linux/arch/x86/kernel/smpboot.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3 *      x86 SMP booting functions
   4 *
   5 *      (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
   6 *      (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
   7 *      Copyright 2001 Andi Kleen, SuSE Labs.
   8 *
   9 *      Much of the core SMP work is based on previous work by Thomas Radke, to
  10 *      whom a great many thanks are extended.
  11 *
  12 *      Thanks to Intel for making available several different Pentium,
  13 *      Pentium Pro and Pentium-II/Xeon MP machines.
  14 *      Original development of Linux SMP code supported by Caldera.
  15 *
  16 *      Fixes
  17 *              Felix Koop      :       NR_CPUS used properly
  18 *              Jose Renau      :       Handle single CPU case.
  19 *              Alan Cox        :       By repeated request 8) - Total BogoMIPS report.
  20 *              Greg Wright     :       Fix for kernel stacks panic.
  21 *              Erich Boleyn    :       MP v1.4 and additional changes.
  22 *      Matthias Sattler        :       Changes for 2.1 kernel map.
  23 *      Michel Lespinasse       :       Changes for 2.1 kernel map.
  24 *      Michael Chastain        :       Change trampoline.S to gnu as.
  25 *              Alan Cox        :       Dumb bug: 'B' step PPro's are fine
  26 *              Ingo Molnar     :       Added APIC timers, based on code
  27 *                                      from Jose Renau
  28 *              Ingo Molnar     :       various cleanups and rewrites
  29 *              Tigran Aivazian :       fixed "0.00 in /proc/uptime on SMP" bug.
  30 *      Maciej W. Rozycki       :       Bits for genuine 82489DX APICs
  31 *      Andi Kleen              :       Changed for SMP boot into long mode.
  32 *              Martin J. Bligh :       Added support for multi-quad systems
  33 *              Dave Jones      :       Report invalid combinations of Athlon CPUs.
  34 *              Rusty Russell   :       Hacked into shape for new "hotplug" boot process.
  35 *      Andi Kleen              :       Converted to new state machine.
  36 *      Ashok Raj               :       CPU hotplug support
  37 *      Glauber Costa           :       i386 and x86_64 integration
  38 */
  39
  40#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  41
  42#include <linux/init.h>
  43#include <linux/smp.h>
  44#include <linux/export.h>
  45#include <linux/sched.h>
  46#include <linux/sched/topology.h>
  47#include <linux/sched/hotplug.h>
  48#include <linux/sched/task_stack.h>
  49#include <linux/percpu.h>
  50#include <linux/memblock.h>
  51#include <linux/err.h>
  52#include <linux/nmi.h>
  53#include <linux/tboot.h>
  54#include <linux/stackprotector.h>
  55#include <linux/gfp.h>
  56#include <linux/cpuidle.h>
  57#include <linux/numa.h>
  58
  59#include <asm/acpi.h>
  60#include <asm/desc.h>
  61#include <asm/nmi.h>
  62#include <asm/irq.h>
  63#include <asm/realmode.h>
  64#include <asm/cpu.h>
  65#include <asm/numa.h>
  66#include <asm/pgtable.h>
  67#include <asm/tlbflush.h>
  68#include <asm/mtrr.h>
  69#include <asm/mwait.h>
  70#include <asm/apic.h>
  71#include <asm/io_apic.h>
  72#include <asm/fpu/internal.h>
  73#include <asm/setup.h>
  74#include <asm/uv/uv.h>
  75#include <linux/mc146818rtc.h>
  76#include <asm/i8259.h>
  77#include <asm/misc.h>
  78#include <asm/qspinlock.h>
  79#include <asm/intel-family.h>
  80#include <asm/cpu_device_id.h>
  81#include <asm/spec-ctrl.h>
  82#include <asm/hw_irq.h>
  83
  84/* representing HT siblings of each logical CPU */
  85DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
  86EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  87
  88/* representing HT and core siblings of each logical CPU */
  89DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
  90EXPORT_PER_CPU_SYMBOL(cpu_core_map);
  91
  92/* representing HT, core, and die siblings of each logical CPU */
  93DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
  94EXPORT_PER_CPU_SYMBOL(cpu_die_map);
  95
  96DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
  97
  98/* Per CPU bogomips and other parameters */
  99DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
 100EXPORT_PER_CPU_SYMBOL(cpu_info);
 101
 102/* Logical package management. We might want to allocate that dynamically */
 103unsigned int __max_logical_packages __read_mostly;
 104EXPORT_SYMBOL(__max_logical_packages);
 105static unsigned int logical_packages __read_mostly;
 106static unsigned int logical_die __read_mostly;
 107
 108/* Maximum number of SMT threads on any online core */
 109int __read_mostly __max_smt_threads = 1;
 110
 111/* Flag to indicate if a complete sched domain rebuild is required */
 112bool x86_topology_update;
 113
 114int arch_update_cpu_topology(void)
 115{
 116        int retval = x86_topology_update;
 117
 118        x86_topology_update = false;
 119        return retval;
 120}
 121
 122static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
 123{
 124        unsigned long flags;
 125
 126        spin_lock_irqsave(&rtc_lock, flags);
 127        CMOS_WRITE(0xa, 0xf);
 128        spin_unlock_irqrestore(&rtc_lock, flags);
 129        *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
 130                                                        start_eip >> 4;
 131        *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
 132                                                        start_eip & 0xf;
 133}
 134
 135static inline void smpboot_restore_warm_reset_vector(void)
 136{
 137        unsigned long flags;
 138
 139        /*
 140         * Paranoid:  Set warm reset code and vector here back
 141         * to default values.
 142         */
 143        spin_lock_irqsave(&rtc_lock, flags);
 144        CMOS_WRITE(0, 0xf);
 145        spin_unlock_irqrestore(&rtc_lock, flags);
 146
 147        *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
 148}
 149
 150/*
 151 * Report back to the Boot Processor during boot time or to the caller processor
 152 * during CPU online.
 153 */
 154static void smp_callin(void)
 155{
 156        int cpuid;
 157
 158        /*
 159         * If waken up by an INIT in an 82489DX configuration
 160         * cpu_callout_mask guarantees we don't get here before
 161         * an INIT_deassert IPI reaches our local APIC, so it is
 162         * now safe to touch our local APIC.
 163         */
 164        cpuid = smp_processor_id();
 165
 166        /*
 167         * the boot CPU has finished the init stage and is spinning
 168         * on callin_map until we finish. We are free to set up this
 169         * CPU, first the APIC. (this is probably redundant on most
 170         * boards)
 171         */
 172        apic_ap_setup();
 173
 174        /*
 175         * Save our processor parameters. Note: this information
 176         * is needed for clock calibration.
 177         */
 178        smp_store_cpu_info(cpuid);
 179
 180        /*
 181         * The topology information must be up to date before
 182         * calibrate_delay() and notify_cpu_starting().
 183         */
 184        set_cpu_sibling_map(raw_smp_processor_id());
 185
 186        /*
 187         * Get our bogomips.
 188         * Update loops_per_jiffy in cpu_data. Previous call to
 189         * smp_store_cpu_info() stored a value that is close but not as
 190         * accurate as the value just calculated.
 191         */
 192        calibrate_delay();
 193        cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
 194        pr_debug("Stack at about %p\n", &cpuid);
 195
 196        wmb();
 197
 198        notify_cpu_starting(cpuid);
 199
 200        /*
 201         * Allow the master to continue.
 202         */
 203        cpumask_set_cpu(cpuid, cpu_callin_mask);
 204}
 205
 206static int cpu0_logical_apicid;
 207static int enable_start_cpu0;
 208/*
 209 * Activate a secondary processor.
 210 */
 211static void notrace start_secondary(void *unused)
 212{
 213        /*
 214         * Don't put *anything* except direct CPU state initialization
 215         * before cpu_init(), SMP booting is too fragile that we want to
 216         * limit the things done here to the most necessary things.
 217         */
 218        cr4_init();
 219
 220#ifdef CONFIG_X86_32
 221        /* switch away from the initial page table */
 222        load_cr3(swapper_pg_dir);
 223        __flush_tlb_all();
 224#endif
 225        load_current_idt();
 226        cpu_init();
 227        x86_cpuinit.early_percpu_clock_init();
 228        preempt_disable();
 229        smp_callin();
 230
 231        enable_start_cpu0 = 0;
 232
 233        /* otherwise gcc will move up smp_processor_id before the cpu_init */
 234        barrier();
 235        /*
 236         * Check TSC synchronization with the boot CPU:
 237         */
 238        check_tsc_sync_target();
 239
 240        speculative_store_bypass_ht_init();
 241
 242        /*
 243         * Lock vector_lock, set CPU online and bring the vector
 244         * allocator online. Online must be set with vector_lock held
 245         * to prevent a concurrent irq setup/teardown from seeing a
 246         * half valid vector space.
 247         */
 248        lock_vector_lock();
 249        set_cpu_online(smp_processor_id(), true);
 250        lapic_online();
 251        unlock_vector_lock();
 252        cpu_set_state_online(smp_processor_id());
 253        x86_platform.nmi_init();
 254
 255        /* enable local interrupts */
 256        local_irq_enable();
 257
 258        /* to prevent fake stack check failure in clock setup */
 259        boot_init_stack_canary();
 260
 261        x86_cpuinit.setup_percpu_clockev();
 262
 263        wmb();
 264        cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 265}
 266
 267/**
 268 * topology_is_primary_thread - Check whether CPU is the primary SMT thread
 269 * @cpu:        CPU to check
 270 */
 271bool topology_is_primary_thread(unsigned int cpu)
 272{
 273        return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
 274}
 275
 276/**
 277 * topology_smt_supported - Check whether SMT is supported by the CPUs
 278 */
 279bool topology_smt_supported(void)
 280{
 281        return smp_num_siblings > 1;
 282}
 283
 284/**
 285 * topology_phys_to_logical_pkg - Map a physical package id to a logical
 286 *
 287 * Returns logical package id or -1 if not found
 288 */
 289int topology_phys_to_logical_pkg(unsigned int phys_pkg)
 290{
 291        int cpu;
 292
 293        for_each_possible_cpu(cpu) {
 294                struct cpuinfo_x86 *c = &cpu_data(cpu);
 295
 296                if (c->initialized && c->phys_proc_id == phys_pkg)
 297                        return c->logical_proc_id;
 298        }
 299        return -1;
 300}
 301EXPORT_SYMBOL(topology_phys_to_logical_pkg);
 302/**
 303 * topology_phys_to_logical_die - Map a physical die id to logical
 304 *
 305 * Returns logical die id or -1 if not found
 306 */
 307int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
 308{
 309        int cpu;
 310        int proc_id = cpu_data(cur_cpu).phys_proc_id;
 311
 312        for_each_possible_cpu(cpu) {
 313                struct cpuinfo_x86 *c = &cpu_data(cpu);
 314
 315                if (c->initialized && c->cpu_die_id == die_id &&
 316                    c->phys_proc_id == proc_id)
 317                        return c->logical_die_id;
 318        }
 319        return -1;
 320}
 321EXPORT_SYMBOL(topology_phys_to_logical_die);
 322
 323/**
 324 * topology_update_package_map - Update the physical to logical package map
 325 * @pkg:        The physical package id as retrieved via CPUID
 326 * @cpu:        The cpu for which this is updated
 327 */
 328int topology_update_package_map(unsigned int pkg, unsigned int cpu)
 329{
 330        int new;
 331
 332        /* Already available somewhere? */
 333        new = topology_phys_to_logical_pkg(pkg);
 334        if (new >= 0)
 335                goto found;
 336
 337        new = logical_packages++;
 338        if (new != pkg) {
 339                pr_info("CPU %u Converting physical %u to logical package %u\n",
 340                        cpu, pkg, new);
 341        }
 342found:
 343        cpu_data(cpu).logical_proc_id = new;
 344        return 0;
 345}
 346/**
 347 * topology_update_die_map - Update the physical to logical die map
 348 * @die:        The die id as retrieved via CPUID
 349 * @cpu:        The cpu for which this is updated
 350 */
 351int topology_update_die_map(unsigned int die, unsigned int cpu)
 352{
 353        int new;
 354
 355        /* Already available somewhere? */
 356        new = topology_phys_to_logical_die(die, cpu);
 357        if (new >= 0)
 358                goto found;
 359
 360        new = logical_die++;
 361        if (new != die) {
 362                pr_info("CPU %u Converting physical %u to logical die %u\n",
 363                        cpu, die, new);
 364        }
 365found:
 366        cpu_data(cpu).logical_die_id = new;
 367        return 0;
 368}
 369
 370void __init smp_store_boot_cpu_info(void)
 371{
 372        int id = 0; /* CPU 0 */
 373        struct cpuinfo_x86 *c = &cpu_data(id);
 374
 375        *c = boot_cpu_data;
 376        c->cpu_index = id;
 377        topology_update_package_map(c->phys_proc_id, id);
 378        topology_update_die_map(c->cpu_die_id, id);
 379        c->initialized = true;
 380}
 381
 382/*
 383 * The bootstrap kernel entry code has set these up. Save them for
 384 * a given CPU
 385 */
 386void smp_store_cpu_info(int id)
 387{
 388        struct cpuinfo_x86 *c = &cpu_data(id);
 389
 390        /* Copy boot_cpu_data only on the first bringup */
 391        if (!c->initialized)
 392                *c = boot_cpu_data;
 393        c->cpu_index = id;
 394        /*
 395         * During boot time, CPU0 has this setup already. Save the info when
 396         * bringing up AP or offlined CPU0.
 397         */
 398        identify_secondary_cpu(c);
 399        c->initialized = true;
 400}
 401
 402static bool
 403topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 404{
 405        int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 406
 407        return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
 408}
 409
 410static bool
 411topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
 412{
 413        int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 414
 415        return !WARN_ONCE(!topology_same_node(c, o),
 416                "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
 417                "[node: %d != %d]. Ignoring dependency.\n",
 418                cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
 419}
 420
 421#define link_mask(mfunc, c1, c2)                                        \
 422do {                                                                    \
 423        cpumask_set_cpu((c1), mfunc(c2));                               \
 424        cpumask_set_cpu((c2), mfunc(c1));                               \
 425} while (0)
 426
 427static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 428{
 429        if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
 430                int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 431
 432                if (c->phys_proc_id == o->phys_proc_id &&
 433                    c->cpu_die_id == o->cpu_die_id &&
 434                    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
 435                        if (c->cpu_core_id == o->cpu_core_id)
 436                                return topology_sane(c, o, "smt");
 437
 438                        if ((c->cu_id != 0xff) &&
 439                            (o->cu_id != 0xff) &&
 440                            (c->cu_id == o->cu_id))
 441                                return topology_sane(c, o, "smt");
 442                }
 443
 444        } else if (c->phys_proc_id == o->phys_proc_id &&
 445                   c->cpu_die_id == o->cpu_die_id &&
 446                   c->cpu_core_id == o->cpu_core_id) {
 447                return topology_sane(c, o, "smt");
 448        }
 449
 450        return false;
 451}
 452
 453/*
 454 * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
 455 *
 456 * These are Intel CPUs that enumerate an LLC that is shared by
 457 * multiple NUMA nodes. The LLC on these systems is shared for
 458 * off-package data access but private to the NUMA node (half
 459 * of the package) for on-package access.
 460 *
 461 * CPUID (the source of the information about the LLC) can only
 462 * enumerate the cache as being shared *or* unshared, but not
 463 * this particular configuration. The CPU in this case enumerates
 464 * the cache to be shared across the entire package (spanning both
 465 * NUMA nodes).
 466 */
 467
 468static const struct x86_cpu_id snc_cpu[] = {
 469        { X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X },
 470        {}
 471};
 472
 473static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 474{
 475        int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 476
 477        /* Do not match if we do not have a valid APICID for cpu: */
 478        if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
 479                return false;
 480
 481        /* Do not match if LLC id does not match: */
 482        if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
 483                return false;
 484
 485        /*
 486         * Allow the SNC topology without warning. Return of false
 487         * means 'c' does not share the LLC of 'o'. This will be
 488         * reflected to userspace.
 489         */
 490        if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
 491                return false;
 492
 493        return topology_sane(c, o, "llc");
 494}
 495
 496/*
 497 * Unlike the other levels, we do not enforce keeping a
 498 * multicore group inside a NUMA node.  If this happens, we will
 499 * discard the MC level of the topology later.
 500 */
 501static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 502{
 503        if (c->phys_proc_id == o->phys_proc_id)
 504                return true;
 505        return false;
 506}
 507
 508static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 509{
 510        if ((c->phys_proc_id == o->phys_proc_id) &&
 511                (c->cpu_die_id == o->cpu_die_id))
 512                return true;
 513        return false;
 514}
 515
 516
 517#if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
 518static inline int x86_sched_itmt_flags(void)
 519{
 520        return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
 521}
 522
 523#ifdef CONFIG_SCHED_MC
 524static int x86_core_flags(void)
 525{
 526        return cpu_core_flags() | x86_sched_itmt_flags();
 527}
 528#endif
 529#ifdef CONFIG_SCHED_SMT
 530static int x86_smt_flags(void)
 531{
 532        return cpu_smt_flags() | x86_sched_itmt_flags();
 533}
 534#endif
 535#endif
 536
 537static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
 538#ifdef CONFIG_SCHED_SMT
 539        { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
 540#endif
 541#ifdef CONFIG_SCHED_MC
 542        { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
 543#endif
 544        { NULL, },
 545};
 546
 547static struct sched_domain_topology_level x86_topology[] = {
 548#ifdef CONFIG_SCHED_SMT
 549        { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
 550#endif
 551#ifdef CONFIG_SCHED_MC
 552        { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
 553#endif
 554        { cpu_cpu_mask, SD_INIT_NAME(DIE) },
 555        { NULL, },
 556};
 557
 558/*
 559 * Set if a package/die has multiple NUMA nodes inside.
 560 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
 561 * Sub-NUMA Clustering have this.
 562 */
 563static bool x86_has_numa_in_package;
 564
 565void set_cpu_sibling_map(int cpu)
 566{
 567        bool has_smt = smp_num_siblings > 1;
 568        bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
 569        struct cpuinfo_x86 *c = &cpu_data(cpu);
 570        struct cpuinfo_x86 *o;
 571        int i, threads;
 572
 573        cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
 574
 575        if (!has_mp) {
 576                cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
 577                cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
 578                cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
 579                cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
 580                c->booted_cores = 1;
 581                return;
 582        }
 583
 584        for_each_cpu(i, cpu_sibling_setup_mask) {
 585                o = &cpu_data(i);
 586
 587                if ((i == cpu) || (has_smt && match_smt(c, o)))
 588                        link_mask(topology_sibling_cpumask, cpu, i);
 589
 590                if ((i == cpu) || (has_mp && match_llc(c, o)))
 591                        link_mask(cpu_llc_shared_mask, cpu, i);
 592
 593        }
 594
 595        /*
 596         * This needs a separate iteration over the cpus because we rely on all
 597         * topology_sibling_cpumask links to be set-up.
 598         */
 599        for_each_cpu(i, cpu_sibling_setup_mask) {
 600                o = &cpu_data(i);
 601
 602                if ((i == cpu) || (has_mp && match_pkg(c, o))) {
 603                        link_mask(topology_core_cpumask, cpu, i);
 604
 605                        /*
 606                         *  Does this new cpu bringup a new core?
 607                         */
 608                        if (cpumask_weight(
 609                            topology_sibling_cpumask(cpu)) == 1) {
 610                                /*
 611                                 * for each core in package, increment
 612                                 * the booted_cores for this new cpu
 613                                 */
 614                                if (cpumask_first(
 615                                    topology_sibling_cpumask(i)) == i)
 616                                        c->booted_cores++;
 617                                /*
 618                                 * increment the core count for all
 619                                 * the other cpus in this package
 620                                 */
 621                                if (i != cpu)
 622                                        cpu_data(i).booted_cores++;
 623                        } else if (i != cpu && !c->booted_cores)
 624                                c->booted_cores = cpu_data(i).booted_cores;
 625                }
 626                if (match_pkg(c, o) && !topology_same_node(c, o))
 627                        x86_has_numa_in_package = true;
 628
 629                if ((i == cpu) || (has_mp && match_die(c, o)))
 630                        link_mask(topology_die_cpumask, cpu, i);
 631        }
 632
 633        threads = cpumask_weight(topology_sibling_cpumask(cpu));
 634        if (threads > __max_smt_threads)
 635                __max_smt_threads = threads;
 636}
 637
 638/* maps the cpu to the sched domain representing multi-core */
 639const struct cpumask *cpu_coregroup_mask(int cpu)
 640{
 641        return cpu_llc_shared_mask(cpu);
 642}
 643
 644static void impress_friends(void)
 645{
 646        int cpu;
 647        unsigned long bogosum = 0;
 648        /*
 649         * Allow the user to impress friends.
 650         */
 651        pr_debug("Before bogomips\n");
 652        for_each_possible_cpu(cpu)
 653                if (cpumask_test_cpu(cpu, cpu_callout_mask))
 654                        bogosum += cpu_data(cpu).loops_per_jiffy;
 655        pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
 656                num_online_cpus(),
 657                bogosum/(500000/HZ),
 658                (bogosum/(5000/HZ))%100);
 659
 660        pr_debug("Before bogocount - setting activated=1\n");
 661}
 662
 663void __inquire_remote_apic(int apicid)
 664{
 665        unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
 666        const char * const names[] = { "ID", "VERSION", "SPIV" };
 667        int timeout;
 668        u32 status;
 669
 670        pr_info("Inquiring remote APIC 0x%x...\n", apicid);
 671
 672        for (i = 0; i < ARRAY_SIZE(regs); i++) {
 673                pr_info("... APIC 0x%x %s: ", apicid, names[i]);
 674
 675                /*
 676                 * Wait for idle.
 677                 */
 678                status = safe_apic_wait_icr_idle();
 679                if (status)
 680                        pr_cont("a previous APIC delivery may have failed\n");
 681
 682                apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
 683
 684                timeout = 0;
 685                do {
 686                        udelay(100);
 687                        status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
 688                } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
 689
 690                switch (status) {
 691                case APIC_ICR_RR_VALID:
 692                        status = apic_read(APIC_RRR);
 693                        pr_cont("%08x\n", status);
 694                        break;
 695                default:
 696                        pr_cont("failed\n");
 697                }
 698        }
 699}
 700
 701/*
 702 * The Multiprocessor Specification 1.4 (1997) example code suggests
 703 * that there should be a 10ms delay between the BSP asserting INIT
 704 * and de-asserting INIT, when starting a remote processor.
 705 * But that slows boot and resume on modern processors, which include
 706 * many cores and don't require that delay.
 707 *
 708 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
 709 * Modern processor families are quirked to remove the delay entirely.
 710 */
 711#define UDELAY_10MS_DEFAULT 10000
 712
 713static unsigned int init_udelay = UINT_MAX;
 714
 715static int __init cpu_init_udelay(char *str)
 716{
 717        get_option(&str, &init_udelay);
 718
 719        return 0;
 720}
 721early_param("cpu_init_udelay", cpu_init_udelay);
 722
 723static void __init smp_quirk_init_udelay(void)
 724{
 725        /* if cmdline changed it from default, leave it alone */
 726        if (init_udelay != UINT_MAX)
 727                return;
 728
 729        /* if modern processor, use no delay */
 730        if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
 731            ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
 732            ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
 733                init_udelay = 0;
 734                return;
 735        }
 736        /* else, use legacy delay */
 737        init_udelay = UDELAY_10MS_DEFAULT;
 738}
 739
 740/*
 741 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
 742 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
 743 * won't ... remember to clear down the APIC, etc later.
 744 */
 745int
 746wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
 747{
 748        unsigned long send_status, accept_status = 0;
 749        int maxlvt;
 750
 751        /* Target chip */
 752        /* Boot on the stack */
 753        /* Kick the second */
 754        apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
 755
 756        pr_debug("Waiting for send to finish...\n");
 757        send_status = safe_apic_wait_icr_idle();
 758
 759        /*
 760         * Give the other CPU some time to accept the IPI.
 761         */
 762        udelay(200);
 763        if (APIC_INTEGRATED(boot_cpu_apic_version)) {
 764                maxlvt = lapic_get_maxlvt();
 765                if (maxlvt > 3)                 /* Due to the Pentium erratum 3AP.  */
 766                        apic_write(APIC_ESR, 0);
 767                accept_status = (apic_read(APIC_ESR) & 0xEF);
 768        }
 769        pr_debug("NMI sent\n");
 770
 771        if (send_status)
 772                pr_err("APIC never delivered???\n");
 773        if (accept_status)
 774                pr_err("APIC delivery error (%lx)\n", accept_status);
 775
 776        return (send_status | accept_status);
 777}
 778
 779static int
 780wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
 781{
 782        unsigned long send_status = 0, accept_status = 0;
 783        int maxlvt, num_starts, j;
 784
 785        maxlvt = lapic_get_maxlvt();
 786
 787        /*
 788         * Be paranoid about clearing APIC errors.
 789         */
 790        if (APIC_INTEGRATED(boot_cpu_apic_version)) {
 791                if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
 792                        apic_write(APIC_ESR, 0);
 793                apic_read(APIC_ESR);
 794        }
 795
 796        pr_debug("Asserting INIT\n");
 797
 798        /*
 799         * Turn INIT on target chip
 800         */
 801        /*
 802         * Send IPI
 803         */
 804        apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
 805                       phys_apicid);
 806
 807        pr_debug("Waiting for send to finish...\n");
 808        send_status = safe_apic_wait_icr_idle();
 809
 810        udelay(init_udelay);
 811
 812        pr_debug("Deasserting INIT\n");
 813
 814        /* Target chip */
 815        /* Send IPI */
 816        apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
 817
 818        pr_debug("Waiting for send to finish...\n");
 819        send_status = safe_apic_wait_icr_idle();
 820
 821        mb();
 822
 823        /*
 824         * Should we send STARTUP IPIs ?
 825         *
 826         * Determine this based on the APIC version.
 827         * If we don't have an integrated APIC, don't send the STARTUP IPIs.
 828         */
 829        if (APIC_INTEGRATED(boot_cpu_apic_version))
 830                num_starts = 2;
 831        else
 832                num_starts = 0;
 833
 834        /*
 835         * Run STARTUP IPI loop.
 836         */
 837        pr_debug("#startup loops: %d\n", num_starts);
 838
 839        for (j = 1; j <= num_starts; j++) {
 840                pr_debug("Sending STARTUP #%d\n", j);
 841                if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
 842                        apic_write(APIC_ESR, 0);
 843                apic_read(APIC_ESR);
 844                pr_debug("After apic_write\n");
 845
 846                /*
 847                 * STARTUP IPI
 848                 */
 849
 850                /* Target chip */
 851                /* Boot on the stack */
 852                /* Kick the second */
 853                apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
 854                               phys_apicid);
 855
 856                /*
 857                 * Give the other CPU some time to accept the IPI.
 858                 */
 859                if (init_udelay == 0)
 860                        udelay(10);
 861                else
 862                        udelay(300);
 863
 864                pr_debug("Startup point 1\n");
 865
 866                pr_debug("Waiting for send to finish...\n");
 867                send_status = safe_apic_wait_icr_idle();
 868
 869                /*
 870                 * Give the other CPU some time to accept the IPI.
 871                 */
 872                if (init_udelay == 0)
 873                        udelay(10);
 874                else
 875                        udelay(200);
 876
 877                if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
 878                        apic_write(APIC_ESR, 0);
 879                accept_status = (apic_read(APIC_ESR) & 0xEF);
 880                if (send_status || accept_status)
 881                        break;
 882        }
 883        pr_debug("After Startup\n");
 884
 885        if (send_status)
 886                pr_err("APIC never delivered???\n");
 887        if (accept_status)
 888                pr_err("APIC delivery error (%lx)\n", accept_status);
 889
 890        return (send_status | accept_status);
 891}
 892
 893/* reduce the number of lines printed when booting a large cpu count system */
 894static void announce_cpu(int cpu, int apicid)
 895{
 896        static int current_node = NUMA_NO_NODE;
 897        int node = early_cpu_to_node(cpu);
 898        static int width, node_width;
 899
 900        if (!width)
 901                width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
 902
 903        if (!node_width)
 904                node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
 905
 906        if (cpu == 1)
 907                printk(KERN_INFO "x86: Booting SMP configuration:\n");
 908
 909        if (system_state < SYSTEM_RUNNING) {
 910                if (node != current_node) {
 911                        if (current_node > (-1))
 912                                pr_cont("\n");
 913                        current_node = node;
 914
 915                        printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
 916                               node_width - num_digits(node), " ", node);
 917                }
 918
 919                /* Add padding for the BSP */
 920                if (cpu == 1)
 921                        pr_cont("%*s", width + 1, " ");
 922
 923                pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
 924
 925        } else
 926                pr_info("Booting Node %d Processor %d APIC 0x%x\n",
 927                        node, cpu, apicid);
 928}
 929
 930static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
 931{
 932        int cpu;
 933
 934        cpu = smp_processor_id();
 935        if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
 936                return NMI_HANDLED;
 937
 938        return NMI_DONE;
 939}
 940
 941/*
 942 * Wake up AP by INIT, INIT, STARTUP sequence.
 943 *
 944 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
 945 * boot-strap code which is not a desired behavior for waking up BSP. To
 946 * void the boot-strap code, wake up CPU0 by NMI instead.
 947 *
 948 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
 949 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
 950 * We'll change this code in the future to wake up hard offlined CPU0 if
 951 * real platform and request are available.
 952 */
 953static int
 954wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
 955               int *cpu0_nmi_registered)
 956{
 957        int id;
 958        int boot_error;
 959
 960        preempt_disable();
 961
 962        /*
 963         * Wake up AP by INIT, INIT, STARTUP sequence.
 964         */
 965        if (cpu) {
 966                boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
 967                goto out;
 968        }
 969
 970        /*
 971         * Wake up BSP by nmi.
 972         *
 973         * Register a NMI handler to help wake up CPU0.
 974         */
 975        boot_error = register_nmi_handler(NMI_LOCAL,
 976                                          wakeup_cpu0_nmi, 0, "wake_cpu0");
 977
 978        if (!boot_error) {
 979                enable_start_cpu0 = 1;
 980                *cpu0_nmi_registered = 1;
 981                if (apic->dest_logical == APIC_DEST_LOGICAL)
 982                        id = cpu0_logical_apicid;
 983                else
 984                        id = apicid;
 985                boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
 986        }
 987
 988out:
 989        preempt_enable();
 990
 991        return boot_error;
 992}
 993
 994int common_cpu_up(unsigned int cpu, struct task_struct *idle)
 995{
 996        int ret;
 997
 998        /* Just in case we booted with a single CPU. */
 999        alternatives_enable_smp();
1000
1001        per_cpu(current_task, cpu) = idle;
1002
1003        /* Initialize the interrupt stack(s) */
1004        ret = irq_init_percpu_irqstack(cpu);
1005        if (ret)
1006                return ret;
1007
1008#ifdef CONFIG_X86_32
1009        /* Stack for startup_32 can be just as for start_secondary onwards */
1010        per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1011#else
1012        initial_gs = per_cpu_offset(cpu);
1013#endif
1014        return 0;
1015}
1016
1017/*
1018 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1019 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1020 * Returns zero if CPU booted OK, else error code from
1021 * ->wakeup_secondary_cpu.
1022 */
1023static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1024                       int *cpu0_nmi_registered)
1025{
1026        /* start_ip had better be page-aligned! */
1027        unsigned long start_ip = real_mode_header->trampoline_start;
1028
1029        unsigned long boot_error = 0;
1030        unsigned long timeout;
1031
1032        idle->thread.sp = (unsigned long)task_pt_regs(idle);
1033        early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1034        initial_code = (unsigned long)start_secondary;
1035        initial_stack  = idle->thread.sp;
1036
1037        /* Enable the espfix hack for this CPU */
1038        init_espfix_ap(cpu);
1039
1040        /* So we see what's up */
1041        announce_cpu(cpu, apicid);
1042
1043        /*
1044         * This grunge runs the startup process for
1045         * the targeted processor.
1046         */
1047
1048        if (x86_platform.legacy.warm_reset) {
1049
1050                pr_debug("Setting warm reset code and vector.\n");
1051
1052                smpboot_setup_warm_reset_vector(start_ip);
1053                /*
1054                 * Be paranoid about clearing APIC errors.
1055                */
1056                if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1057                        apic_write(APIC_ESR, 0);
1058                        apic_read(APIC_ESR);
1059                }
1060        }
1061
1062        /*
1063         * AP might wait on cpu_callout_mask in cpu_init() with
1064         * cpu_initialized_mask set if previous attempt to online
1065         * it timed-out. Clear cpu_initialized_mask so that after
1066         * INIT/SIPI it could start with a clean state.
1067         */
1068        cpumask_clear_cpu(cpu, cpu_initialized_mask);
1069        smp_mb();
1070
1071        /*
1072         * Wake up a CPU in difference cases:
1073         * - Use the method in the APIC driver if it's defined
1074         * Otherwise,
1075         * - Use an INIT boot APIC message for APs or NMI for BSP.
1076         */
1077        if (apic->wakeup_secondary_cpu)
1078                boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1079        else
1080                boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1081                                                     cpu0_nmi_registered);
1082
1083        if (!boot_error) {
1084                /*
1085                 * Wait 10s total for first sign of life from AP
1086                 */
1087                boot_error = -1;
1088                timeout = jiffies + 10*HZ;
1089                while (time_before(jiffies, timeout)) {
1090                        if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1091                                /*
1092                                 * Tell AP to proceed with initialization
1093                                 */
1094                                cpumask_set_cpu(cpu, cpu_callout_mask);
1095                                boot_error = 0;
1096                                break;
1097                        }
1098                        schedule();
1099                }
1100        }
1101
1102        if (!boot_error) {
1103                /*
1104                 * Wait till AP completes initial initialization
1105                 */
1106                while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1107                        /*
1108                         * Allow other tasks to run while we wait for the
1109                         * AP to come online. This also gives a chance
1110                         * for the MTRR work(triggered by the AP coming online)
1111                         * to be completed in the stop machine context.
1112                         */
1113                        schedule();
1114                }
1115        }
1116
1117        if (x86_platform.legacy.warm_reset) {
1118                /*
1119                 * Cleanup possible dangling ends...
1120                 */
1121                smpboot_restore_warm_reset_vector();
1122        }
1123
1124        return boot_error;
1125}
1126
1127int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1128{
1129        int apicid = apic->cpu_present_to_apicid(cpu);
1130        int cpu0_nmi_registered = 0;
1131        unsigned long flags;
1132        int err, ret = 0;
1133
1134        lockdep_assert_irqs_enabled();
1135
1136        pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1137
1138        if (apicid == BAD_APICID ||
1139            !physid_isset(apicid, phys_cpu_present_map) ||
1140            !apic->apic_id_valid(apicid)) {
1141                pr_err("%s: bad cpu %d\n", __func__, cpu);
1142                return -EINVAL;
1143        }
1144
1145        /*
1146         * Already booted CPU?
1147         */
1148        if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1149                pr_debug("do_boot_cpu %d Already started\n", cpu);
1150                return -ENOSYS;
1151        }
1152
1153        /*
1154         * Save current MTRR state in case it was changed since early boot
1155         * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1156         */
1157        mtrr_save_state();
1158
1159        /* x86 CPUs take themselves offline, so delayed offline is OK. */
1160        err = cpu_check_up_prepare(cpu);
1161        if (err && err != -EBUSY)
1162                return err;
1163
1164        /* the FPU context is blank, nobody can own it */
1165        per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1166
1167        err = common_cpu_up(cpu, tidle);
1168        if (err)
1169                return err;
1170
1171        err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1172        if (err) {
1173                pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1174                ret = -EIO;
1175                goto unreg_nmi;
1176        }
1177
1178        /*
1179         * Check TSC synchronization with the AP (keep irqs disabled
1180         * while doing so):
1181         */
1182        local_irq_save(flags);
1183        check_tsc_sync_source(cpu);
1184        local_irq_restore(flags);
1185
1186        while (!cpu_online(cpu)) {
1187                cpu_relax();
1188                touch_nmi_watchdog();
1189        }
1190
1191unreg_nmi:
1192        /*
1193         * Clean up the nmi handler. Do this after the callin and callout sync
1194         * to avoid impact of possible long unregister time.
1195         */
1196        if (cpu0_nmi_registered)
1197                unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1198
1199        return ret;
1200}
1201
1202/**
1203 * arch_disable_smp_support() - disables SMP support for x86 at runtime
1204 */
1205void arch_disable_smp_support(void)
1206{
1207        disable_ioapic_support();
1208}
1209
1210/*
1211 * Fall back to non SMP mode after errors.
1212 *
1213 * RED-PEN audit/test this more. I bet there is more state messed up here.
1214 */
1215static __init void disable_smp(void)
1216{
1217        pr_info("SMP disabled\n");
1218
1219        disable_ioapic_support();
1220
1221        init_cpu_present(cpumask_of(0));
1222        init_cpu_possible(cpumask_of(0));
1223
1224        if (smp_found_config)
1225                physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1226        else
1227                physid_set_mask_of_physid(0, &phys_cpu_present_map);
1228        cpumask_set_cpu(0, topology_sibling_cpumask(0));
1229        cpumask_set_cpu(0, topology_core_cpumask(0));
1230        cpumask_set_cpu(0, topology_die_cpumask(0));
1231}
1232
1233/*
1234 * Various sanity checks.
1235 */
1236static void __init smp_sanity_check(void)
1237{
1238        preempt_disable();
1239
1240#if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1241        if (def_to_bigsmp && nr_cpu_ids > 8) {
1242                unsigned int cpu;
1243                unsigned nr;
1244
1245                pr_warn("More than 8 CPUs detected - skipping them\n"
1246                        "Use CONFIG_X86_BIGSMP\n");
1247
1248                nr = 0;
1249                for_each_present_cpu(cpu) {
1250                        if (nr >= 8)
1251                                set_cpu_present(cpu, false);
1252                        nr++;
1253                }
1254
1255                nr = 0;
1256                for_each_possible_cpu(cpu) {
1257                        if (nr >= 8)
1258                                set_cpu_possible(cpu, false);
1259                        nr++;
1260                }
1261
1262                nr_cpu_ids = 8;
1263        }
1264#endif
1265
1266        if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1267                pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1268                        hard_smp_processor_id());
1269
1270                physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1271        }
1272
1273        /*
1274         * Should not be necessary because the MP table should list the boot
1275         * CPU too, but we do it for the sake of robustness anyway.
1276         */
1277        if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1278                pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1279                          boot_cpu_physical_apicid);
1280                physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1281        }
1282        preempt_enable();
1283}
1284
1285static void __init smp_cpu_index_default(void)
1286{
1287        int i;
1288        struct cpuinfo_x86 *c;
1289
1290        for_each_possible_cpu(i) {
1291                c = &cpu_data(i);
1292                /* mark all to hotplug */
1293                c->cpu_index = nr_cpu_ids;
1294        }
1295}
1296
1297static void __init smp_get_logical_apicid(void)
1298{
1299        if (x2apic_mode)
1300                cpu0_logical_apicid = apic_read(APIC_LDR);
1301        else
1302                cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1303}
1304
1305/*
1306 * Prepare for SMP bootup.
1307 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1308 *            for common interface support.
1309 */
1310void __init native_smp_prepare_cpus(unsigned int max_cpus)
1311{
1312        unsigned int i;
1313
1314        smp_cpu_index_default();
1315
1316        /*
1317         * Setup boot CPU information
1318         */
1319        smp_store_boot_cpu_info(); /* Final full version of the data */
1320        cpumask_copy(cpu_callin_mask, cpumask_of(0));
1321        mb();
1322
1323        for_each_possible_cpu(i) {
1324                zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1325                zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1326                zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1327                zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1328        }
1329
1330        /*
1331         * Set 'default' x86 topology, this matches default_topology() in that
1332         * it has NUMA nodes as a topology level. See also
1333         * native_smp_cpus_done().
1334         *
1335         * Must be done before set_cpus_sibling_map() is ran.
1336         */
1337        set_sched_topology(x86_topology);
1338
1339        set_cpu_sibling_map(0);
1340
1341        smp_sanity_check();
1342
1343        switch (apic_intr_mode) {
1344        case APIC_PIC:
1345        case APIC_VIRTUAL_WIRE_NO_CONFIG:
1346                disable_smp();
1347                return;
1348        case APIC_SYMMETRIC_IO_NO_ROUTING:
1349                disable_smp();
1350                /* Setup local timer */
1351                x86_init.timers.setup_percpu_clockev();
1352                return;
1353        case APIC_VIRTUAL_WIRE:
1354        case APIC_SYMMETRIC_IO:
1355                break;
1356        }
1357
1358        /* Setup local timer */
1359        x86_init.timers.setup_percpu_clockev();
1360
1361        smp_get_logical_apicid();
1362
1363        pr_info("CPU0: ");
1364        print_cpu_info(&cpu_data(0));
1365
1366        uv_system_init();
1367
1368        set_mtrr_aps_delayed_init();
1369
1370        smp_quirk_init_udelay();
1371
1372        speculative_store_bypass_ht_init();
1373}
1374
1375void arch_enable_nonboot_cpus_begin(void)
1376{
1377        set_mtrr_aps_delayed_init();
1378}
1379
1380void arch_enable_nonboot_cpus_end(void)
1381{
1382        mtrr_aps_init();
1383}
1384
1385/*
1386 * Early setup to make printk work.
1387 */
1388void __init native_smp_prepare_boot_cpu(void)
1389{
1390        int me = smp_processor_id();
1391        switch_to_new_gdt(me);
1392        /* already set me in cpu_online_mask in boot_cpu_init() */
1393        cpumask_set_cpu(me, cpu_callout_mask);
1394        cpu_set_state_online(me);
1395        native_pv_lock_init();
1396}
1397
1398void __init calculate_max_logical_packages(void)
1399{
1400        int ncpus;
1401
1402        /*
1403         * Today neither Intel nor AMD support heterogenous systems so
1404         * extrapolate the boot cpu's data to all packages.
1405         */
1406        ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1407        __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1408        pr_info("Max logical packages: %u\n", __max_logical_packages);
1409}
1410
1411void __init native_smp_cpus_done(unsigned int max_cpus)
1412{
1413        pr_debug("Boot done\n");
1414
1415        calculate_max_logical_packages();
1416
1417        if (x86_has_numa_in_package)
1418                set_sched_topology(x86_numa_in_package_topology);
1419
1420        nmi_selftest();
1421        impress_friends();
1422        mtrr_aps_init();
1423}
1424
1425static int __initdata setup_possible_cpus = -1;
1426static int __init _setup_possible_cpus(char *str)
1427{
1428        get_option(&str, &setup_possible_cpus);
1429        return 0;
1430}
1431early_param("possible_cpus", _setup_possible_cpus);
1432
1433
1434/*
1435 * cpu_possible_mask should be static, it cannot change as cpu's
1436 * are onlined, or offlined. The reason is per-cpu data-structures
1437 * are allocated by some modules at init time, and dont expect to
1438 * do this dynamically on cpu arrival/departure.
1439 * cpu_present_mask on the other hand can change dynamically.
1440 * In case when cpu_hotplug is not compiled, then we resort to current
1441 * behaviour, which is cpu_possible == cpu_present.
1442 * - Ashok Raj
1443 *
1444 * Three ways to find out the number of additional hotplug CPUs:
1445 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1446 * - The user can overwrite it with possible_cpus=NUM
1447 * - Otherwise don't reserve additional CPUs.
1448 * We do this because additional CPUs waste a lot of memory.
1449 * -AK
1450 */
1451__init void prefill_possible_map(void)
1452{
1453        int i, possible;
1454
1455        /* No boot processor was found in mptable or ACPI MADT */
1456        if (!num_processors) {
1457                if (boot_cpu_has(X86_FEATURE_APIC)) {
1458                        int apicid = boot_cpu_physical_apicid;
1459                        int cpu = hard_smp_processor_id();
1460
1461                        pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1462
1463                        /* Make sure boot cpu is enumerated */
1464                        if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1465                            apic->apic_id_valid(apicid))
1466                                generic_processor_info(apicid, boot_cpu_apic_version);
1467                }
1468
1469                if (!num_processors)
1470                        num_processors = 1;
1471        }
1472
1473        i = setup_max_cpus ?: 1;
1474        if (setup_possible_cpus == -1) {
1475                possible = num_processors;
1476#ifdef CONFIG_HOTPLUG_CPU
1477                if (setup_max_cpus)
1478                        possible += disabled_cpus;
1479#else
1480                if (possible > i)
1481                        possible = i;
1482#endif
1483        } else
1484                possible = setup_possible_cpus;
1485
1486        total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1487
1488        /* nr_cpu_ids could be reduced via nr_cpus= */
1489        if (possible > nr_cpu_ids) {
1490                pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1491                        possible, nr_cpu_ids);
1492                possible = nr_cpu_ids;
1493        }
1494
1495#ifdef CONFIG_HOTPLUG_CPU
1496        if (!setup_max_cpus)
1497#endif
1498        if (possible > i) {
1499                pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1500                        possible, setup_max_cpus);
1501                possible = i;
1502        }
1503
1504        nr_cpu_ids = possible;
1505
1506        pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1507                possible, max_t(int, possible - num_processors, 0));
1508
1509        reset_cpu_possible_mask();
1510
1511        for (i = 0; i < possible; i++)
1512                set_cpu_possible(i, true);
1513}
1514
1515#ifdef CONFIG_HOTPLUG_CPU
1516
1517/* Recompute SMT state for all CPUs on offline */
1518static void recompute_smt_state(void)
1519{
1520        int max_threads, cpu;
1521
1522        max_threads = 0;
1523        for_each_online_cpu (cpu) {
1524                int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1525
1526                if (threads > max_threads)
1527                        max_threads = threads;
1528        }
1529        __max_smt_threads = max_threads;
1530}
1531
1532static void remove_siblinginfo(int cpu)
1533{
1534        int sibling;
1535        struct cpuinfo_x86 *c = &cpu_data(cpu);
1536
1537        for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1538                cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1539                /*/
1540                 * last thread sibling in this cpu core going down
1541                 */
1542                if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1543                        cpu_data(sibling).booted_cores--;
1544        }
1545
1546        for_each_cpu(sibling, topology_die_cpumask(cpu))
1547                cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1548        for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1549                cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1550        for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1551                cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1552        cpumask_clear(cpu_llc_shared_mask(cpu));
1553        cpumask_clear(topology_sibling_cpumask(cpu));
1554        cpumask_clear(topology_core_cpumask(cpu));
1555        cpumask_clear(topology_die_cpumask(cpu));
1556        c->cpu_core_id = 0;
1557        c->booted_cores = 0;
1558        cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1559        recompute_smt_state();
1560}
1561
1562static void remove_cpu_from_maps(int cpu)
1563{
1564        set_cpu_online(cpu, false);
1565        cpumask_clear_cpu(cpu, cpu_callout_mask);
1566        cpumask_clear_cpu(cpu, cpu_callin_mask);
1567        /* was set by cpu_init() */
1568        cpumask_clear_cpu(cpu, cpu_initialized_mask);
1569        numa_remove_cpu(cpu);
1570}
1571
1572void cpu_disable_common(void)
1573{
1574        int cpu = smp_processor_id();
1575
1576        remove_siblinginfo(cpu);
1577
1578        /* It's now safe to remove this processor from the online map */
1579        lock_vector_lock();
1580        remove_cpu_from_maps(cpu);
1581        unlock_vector_lock();
1582        fixup_irqs();
1583        lapic_offline();
1584}
1585
1586int native_cpu_disable(void)
1587{
1588        int ret;
1589
1590        ret = lapic_can_unplug_cpu();
1591        if (ret)
1592                return ret;
1593
1594        /*
1595         * Disable the local APIC. Otherwise IPI broadcasts will reach
1596         * it. It still responds normally to INIT, NMI, SMI, and SIPI
1597         * messages.
1598         */
1599        apic_soft_disable();
1600        cpu_disable_common();
1601
1602        return 0;
1603}
1604
1605int common_cpu_die(unsigned int cpu)
1606{
1607        int ret = 0;
1608
1609        /* We don't do anything here: idle task is faking death itself. */
1610
1611        /* They ack this in play_dead() by setting CPU_DEAD */
1612        if (cpu_wait_death(cpu, 5)) {
1613                if (system_state == SYSTEM_RUNNING)
1614                        pr_info("CPU %u is now offline\n", cpu);
1615        } else {
1616                pr_err("CPU %u didn't die...\n", cpu);
1617                ret = -1;
1618        }
1619
1620        return ret;
1621}
1622
1623void native_cpu_die(unsigned int cpu)
1624{
1625        common_cpu_die(cpu);
1626}
1627
1628void play_dead_common(void)
1629{
1630        idle_task_exit();
1631
1632        /* Ack it */
1633        (void)cpu_report_death();
1634
1635        /*
1636         * With physical CPU hotplug, we should halt the cpu
1637         */
1638        local_irq_disable();
1639}
1640
1641static bool wakeup_cpu0(void)
1642{
1643        if (smp_processor_id() == 0 && enable_start_cpu0)
1644                return true;
1645
1646        return false;
1647}
1648
1649/*
1650 * We need to flush the caches before going to sleep, lest we have
1651 * dirty data in our caches when we come back up.
1652 */
1653static inline void mwait_play_dead(void)
1654{
1655        unsigned int eax, ebx, ecx, edx;
1656        unsigned int highest_cstate = 0;
1657        unsigned int highest_subcstate = 0;
1658        void *mwait_ptr;
1659        int i;
1660
1661        if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1662            boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1663                return;
1664        if (!this_cpu_has(X86_FEATURE_MWAIT))
1665                return;
1666        if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1667                return;
1668        if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1669                return;
1670
1671        eax = CPUID_MWAIT_LEAF;
1672        ecx = 0;
1673        native_cpuid(&eax, &ebx, &ecx, &edx);
1674
1675        /*
1676         * eax will be 0 if EDX enumeration is not valid.
1677         * Initialized below to cstate, sub_cstate value when EDX is valid.
1678         */
1679        if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1680                eax = 0;
1681        } else {
1682                edx >>= MWAIT_SUBSTATE_SIZE;
1683                for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1684                        if (edx & MWAIT_SUBSTATE_MASK) {
1685                                highest_cstate = i;
1686                                highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1687                        }
1688                }
1689                eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1690                        (highest_subcstate - 1);
1691        }
1692
1693        /*
1694         * This should be a memory location in a cache line which is
1695         * unlikely to be touched by other processors.  The actual
1696         * content is immaterial as it is not actually modified in any way.
1697         */
1698        mwait_ptr = &current_thread_info()->flags;
1699
1700        wbinvd();
1701
1702        while (1) {
1703                /*
1704                 * The CLFLUSH is a workaround for erratum AAI65 for
1705                 * the Xeon 7400 series.  It's not clear it is actually
1706                 * needed, but it should be harmless in either case.
1707                 * The WBINVD is insufficient due to the spurious-wakeup
1708                 * case where we return around the loop.
1709                 */
1710                mb();
1711                clflush(mwait_ptr);
1712                mb();
1713                __monitor(mwait_ptr, 0, 0);
1714                mb();
1715                __mwait(eax, 0);
1716                /*
1717                 * If NMI wants to wake up CPU0, start CPU0.
1718                 */
1719                if (wakeup_cpu0())
1720                        start_cpu0();
1721        }
1722}
1723
1724void hlt_play_dead(void)
1725{
1726        if (__this_cpu_read(cpu_info.x86) >= 4)
1727                wbinvd();
1728
1729        while (1) {
1730                native_halt();
1731                /*
1732                 * If NMI wants to wake up CPU0, start CPU0.
1733                 */
1734                if (wakeup_cpu0())
1735                        start_cpu0();
1736        }
1737}
1738
1739void native_play_dead(void)
1740{
1741        play_dead_common();
1742        tboot_shutdown(TB_SHUTDOWN_WFS);
1743
1744        mwait_play_dead();      /* Only returns on failure */
1745        if (cpuidle_play_dead())
1746                hlt_play_dead();
1747}
1748
1749#else /* ... !CONFIG_HOTPLUG_CPU */
1750int native_cpu_disable(void)
1751{
1752        return -ENOSYS;
1753}
1754
1755void native_cpu_die(unsigned int cpu)
1756{
1757        /* We said "no" in __cpu_disable */
1758        BUG();
1759}
1760
1761void native_play_dead(void)
1762{
1763        BUG();
1764}
1765
1766#endif
1767