linux/arch/powerpc/kernel/fadump.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
   4 * dump with assistance from firmware. This approach does not use kexec,
   5 * instead firmware assists in booting the kdump kernel while preserving
   6 * memory contents. The most of the code implementation has been adapted
   7 * from phyp assisted dump implementation written by Linas Vepstas and
   8 * Manish Ahuja
   9 *
  10 * Copyright 2011 IBM Corporation
  11 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
  12 */
  13
  14#undef DEBUG
  15#define pr_fmt(fmt) "fadump: " fmt
  16
  17#include <linux/string.h>
  18#include <linux/memblock.h>
  19#include <linux/delay.h>
  20#include <linux/seq_file.h>
  21#include <linux/crash_dump.h>
  22#include <linux/kobject.h>
  23#include <linux/sysfs.h>
  24#include <linux/slab.h>
  25#include <linux/cma.h>
  26#include <linux/hugetlb.h>
  27
  28#include <asm/debugfs.h>
  29#include <asm/page.h>
  30#include <asm/prom.h>
  31#include <asm/fadump.h>
  32#include <asm/fadump-internal.h>
  33#include <asm/setup.h>
  34
  35static struct fw_dump fw_dump;
  36
  37static void __init fadump_reserve_crash_area(u64 base);
  38
  39#ifndef CONFIG_PRESERVE_FA_DUMP
  40static DEFINE_MUTEX(fadump_mutex);
  41struct fadump_mrange_info crash_mrange_info = { "crash", NULL, 0, 0, 0 };
  42struct fadump_mrange_info reserved_mrange_info = { "reserved", NULL, 0, 0, 0 };
  43
  44#ifdef CONFIG_CMA
  45static struct cma *fadump_cma;
  46
  47/*
  48 * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
  49 *
  50 * This function initializes CMA area from fadump reserved memory.
  51 * The total size of fadump reserved memory covers for boot memory size
  52 * + cpu data size + hpte size and metadata.
  53 * Initialize only the area equivalent to boot memory size for CMA use.
  54 * The reamining portion of fadump reserved memory will be not given
  55 * to CMA and pages for thoes will stay reserved. boot memory size is
  56 * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
  57 * But for some reason even if it fails we still have the memory reservation
  58 * with us and we can still continue doing fadump.
  59 */
  60int __init fadump_cma_init(void)
  61{
  62        unsigned long long base, size;
  63        int rc;
  64
  65        if (!fw_dump.fadump_enabled)
  66                return 0;
  67
  68        /*
  69         * Do not use CMA if user has provided fadump=nocma kernel parameter.
  70         * Return 1 to continue with fadump old behaviour.
  71         */
  72        if (fw_dump.nocma)
  73                return 1;
  74
  75        base = fw_dump.reserve_dump_area_start;
  76        size = fw_dump.boot_memory_size;
  77
  78        if (!size)
  79                return 0;
  80
  81        rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
  82        if (rc) {
  83                pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
  84                /*
  85                 * Though the CMA init has failed we still have memory
  86                 * reservation with us. The reserved memory will be
  87                 * blocked from production system usage.  Hence return 1,
  88                 * so that we can continue with fadump.
  89                 */
  90                return 1;
  91        }
  92
  93        /*
  94         * So we now have successfully initialized cma area for fadump.
  95         */
  96        pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
  97                "bytes of memory reserved for firmware-assisted dump\n",
  98                cma_get_size(fadump_cma),
  99                (unsigned long)cma_get_base(fadump_cma) >> 20,
 100                fw_dump.reserve_dump_area_size);
 101        return 1;
 102}
 103#else
 104static int __init fadump_cma_init(void) { return 1; }
 105#endif /* CONFIG_CMA */
 106
 107/* Scan the Firmware Assisted dump configuration details. */
 108int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
 109                                      int depth, void *data)
 110{
 111        if (depth != 1)
 112                return 0;
 113
 114        if (strcmp(uname, "rtas") == 0) {
 115                rtas_fadump_dt_scan(&fw_dump, node);
 116                return 1;
 117        }
 118
 119        if (strcmp(uname, "ibm,opal") == 0) {
 120                opal_fadump_dt_scan(&fw_dump, node);
 121                return 1;
 122        }
 123
 124        return 0;
 125}
 126
 127/*
 128 * If fadump is registered, check if the memory provided
 129 * falls within boot memory area and reserved memory area.
 130 */
 131int is_fadump_memory_area(u64 addr, unsigned long size)
 132{
 133        u64 d_start, d_end;
 134
 135        if (!fw_dump.dump_registered)
 136                return 0;
 137
 138        if (!size)
 139                return 0;
 140
 141        d_start = fw_dump.reserve_dump_area_start;
 142        d_end = d_start + fw_dump.reserve_dump_area_size;
 143        if (((addr + size) > d_start) && (addr <= d_end))
 144                return 1;
 145
 146        return (addr <= fw_dump.boot_mem_top);
 147}
 148
 149int should_fadump_crash(void)
 150{
 151        if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
 152                return 0;
 153        return 1;
 154}
 155
 156int is_fadump_active(void)
 157{
 158        return fw_dump.dump_active;
 159}
 160
 161/*
 162 * Returns true, if there are no holes in memory area between d_start to d_end,
 163 * false otherwise.
 164 */
 165static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
 166{
 167        struct memblock_region *reg;
 168        bool ret = false;
 169        u64 start, end;
 170
 171        for_each_memblock(memory, reg) {
 172                start = max_t(u64, d_start, reg->base);
 173                end = min_t(u64, d_end, (reg->base + reg->size));
 174                if (d_start < end) {
 175                        /* Memory hole from d_start to start */
 176                        if (start > d_start)
 177                                break;
 178
 179                        if (end == d_end) {
 180                                ret = true;
 181                                break;
 182                        }
 183
 184                        d_start = end + 1;
 185                }
 186        }
 187
 188        return ret;
 189}
 190
 191/*
 192 * Returns true, if there are no holes in boot memory area,
 193 * false otherwise.
 194 */
 195bool is_fadump_boot_mem_contiguous(void)
 196{
 197        unsigned long d_start, d_end;
 198        bool ret = false;
 199        int i;
 200
 201        for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
 202                d_start = fw_dump.boot_mem_addr[i];
 203                d_end   = d_start + fw_dump.boot_mem_sz[i];
 204
 205                ret = is_fadump_mem_area_contiguous(d_start, d_end);
 206                if (!ret)
 207                        break;
 208        }
 209
 210        return ret;
 211}
 212
 213/*
 214 * Returns true, if there are no holes in reserved memory area,
 215 * false otherwise.
 216 */
 217bool is_fadump_reserved_mem_contiguous(void)
 218{
 219        u64 d_start, d_end;
 220
 221        d_start = fw_dump.reserve_dump_area_start;
 222        d_end   = d_start + fw_dump.reserve_dump_area_size;
 223        return is_fadump_mem_area_contiguous(d_start, d_end);
 224}
 225
 226/* Print firmware assisted dump configurations for debugging purpose. */
 227static void fadump_show_config(void)
 228{
 229        int i;
 230
 231        pr_debug("Support for firmware-assisted dump (fadump): %s\n",
 232                        (fw_dump.fadump_supported ? "present" : "no support"));
 233
 234        if (!fw_dump.fadump_supported)
 235                return;
 236
 237        pr_debug("Fadump enabled    : %s\n",
 238                                (fw_dump.fadump_enabled ? "yes" : "no"));
 239        pr_debug("Dump Active       : %s\n",
 240                                (fw_dump.dump_active ? "yes" : "no"));
 241        pr_debug("Dump section sizes:\n");
 242        pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
 243        pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
 244        pr_debug("    Boot memory size   : %lx\n", fw_dump.boot_memory_size);
 245        pr_debug("    Boot memory top    : %llx\n", fw_dump.boot_mem_top);
 246        pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
 247        for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
 248                pr_debug("[%03d] base = %llx, size = %llx\n", i,
 249                         fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
 250        }
 251}
 252
 253/**
 254 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
 255 *
 256 * Function to find the largest memory size we need to reserve during early
 257 * boot process. This will be the size of the memory that is required for a
 258 * kernel to boot successfully.
 259 *
 260 * This function has been taken from phyp-assisted dump feature implementation.
 261 *
 262 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
 263 *
 264 * TODO: Come up with better approach to find out more accurate memory size
 265 * that is required for a kernel to boot successfully.
 266 *
 267 */
 268static inline u64 fadump_calculate_reserve_size(void)
 269{
 270        u64 base, size, bootmem_min;
 271        int ret;
 272
 273        if (fw_dump.reserve_bootvar)
 274                pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
 275
 276        /*
 277         * Check if the size is specified through crashkernel= cmdline
 278         * option. If yes, then use that but ignore base as fadump reserves
 279         * memory at a predefined offset.
 280         */
 281        ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
 282                                &size, &base);
 283        if (ret == 0 && size > 0) {
 284                unsigned long max_size;
 285
 286                if (fw_dump.reserve_bootvar)
 287                        pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
 288
 289                fw_dump.reserve_bootvar = (unsigned long)size;
 290
 291                /*
 292                 * Adjust if the boot memory size specified is above
 293                 * the upper limit.
 294                 */
 295                max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
 296                if (fw_dump.reserve_bootvar > max_size) {
 297                        fw_dump.reserve_bootvar = max_size;
 298                        pr_info("Adjusted boot memory size to %luMB\n",
 299                                (fw_dump.reserve_bootvar >> 20));
 300                }
 301
 302                return fw_dump.reserve_bootvar;
 303        } else if (fw_dump.reserve_bootvar) {
 304                /*
 305                 * 'fadump_reserve_mem=' is being used to reserve memory
 306                 * for firmware-assisted dump.
 307                 */
 308                return fw_dump.reserve_bootvar;
 309        }
 310
 311        /* divide by 20 to get 5% of value */
 312        size = memblock_phys_mem_size() / 20;
 313
 314        /* round it down in multiples of 256 */
 315        size = size & ~0x0FFFFFFFUL;
 316
 317        /* Truncate to memory_limit. We don't want to over reserve the memory.*/
 318        if (memory_limit && size > memory_limit)
 319                size = memory_limit;
 320
 321        bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
 322        return (size > bootmem_min ? size : bootmem_min);
 323}
 324
 325/*
 326 * Calculate the total memory size required to be reserved for
 327 * firmware-assisted dump registration.
 328 */
 329static unsigned long get_fadump_area_size(void)
 330{
 331        unsigned long size = 0;
 332
 333        size += fw_dump.cpu_state_data_size;
 334        size += fw_dump.hpte_region_size;
 335        size += fw_dump.boot_memory_size;
 336        size += sizeof(struct fadump_crash_info_header);
 337        size += sizeof(struct elfhdr); /* ELF core header.*/
 338        size += sizeof(struct elf_phdr); /* place holder for cpu notes */
 339        /* Program headers for crash memory regions. */
 340        size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
 341
 342        size = PAGE_ALIGN(size);
 343
 344        /* This is to hold kernel metadata on platforms that support it */
 345        size += (fw_dump.ops->fadump_get_metadata_size ?
 346                 fw_dump.ops->fadump_get_metadata_size() : 0);
 347        return size;
 348}
 349
 350static int __init add_boot_mem_region(unsigned long rstart,
 351                                      unsigned long rsize)
 352{
 353        int i = fw_dump.boot_mem_regs_cnt++;
 354
 355        if (fw_dump.boot_mem_regs_cnt > FADUMP_MAX_MEM_REGS) {
 356                fw_dump.boot_mem_regs_cnt = FADUMP_MAX_MEM_REGS;
 357                return 0;
 358        }
 359
 360        pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
 361                 i, rstart, (rstart + rsize));
 362        fw_dump.boot_mem_addr[i] = rstart;
 363        fw_dump.boot_mem_sz[i] = rsize;
 364        return 1;
 365}
 366
 367/*
 368 * Firmware usually has a hard limit on the data it can copy per region.
 369 * Honour that by splitting a memory range into multiple regions.
 370 */
 371static int __init add_boot_mem_regions(unsigned long mstart,
 372                                       unsigned long msize)
 373{
 374        unsigned long rstart, rsize, max_size;
 375        int ret = 1;
 376
 377        rstart = mstart;
 378        max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
 379        while (msize) {
 380                if (msize > max_size)
 381                        rsize = max_size;
 382                else
 383                        rsize = msize;
 384
 385                ret = add_boot_mem_region(rstart, rsize);
 386                if (!ret)
 387                        break;
 388
 389                msize -= rsize;
 390                rstart += rsize;
 391        }
 392
 393        return ret;
 394}
 395
 396static int __init fadump_get_boot_mem_regions(void)
 397{
 398        unsigned long base, size, cur_size, hole_size, last_end;
 399        unsigned long mem_size = fw_dump.boot_memory_size;
 400        struct memblock_region *reg;
 401        int ret = 1;
 402
 403        fw_dump.boot_mem_regs_cnt = 0;
 404
 405        last_end = 0;
 406        hole_size = 0;
 407        cur_size = 0;
 408        for_each_memblock(memory, reg) {
 409                base = reg->base;
 410                size = reg->size;
 411                hole_size += (base - last_end);
 412
 413                if ((cur_size + size) >= mem_size) {
 414                        size = (mem_size - cur_size);
 415                        ret = add_boot_mem_regions(base, size);
 416                        break;
 417                }
 418
 419                mem_size -= size;
 420                cur_size += size;
 421                ret = add_boot_mem_regions(base, size);
 422                if (!ret)
 423                        break;
 424
 425                last_end = base + size;
 426        }
 427        fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
 428
 429        return ret;
 430}
 431
 432int __init fadump_reserve_mem(void)
 433{
 434        u64 base, size, mem_boundary, bootmem_min, align = PAGE_SIZE;
 435        bool is_memblock_bottom_up = memblock_bottom_up();
 436        int ret = 1;
 437
 438        if (!fw_dump.fadump_enabled)
 439                return 0;
 440
 441        if (!fw_dump.fadump_supported) {
 442                pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
 443                goto error_out;
 444        }
 445
 446        /*
 447         * Initialize boot memory size
 448         * If dump is active then we have already calculated the size during
 449         * first kernel.
 450         */
 451        if (!fw_dump.dump_active) {
 452                fw_dump.boot_memory_size =
 453                        PAGE_ALIGN(fadump_calculate_reserve_size());
 454#ifdef CONFIG_CMA
 455                if (!fw_dump.nocma) {
 456                        align = FADUMP_CMA_ALIGNMENT;
 457                        fw_dump.boot_memory_size =
 458                                ALIGN(fw_dump.boot_memory_size, align);
 459                }
 460#endif
 461
 462                bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
 463                if (fw_dump.boot_memory_size < bootmem_min) {
 464                        pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
 465                               fw_dump.boot_memory_size, bootmem_min);
 466                        goto error_out;
 467                }
 468
 469                if (!fadump_get_boot_mem_regions()) {
 470                        pr_err("Too many holes in boot memory area to enable fadump\n");
 471                        goto error_out;
 472                }
 473        }
 474
 475        /*
 476         * Calculate the memory boundary.
 477         * If memory_limit is less than actual memory boundary then reserve
 478         * the memory for fadump beyond the memory_limit and adjust the
 479         * memory_limit accordingly, so that the running kernel can run with
 480         * specified memory_limit.
 481         */
 482        if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
 483                size = get_fadump_area_size();
 484                if ((memory_limit + size) < memblock_end_of_DRAM())
 485                        memory_limit += size;
 486                else
 487                        memory_limit = memblock_end_of_DRAM();
 488                printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
 489                                " dump, now %#016llx\n", memory_limit);
 490        }
 491        if (memory_limit)
 492                mem_boundary = memory_limit;
 493        else
 494                mem_boundary = memblock_end_of_DRAM();
 495
 496        base = fw_dump.boot_mem_top;
 497        size = get_fadump_area_size();
 498        fw_dump.reserve_dump_area_size = size;
 499        if (fw_dump.dump_active) {
 500                pr_info("Firmware-assisted dump is active.\n");
 501
 502#ifdef CONFIG_HUGETLB_PAGE
 503                /*
 504                 * FADump capture kernel doesn't care much about hugepages.
 505                 * In fact, handling hugepages in capture kernel is asking for
 506                 * trouble. So, disable HugeTLB support when fadump is active.
 507                 */
 508                hugetlb_disabled = true;
 509#endif
 510                /*
 511                 * If last boot has crashed then reserve all the memory
 512                 * above boot memory size so that we don't touch it until
 513                 * dump is written to disk by userspace tool. This memory
 514                 * can be released for general use by invalidating fadump.
 515                 */
 516                fadump_reserve_crash_area(base);
 517
 518                pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
 519                pr_debug("Reserve dump area start address: 0x%lx\n",
 520                         fw_dump.reserve_dump_area_start);
 521        } else {
 522                /*
 523                 * Reserve memory at an offset closer to bottom of the RAM to
 524                 * minimize the impact of memory hot-remove operation.
 525                 */
 526                memblock_set_bottom_up(true);
 527                base = memblock_find_in_range(base, mem_boundary, size, align);
 528
 529                /* Restore the previous allocation mode */
 530                memblock_set_bottom_up(is_memblock_bottom_up);
 531
 532                if (!base) {
 533                        pr_err("Failed to find memory chunk for reservation!\n");
 534                        goto error_out;
 535                }
 536                fw_dump.reserve_dump_area_start = base;
 537
 538                /*
 539                 * Calculate the kernel metadata address and register it with
 540                 * f/w if the platform supports.
 541                 */
 542                if (fw_dump.ops->fadump_setup_metadata &&
 543                    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
 544                        goto error_out;
 545
 546                if (memblock_reserve(base, size)) {
 547                        pr_err("Failed to reserve memory!\n");
 548                        goto error_out;
 549                }
 550
 551                pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
 552                        (size >> 20), base, (memblock_phys_mem_size() >> 20));
 553
 554                ret = fadump_cma_init();
 555        }
 556
 557        return ret;
 558error_out:
 559        fw_dump.fadump_enabled = 0;
 560        return 0;
 561}
 562
 563/* Look for fadump= cmdline option. */
 564static int __init early_fadump_param(char *p)
 565{
 566        if (!p)
 567                return 1;
 568
 569        if (strncmp(p, "on", 2) == 0)
 570                fw_dump.fadump_enabled = 1;
 571        else if (strncmp(p, "off", 3) == 0)
 572                fw_dump.fadump_enabled = 0;
 573        else if (strncmp(p, "nocma", 5) == 0) {
 574                fw_dump.fadump_enabled = 1;
 575                fw_dump.nocma = 1;
 576        }
 577
 578        return 0;
 579}
 580early_param("fadump", early_fadump_param);
 581
 582/*
 583 * Look for fadump_reserve_mem= cmdline option
 584 * TODO: Remove references to 'fadump_reserve_mem=' parameter,
 585 *       the sooner 'crashkernel=' parameter is accustomed to.
 586 */
 587static int __init early_fadump_reserve_mem(char *p)
 588{
 589        if (p)
 590                fw_dump.reserve_bootvar = memparse(p, &p);
 591        return 0;
 592}
 593early_param("fadump_reserve_mem", early_fadump_reserve_mem);
 594
 595void crash_fadump(struct pt_regs *regs, const char *str)
 596{
 597        struct fadump_crash_info_header *fdh = NULL;
 598        int old_cpu, this_cpu;
 599
 600        if (!should_fadump_crash())
 601                return;
 602
 603        /*
 604         * old_cpu == -1 means this is the first CPU which has come here,
 605         * go ahead and trigger fadump.
 606         *
 607         * old_cpu != -1 means some other CPU has already on it's way
 608         * to trigger fadump, just keep looping here.
 609         */
 610        this_cpu = smp_processor_id();
 611        old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
 612
 613        if (old_cpu != -1) {
 614                /*
 615                 * We can't loop here indefinitely. Wait as long as fadump
 616                 * is in force. If we race with fadump un-registration this
 617                 * loop will break and then we go down to normal panic path
 618                 * and reboot. If fadump is in force the first crashing
 619                 * cpu will definitely trigger fadump.
 620                 */
 621                while (fw_dump.dump_registered)
 622                        cpu_relax();
 623                return;
 624        }
 625
 626        fdh = __va(fw_dump.fadumphdr_addr);
 627        fdh->crashing_cpu = crashing_cpu;
 628        crash_save_vmcoreinfo();
 629
 630        if (regs)
 631                fdh->regs = *regs;
 632        else
 633                ppc_save_regs(&fdh->regs);
 634
 635        fdh->online_mask = *cpu_online_mask;
 636
 637        fw_dump.ops->fadump_trigger(fdh, str);
 638}
 639
 640u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
 641{
 642        struct elf_prstatus prstatus;
 643
 644        memset(&prstatus, 0, sizeof(prstatus));
 645        /*
 646         * FIXME: How do i get PID? Do I really need it?
 647         * prstatus.pr_pid = ????
 648         */
 649        elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
 650        buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
 651                              &prstatus, sizeof(prstatus));
 652        return buf;
 653}
 654
 655void fadump_update_elfcore_header(char *bufp)
 656{
 657        struct elfhdr *elf;
 658        struct elf_phdr *phdr;
 659
 660        elf = (struct elfhdr *)bufp;
 661        bufp += sizeof(struct elfhdr);
 662
 663        /* First note is a place holder for cpu notes info. */
 664        phdr = (struct elf_phdr *)bufp;
 665
 666        if (phdr->p_type == PT_NOTE) {
 667                phdr->p_paddr   = __pa(fw_dump.cpu_notes_buf_vaddr);
 668                phdr->p_offset  = phdr->p_paddr;
 669                phdr->p_filesz  = fw_dump.cpu_notes_buf_size;
 670                phdr->p_memsz = fw_dump.cpu_notes_buf_size;
 671        }
 672        return;
 673}
 674
 675static void *fadump_alloc_buffer(unsigned long size)
 676{
 677        unsigned long count, i;
 678        struct page *page;
 679        void *vaddr;
 680
 681        vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
 682        if (!vaddr)
 683                return NULL;
 684
 685        count = PAGE_ALIGN(size) / PAGE_SIZE;
 686        page = virt_to_page(vaddr);
 687        for (i = 0; i < count; i++)
 688                mark_page_reserved(page + i);
 689        return vaddr;
 690}
 691
 692static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
 693{
 694        free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
 695}
 696
 697s32 fadump_setup_cpu_notes_buf(u32 num_cpus)
 698{
 699        /* Allocate buffer to hold cpu crash notes. */
 700        fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
 701        fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
 702        fw_dump.cpu_notes_buf_vaddr =
 703                (unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
 704        if (!fw_dump.cpu_notes_buf_vaddr) {
 705                pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
 706                       fw_dump.cpu_notes_buf_size);
 707                return -ENOMEM;
 708        }
 709
 710        pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
 711                 fw_dump.cpu_notes_buf_size,
 712                 fw_dump.cpu_notes_buf_vaddr);
 713        return 0;
 714}
 715
 716void fadump_free_cpu_notes_buf(void)
 717{
 718        if (!fw_dump.cpu_notes_buf_vaddr)
 719                return;
 720
 721        fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
 722                           fw_dump.cpu_notes_buf_size);
 723        fw_dump.cpu_notes_buf_vaddr = 0;
 724        fw_dump.cpu_notes_buf_size = 0;
 725}
 726
 727static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
 728{
 729        kfree(mrange_info->mem_ranges);
 730        mrange_info->mem_ranges = NULL;
 731        mrange_info->mem_ranges_sz = 0;
 732        mrange_info->max_mem_ranges = 0;
 733}
 734
 735/*
 736 * Allocate or reallocate mem_ranges array in incremental units
 737 * of PAGE_SIZE.
 738 */
 739static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
 740{
 741        struct fadump_memory_range *new_array;
 742        u64 new_size;
 743
 744        new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
 745        pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
 746                 new_size, mrange_info->name);
 747
 748        new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
 749        if (new_array == NULL) {
 750                pr_err("Insufficient memory for setting up %s memory ranges\n",
 751                       mrange_info->name);
 752                fadump_free_mem_ranges(mrange_info);
 753                return -ENOMEM;
 754        }
 755
 756        mrange_info->mem_ranges = new_array;
 757        mrange_info->mem_ranges_sz = new_size;
 758        mrange_info->max_mem_ranges = (new_size /
 759                                       sizeof(struct fadump_memory_range));
 760        return 0;
 761}
 762
 763static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
 764                                       u64 base, u64 end)
 765{
 766        struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
 767        bool is_adjacent = false;
 768        u64 start, size;
 769
 770        if (base == end)
 771                return 0;
 772
 773        /*
 774         * Fold adjacent memory ranges to bring down the memory ranges/
 775         * PT_LOAD segments count.
 776         */
 777        if (mrange_info->mem_range_cnt) {
 778                start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
 779                size  = mem_ranges[mrange_info->mem_range_cnt - 1].size;
 780
 781                if ((start + size) == base)
 782                        is_adjacent = true;
 783        }
 784        if (!is_adjacent) {
 785                /* resize the array on reaching the limit */
 786                if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
 787                        int ret;
 788
 789                        ret = fadump_alloc_mem_ranges(mrange_info);
 790                        if (ret)
 791                                return ret;
 792
 793                        /* Update to the new resized array */
 794                        mem_ranges = mrange_info->mem_ranges;
 795                }
 796
 797                start = base;
 798                mem_ranges[mrange_info->mem_range_cnt].base = start;
 799                mrange_info->mem_range_cnt++;
 800        }
 801
 802        mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
 803        pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
 804                 mrange_info->name, (mrange_info->mem_range_cnt - 1),
 805                 start, end - 1, (end - start));
 806        return 0;
 807}
 808
 809static int fadump_exclude_reserved_area(u64 start, u64 end)
 810{
 811        u64 ra_start, ra_end;
 812        int ret = 0;
 813
 814        ra_start = fw_dump.reserve_dump_area_start;
 815        ra_end = ra_start + fw_dump.reserve_dump_area_size;
 816
 817        if ((ra_start < end) && (ra_end > start)) {
 818                if ((start < ra_start) && (end > ra_end)) {
 819                        ret = fadump_add_mem_range(&crash_mrange_info,
 820                                                   start, ra_start);
 821                        if (ret)
 822                                return ret;
 823
 824                        ret = fadump_add_mem_range(&crash_mrange_info,
 825                                                   ra_end, end);
 826                } else if (start < ra_start) {
 827                        ret = fadump_add_mem_range(&crash_mrange_info,
 828                                                   start, ra_start);
 829                } else if (ra_end < end) {
 830                        ret = fadump_add_mem_range(&crash_mrange_info,
 831                                                   ra_end, end);
 832                }
 833        } else
 834                ret = fadump_add_mem_range(&crash_mrange_info, start, end);
 835
 836        return ret;
 837}
 838
 839static int fadump_init_elfcore_header(char *bufp)
 840{
 841        struct elfhdr *elf;
 842
 843        elf = (struct elfhdr *) bufp;
 844        bufp += sizeof(struct elfhdr);
 845        memcpy(elf->e_ident, ELFMAG, SELFMAG);
 846        elf->e_ident[EI_CLASS] = ELF_CLASS;
 847        elf->e_ident[EI_DATA] = ELF_DATA;
 848        elf->e_ident[EI_VERSION] = EV_CURRENT;
 849        elf->e_ident[EI_OSABI] = ELF_OSABI;
 850        memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
 851        elf->e_type = ET_CORE;
 852        elf->e_machine = ELF_ARCH;
 853        elf->e_version = EV_CURRENT;
 854        elf->e_entry = 0;
 855        elf->e_phoff = sizeof(struct elfhdr);
 856        elf->e_shoff = 0;
 857#if defined(_CALL_ELF)
 858        elf->e_flags = _CALL_ELF;
 859#else
 860        elf->e_flags = 0;
 861#endif
 862        elf->e_ehsize = sizeof(struct elfhdr);
 863        elf->e_phentsize = sizeof(struct elf_phdr);
 864        elf->e_phnum = 0;
 865        elf->e_shentsize = 0;
 866        elf->e_shnum = 0;
 867        elf->e_shstrndx = 0;
 868
 869        return 0;
 870}
 871
 872/*
 873 * Traverse through memblock structure and setup crash memory ranges. These
 874 * ranges will be used create PT_LOAD program headers in elfcore header.
 875 */
 876static int fadump_setup_crash_memory_ranges(void)
 877{
 878        struct memblock_region *reg;
 879        u64 start, end;
 880        int i, ret;
 881
 882        pr_debug("Setup crash memory ranges.\n");
 883        crash_mrange_info.mem_range_cnt = 0;
 884
 885        /*
 886         * Boot memory region(s) registered with firmware are moved to
 887         * different location at the time of crash. Create separate program
 888         * header(s) for this memory chunk(s) with the correct offset.
 889         */
 890        for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
 891                start = fw_dump.boot_mem_addr[i];
 892                end = start + fw_dump.boot_mem_sz[i];
 893                ret = fadump_add_mem_range(&crash_mrange_info, start, end);
 894                if (ret)
 895                        return ret;
 896        }
 897
 898        for_each_memblock(memory, reg) {
 899                start = (u64)reg->base;
 900                end = start + (u64)reg->size;
 901
 902                /*
 903                 * skip the memory chunk that is already added
 904                 * (0 through boot_memory_top).
 905                 */
 906                if (start < fw_dump.boot_mem_top) {
 907                        if (end > fw_dump.boot_mem_top)
 908                                start = fw_dump.boot_mem_top;
 909                        else
 910                                continue;
 911                }
 912
 913                /* add this range excluding the reserved dump area. */
 914                ret = fadump_exclude_reserved_area(start, end);
 915                if (ret)
 916                        return ret;
 917        }
 918
 919        return 0;
 920}
 921
 922/*
 923 * If the given physical address falls within the boot memory region then
 924 * return the relocated address that points to the dump region reserved
 925 * for saving initial boot memory contents.
 926 */
 927static inline unsigned long fadump_relocate(unsigned long paddr)
 928{
 929        unsigned long raddr, rstart, rend, rlast, hole_size;
 930        int i;
 931
 932        hole_size = 0;
 933        rlast = 0;
 934        raddr = paddr;
 935        for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
 936                rstart = fw_dump.boot_mem_addr[i];
 937                rend = rstart + fw_dump.boot_mem_sz[i];
 938                hole_size += (rstart - rlast);
 939
 940                if (paddr >= rstart && paddr < rend) {
 941                        raddr += fw_dump.boot_mem_dest_addr - hole_size;
 942                        break;
 943                }
 944
 945                rlast = rend;
 946        }
 947
 948        pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
 949        return raddr;
 950}
 951
 952static int fadump_create_elfcore_headers(char *bufp)
 953{
 954        unsigned long long raddr, offset;
 955        struct elf_phdr *phdr;
 956        struct elfhdr *elf;
 957        int i, j;
 958
 959        fadump_init_elfcore_header(bufp);
 960        elf = (struct elfhdr *)bufp;
 961        bufp += sizeof(struct elfhdr);
 962
 963        /*
 964         * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
 965         * will be populated during second kernel boot after crash. Hence
 966         * this PT_NOTE will always be the first elf note.
 967         *
 968         * NOTE: Any new ELF note addition should be placed after this note.
 969         */
 970        phdr = (struct elf_phdr *)bufp;
 971        bufp += sizeof(struct elf_phdr);
 972        phdr->p_type = PT_NOTE;
 973        phdr->p_flags = 0;
 974        phdr->p_vaddr = 0;
 975        phdr->p_align = 0;
 976
 977        phdr->p_offset = 0;
 978        phdr->p_paddr = 0;
 979        phdr->p_filesz = 0;
 980        phdr->p_memsz = 0;
 981
 982        (elf->e_phnum)++;
 983
 984        /* setup ELF PT_NOTE for vmcoreinfo */
 985        phdr = (struct elf_phdr *)bufp;
 986        bufp += sizeof(struct elf_phdr);
 987        phdr->p_type    = PT_NOTE;
 988        phdr->p_flags   = 0;
 989        phdr->p_vaddr   = 0;
 990        phdr->p_align   = 0;
 991
 992        phdr->p_paddr   = fadump_relocate(paddr_vmcoreinfo_note());
 993        phdr->p_offset  = phdr->p_paddr;
 994        phdr->p_memsz   = phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
 995
 996        /* Increment number of program headers. */
 997        (elf->e_phnum)++;
 998
 999        /* setup PT_LOAD sections. */
1000        j = 0;
1001        offset = 0;
1002        raddr = fw_dump.boot_mem_addr[0];
1003        for (i = 0; i < crash_mrange_info.mem_range_cnt; i++) {
1004                u64 mbase, msize;
1005
1006                mbase = crash_mrange_info.mem_ranges[i].base;
1007                msize = crash_mrange_info.mem_ranges[i].size;
1008                if (!msize)
1009                        continue;
1010
1011                phdr = (struct elf_phdr *)bufp;
1012                bufp += sizeof(struct elf_phdr);
1013                phdr->p_type    = PT_LOAD;
1014                phdr->p_flags   = PF_R|PF_W|PF_X;
1015                phdr->p_offset  = mbase;
1016
1017                if (mbase == raddr) {
1018                        /*
1019                         * The entire real memory region will be moved by
1020                         * firmware to the specified destination_address.
1021                         * Hence set the correct offset.
1022                         */
1023                        phdr->p_offset = fw_dump.boot_mem_dest_addr + offset;
1024                        if (j < (fw_dump.boot_mem_regs_cnt - 1)) {
1025                                offset += fw_dump.boot_mem_sz[j];
1026                                raddr = fw_dump.boot_mem_addr[++j];
1027                        }
1028                }
1029
1030                phdr->p_paddr = mbase;
1031                phdr->p_vaddr = (unsigned long)__va(mbase);
1032                phdr->p_filesz = msize;
1033                phdr->p_memsz = msize;
1034                phdr->p_align = 0;
1035
1036                /* Increment number of program headers. */
1037                (elf->e_phnum)++;
1038        }
1039        return 0;
1040}
1041
1042static unsigned long init_fadump_header(unsigned long addr)
1043{
1044        struct fadump_crash_info_header *fdh;
1045
1046        if (!addr)
1047                return 0;
1048
1049        fdh = __va(addr);
1050        addr += sizeof(struct fadump_crash_info_header);
1051
1052        memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1053        fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1054        fdh->elfcorehdr_addr = addr;
1055        /* We will set the crashing cpu id in crash_fadump() during crash. */
1056        fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
1057
1058        return addr;
1059}
1060
1061static int register_fadump(void)
1062{
1063        unsigned long addr;
1064        void *vaddr;
1065        int ret;
1066
1067        /*
1068         * If no memory is reserved then we can not register for firmware-
1069         * assisted dump.
1070         */
1071        if (!fw_dump.reserve_dump_area_size)
1072                return -ENODEV;
1073
1074        ret = fadump_setup_crash_memory_ranges();
1075        if (ret)
1076                return ret;
1077
1078        addr = fw_dump.fadumphdr_addr;
1079
1080        /* Initialize fadump crash info header. */
1081        addr = init_fadump_header(addr);
1082        vaddr = __va(addr);
1083
1084        pr_debug("Creating ELF core headers at %#016lx\n", addr);
1085        fadump_create_elfcore_headers(vaddr);
1086
1087        /* register the future kernel dump with firmware. */
1088        pr_debug("Registering for firmware-assisted kernel dump...\n");
1089        return fw_dump.ops->fadump_register(&fw_dump);
1090}
1091
1092void fadump_cleanup(void)
1093{
1094        if (!fw_dump.fadump_supported)
1095                return;
1096
1097        /* Invalidate the registration only if dump is active. */
1098        if (fw_dump.dump_active) {
1099                pr_debug("Invalidating firmware-assisted dump registration\n");
1100                fw_dump.ops->fadump_invalidate(&fw_dump);
1101        } else if (fw_dump.dump_registered) {
1102                /* Un-register Firmware-assisted dump if it was registered. */
1103                fw_dump.ops->fadump_unregister(&fw_dump);
1104                fadump_free_mem_ranges(&crash_mrange_info);
1105        }
1106
1107        if (fw_dump.ops->fadump_cleanup)
1108                fw_dump.ops->fadump_cleanup(&fw_dump);
1109}
1110
1111static void fadump_free_reserved_memory(unsigned long start_pfn,
1112                                        unsigned long end_pfn)
1113{
1114        unsigned long pfn;
1115        unsigned long time_limit = jiffies + HZ;
1116
1117        pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1118                PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1119
1120        for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1121                free_reserved_page(pfn_to_page(pfn));
1122
1123                if (time_after(jiffies, time_limit)) {
1124                        cond_resched();
1125                        time_limit = jiffies + HZ;
1126                }
1127        }
1128}
1129
1130/*
1131 * Skip memory holes and free memory that was actually reserved.
1132 */
1133static void fadump_release_reserved_area(u64 start, u64 end)
1134{
1135        u64 tstart, tend, spfn, epfn;
1136        struct memblock_region *reg;
1137
1138        spfn = PHYS_PFN(start);
1139        epfn = PHYS_PFN(end);
1140        for_each_memblock(memory, reg) {
1141                tstart = max_t(u64, spfn, memblock_region_memory_base_pfn(reg));
1142                tend   = min_t(u64, epfn, memblock_region_memory_end_pfn(reg));
1143                if (tstart < tend) {
1144                        fadump_free_reserved_memory(tstart, tend);
1145
1146                        if (tend == epfn)
1147                                break;
1148
1149                        spfn = tend;
1150                }
1151        }
1152}
1153
1154/*
1155 * Sort the mem ranges in-place and merge adjacent ranges
1156 * to minimize the memory ranges count.
1157 */
1158static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
1159{
1160        struct fadump_memory_range *mem_ranges;
1161        struct fadump_memory_range tmp_range;
1162        u64 base, size;
1163        int i, j, idx;
1164
1165        if (!reserved_mrange_info.mem_range_cnt)
1166                return;
1167
1168        /* Sort the memory ranges */
1169        mem_ranges = mrange_info->mem_ranges;
1170        for (i = 0; i < mrange_info->mem_range_cnt; i++) {
1171                idx = i;
1172                for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
1173                        if (mem_ranges[idx].base > mem_ranges[j].base)
1174                                idx = j;
1175                }
1176                if (idx != i) {
1177                        tmp_range = mem_ranges[idx];
1178                        mem_ranges[idx] = mem_ranges[i];
1179                        mem_ranges[i] = tmp_range;
1180                }
1181        }
1182
1183        /* Merge adjacent reserved ranges */
1184        idx = 0;
1185        for (i = 1; i < mrange_info->mem_range_cnt; i++) {
1186                base = mem_ranges[i-1].base;
1187                size = mem_ranges[i-1].size;
1188                if (mem_ranges[i].base == (base + size))
1189                        mem_ranges[idx].size += mem_ranges[i].size;
1190                else {
1191                        idx++;
1192                        if (i == idx)
1193                                continue;
1194
1195                        mem_ranges[idx] = mem_ranges[i];
1196                }
1197        }
1198        mrange_info->mem_range_cnt = idx + 1;
1199}
1200
1201/*
1202 * Scan reserved-ranges to consider them while reserving/releasing
1203 * memory for FADump.
1204 */
1205static inline int fadump_scan_reserved_mem_ranges(void)
1206{
1207        struct device_node *root;
1208        const __be32 *prop;
1209        int len, ret = -1;
1210        unsigned long i;
1211
1212        root = of_find_node_by_path("/");
1213        if (!root)
1214                return ret;
1215
1216        prop = of_get_property(root, "reserved-ranges", &len);
1217        if (!prop)
1218                return ret;
1219
1220        /*
1221         * Each reserved range is an (address,size) pair, 2 cells each,
1222         * totalling 4 cells per range.
1223         */
1224        for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
1225                u64 base, size;
1226
1227                base = of_read_number(prop + (i * 4) + 0, 2);
1228                size = of_read_number(prop + (i * 4) + 2, 2);
1229
1230                if (size) {
1231                        ret = fadump_add_mem_range(&reserved_mrange_info,
1232                                                   base, base + size);
1233                        if (ret < 0) {
1234                                pr_warn("some reserved ranges are ignored!\n");
1235                                break;
1236                        }
1237                }
1238        }
1239
1240        return ret;
1241}
1242
1243/*
1244 * Release the memory that was reserved during early boot to preserve the
1245 * crash'ed kernel's memory contents except reserved dump area (permanent
1246 * reservation) and reserved ranges used by F/W. The released memory will
1247 * be available for general use.
1248 */
1249static void fadump_release_memory(u64 begin, u64 end)
1250{
1251        u64 ra_start, ra_end, tstart;
1252        int i, ret;
1253
1254        fadump_scan_reserved_mem_ranges();
1255
1256        ra_start = fw_dump.reserve_dump_area_start;
1257        ra_end = ra_start + fw_dump.reserve_dump_area_size;
1258
1259        /*
1260         * Add reserved dump area to reserved ranges list
1261         * and exclude all these ranges while releasing memory.
1262         */
1263        ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
1264        if (ret != 0) {
1265                /*
1266                 * Not enough memory to setup reserved ranges but the system is
1267                 * running shortage of memory. So, release all the memory except
1268                 * Reserved dump area (reused for next fadump registration).
1269                 */
1270                if (begin < ra_end && end > ra_start) {
1271                        if (begin < ra_start)
1272                                fadump_release_reserved_area(begin, ra_start);
1273                        if (end > ra_end)
1274                                fadump_release_reserved_area(ra_end, end);
1275                } else
1276                        fadump_release_reserved_area(begin, end);
1277
1278                return;
1279        }
1280
1281        /* Get the reserved ranges list in order first. */
1282        sort_and_merge_mem_ranges(&reserved_mrange_info);
1283
1284        /* Exclude reserved ranges and release remaining memory */
1285        tstart = begin;
1286        for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
1287                ra_start = reserved_mrange_info.mem_ranges[i].base;
1288                ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
1289
1290                if (tstart >= ra_end)
1291                        continue;
1292
1293                if (tstart < ra_start)
1294                        fadump_release_reserved_area(tstart, ra_start);
1295                tstart = ra_end;
1296        }
1297
1298        if (tstart < end)
1299                fadump_release_reserved_area(tstart, end);
1300}
1301
1302static void fadump_invalidate_release_mem(void)
1303{
1304        mutex_lock(&fadump_mutex);
1305        if (!fw_dump.dump_active) {
1306                mutex_unlock(&fadump_mutex);
1307                return;
1308        }
1309
1310        fadump_cleanup();
1311        mutex_unlock(&fadump_mutex);
1312
1313        fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
1314        fadump_free_cpu_notes_buf();
1315
1316        /*
1317         * Setup kernel metadata and initialize the kernel dump
1318         * memory structure for FADump re-registration.
1319         */
1320        if (fw_dump.ops->fadump_setup_metadata &&
1321            (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
1322                pr_warn("Failed to setup kernel metadata!\n");
1323        fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1324}
1325
1326static ssize_t fadump_release_memory_store(struct kobject *kobj,
1327                                        struct kobj_attribute *attr,
1328                                        const char *buf, size_t count)
1329{
1330        int input = -1;
1331
1332        if (!fw_dump.dump_active)
1333                return -EPERM;
1334
1335        if (kstrtoint(buf, 0, &input))
1336                return -EINVAL;
1337
1338        if (input == 1) {
1339                /*
1340                 * Take away the '/proc/vmcore'. We are releasing the dump
1341                 * memory, hence it will not be valid anymore.
1342                 */
1343#ifdef CONFIG_PROC_VMCORE
1344                vmcore_cleanup();
1345#endif
1346                fadump_invalidate_release_mem();
1347
1348        } else
1349                return -EINVAL;
1350        return count;
1351}
1352
1353static ssize_t fadump_enabled_show(struct kobject *kobj,
1354                                        struct kobj_attribute *attr,
1355                                        char *buf)
1356{
1357        return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1358}
1359
1360static ssize_t fadump_register_show(struct kobject *kobj,
1361                                        struct kobj_attribute *attr,
1362                                        char *buf)
1363{
1364        return sprintf(buf, "%d\n", fw_dump.dump_registered);
1365}
1366
1367static ssize_t fadump_register_store(struct kobject *kobj,
1368                                        struct kobj_attribute *attr,
1369                                        const char *buf, size_t count)
1370{
1371        int ret = 0;
1372        int input = -1;
1373
1374        if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1375                return -EPERM;
1376
1377        if (kstrtoint(buf, 0, &input))
1378                return -EINVAL;
1379
1380        mutex_lock(&fadump_mutex);
1381
1382        switch (input) {
1383        case 0:
1384                if (fw_dump.dump_registered == 0) {
1385                        goto unlock_out;
1386                }
1387
1388                /* Un-register Firmware-assisted dump */
1389                pr_debug("Un-register firmware-assisted dump\n");
1390                fw_dump.ops->fadump_unregister(&fw_dump);
1391                break;
1392        case 1:
1393                if (fw_dump.dump_registered == 1) {
1394                        /* Un-register Firmware-assisted dump */
1395                        fw_dump.ops->fadump_unregister(&fw_dump);
1396                }
1397                /* Register Firmware-assisted dump */
1398                ret = register_fadump();
1399                break;
1400        default:
1401                ret = -EINVAL;
1402                break;
1403        }
1404
1405unlock_out:
1406        mutex_unlock(&fadump_mutex);
1407        return ret < 0 ? ret : count;
1408}
1409
1410static int fadump_region_show(struct seq_file *m, void *private)
1411{
1412        if (!fw_dump.fadump_enabled)
1413                return 0;
1414
1415        mutex_lock(&fadump_mutex);
1416        fw_dump.ops->fadump_region_show(&fw_dump, m);
1417        mutex_unlock(&fadump_mutex);
1418        return 0;
1419}
1420
1421static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1422                                                0200, NULL,
1423                                                fadump_release_memory_store);
1424static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1425                                                0444, fadump_enabled_show,
1426                                                NULL);
1427static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1428                                                0644, fadump_register_show,
1429                                                fadump_register_store);
1430
1431DEFINE_SHOW_ATTRIBUTE(fadump_region);
1432
1433static void fadump_init_files(void)
1434{
1435        struct dentry *debugfs_file;
1436        int rc = 0;
1437
1438        rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1439        if (rc)
1440                printk(KERN_ERR "fadump: unable to create sysfs file"
1441                        " fadump_enabled (%d)\n", rc);
1442
1443        rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1444        if (rc)
1445                printk(KERN_ERR "fadump: unable to create sysfs file"
1446                        " fadump_registered (%d)\n", rc);
1447
1448        debugfs_file = debugfs_create_file("fadump_region", 0444,
1449                                        powerpc_debugfs_root, NULL,
1450                                        &fadump_region_fops);
1451        if (!debugfs_file)
1452                printk(KERN_ERR "fadump: unable to create debugfs file"
1453                                " fadump_region\n");
1454
1455        if (fw_dump.dump_active) {
1456                rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1457                if (rc)
1458                        printk(KERN_ERR "fadump: unable to create sysfs file"
1459                                " fadump_release_mem (%d)\n", rc);
1460        }
1461        return;
1462}
1463
1464/*
1465 * Prepare for firmware-assisted dump.
1466 */
1467int __init setup_fadump(void)
1468{
1469        if (!fw_dump.fadump_supported)
1470                return 0;
1471
1472        fadump_init_files();
1473        fadump_show_config();
1474
1475        if (!fw_dump.fadump_enabled)
1476                return 1;
1477
1478        /*
1479         * If dump data is available then see if it is valid and prepare for
1480         * saving it to the disk.
1481         */
1482        if (fw_dump.dump_active) {
1483                /*
1484                 * if dump process fails then invalidate the registration
1485                 * and release memory before proceeding for re-registration.
1486                 */
1487                if (fw_dump.ops->fadump_process(&fw_dump) < 0)
1488                        fadump_invalidate_release_mem();
1489        }
1490        /* Initialize the kernel dump memory structure for FAD registration. */
1491        else if (fw_dump.reserve_dump_area_size)
1492                fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1493
1494        return 1;
1495}
1496subsys_initcall(setup_fadump);
1497#else /* !CONFIG_PRESERVE_FA_DUMP */
1498
1499/* Scan the Firmware Assisted dump configuration details. */
1500int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
1501                                      int depth, void *data)
1502{
1503        if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
1504                return 0;
1505
1506        opal_fadump_dt_scan(&fw_dump, node);
1507        return 1;
1508}
1509
1510/*
1511 * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
1512 * preserve crash data. The subsequent memory preserving kernel boot
1513 * is likely to process this crash data.
1514 */
1515int __init fadump_reserve_mem(void)
1516{
1517        if (fw_dump.dump_active) {
1518                /*
1519                 * If last boot has crashed then reserve all the memory
1520                 * above boot memory to preserve crash data.
1521                 */
1522                pr_info("Preserving crash data for processing in next boot.\n");
1523                fadump_reserve_crash_area(fw_dump.boot_mem_top);
1524        } else
1525                pr_debug("FADump-aware kernel..\n");
1526
1527        return 1;
1528}
1529#endif /* CONFIG_PRESERVE_FA_DUMP */
1530
1531/* Preserve everything above the base address */
1532static void __init fadump_reserve_crash_area(u64 base)
1533{
1534        struct memblock_region *reg;
1535        u64 mstart, msize;
1536
1537        for_each_memblock(memory, reg) {
1538                mstart = reg->base;
1539                msize  = reg->size;
1540
1541                if ((mstart + msize) < base)
1542                        continue;
1543
1544                if (mstart < base) {
1545                        msize -= (base - mstart);
1546                        mstart = base;
1547                }
1548
1549                pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
1550                        (msize >> 20), mstart);
1551                memblock_reserve(mstart, msize);
1552        }
1553}
1554
1555unsigned long __init arch_reserved_kernel_pages(void)
1556{
1557        return memblock_reserved_size() / PAGE_SIZE;
1558}
1559