 374{
 375#if DEBUG_PRINT_INITIAL_SETTINGS
 376        printk("%s: HAE_1 was 0x%lx\n", __func__, srm_hae); /* HW is 0 */
 377        printk("%s: HAE_2 was 0x%lx\n", __func__, *(vulp)T2_HAE_2);
 378        printk("%s: HAE_3 was 0x%lx\n", __func__, *(vulp)T2_HAE_3);
 379        printk("%s: HAE_4 was 0x%lx\n", __func__, *(vulp)T2_HAE_4);
 380        printk("%s: HBASE was 0x%lx\n", __func__, *(vulp)T2_HBASE);
 381
 382        printk("%s: WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n", __func__,
 383               *(vulp)T2_WBASE1, *(vulp)T2_WMASK1, *(vulp)T2_TBASE1);
 384        printk("%s: WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n", __func__,
 385               *(vulp)T2_WBASE2, *(vulp)T2_WMASK2, *(vulp)T2_TBASE2);
 386#endif
 387
 388        /*
 389         * Save the DMA Window registers.
 390         */
 391        t2_saved_config.window[0].wbase = *(vulp)T2_WBASE1;
 392        t2_saved_config.window[0].wmask = *(vulp)T2_WMASK1;
 393        t2_saved_config.window[0].tbase = *(vulp)T2_TBASE1;
 394        t2_saved_config.window[1].wbase = *(vulp)T2_WBASE2;
 395        t2_saved_config.window[1].wmask = *(vulp)T2_WMASK2;
 396        t2_saved_config.window[1].tbase = *(vulp)T2_TBASE2;
 397
 398        t2_saved_config.hae_1 = srm_hae; /* HW is already set to 0 */
 399        t2_saved_config.hae_2 = *(vulp)T2_HAE_2;
 400        t2_saved_config.hae_3 = *(vulp)T2_HAE_3;
 401        t2_saved_config.hae_4 = *(vulp)T2_HAE_4;
 402        t2_saved_config.hbase = *(vulp)T2_HBASE;
 403}
 404
 405void __init
 406t2_init_arch(void)
 407{
 408        struct pci_controller *hose;
 409        struct resource *hae_mem;
 410        unsigned long temp;
 411        unsigned int i;
 412
 413        for (i = 0; i < NR_CPUS; i++) {
 414                mcheck_expected(i) = 0;
 415                mcheck_taken(i) = 0;
 416        }
 417        t2_mcheck_any_expected = 0;
 418        t2_mcheck_last_taken = 0;
 419
 420        /* Enable scatter/gather TLB use.  */
 421        temp = *(vulp)T2_IOCSR;
 422        if (!(temp & (0x1UL << 26))) {
 423                printk("t2_init_arch: enabling SG TLB, IOCSR was 0x%lx\n",
 424                       temp);
 425                *(vulp)T2_IOCSR = temp | (0x1UL << 26);
 426                mb();   
 427                *(vulp)T2_IOCSR; /* read it back to make sure */
 428        }
 429
 430        t2_save_configuration();
 431
 432        /*
 433         * Create our single hose.
 434         */
 435        pci_isa_hose = hose = alloc_pci_controller();
 436        hose->io_space = &ioport_resource;
 437        hae_mem = alloc_resource();
 438        hae_mem->start = 0;
 439        hae_mem->end = T2_MEM_R1_MASK;
 440        hae_mem->name = pci_hae0_name;
 441        if (request_resource(&iomem_resource, hae_mem) < 0)
 442                printk(KERN_ERR "Failed to request HAE_MEM\n");
 443        hose->mem_space = hae_mem;
 444        hose->index = 0;
 445
 446        hose->sparse_mem_base = T2_SPARSE_MEM - IDENT_ADDR;
 447        hose->dense_mem_base = T2_DENSE_MEM - IDENT_ADDR;
 448        hose->sparse_io_base = T2_IO - IDENT_ADDR;
 449        hose->dense_io_base = 0;
 450
 451        /*
 452         * Set up the PCI->physical memory translation windows.
 453         *
 454         * Window 1 is direct mapped.
 455         * Window 2 is scatter/gather (for ISA).
 456         */
 457
 458        t2_direct_map_window1(T2_DIRECTMAP_START, T2_DIRECTMAP_LENGTH);
 459
 460        /* Always make an ISA DMA window. */
 461        t2_sg_map_window2(hose, T2_ISA_SG_START, T2_ISA_SG_LENGTH);
 462
 463        *(vulp)T2_HBASE = 0x0; /* Disable HOLES. */
 464
 465        /* Zero HAE.  */
 466        *(vulp)T2_HAE_1 = 0; mb(); /* Sparse MEM HAE */
 467        *(vulp)T2_HAE_2 = 0; mb(); /* Sparse I/O HAE */
 468        *(vulp)T2_HAE_3 = 0; mb(); /* Config Space HAE */
 469
 470        /*
 471         * We also now zero out HAE_4, the dense memory HAE, so that
 472         * we need not account for its "offset" when accessing dense
 473         * memory resources which we allocated in our normal way. This
 474         * HAE would need to stay untouched were we to keep the SRM
 475         * resource settings.
 476         *
 477         * Thus we can now run standard X servers on SABLE/LYNX. :-)
 478         */
 479        *(vulp)T2_HAE_4 = 0; mb();
 480}
 481
 482void
 483t2_kill_arch(int mode)
 484{
 485        /*
 486         * Restore the DMA Window registers.
 487         */
 488        *(vulp)T2_WBASE1 = t2_saved_config.window[0].wbase;
 489        *(vulp)T2_WMASK1 = t2_saved_config.window[0].wmask;
 490        *(vulp)T2_TBASE1 = t2_saved_config.window[0].tbase;
 491        *(vulp)T2_WBASE2 = t2_saved_config.window[1].wbase;
 492        *(vulp)T2_WMASK2 = t2_saved_config.window[1].wmask;
 493        *(vulp)T2_TBASE2 = t2_saved_config.window[1].tbase;
 494        mb();
 495
 496        *(vulp)T2_HAE_1 = srm_hae;
 497        *(vulp)T2_HAE_2 = t2_saved_config.hae_2;
 498        *(vulp)T2_HAE_3 = t2_saved_config.hae_3;
 499        *(vulp)T2_HAE_4 = t2_saved_config.hae_4;
 500        *(vulp)T2_HBASE = t2_saved_config.hbase;
 501        mb();
 502        *(vulp)T2_HBASE; /* READ it back to ensure WRITE occurred. */
 503}
 504
 505void
 506t2_pci_tbi(struct pci_controller *hose, dma_addr_t start, dma_addr_t end)
 507{
 508        unsigned long t2_iocsr;
 509
 510        t2_iocsr = *(vulp)T2_IOCSR;
 511
 512        /* set the TLB Clear bit */
 513        *(vulp)T2_IOCSR = t2_iocsr | (0x1UL << 28);
 514        mb();
 515        *(vulp)T2_IOCSR; /* read it back to make sure */
 516
 517        /* clear the TLB Clear bit */
 518        *(vulp)T2_IOCSR = t2_iocsr & ~(0x1UL << 28);
 519        mb();
 520        *(vulp)T2_IOCSR; /* read it back to make sure */
 521}
 522
 523#define SIC_SEIC (1UL << 33)    /* System Event Clear */
 524
 525static void
 526t2_clear_errors(int cpu)
 527{
 528        struct sable_cpu_csr *cpu_regs;
 529
 530        cpu_regs = (struct sable_cpu_csr *)T2_CPUn_BASE(cpu);
 531                
 532        cpu_regs->sic &= ~SIC_SEIC;
 533
 534        /* Clear CPU errors.  */
 535        cpu_regs->bcce |= cpu_regs->bcce;
 536        cpu_regs->cbe  |= cpu_regs->cbe;
 537        cpu_regs->bcue |= cpu_regs->bcue;
 538        cpu_regs->dter |= cpu_regs->dter;
 539
 540        *(vulp)T2_CERR1 |= *(vulp)T2_CERR1;
 541        *(vulp)T2_PERR1 |= *(vulp)T2_PERR1;
 542
 543        mb();
 544        mb();  /* magic */
 545}
 546
 547/*
 548 * SABLE seems to have a "broadcast" style machine check, in that all
 549 * CPUs receive it. And, the issuing CPU, in the case of PCI Config
 550 * space read/write faults, will also receive a second mcheck, upon
 551 * lowering IPL during completion processing in pci_read_config_byte()
 552 * et al.
 553 *
 554 * Hence all the taken/expected/any_expected/last_taken stuff...
 555 */
 556void
 557t2_machine_check(unsigned long vector, unsigned long la_ptr)
 558{
 559        int cpu = smp_processor_id();
 560#ifdef CONFIG_VERBOSE_MCHECK
 561        struct el_common *mchk_header = (struct el_common *)la_ptr;
 562#endif
 563
 564        /* Clear the error before any reporting.  */
 565        mb();
 566        mb();  /* magic */
 567        draina();
 568        t2_clear_errors(cpu);
 569
 570        /* This should not actually be done until the logout frame is
 571           examined, but, since we don't do that, go on and do this... */
 572        wrmces(0x7);
 573        mb();
 574
 575        /* Now, do testing for the anomalous conditions. */
 576        if (!mcheck_expected(cpu) && t2_mcheck_any_expected) {
 577                /*
 578                 * FUNKY: Received mcheck on a CPU and not
 579                 * expecting it, but another CPU is expecting one.
 580                 *
 581                 * Just dismiss it for now on this CPU...
 582                 */
 583#ifdef CONFIG_VERBOSE_MCHECK
 584                if (alpha_verbose_mcheck > 1) {
 585                        printk("t2_machine_check(cpu%d): any_expected 0x%x -"
 586                               " (assumed) spurious -"
 587                               " code 0x%x\n", cpu, t2_mcheck_any_expected,
 588                               (unsigned int)mchk_header->code);
 589                }
 590#endif
 591                return;
 592        }
 593
 594        if (!mcheck_expected(cpu) && !t2_mcheck_any_expected) {
 595                if (t2_mcheck_last_taken & (1 << cpu)) {
 596#ifdef CONFIG_VERBOSE_MCHECK
 597                    if (alpha_verbose_mcheck > 1) {
 598                        printk("t2_machine_check(cpu%d): last_taken 0x%x - "
 599                               "unexpected mcheck - code 0x%x\n",
 600                               cpu, t2_mcheck_last_taken,
 601                               (unsigned int)mchk_header->code);
 602                    }
 603#endif
 604                    t2_mcheck_last_taken = 0;
 605                    mb();
 606                    return;
 607                } else {
 608                        t2_mcheck_last_taken = 0;
 609                        mb();
 610                }
 611        }
 612
 613#ifdef CONFIG_VERBOSE_MCHECK
 614        if (alpha_verbose_mcheck > 1) {
 615                printk("%s t2_mcheck(cpu%d): last_taken 0x%x - "
 616                       "any_expected 0x%x - code 0x%x\n",
 617                       (mcheck_expected(cpu) ? "EX" : "UN"), cpu,
 618                       t2_mcheck_last_taken, t2_mcheck_any_expected,
 619                       (unsigned int)mchk_header->code);
 620        }
 621#endif
 622
 623        process_mcheck_info(vector, la_ptr, "T2", mcheck_expected(cpu));
 624}
 625