linux/arch/x86/boot/compressed/kaslr.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * kaslr.c
   4 *
   5 * This contains the routines needed to generate a reasonable level of
   6 * entropy to choose a randomized kernel base address offset in support
   7 * of Kernel Address Space Layout Randomization (KASLR). Additionally
   8 * handles walking the physical memory maps (and tracking memory regions
   9 * to avoid) in order to select a physical memory location that can
  10 * contain the entire properly aligned running kernel image.
  11 *
  12 */
  13
  14/*
  15 * isspace() in linux/ctype.h is expected by next_args() to filter
  16 * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h,
  17 * since isdigit() is implemented in both of them. Hence disable it
  18 * here.
  19 */
  20#define BOOT_CTYPE_H
  21
  22/*
  23 * _ctype[] in lib/ctype.c is needed by isspace() of linux/ctype.h.
  24 * While both lib/ctype.c and lib/cmdline.c will bring EXPORT_SYMBOL
  25 * which is meaningless and will cause compiling error in some cases.
  26 */
  27#define __DISABLE_EXPORTS
  28
  29#include "misc.h"
  30#include "error.h"
  31#include "../string.h"
  32
  33#include <generated/compile.h>
  34#include <linux/module.h>
  35#include <linux/uts.h>
  36#include <linux/utsname.h>
  37#include <linux/ctype.h>
  38#include <linux/efi.h>
  39#include <generated/utsrelease.h>
  40#include <asm/efi.h>
  41
  42/* Macros used by the included decompressor code below. */
  43#define STATIC
  44#include <linux/decompress/mm.h>
  45
  46#ifdef CONFIG_X86_5LEVEL
  47unsigned int __pgtable_l5_enabled;
  48unsigned int pgdir_shift __ro_after_init = 39;
  49unsigned int ptrs_per_p4d __ro_after_init = 1;
  50#endif
  51
  52extern unsigned long get_cmd_line_ptr(void);
  53
  54/* Used by PAGE_KERN* macros: */
  55pteval_t __default_kernel_pte_mask __read_mostly = ~0;
  56
  57/* Simplified build-specific string for starting entropy. */
  58static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
  59                LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
  60
  61static unsigned long rotate_xor(unsigned long hash, const void *area,
  62                                size_t size)
  63{
  64        size_t i;
  65        unsigned long *ptr = (unsigned long *)area;
  66
  67        for (i = 0; i < size / sizeof(hash); i++) {
  68                /* Rotate by odd number of bits and XOR. */
  69                hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
  70                hash ^= ptr[i];
  71        }
  72
  73        return hash;
  74}
  75
  76/* Attempt to create a simple but unpredictable starting entropy. */
  77static unsigned long get_boot_seed(void)
  78{
  79        unsigned long hash = 0;
  80
  81        hash = rotate_xor(hash, build_str, sizeof(build_str));
  82        hash = rotate_xor(hash, boot_params, sizeof(*boot_params));
  83
  84        return hash;
  85}
  86
  87#define KASLR_COMPRESSED_BOOT
  88#include "../../lib/kaslr.c"
  89
  90
  91/* Only supporting at most 4 unusable memmap regions with kaslr */
  92#define MAX_MEMMAP_REGIONS      4
  93
  94static bool memmap_too_large;
  95
  96
  97/* Store memory limit specified by "mem=nn[KMG]" or "memmap=nn[KMG]" */
  98static unsigned long long mem_limit = ULLONG_MAX;
  99
 100/* Number of immovable memory regions */
 101static int num_immovable_mem;
 102
 103enum mem_avoid_index {
 104        MEM_AVOID_ZO_RANGE = 0,
 105        MEM_AVOID_INITRD,
 106        MEM_AVOID_CMDLINE,
 107        MEM_AVOID_BOOTPARAMS,
 108        MEM_AVOID_MEMMAP_BEGIN,
 109        MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
 110        MEM_AVOID_MAX,
 111};
 112
 113static struct mem_vector mem_avoid[MEM_AVOID_MAX];
 114
 115static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
 116{
 117        /* Item one is entirely before item two. */
 118        if (one->start + one->size <= two->start)
 119                return false;
 120        /* Item one is entirely after item two. */
 121        if (one->start >= two->start + two->size)
 122                return false;
 123        return true;
 124}
 125
 126char *skip_spaces(const char *str)
 127{
 128        while (isspace(*str))
 129                ++str;
 130        return (char *)str;
 131}
 132#include "../../../../lib/ctype.c"
 133#include "../../../../lib/cmdline.c"
 134
 135enum parse_mode {
 136        PARSE_MEMMAP,
 137        PARSE_EFI,
 138};
 139
 140static int
 141parse_memmap(char *p, unsigned long long *start, unsigned long long *size,
 142                enum parse_mode mode)
 143{
 144        char *oldp;
 145
 146        if (!p)
 147                return -EINVAL;
 148
 149        /* We don't care about this option here */
 150        if (!strncmp(p, "exactmap", 8))
 151                return -EINVAL;
 152
 153        oldp = p;
 154        *size = memparse(p, &p);
 155        if (p == oldp)
 156                return -EINVAL;
 157
 158        switch (*p) {
 159        case '#':
 160        case '$':
 161        case '!':
 162                *start = memparse(p + 1, &p);
 163                return 0;
 164        case '@':
 165                if (mode == PARSE_MEMMAP) {
 166                        /*
 167                         * memmap=nn@ss specifies usable region, should
 168                         * be skipped
 169                         */
 170                        *size = 0;
 171                } else {
 172                        unsigned long long flags;
 173
 174                        /*
 175                         * efi_fake_mem=nn@ss:attr the attr specifies
 176                         * flags that might imply a soft-reservation.
 177                         */
 178                        *start = memparse(p + 1, &p);
 179                        if (p && *p == ':') {
 180                                p++;
 181                                if (kstrtoull(p, 0, &flags) < 0)
 182                                        *size = 0;
 183                                else if (flags & EFI_MEMORY_SP)
 184                                        return 0;
 185                        }
 186                        *size = 0;
 187                }
 188                /* Fall through */
 189        default:
 190                /*
 191                 * If w/o offset, only size specified, memmap=nn[KMG] has the
 192                 * same behaviour as mem=nn[KMG]. It limits the max address
 193                 * system can use. Region above the limit should be avoided.
 194                 */
 195                *start = 0;
 196                return 0;
 197        }
 198
 199        return -EINVAL;
 200}
 201
 202static void mem_avoid_memmap(enum parse_mode mode, char *str)
 203{
 204        static int i;
 205
 206        if (i >= MAX_MEMMAP_REGIONS)
 207                return;
 208
 209        while (str && (i < MAX_MEMMAP_REGIONS)) {
 210                int rc;
 211                unsigned long long start, size;
 212                char *k = strchr(str, ',');
 213
 214                if (k)
 215                        *k++ = 0;
 216
 217                rc = parse_memmap(str, &start, &size, mode);
 218                if (rc < 0)
 219                        break;
 220                str = k;
 221
 222                if (start == 0) {
 223                        /* Store the specified memory limit if size > 0 */
 224                        if (size > 0)
 225                                mem_limit = size;
 226
 227                        continue;
 228                }
 229
 230                mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
 231                mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
 232                i++;
 233        }
 234
 235        /* More than 4 memmaps, fail kaslr */
 236        if ((i >= MAX_MEMMAP_REGIONS) && str)
 237                memmap_too_large = true;
 238}
 239
 240/* Store the number of 1GB huge pages which users specified: */
 241static unsigned long max_gb_huge_pages;
 242
 243static void parse_gb_huge_pages(char *param, char *val)
 244{
 245        static bool gbpage_sz;
 246        char *p;
 247
 248        if (!strcmp(param, "hugepagesz")) {
 249                p = val;
 250                if (memparse(p, &p) != PUD_SIZE) {
 251                        gbpage_sz = false;
 252                        return;
 253                }
 254
 255                if (gbpage_sz)
 256                        warn("Repeatedly set hugeTLB page size of 1G!\n");
 257                gbpage_sz = true;
 258                return;
 259        }
 260
 261        if (!strcmp(param, "hugepages") && gbpage_sz) {
 262                p = val;
 263                max_gb_huge_pages = simple_strtoull(p, &p, 0);
 264                return;
 265        }
 266}
 267
 268static void handle_mem_options(void)
 269{
 270        char *args = (char *)get_cmd_line_ptr();
 271        size_t len = strlen((char *)args);
 272        char *tmp_cmdline;
 273        char *param, *val;
 274        u64 mem_size;
 275
 276        if (!strstr(args, "memmap=") && !strstr(args, "mem=") &&
 277                !strstr(args, "hugepages"))
 278                return;
 279
 280        tmp_cmdline = malloc(len + 1);
 281        if (!tmp_cmdline)
 282                error("Failed to allocate space for tmp_cmdline");
 283
 284        memcpy(tmp_cmdline, args, len);
 285        tmp_cmdline[len] = 0;
 286        args = tmp_cmdline;
 287
 288        /* Chew leading spaces */
 289        args = skip_spaces(args);
 290
 291        while (*args) {
 292                args = next_arg(args, &param, &val);
 293                /* Stop at -- */
 294                if (!val && strcmp(param, "--") == 0) {
 295                        warn("Only '--' specified in cmdline");
 296                        goto out;
 297                }
 298
 299                if (!strcmp(param, "memmap")) {
 300                        mem_avoid_memmap(PARSE_MEMMAP, val);
 301                } else if (strstr(param, "hugepages")) {
 302                        parse_gb_huge_pages(param, val);
 303                } else if (!strcmp(param, "mem")) {
 304                        char *p = val;
 305
 306                        if (!strcmp(p, "nopentium"))
 307                                continue;
 308                        mem_size = memparse(p, &p);
 309                        if (mem_size == 0)
 310                                goto out;
 311
 312                        mem_limit = mem_size;
 313                } else if (!strcmp(param, "efi_fake_mem")) {
 314                        mem_avoid_memmap(PARSE_EFI, val);
 315                }
 316        }
 317
 318out:
 319        free(tmp_cmdline);
 320        return;
 321}
 322
 323/*
 324 * In theory, KASLR can put the kernel anywhere in the range of [16M, 64T).
 325 * The mem_avoid array is used to store the ranges that need to be avoided
 326 * when KASLR searches for an appropriate random address. We must avoid any
 327 * regions that are unsafe to overlap with during decompression, and other
 328 * things like the initrd, cmdline and boot_params. This comment seeks to
 329 * explain mem_avoid as clearly as possible since incorrect mem_avoid
 330 * memory ranges lead to really hard to debug boot failures.
 331 *
 332 * The initrd, cmdline, and boot_params are trivial to identify for
 333 * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
 334 * MEM_AVOID_BOOTPARAMS respectively below.
 335 *
 336 * What is not obvious how to avoid is the range of memory that is used
 337 * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
 338 * the compressed kernel (ZO) and its run space, which is used to extract
 339 * the uncompressed kernel (VO) and relocs.
 340 *
 341 * ZO's full run size sits against the end of the decompression buffer, so
 342 * we can calculate where text, data, bss, etc of ZO are positioned more
 343 * easily.
 344 *
 345 * For additional background, the decompression calculations can be found
 346 * in header.S, and the memory diagram is based on the one found in misc.c.
 347 *
 348 * The following conditions are already enforced by the image layouts and
 349 * associated code:
 350 *  - input + input_size >= output + output_size
 351 *  - kernel_total_size <= init_size
 352 *  - kernel_total_size <= output_size (see Note below)
 353 *  - output + init_size >= output + output_size
 354 *
 355 * (Note that kernel_total_size and output_size have no fundamental
 356 * relationship, but output_size is passed to choose_random_location
 357 * as a maximum of the two. The diagram is showing a case where
 358 * kernel_total_size is larger than output_size, but this case is
 359 * handled by bumping output_size.)
 360 *
 361 * The above conditions can be illustrated by a diagram:
 362 *
 363 * 0   output            input            input+input_size    output+init_size
 364 * |     |                 |                             |             |
 365 * |     |                 |                             |             |
 366 * |-----|--------|--------|--------------|-----------|--|-------------|
 367 *                |                       |           |
 368 *                |                       |           |
 369 * output+init_size-ZO_INIT_SIZE  output+output_size  output+kernel_total_size
 370 *
 371 * [output, output+init_size) is the entire memory range used for
 372 * extracting the compressed image.
 373 *
 374 * [output, output+kernel_total_size) is the range needed for the
 375 * uncompressed kernel (VO) and its run size (bss, brk, etc).
 376 *
 377 * [output, output+output_size) is VO plus relocs (i.e. the entire
 378 * uncompressed payload contained by ZO). This is the area of the buffer
 379 * written to during decompression.
 380 *
 381 * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
 382 * range of the copied ZO and decompression code. (i.e. the range
 383 * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
 384 *
 385 * [input, input+input_size) is the original copied compressed image (ZO)
 386 * (i.e. it does not include its run size). This range must be avoided
 387 * because it contains the data used for decompression.
 388 *
 389 * [input+input_size, output+init_size) is [_text, _end) for ZO. This
 390 * range includes ZO's heap and stack, and must be avoided since it
 391 * performs the decompression.
 392 *
 393 * Since the above two ranges need to be avoided and they are adjacent,
 394 * they can be merged, resulting in: [input, output+init_size) which
 395 * becomes the MEM_AVOID_ZO_RANGE below.
 396 */
 397static void mem_avoid_init(unsigned long input, unsigned long input_size,
 398                           unsigned long output)
 399{
 400        unsigned long init_size = boot_params->hdr.init_size;
 401        u64 initrd_start, initrd_size;
 402        u64 cmd_line, cmd_line_size;
 403        char *ptr;
 404
 405        /*
 406         * Avoid the region that is unsafe to overlap during
 407         * decompression.
 408         */
 409        mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
 410        mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
 411        add_identity_map(mem_avoid[MEM_AVOID_ZO_RANGE].start,
 412                         mem_avoid[MEM_AVOID_ZO_RANGE].size);
 413
 414        /* Avoid initrd. */
 415        initrd_start  = (u64)boot_params->ext_ramdisk_image << 32;
 416        initrd_start |= boot_params->hdr.ramdisk_image;
 417        initrd_size  = (u64)boot_params->ext_ramdisk_size << 32;
 418        initrd_size |= boot_params->hdr.ramdisk_size;
 419        mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
 420        mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
 421        /* No need to set mapping for initrd, it will be handled in VO. */
 422
 423        /* Avoid kernel command line. */
 424        cmd_line  = (u64)boot_params->ext_cmd_line_ptr << 32;
 425        cmd_line |= boot_params->hdr.cmd_line_ptr;
 426        /* Calculate size of cmd_line. */
 427        ptr = (char *)(unsigned long)cmd_line;
 428        for (cmd_line_size = 0; ptr[cmd_line_size++];)
 429                ;
 430        mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
 431        mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
 432        add_identity_map(mem_avoid[MEM_AVOID_CMDLINE].start,
 433                         mem_avoid[MEM_AVOID_CMDLINE].size);
 434
 435        /* Avoid boot parameters. */
 436        mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params;
 437        mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params);
 438        add_identity_map(mem_avoid[MEM_AVOID_BOOTPARAMS].start,
 439                         mem_avoid[MEM_AVOID_BOOTPARAMS].size);
 440
 441        /* We don't need to set a mapping for setup_data. */
 442
 443        /* Mark the memmap regions we need to avoid */
 444        handle_mem_options();
 445
 446        /* Enumerate the immovable memory regions */
 447        num_immovable_mem = count_immovable_mem_regions();
 448
 449#ifdef CONFIG_X86_VERBOSE_BOOTUP
 450        /* Make sure video RAM can be used. */
 451        add_identity_map(0, PMD_SIZE);
 452#endif
 453}
 454
 455/*
 456 * Does this memory vector overlap a known avoided area? If so, record the
 457 * overlap region with the lowest address.
 458 */
 459static bool mem_avoid_overlap(struct mem_vector *img,
 460                              struct mem_vector *overlap)
 461{
 462        int i;
 463        struct setup_data *ptr;
 464        unsigned long earliest = img->start + img->size;
 465        bool is_overlapping = false;
 466
 467        for (i = 0; i < MEM_AVOID_MAX; i++) {
 468                if (mem_overlaps(img, &mem_avoid[i]) &&
 469                    mem_avoid[i].start < earliest) {
 470                        *overlap = mem_avoid[i];
 471                        earliest = overlap->start;
 472                        is_overlapping = true;
 473                }
 474        }
 475
 476        /* Avoid all entries in the setup_data linked list. */
 477        ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
 478        while (ptr) {
 479                struct mem_vector avoid;
 480
 481                avoid.start = (unsigned long)ptr;
 482                avoid.size = sizeof(*ptr) + ptr->len;
 483
 484                if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
 485                        *overlap = avoid;
 486                        earliest = overlap->start;
 487                        is_overlapping = true;
 488                }
 489
 490                if (ptr->type == SETUP_INDIRECT &&
 491                    ((struct setup_indirect *)ptr->data)->type != SETUP_INDIRECT) {
 492                        avoid.start = ((struct setup_indirect *)ptr->data)->addr;
 493                        avoid.size = ((struct setup_indirect *)ptr->data)->len;
 494
 495                        if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
 496                                *overlap = avoid;
 497                                earliest = overlap->start;
 498                                is_overlapping = true;
 499                        }
 500                }
 501
 502                ptr = (struct setup_data *)(unsigned long)ptr->next;
 503        }
 504
 505        return is_overlapping;
 506}
 507
 508struct slot_area {
 509        unsigned long addr;
 510        int num;
 511};
 512
 513#define MAX_SLOT_AREA 100
 514
 515static struct slot_area slot_areas[MAX_SLOT_AREA];
 516
 517static unsigned long slot_max;
 518
 519static unsigned long slot_area_index;
 520
 521static void store_slot_info(struct mem_vector *region, unsigned long image_size)
 522{
 523        struct slot_area slot_area;
 524
 525        if (slot_area_index == MAX_SLOT_AREA)
 526                return;
 527
 528        slot_area.addr = region->start;
 529        slot_area.num = (region->size - image_size) /
 530                        CONFIG_PHYSICAL_ALIGN + 1;
 531
 532        if (slot_area.num > 0) {
 533                slot_areas[slot_area_index++] = slot_area;
 534                slot_max += slot_area.num;
 535        }
 536}
 537
 538/*
 539 * Skip as many 1GB huge pages as possible in the passed region
 540 * according to the number which users specified:
 541 */
 542static void
 543process_gb_huge_pages(struct mem_vector *region, unsigned long image_size)
 544{
 545        unsigned long addr, size = 0;
 546        struct mem_vector tmp;
 547        int i = 0;
 548
 549        if (!max_gb_huge_pages) {
 550                store_slot_info(region, image_size);
 551                return;
 552        }
 553
 554        addr = ALIGN(region->start, PUD_SIZE);
 555        /* Did we raise the address above the passed in memory entry? */
 556        if (addr < region->start + region->size)
 557                size = region->size - (addr - region->start);
 558
 559        /* Check how many 1GB huge pages can be filtered out: */
 560        while (size > PUD_SIZE && max_gb_huge_pages) {
 561                size -= PUD_SIZE;
 562                max_gb_huge_pages--;
 563                i++;
 564        }
 565
 566        /* No good 1GB huge pages found: */
 567        if (!i) {
 568                store_slot_info(region, image_size);
 569                return;
 570        }
 571
 572        /*
 573         * Skip those 'i'*1GB good huge pages, and continue checking and
 574         * processing the remaining head or tail part of the passed region
 575         * if available.
 576         */
 577
 578        if (addr >= region->start + image_size) {
 579                tmp.start = region->start;
 580                tmp.size = addr - region->start;
 581                store_slot_info(&tmp, image_size);
 582        }
 583
 584        size  = region->size - (addr - region->start) - i * PUD_SIZE;
 585        if (size >= image_size) {
 586                tmp.start = addr + i * PUD_SIZE;
 587                tmp.size = size;
 588                store_slot_info(&tmp, image_size);
 589        }
 590}
 591
 592static unsigned long slots_fetch_random(void)
 593{
 594        unsigned long slot;
 595        int i;
 596
 597        /* Handle case of no slots stored. */
 598        if (slot_max == 0)
 599                return 0;
 600
 601        slot = kaslr_get_random_long("Physical") % slot_max;
 602
 603        for (i = 0; i < slot_area_index; i++) {
 604                if (slot >= slot_areas[i].num) {
 605                        slot -= slot_areas[i].num;
 606                        continue;
 607                }
 608                return slot_areas[i].addr + slot * CONFIG_PHYSICAL_ALIGN;
 609        }
 610
 611        if (i == slot_area_index)
 612                debug_putstr("slots_fetch_random() failed!?\n");
 613        return 0;
 614}
 615
 616static void __process_mem_region(struct mem_vector *entry,
 617                                 unsigned long minimum,
 618                                 unsigned long image_size)
 619{
 620        struct mem_vector region, overlap;
 621        unsigned long start_orig, end;
 622        struct mem_vector cur_entry;
 623
 624        /* On 32-bit, ignore entries entirely above our maximum. */
 625        if (IS_ENABLED(CONFIG_X86_32) && entry->start >= KERNEL_IMAGE_SIZE)
 626                return;
 627
 628        /* Ignore entries entirely below our minimum. */
 629        if (entry->start + entry->size < minimum)
 630                return;
 631
 632        /* Ignore entries above memory limit */
 633        end = min(entry->size + entry->start, mem_limit);
 634        if (entry->start >= end)
 635                return;
 636        cur_entry.start = entry->start;
 637        cur_entry.size = end - entry->start;
 638
 639        region.start = cur_entry.start;
 640        region.size = cur_entry.size;
 641
 642        /* Give up if slot area array is full. */
 643        while (slot_area_index < MAX_SLOT_AREA) {
 644                start_orig = region.start;
 645
 646                /* Potentially raise address to minimum location. */
 647                if (region.start < minimum)
 648                        region.start = minimum;
 649
 650                /* Potentially raise address to meet alignment needs. */
 651                region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
 652
 653                /* Did we raise the address above the passed in memory entry? */
 654                if (region.start > cur_entry.start + cur_entry.size)
 655                        return;
 656
 657                /* Reduce size by any delta from the original address. */
 658                region.size -= region.start - start_orig;
 659
 660                /* On 32-bit, reduce region size to fit within max size. */
 661                if (IS_ENABLED(CONFIG_X86_32) &&
 662                    region.start + region.size > KERNEL_IMAGE_SIZE)
 663                        region.size = KERNEL_IMAGE_SIZE - region.start;
 664
 665                /* Return if region can't contain decompressed kernel */
 666                if (region.size < image_size)
 667                        return;
 668
 669                /* If nothing overlaps, store the region and return. */
 670                if (!mem_avoid_overlap(&region, &overlap)) {
 671                        process_gb_huge_pages(&region, image_size);
 672                        return;
 673                }
 674
 675                /* Store beginning of region if holds at least image_size. */
 676                if (overlap.start > region.start + image_size) {
 677                        struct mem_vector beginning;
 678
 679                        beginning.start = region.start;
 680                        beginning.size = overlap.start - region.start;
 681                        process_gb_huge_pages(&beginning, image_size);
 682                }
 683
 684                /* Return if overlap extends to or past end of region. */
 685                if (overlap.start + overlap.size >= region.start + region.size)
 686                        return;
 687
 688                /* Clip off the overlapping region and start over. */
 689                region.size -= overlap.start - region.start + overlap.size;
 690                region.start = overlap.start + overlap.size;
 691        }
 692}
 693
 694static bool process_mem_region(struct mem_vector *region,
 695                               unsigned long long minimum,
 696                               unsigned long long image_size)
 697{
 698        int i;
 699        /*
 700         * If no immovable memory found, or MEMORY_HOTREMOVE disabled,
 701         * use @region directly.
 702         */
 703        if (!num_immovable_mem) {
 704                __process_mem_region(region, minimum, image_size);
 705
 706                if (slot_area_index == MAX_SLOT_AREA) {
 707                        debug_putstr("Aborted e820/efi memmap scan (slot_areas full)!\n");
 708                        return 1;
 709                }
 710                return 0;
 711        }
 712
 713#if defined(CONFIG_MEMORY_HOTREMOVE) && defined(CONFIG_ACPI)
 714        /*
 715         * If immovable memory found, filter the intersection between
 716         * immovable memory and @region.
 717         */
 718        for (i = 0; i < num_immovable_mem; i++) {
 719                unsigned long long start, end, entry_end, region_end;
 720                struct mem_vector entry;
 721
 722                if (!mem_overlaps(region, &immovable_mem[i]))
 723                        continue;
 724
 725                start = immovable_mem[i].start;
 726                end = start + immovable_mem[i].size;
 727                region_end = region->start + region->size;
 728
 729                entry.start = clamp(region->start, start, end);
 730                entry_end = clamp(region_end, start, end);
 731                entry.size = entry_end - entry.start;
 732
 733                __process_mem_region(&entry, minimum, image_size);
 734
 735                if (slot_area_index == MAX_SLOT_AREA) {
 736                        debug_putstr("Aborted e820/efi memmap scan when walking immovable regions(slot_areas full)!\n");
 737                        return 1;
 738                }
 739        }
 740#endif
 741        return 0;
 742}
 743
 744#ifdef CONFIG_EFI
 745/*
 746 * Returns true if mirror region found (and must have been processed
 747 * for slots adding)
 748 */
 749static bool
 750process_efi_entries(unsigned long minimum, unsigned long image_size)
 751{
 752        struct efi_info *e = &boot_params->efi_info;
 753        bool efi_mirror_found = false;
 754        struct mem_vector region;
 755        efi_memory_desc_t *md;
 756        unsigned long pmap;
 757        char *signature;
 758        u32 nr_desc;
 759        int i;
 760
 761        signature = (char *)&e->efi_loader_signature;
 762        if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) &&
 763            strncmp(signature, EFI64_LOADER_SIGNATURE, 4))
 764                return false;
 765
 766#ifdef CONFIG_X86_32
 767        /* Can't handle data above 4GB at this time */
 768        if (e->efi_memmap_hi) {
 769                warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n");
 770                return false;
 771        }
 772        pmap =  e->efi_memmap;
 773#else
 774        pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
 775#endif
 776
 777        nr_desc = e->efi_memmap_size / e->efi_memdesc_size;
 778        for (i = 0; i < nr_desc; i++) {
 779                md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
 780                if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
 781                        efi_mirror_found = true;
 782                        break;
 783                }
 784        }
 785
 786        for (i = 0; i < nr_desc; i++) {
 787                md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
 788
 789                /*
 790                 * Here we are more conservative in picking free memory than
 791                 * the EFI spec allows:
 792                 *
 793                 * According to the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also
 794                 * free memory and thus available to place the kernel image into,
 795                 * but in practice there's firmware where using that memory leads
 796                 * to crashes.
 797                 *
 798                 * Only EFI_CONVENTIONAL_MEMORY is guaranteed to be free.
 799                 */
 800                if (md->type != EFI_CONVENTIONAL_MEMORY)
 801                        continue;
 802
 803                if (efi_soft_reserve_enabled() &&
 804                    (md->attribute & EFI_MEMORY_SP))
 805                        continue;
 806
 807                if (efi_mirror_found &&
 808                    !(md->attribute & EFI_MEMORY_MORE_RELIABLE))
 809                        continue;
 810
 811                region.start = md->phys_addr;
 812                region.size = md->num_pages << EFI_PAGE_SHIFT;
 813                if (process_mem_region(&region, minimum, image_size))
 814                        break;
 815        }
 816        return true;
 817}
 818#else
 819static inline bool
 820process_efi_entries(unsigned long minimum, unsigned long image_size)
 821{
 822        return false;
 823}
 824#endif
 825
 826static void process_e820_entries(unsigned long minimum,
 827                                 unsigned long image_size)
 828{
 829        int i;
 830        struct mem_vector region;
 831        struct boot_e820_entry *entry;
 832
 833        /* Verify potential e820 positions, appending to slots list. */
 834        for (i = 0; i < boot_params->e820_entries; i++) {
 835                entry = &boot_params->e820_table[i];
 836                /* Skip non-RAM entries. */
 837                if (entry->type != E820_TYPE_RAM)
 838                        continue;
 839                region.start = entry->addr;
 840                region.size = entry->size;
 841                if (process_mem_region(&region, minimum, image_size))
 842                        break;
 843        }
 844}
 845
 846static unsigned long find_random_phys_addr(unsigned long minimum,
 847                                           unsigned long image_size)
 848{
 849        /* Check if we had too many memmaps. */
 850        if (memmap_too_large) {
 851                debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n");
 852                return 0;
 853        }
 854
 855        /* Make sure minimum is aligned. */
 856        minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
 857
 858        if (process_efi_entries(minimum, image_size))
 859                return slots_fetch_random();
 860
 861        process_e820_entries(minimum, image_size);
 862        return slots_fetch_random();
 863}
 864
 865static unsigned long find_random_virt_addr(unsigned long minimum,
 866                                           unsigned long image_size)
 867{
 868        unsigned long slots, random_addr;
 869
 870        /* Make sure minimum is aligned. */
 871        minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
 872        /* Align image_size for easy slot calculations. */
 873        image_size = ALIGN(image_size, CONFIG_PHYSICAL_ALIGN);
 874
 875        /*
 876         * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
 877         * that can hold image_size within the range of minimum to
 878         * KERNEL_IMAGE_SIZE?
 879         */
 880        slots = (KERNEL_IMAGE_SIZE - minimum - image_size) /
 881                 CONFIG_PHYSICAL_ALIGN + 1;
 882
 883        random_addr = kaslr_get_random_long("Virtual") % slots;
 884
 885        return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
 886}
 887
 888/*
 889 * Since this function examines addresses much more numerically,
 890 * it takes the input and output pointers as 'unsigned long'.
 891 */
 892void choose_random_location(unsigned long input,
 893                            unsigned long input_size,
 894                            unsigned long *output,
 895                            unsigned long output_size,
 896                            unsigned long *virt_addr)
 897{
 898        unsigned long random_addr, min_addr;
 899
 900        if (cmdline_find_option_bool("nokaslr")) {
 901                warn("KASLR disabled: 'nokaslr' on cmdline.");
 902                return;
 903        }
 904
 905#ifdef CONFIG_X86_5LEVEL
 906        if (__read_cr4() & X86_CR4_LA57) {
 907                __pgtable_l5_enabled = 1;
 908                pgdir_shift = 48;
 909                ptrs_per_p4d = 512;
 910        }
 911#endif
 912
 913        boot_params->hdr.loadflags |= KASLR_FLAG;
 914
 915        /* Prepare to add new identity pagetables on demand. */
 916        initialize_identity_maps();
 917
 918        /* Record the various known unsafe memory ranges. */
 919        mem_avoid_init(input, input_size, *output);
 920
 921        /*
 922         * Low end of the randomization range should be the
 923         * smaller of 512M or the initial kernel image
 924         * location:
 925         */
 926        min_addr = min(*output, 512UL << 20);
 927
 928        /* Walk available memory entries to find a random address. */
 929        random_addr = find_random_phys_addr(min_addr, output_size);
 930        if (!random_addr) {
 931                warn("Physical KASLR disabled: no suitable memory region!");
 932        } else {
 933                /* Update the new physical address location. */
 934                if (*output != random_addr) {
 935                        add_identity_map(random_addr, output_size);
 936                        *output = random_addr;
 937                }
 938
 939                /*
 940                 * This loads the identity mapping page table.
 941                 * This should only be done if a new physical address
 942                 * is found for the kernel, otherwise we should keep
 943                 * the old page table to make it be like the "nokaslr"
 944                 * case.
 945                 */
 946                finalize_identity_maps();
 947        }
 948
 949
 950        /* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
 951        if (IS_ENABLED(CONFIG_X86_64))
 952                random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
 953        *virt_addr = random_addr;
 954}
 955