linux/arch/x86/kernel/machine_kexec_64.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * handle transition of Linux booting another kernel
   4 * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
   5 */
   6
   7#define pr_fmt(fmt)     "kexec: " fmt
   8
   9#include <linux/mm.h>
  10#include <linux/kexec.h>
  11#include <linux/string.h>
  12#include <linux/gfp.h>
  13#include <linux/reboot.h>
  14#include <linux/numa.h>
  15#include <linux/ftrace.h>
  16#include <linux/io.h>
  17#include <linux/suspend.h>
  18#include <linux/vmalloc.h>
  19#include <linux/efi.h>
  20
  21#include <asm/init.h>
  22#include <asm/pgtable.h>
  23#include <asm/tlbflush.h>
  24#include <asm/mmu_context.h>
  25#include <asm/io_apic.h>
  26#include <asm/debugreg.h>
  27#include <asm/kexec-bzimage64.h>
  28#include <asm/setup.h>
  29#include <asm/set_memory.h>
  30
  31#ifdef CONFIG_ACPI
  32/*
  33 * Used while adding mapping for ACPI tables.
  34 * Can be reused when other iomem regions need be mapped
  35 */
  36struct init_pgtable_data {
  37        struct x86_mapping_info *info;
  38        pgd_t *level4p;
  39};
  40
  41static int mem_region_callback(struct resource *res, void *arg)
  42{
  43        struct init_pgtable_data *data = arg;
  44        unsigned long mstart, mend;
  45
  46        mstart = res->start;
  47        mend = mstart + resource_size(res) - 1;
  48
  49        return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend);
  50}
  51
  52static int
  53map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
  54{
  55        struct init_pgtable_data data;
  56        unsigned long flags;
  57        int ret;
  58
  59        data.info = info;
  60        data.level4p = level4p;
  61        flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  62
  63        ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
  64                                  &data, mem_region_callback);
  65        if (ret && ret != -EINVAL)
  66                return ret;
  67
  68        /* ACPI tables could be located in ACPI Non-volatile Storage region */
  69        ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
  70                                  &data, mem_region_callback);
  71        if (ret && ret != -EINVAL)
  72                return ret;
  73
  74        return 0;
  75}
  76#else
  77static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
  78#endif
  79
  80#ifdef CONFIG_KEXEC_FILE
  81const struct kexec_file_ops * const kexec_file_loaders[] = {
  82                &kexec_bzImage64_ops,
  83                NULL
  84};
  85#endif
  86
  87static int
  88map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
  89{
  90#ifdef CONFIG_EFI
  91        unsigned long mstart, mend;
  92
  93        if (!efi_enabled(EFI_BOOT))
  94                return 0;
  95
  96        mstart = (boot_params.efi_info.efi_systab |
  97                        ((u64)boot_params.efi_info.efi_systab_hi<<32));
  98
  99        if (efi_enabled(EFI_64BIT))
 100                mend = mstart + sizeof(efi_system_table_64_t);
 101        else
 102                mend = mstart + sizeof(efi_system_table_32_t);
 103
 104        if (!mstart)
 105                return 0;
 106
 107        return kernel_ident_mapping_init(info, level4p, mstart, mend);
 108#endif
 109        return 0;
 110}
 111
 112static void free_transition_pgtable(struct kimage *image)
 113{
 114        free_page((unsigned long)image->arch.p4d);
 115        image->arch.p4d = NULL;
 116        free_page((unsigned long)image->arch.pud);
 117        image->arch.pud = NULL;
 118        free_page((unsigned long)image->arch.pmd);
 119        image->arch.pmd = NULL;
 120        free_page((unsigned long)image->arch.pte);
 121        image->arch.pte = NULL;
 122}
 123
 124static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
 125{
 126        pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
 127        unsigned long vaddr, paddr;
 128        int result = -ENOMEM;
 129        p4d_t *p4d;
 130        pud_t *pud;
 131        pmd_t *pmd;
 132        pte_t *pte;
 133
 134        vaddr = (unsigned long)relocate_kernel;
 135        paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
 136        pgd += pgd_index(vaddr);
 137        if (!pgd_present(*pgd)) {
 138                p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
 139                if (!p4d)
 140                        goto err;
 141                image->arch.p4d = p4d;
 142                set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
 143        }
 144        p4d = p4d_offset(pgd, vaddr);
 145        if (!p4d_present(*p4d)) {
 146                pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
 147                if (!pud)
 148                        goto err;
 149                image->arch.pud = pud;
 150                set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
 151        }
 152        pud = pud_offset(p4d, vaddr);
 153        if (!pud_present(*pud)) {
 154                pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
 155                if (!pmd)
 156                        goto err;
 157                image->arch.pmd = pmd;
 158                set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
 159        }
 160        pmd = pmd_offset(pud, vaddr);
 161        if (!pmd_present(*pmd)) {
 162                pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
 163                if (!pte)
 164                        goto err;
 165                image->arch.pte = pte;
 166                set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
 167        }
 168        pte = pte_offset_kernel(pmd, vaddr);
 169
 170        if (sev_active())
 171                prot = PAGE_KERNEL_EXEC;
 172
 173        set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
 174        return 0;
 175err:
 176        return result;
 177}
 178
 179static void *alloc_pgt_page(void *data)
 180{
 181        struct kimage *image = (struct kimage *)data;
 182        struct page *page;
 183        void *p = NULL;
 184
 185        page = kimage_alloc_control_pages(image, 0);
 186        if (page) {
 187                p = page_address(page);
 188                clear_page(p);
 189        }
 190
 191        return p;
 192}
 193
 194static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
 195{
 196        struct x86_mapping_info info = {
 197                .alloc_pgt_page = alloc_pgt_page,
 198                .context        = image,
 199                .page_flag      = __PAGE_KERNEL_LARGE_EXEC,
 200                .kernpg_flag    = _KERNPG_TABLE_NOENC,
 201        };
 202        unsigned long mstart, mend;
 203        pgd_t *level4p;
 204        int result;
 205        int i;
 206
 207        level4p = (pgd_t *)__va(start_pgtable);
 208        clear_page(level4p);
 209
 210        if (sev_active()) {
 211                info.page_flag   |= _PAGE_ENC;
 212                info.kernpg_flag |= _PAGE_ENC;
 213        }
 214
 215        if (direct_gbpages)
 216                info.direct_gbpages = true;
 217
 218        for (i = 0; i < nr_pfn_mapped; i++) {
 219                mstart = pfn_mapped[i].start << PAGE_SHIFT;
 220                mend   = pfn_mapped[i].end << PAGE_SHIFT;
 221
 222                result = kernel_ident_mapping_init(&info,
 223                                                 level4p, mstart, mend);
 224                if (result)
 225                        return result;
 226        }
 227
 228        /*
 229         * segments's mem ranges could be outside 0 ~ max_pfn,
 230         * for example when jump back to original kernel from kexeced kernel.
 231         * or first kernel is booted with user mem map, and second kernel
 232         * could be loaded out of that range.
 233         */
 234        for (i = 0; i < image->nr_segments; i++) {
 235                mstart = image->segment[i].mem;
 236                mend   = mstart + image->segment[i].memsz;
 237
 238                result = kernel_ident_mapping_init(&info,
 239                                                 level4p, mstart, mend);
 240
 241                if (result)
 242                        return result;
 243        }
 244
 245        /*
 246         * Prepare EFI systab and ACPI tables for kexec kernel since they are
 247         * not covered by pfn_mapped.
 248         */
 249        result = map_efi_systab(&info, level4p);
 250        if (result)
 251                return result;
 252
 253        result = map_acpi_tables(&info, level4p);
 254        if (result)
 255                return result;
 256
 257        return init_transition_pgtable(image, level4p);
 258}
 259
 260static void set_idt(void *newidt, u16 limit)
 261{
 262        struct desc_ptr curidt;
 263
 264        /* x86-64 supports unaliged loads & stores */
 265        curidt.size    = limit;
 266        curidt.address = (unsigned long)newidt;
 267
 268        __asm__ __volatile__ (
 269                "lidtq %0\n"
 270                : : "m" (curidt)
 271                );
 272};
 273
 274
 275static void set_gdt(void *newgdt, u16 limit)
 276{
 277        struct desc_ptr curgdt;
 278
 279        /* x86-64 supports unaligned loads & stores */
 280        curgdt.size    = limit;
 281        curgdt.address = (unsigned long)newgdt;
 282
 283        __asm__ __volatile__ (
 284                "lgdtq %0\n"
 285                : : "m" (curgdt)
 286                );
 287};
 288
 289static void load_segments(void)
 290{
 291        __asm__ __volatile__ (
 292                "\tmovl %0,%%ds\n"
 293                "\tmovl %0,%%es\n"
 294                "\tmovl %0,%%ss\n"
 295                "\tmovl %0,%%fs\n"
 296                "\tmovl %0,%%gs\n"
 297                : : "a" (__KERNEL_DS) : "memory"
 298                );
 299}
 300
 301int machine_kexec_prepare(struct kimage *image)
 302{
 303        unsigned long start_pgtable;
 304        int result;
 305
 306        /* Calculate the offsets */
 307        start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
 308
 309        /* Setup the identity mapped 64bit page table */
 310        result = init_pgtable(image, start_pgtable);
 311        if (result)
 312                return result;
 313
 314        return 0;
 315}
 316
 317void machine_kexec_cleanup(struct kimage *image)
 318{
 319        free_transition_pgtable(image);
 320}
 321
 322/*
 323 * Do not allocate memory (or fail in any way) in machine_kexec().
 324 * We are past the point of no return, committed to rebooting now.
 325 */
 326void machine_kexec(struct kimage *image)
 327{
 328        unsigned long page_list[PAGES_NR];
 329        void *control_page;
 330        int save_ftrace_enabled;
 331
 332#ifdef CONFIG_KEXEC_JUMP
 333        if (image->preserve_context)
 334                save_processor_state();
 335#endif
 336
 337        save_ftrace_enabled = __ftrace_enabled_save();
 338
 339        /* Interrupts aren't acceptable while we reboot */
 340        local_irq_disable();
 341        hw_breakpoint_disable();
 342
 343        if (image->preserve_context) {
 344#ifdef CONFIG_X86_IO_APIC
 345                /*
 346                 * We need to put APICs in legacy mode so that we can
 347                 * get timer interrupts in second kernel. kexec/kdump
 348                 * paths already have calls to restore_boot_irq_mode()
 349                 * in one form or other. kexec jump path also need one.
 350                 */
 351                clear_IO_APIC();
 352                restore_boot_irq_mode();
 353#endif
 354        }
 355
 356        control_page = page_address(image->control_code_page) + PAGE_SIZE;
 357        memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
 358
 359        page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
 360        page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
 361        page_list[PA_TABLE_PAGE] =
 362          (unsigned long)__pa(page_address(image->control_code_page));
 363
 364        if (image->type == KEXEC_TYPE_DEFAULT)
 365                page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
 366                                                << PAGE_SHIFT);
 367
 368        /*
 369         * The segment registers are funny things, they have both a
 370         * visible and an invisible part.  Whenever the visible part is
 371         * set to a specific selector, the invisible part is loaded
 372         * with from a table in memory.  At no other time is the
 373         * descriptor table in memory accessed.
 374         *
 375         * I take advantage of this here by force loading the
 376         * segments, before I zap the gdt with an invalid value.
 377         */
 378        load_segments();
 379        /*
 380         * The gdt & idt are now invalid.
 381         * If you want to load them you must set up your own idt & gdt.
 382         */
 383        set_gdt(phys_to_virt(0), 0);
 384        set_idt(phys_to_virt(0), 0);
 385
 386        /* now call it */
 387        image->start = relocate_kernel((unsigned long)image->head,
 388                                       (unsigned long)page_list,
 389                                       image->start,
 390                                       image->preserve_context,
 391                                       sme_active());
 392
 393#ifdef CONFIG_KEXEC_JUMP
 394        if (image->preserve_context)
 395                restore_processor_state();
 396#endif
 397
 398        __ftrace_enabled_restore(save_ftrace_enabled);
 399}
 400
 401void arch_crash_save_vmcoreinfo(void)
 402{
 403        u64 sme_mask = sme_me_mask;
 404
 405        VMCOREINFO_NUMBER(phys_base);
 406        VMCOREINFO_SYMBOL(init_top_pgt);
 407        vmcoreinfo_append_str("NUMBER(pgtable_l5_enabled)=%d\n",
 408                        pgtable_l5_enabled());
 409
 410#ifdef CONFIG_NUMA
 411        VMCOREINFO_SYMBOL(node_data);
 412        VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
 413#endif
 414        vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
 415                              kaslr_offset());
 416        VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
 417        VMCOREINFO_NUMBER(sme_mask);
 418}
 419
 420/* arch-dependent functionality related to kexec file-based syscall */
 421
 422#ifdef CONFIG_KEXEC_FILE
 423void *arch_kexec_kernel_image_load(struct kimage *image)
 424{
 425        vfree(image->arch.elf_headers);
 426        image->arch.elf_headers = NULL;
 427
 428        if (!image->fops || !image->fops->load)
 429                return ERR_PTR(-ENOEXEC);
 430
 431        return image->fops->load(image, image->kernel_buf,
 432                                 image->kernel_buf_len, image->initrd_buf,
 433                                 image->initrd_buf_len, image->cmdline_buf,
 434                                 image->cmdline_buf_len);
 435}
 436
 437/*
 438 * Apply purgatory relocations.
 439 *
 440 * @pi:         Purgatory to be relocated.
 441 * @section:    Section relocations applying to.
 442 * @relsec:     Section containing RELAs.
 443 * @symtabsec:  Corresponding symtab.
 444 *
 445 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
 446 */
 447int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
 448                                     Elf_Shdr *section, const Elf_Shdr *relsec,
 449                                     const Elf_Shdr *symtabsec)
 450{
 451        unsigned int i;
 452        Elf64_Rela *rel;
 453        Elf64_Sym *sym;
 454        void *location;
 455        unsigned long address, sec_base, value;
 456        const char *strtab, *name, *shstrtab;
 457        const Elf_Shdr *sechdrs;
 458
 459        /* String & section header string table */
 460        sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 461        strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
 462        shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
 463
 464        rel = (void *)pi->ehdr + relsec->sh_offset;
 465
 466        pr_debug("Applying relocate section %s to %u\n",
 467                 shstrtab + relsec->sh_name, relsec->sh_info);
 468
 469        for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
 470
 471                /*
 472                 * rel[i].r_offset contains byte offset from beginning
 473                 * of section to the storage unit affected.
 474                 *
 475                 * This is location to update. This is temporary buffer
 476                 * where section is currently loaded. This will finally be
 477                 * loaded to a different address later, pointed to by
 478                 * ->sh_addr. kexec takes care of moving it
 479                 *  (kexec_load_segment()).
 480                 */
 481                location = pi->purgatory_buf;
 482                location += section->sh_offset;
 483                location += rel[i].r_offset;
 484
 485                /* Final address of the location */
 486                address = section->sh_addr + rel[i].r_offset;
 487
 488                /*
 489                 * rel[i].r_info contains information about symbol table index
 490                 * w.r.t which relocation must be made and type of relocation
 491                 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
 492                 * these respectively.
 493                 */
 494                sym = (void *)pi->ehdr + symtabsec->sh_offset;
 495                sym += ELF64_R_SYM(rel[i].r_info);
 496
 497                if (sym->st_name)
 498                        name = strtab + sym->st_name;
 499                else
 500                        name = shstrtab + sechdrs[sym->st_shndx].sh_name;
 501
 502                pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
 503                         name, sym->st_info, sym->st_shndx, sym->st_value,
 504                         sym->st_size);
 505
 506                if (sym->st_shndx == SHN_UNDEF) {
 507                        pr_err("Undefined symbol: %s\n", name);
 508                        return -ENOEXEC;
 509                }
 510
 511                if (sym->st_shndx == SHN_COMMON) {
 512                        pr_err("symbol '%s' in common section\n", name);
 513                        return -ENOEXEC;
 514                }
 515
 516                if (sym->st_shndx == SHN_ABS)
 517                        sec_base = 0;
 518                else if (sym->st_shndx >= pi->ehdr->e_shnum) {
 519                        pr_err("Invalid section %d for symbol %s\n",
 520                               sym->st_shndx, name);
 521                        return -ENOEXEC;
 522                } else
 523                        sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
 524
 525                value = sym->st_value;
 526                value += sec_base;
 527                value += rel[i].r_addend;
 528
 529                switch (ELF64_R_TYPE(rel[i].r_info)) {
 530                case R_X86_64_NONE:
 531                        break;
 532                case R_X86_64_64:
 533                        *(u64 *)location = value;
 534                        break;
 535                case R_X86_64_32:
 536                        *(u32 *)location = value;
 537                        if (value != *(u32 *)location)
 538                                goto overflow;
 539                        break;
 540                case R_X86_64_32S:
 541                        *(s32 *)location = value;
 542                        if ((s64)value != *(s32 *)location)
 543                                goto overflow;
 544                        break;
 545                case R_X86_64_PC32:
 546                case R_X86_64_PLT32:
 547                        value -= (u64)address;
 548                        *(u32 *)location = value;
 549                        break;
 550                default:
 551                        pr_err("Unknown rela relocation: %llu\n",
 552                               ELF64_R_TYPE(rel[i].r_info));
 553                        return -ENOEXEC;
 554                }
 555        }
 556        return 0;
 557
 558overflow:
 559        pr_err("Overflow in relocation type %d value 0x%lx\n",
 560               (int)ELF64_R_TYPE(rel[i].r_info), value);
 561        return -ENOEXEC;
 562}
 563#endif /* CONFIG_KEXEC_FILE */
 564
 565static int
 566kexec_mark_range(unsigned long start, unsigned long end, bool protect)
 567{
 568        struct page *page;
 569        unsigned int nr_pages;
 570
 571        /*
 572         * For physical range: [start, end]. We must skip the unassigned
 573         * crashk resource with zero-valued "end" member.
 574         */
 575        if (!end || start > end)
 576                return 0;
 577
 578        page = pfn_to_page(start >> PAGE_SHIFT);
 579        nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
 580        if (protect)
 581                return set_pages_ro(page, nr_pages);
 582        else
 583                return set_pages_rw(page, nr_pages);
 584}
 585
 586static void kexec_mark_crashkres(bool protect)
 587{
 588        unsigned long control;
 589
 590        kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
 591
 592        /* Don't touch the control code page used in crash_kexec().*/
 593        control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
 594        /* Control code page is located in the 2nd page. */
 595        kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
 596        control += KEXEC_CONTROL_PAGE_SIZE;
 597        kexec_mark_range(control, crashk_res.end, protect);
 598}
 599
 600void arch_kexec_protect_crashkres(void)
 601{
 602        kexec_mark_crashkres(true);
 603}
 604
 605void arch_kexec_unprotect_crashkres(void)
 606{
 607        kexec_mark_crashkres(false);
 608}
 609
 610/*
 611 * During a traditional boot under SME, SME will encrypt the kernel,
 612 * so the SME kexec kernel also needs to be un-encrypted in order to
 613 * replicate a normal SME boot.
 614 *
 615 * During a traditional boot under SEV, the kernel has already been
 616 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
 617 * order to replicate a normal SEV boot.
 618 */
 619int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
 620{
 621        if (sev_active())
 622                return 0;
 623
 624        /*
 625         * If SME is active we need to be sure that kexec pages are
 626         * not encrypted because when we boot to the new kernel the
 627         * pages won't be accessed encrypted (initially).
 628         */
 629        return set_memory_decrypted((unsigned long)vaddr, pages);
 630}
 631
 632void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
 633{
 634        if (sev_active())
 635                return;
 636
 637        /*
 638         * If SME is active we need to reset the pages back to being
 639         * an encrypted mapping before freeing them.
 640         */
 641        set_memory_encrypted((unsigned long)vaddr, pages);
 642}
 643