linux/arch/x86/kvm/svm.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * AMD SVM support
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Authors:
  11 *   Yaniv Kamay  <yaniv@qumranet.com>
  12 *   Avi Kivity   <avi@qumranet.com>
  13 */
  14
  15#define pr_fmt(fmt) "SVM: " fmt
  16
  17#include <linux/kvm_host.h>
  18
  19#include "irq.h"
  20#include "mmu.h"
  21#include "kvm_cache_regs.h"
  22#include "x86.h"
  23#include "cpuid.h"
  24#include "pmu.h"
  25
  26#include <linux/module.h>
  27#include <linux/mod_devicetable.h>
  28#include <linux/kernel.h>
  29#include <linux/vmalloc.h>
  30#include <linux/highmem.h>
  31#include <linux/sched.h>
  32#include <linux/trace_events.h>
  33#include <linux/slab.h>
  34#include <linux/amd-iommu.h>
  35#include <linux/hashtable.h>
  36#include <linux/frame.h>
  37#include <linux/psp-sev.h>
  38#include <linux/file.h>
  39#include <linux/pagemap.h>
  40#include <linux/swap.h>
  41#include <linux/rwsem.h>
  42
  43#include <asm/apic.h>
  44#include <asm/perf_event.h>
  45#include <asm/tlbflush.h>
  46#include <asm/desc.h>
  47#include <asm/debugreg.h>
  48#include <asm/kvm_para.h>
  49#include <asm/irq_remapping.h>
  50#include <asm/spec-ctrl.h>
  51
  52#include <asm/virtext.h>
  53#include "trace.h"
  54
  55#define __ex(x) __kvm_handle_fault_on_reboot(x)
  56
  57MODULE_AUTHOR("Qumranet");
  58MODULE_LICENSE("GPL");
  59
  60static const struct x86_cpu_id svm_cpu_id[] = {
  61        X86_FEATURE_MATCH(X86_FEATURE_SVM),
  62        {}
  63};
  64MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
  65
  66#define IOPM_ALLOC_ORDER 2
  67#define MSRPM_ALLOC_ORDER 1
  68
  69#define SEG_TYPE_LDT 2
  70#define SEG_TYPE_BUSY_TSS16 3
  71
  72#define SVM_FEATURE_LBRV           (1 <<  1)
  73#define SVM_FEATURE_SVML           (1 <<  2)
  74#define SVM_FEATURE_TSC_RATE       (1 <<  4)
  75#define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
  76#define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
  77#define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
  78#define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
  79
  80#define SVM_AVIC_DOORBELL       0xc001011b
  81
  82#define NESTED_EXIT_HOST        0       /* Exit handled on host level */
  83#define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
  84#define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
  85
  86#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
  87
  88#define TSC_RATIO_RSVD          0xffffff0000000000ULL
  89#define TSC_RATIO_MIN           0x0000000000000001ULL
  90#define TSC_RATIO_MAX           0x000000ffffffffffULL
  91
  92#define AVIC_HPA_MASK   ~((0xFFFULL << 52) | 0xFFF)
  93
  94/*
  95 * 0xff is broadcast, so the max index allowed for physical APIC ID
  96 * table is 0xfe.  APIC IDs above 0xff are reserved.
  97 */
  98#define AVIC_MAX_PHYSICAL_ID_COUNT      255
  99
 100#define AVIC_UNACCEL_ACCESS_WRITE_MASK          1
 101#define AVIC_UNACCEL_ACCESS_OFFSET_MASK         0xFF0
 102#define AVIC_UNACCEL_ACCESS_VECTOR_MASK         0xFFFFFFFF
 103
 104/* AVIC GATAG is encoded using VM and VCPU IDs */
 105#define AVIC_VCPU_ID_BITS               8
 106#define AVIC_VCPU_ID_MASK               ((1 << AVIC_VCPU_ID_BITS) - 1)
 107
 108#define AVIC_VM_ID_BITS                 24
 109#define AVIC_VM_ID_NR                   (1 << AVIC_VM_ID_BITS)
 110#define AVIC_VM_ID_MASK                 ((1 << AVIC_VM_ID_BITS) - 1)
 111
 112#define AVIC_GATAG(x, y)                (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
 113                                                (y & AVIC_VCPU_ID_MASK))
 114#define AVIC_GATAG_TO_VMID(x)           ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
 115#define AVIC_GATAG_TO_VCPUID(x)         (x & AVIC_VCPU_ID_MASK)
 116
 117static bool erratum_383_found __read_mostly;
 118
 119static const u32 host_save_user_msrs[] = {
 120#ifdef CONFIG_X86_64
 121        MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
 122        MSR_FS_BASE,
 123#endif
 124        MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
 125        MSR_TSC_AUX,
 126};
 127
 128#define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
 129
 130struct kvm_sev_info {
 131        bool active;            /* SEV enabled guest */
 132        unsigned int asid;      /* ASID used for this guest */
 133        unsigned int handle;    /* SEV firmware handle */
 134        int fd;                 /* SEV device fd */
 135        unsigned long pages_locked; /* Number of pages locked */
 136        struct list_head regions_list;  /* List of registered regions */
 137};
 138
 139struct kvm_svm {
 140        struct kvm kvm;
 141
 142        /* Struct members for AVIC */
 143        u32 avic_vm_id;
 144        struct page *avic_logical_id_table_page;
 145        struct page *avic_physical_id_table_page;
 146        struct hlist_node hnode;
 147
 148        struct kvm_sev_info sev_info;
 149};
 150
 151struct kvm_vcpu;
 152
 153struct nested_state {
 154        struct vmcb *hsave;
 155        u64 hsave_msr;
 156        u64 vm_cr_msr;
 157        u64 vmcb;
 158
 159        /* These are the merged vectors */
 160        u32 *msrpm;
 161
 162        /* gpa pointers to the real vectors */
 163        u64 vmcb_msrpm;
 164        u64 vmcb_iopm;
 165
 166        /* A VMEXIT is required but not yet emulated */
 167        bool exit_required;
 168
 169        /* cache for intercepts of the guest */
 170        u32 intercept_cr;
 171        u32 intercept_dr;
 172        u32 intercept_exceptions;
 173        u64 intercept;
 174
 175        /* Nested Paging related state */
 176        u64 nested_cr3;
 177};
 178
 179#define MSRPM_OFFSETS   16
 180static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
 181
 182/*
 183 * Set osvw_len to higher value when updated Revision Guides
 184 * are published and we know what the new status bits are
 185 */
 186static uint64_t osvw_len = 4, osvw_status;
 187
 188struct vcpu_svm {
 189        struct kvm_vcpu vcpu;
 190        struct vmcb *vmcb;
 191        unsigned long vmcb_pa;
 192        struct svm_cpu_data *svm_data;
 193        uint64_t asid_generation;
 194        uint64_t sysenter_esp;
 195        uint64_t sysenter_eip;
 196        uint64_t tsc_aux;
 197
 198        u64 msr_decfg;
 199
 200        u64 next_rip;
 201
 202        u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
 203        struct {
 204                u16 fs;
 205                u16 gs;
 206                u16 ldt;
 207                u64 gs_base;
 208        } host;
 209
 210        u64 spec_ctrl;
 211        /*
 212         * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
 213         * translated into the appropriate L2_CFG bits on the host to
 214         * perform speculative control.
 215         */
 216        u64 virt_spec_ctrl;
 217
 218        u32 *msrpm;
 219
 220        ulong nmi_iret_rip;
 221
 222        struct nested_state nested;
 223
 224        bool nmi_singlestep;
 225        u64 nmi_singlestep_guest_rflags;
 226
 227        unsigned int3_injected;
 228        unsigned long int3_rip;
 229
 230        /* cached guest cpuid flags for faster access */
 231        bool nrips_enabled      : 1;
 232
 233        u32 ldr_reg;
 234        u32 dfr_reg;
 235        struct page *avic_backing_page;
 236        u64 *avic_physical_id_cache;
 237        bool avic_is_running;
 238
 239        /*
 240         * Per-vcpu list of struct amd_svm_iommu_ir:
 241         * This is used mainly to store interrupt remapping information used
 242         * when update the vcpu affinity. This avoids the need to scan for
 243         * IRTE and try to match ga_tag in the IOMMU driver.
 244         */
 245        struct list_head ir_list;
 246        spinlock_t ir_list_lock;
 247
 248        /* which host CPU was used for running this vcpu */
 249        unsigned int last_cpu;
 250};
 251
 252/*
 253 * This is a wrapper of struct amd_iommu_ir_data.
 254 */
 255struct amd_svm_iommu_ir {
 256        struct list_head node;  /* Used by SVM for per-vcpu ir_list */
 257        void *data;             /* Storing pointer to struct amd_ir_data */
 258};
 259
 260#define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK    (0xFF)
 261#define AVIC_LOGICAL_ID_ENTRY_VALID_BIT                 31
 262#define AVIC_LOGICAL_ID_ENTRY_VALID_MASK                (1 << 31)
 263
 264#define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK    (0xFFULL)
 265#define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK        (0xFFFFFFFFFFULL << 12)
 266#define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK          (1ULL << 62)
 267#define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK               (1ULL << 63)
 268
 269static DEFINE_PER_CPU(u64, current_tsc_ratio);
 270#define TSC_RATIO_DEFAULT       0x0100000000ULL
 271
 272#define MSR_INVALID                     0xffffffffU
 273
 274static const struct svm_direct_access_msrs {
 275        u32 index;   /* Index of the MSR */
 276        bool always; /* True if intercept is always on */
 277} direct_access_msrs[] = {
 278        { .index = MSR_STAR,                            .always = true  },
 279        { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
 280#ifdef CONFIG_X86_64
 281        { .index = MSR_GS_BASE,                         .always = true  },
 282        { .index = MSR_FS_BASE,                         .always = true  },
 283        { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
 284        { .index = MSR_LSTAR,                           .always = true  },
 285        { .index = MSR_CSTAR,                           .always = true  },
 286        { .index = MSR_SYSCALL_MASK,                    .always = true  },
 287#endif
 288        { .index = MSR_IA32_SPEC_CTRL,                  .always = false },
 289        { .index = MSR_IA32_PRED_CMD,                   .always = false },
 290        { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
 291        { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
 292        { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
 293        { .index = MSR_IA32_LASTINTTOIP,                .always = false },
 294        { .index = MSR_INVALID,                         .always = false },
 295};
 296
 297/* enable NPT for AMD64 and X86 with PAE */
 298#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
 299static bool npt_enabled = true;
 300#else
 301static bool npt_enabled;
 302#endif
 303
 304/*
 305 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
 306 * pause_filter_count: On processors that support Pause filtering(indicated
 307 *      by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
 308 *      count value. On VMRUN this value is loaded into an internal counter.
 309 *      Each time a pause instruction is executed, this counter is decremented
 310 *      until it reaches zero at which time a #VMEXIT is generated if pause
 311 *      intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
 312 *      Intercept Filtering for more details.
 313 *      This also indicate if ple logic enabled.
 314 *
 315 * pause_filter_thresh: In addition, some processor families support advanced
 316 *      pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
 317 *      the amount of time a guest is allowed to execute in a pause loop.
 318 *      In this mode, a 16-bit pause filter threshold field is added in the
 319 *      VMCB. The threshold value is a cycle count that is used to reset the
 320 *      pause counter. As with simple pause filtering, VMRUN loads the pause
 321 *      count value from VMCB into an internal counter. Then, on each pause
 322 *      instruction the hardware checks the elapsed number of cycles since
 323 *      the most recent pause instruction against the pause filter threshold.
 324 *      If the elapsed cycle count is greater than the pause filter threshold,
 325 *      then the internal pause count is reloaded from the VMCB and execution
 326 *      continues. If the elapsed cycle count is less than the pause filter
 327 *      threshold, then the internal pause count is decremented. If the count
 328 *      value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
 329 *      triggered. If advanced pause filtering is supported and pause filter
 330 *      threshold field is set to zero, the filter will operate in the simpler,
 331 *      count only mode.
 332 */
 333
 334static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
 335module_param(pause_filter_thresh, ushort, 0444);
 336
 337static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
 338module_param(pause_filter_count, ushort, 0444);
 339
 340/* Default doubles per-vcpu window every exit. */
 341static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
 342module_param(pause_filter_count_grow, ushort, 0444);
 343
 344/* Default resets per-vcpu window every exit to pause_filter_count. */
 345static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
 346module_param(pause_filter_count_shrink, ushort, 0444);
 347
 348/* Default is to compute the maximum so we can never overflow. */
 349static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
 350module_param(pause_filter_count_max, ushort, 0444);
 351
 352/* allow nested paging (virtualized MMU) for all guests */
 353static int npt = true;
 354module_param(npt, int, S_IRUGO);
 355
 356/* allow nested virtualization in KVM/SVM */
 357static int nested = true;
 358module_param(nested, int, S_IRUGO);
 359
 360/* enable / disable AVIC */
 361static int avic;
 362#ifdef CONFIG_X86_LOCAL_APIC
 363module_param(avic, int, S_IRUGO);
 364#endif
 365
 366/* enable/disable Next RIP Save */
 367static int nrips = true;
 368module_param(nrips, int, 0444);
 369
 370/* enable/disable Virtual VMLOAD VMSAVE */
 371static int vls = true;
 372module_param(vls, int, 0444);
 373
 374/* enable/disable Virtual GIF */
 375static int vgif = true;
 376module_param(vgif, int, 0444);
 377
 378/* enable/disable SEV support */
 379static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
 380module_param(sev, int, 0444);
 381
 382static bool __read_mostly dump_invalid_vmcb = 0;
 383module_param(dump_invalid_vmcb, bool, 0644);
 384
 385static u8 rsm_ins_bytes[] = "\x0f\xaa";
 386
 387static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
 388static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
 389static void svm_complete_interrupts(struct vcpu_svm *svm);
 390
 391static int nested_svm_exit_handled(struct vcpu_svm *svm);
 392static int nested_svm_intercept(struct vcpu_svm *svm);
 393static int nested_svm_vmexit(struct vcpu_svm *svm);
 394static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
 395                                      bool has_error_code, u32 error_code);
 396
 397enum {
 398        VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
 399                            pause filter count */
 400        VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
 401        VMCB_ASID,       /* ASID */
 402        VMCB_INTR,       /* int_ctl, int_vector */
 403        VMCB_NPT,        /* npt_en, nCR3, gPAT */
 404        VMCB_CR,         /* CR0, CR3, CR4, EFER */
 405        VMCB_DR,         /* DR6, DR7 */
 406        VMCB_DT,         /* GDT, IDT */
 407        VMCB_SEG,        /* CS, DS, SS, ES, CPL */
 408        VMCB_CR2,        /* CR2 only */
 409        VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
 410        VMCB_AVIC,       /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
 411                          * AVIC PHYSICAL_TABLE pointer,
 412                          * AVIC LOGICAL_TABLE pointer
 413                          */
 414        VMCB_DIRTY_MAX,
 415};
 416
 417/* TPR and CR2 are always written before VMRUN */
 418#define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
 419
 420#define VMCB_AVIC_APIC_BAR_MASK         0xFFFFFFFFFF000ULL
 421
 422static int sev_flush_asids(void);
 423static DECLARE_RWSEM(sev_deactivate_lock);
 424static DEFINE_MUTEX(sev_bitmap_lock);
 425static unsigned int max_sev_asid;
 426static unsigned int min_sev_asid;
 427static unsigned long *sev_asid_bitmap;
 428static unsigned long *sev_reclaim_asid_bitmap;
 429#define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
 430
 431struct enc_region {
 432        struct list_head list;
 433        unsigned long npages;
 434        struct page **pages;
 435        unsigned long uaddr;
 436        unsigned long size;
 437};
 438
 439
 440static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
 441{
 442        return container_of(kvm, struct kvm_svm, kvm);
 443}
 444
 445static inline bool svm_sev_enabled(void)
 446{
 447        return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
 448}
 449
 450static inline bool sev_guest(struct kvm *kvm)
 451{
 452#ifdef CONFIG_KVM_AMD_SEV
 453        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 454
 455        return sev->active;
 456#else
 457        return false;
 458#endif
 459}
 460
 461static inline int sev_get_asid(struct kvm *kvm)
 462{
 463        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 464
 465        return sev->asid;
 466}
 467
 468static inline void mark_all_dirty(struct vmcb *vmcb)
 469{
 470        vmcb->control.clean = 0;
 471}
 472
 473static inline void mark_all_clean(struct vmcb *vmcb)
 474{
 475        vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
 476                               & ~VMCB_ALWAYS_DIRTY_MASK;
 477}
 478
 479static inline void mark_dirty(struct vmcb *vmcb, int bit)
 480{
 481        vmcb->control.clean &= ~(1 << bit);
 482}
 483
 484static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
 485{
 486        return container_of(vcpu, struct vcpu_svm, vcpu);
 487}
 488
 489static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
 490{
 491        svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
 492        mark_dirty(svm->vmcb, VMCB_AVIC);
 493}
 494
 495static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
 496{
 497        struct vcpu_svm *svm = to_svm(vcpu);
 498        u64 *entry = svm->avic_physical_id_cache;
 499
 500        if (!entry)
 501                return false;
 502
 503        return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
 504}
 505
 506static void recalc_intercepts(struct vcpu_svm *svm)
 507{
 508        struct vmcb_control_area *c, *h;
 509        struct nested_state *g;
 510
 511        mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
 512
 513        if (!is_guest_mode(&svm->vcpu))
 514                return;
 515
 516        c = &svm->vmcb->control;
 517        h = &svm->nested.hsave->control;
 518        g = &svm->nested;
 519
 520        c->intercept_cr = h->intercept_cr | g->intercept_cr;
 521        c->intercept_dr = h->intercept_dr | g->intercept_dr;
 522        c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
 523        c->intercept = h->intercept | g->intercept;
 524}
 525
 526static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
 527{
 528        if (is_guest_mode(&svm->vcpu))
 529                return svm->nested.hsave;
 530        else
 531                return svm->vmcb;
 532}
 533
 534static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
 535{
 536        struct vmcb *vmcb = get_host_vmcb(svm);
 537
 538        vmcb->control.intercept_cr |= (1U << bit);
 539
 540        recalc_intercepts(svm);
 541}
 542
 543static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
 544{
 545        struct vmcb *vmcb = get_host_vmcb(svm);
 546
 547        vmcb->control.intercept_cr &= ~(1U << bit);
 548
 549        recalc_intercepts(svm);
 550}
 551
 552static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
 553{
 554        struct vmcb *vmcb = get_host_vmcb(svm);
 555
 556        return vmcb->control.intercept_cr & (1U << bit);
 557}
 558
 559static inline void set_dr_intercepts(struct vcpu_svm *svm)
 560{
 561        struct vmcb *vmcb = get_host_vmcb(svm);
 562
 563        vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
 564                | (1 << INTERCEPT_DR1_READ)
 565                | (1 << INTERCEPT_DR2_READ)
 566                | (1 << INTERCEPT_DR3_READ)
 567                | (1 << INTERCEPT_DR4_READ)
 568                | (1 << INTERCEPT_DR5_READ)
 569                | (1 << INTERCEPT_DR6_READ)
 570                | (1 << INTERCEPT_DR7_READ)
 571                | (1 << INTERCEPT_DR0_WRITE)
 572                | (1 << INTERCEPT_DR1_WRITE)
 573                | (1 << INTERCEPT_DR2_WRITE)
 574                | (1 << INTERCEPT_DR3_WRITE)
 575                | (1 << INTERCEPT_DR4_WRITE)
 576                | (1 << INTERCEPT_DR5_WRITE)
 577                | (1 << INTERCEPT_DR6_WRITE)
 578                | (1 << INTERCEPT_DR7_WRITE);
 579
 580        recalc_intercepts(svm);
 581}
 582
 583static inline void clr_dr_intercepts(struct vcpu_svm *svm)
 584{
 585        struct vmcb *vmcb = get_host_vmcb(svm);
 586
 587        vmcb->control.intercept_dr = 0;
 588
 589        recalc_intercepts(svm);
 590}
 591
 592static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
 593{
 594        struct vmcb *vmcb = get_host_vmcb(svm);
 595
 596        vmcb->control.intercept_exceptions |= (1U << bit);
 597
 598        recalc_intercepts(svm);
 599}
 600
 601static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
 602{
 603        struct vmcb *vmcb = get_host_vmcb(svm);
 604
 605        vmcb->control.intercept_exceptions &= ~(1U << bit);
 606
 607        recalc_intercepts(svm);
 608}
 609
 610static inline void set_intercept(struct vcpu_svm *svm, int bit)
 611{
 612        struct vmcb *vmcb = get_host_vmcb(svm);
 613
 614        vmcb->control.intercept |= (1ULL << bit);
 615
 616        recalc_intercepts(svm);
 617}
 618
 619static inline void clr_intercept(struct vcpu_svm *svm, int bit)
 620{
 621        struct vmcb *vmcb = get_host_vmcb(svm);
 622
 623        vmcb->control.intercept &= ~(1ULL << bit);
 624
 625        recalc_intercepts(svm);
 626}
 627
 628static inline bool vgif_enabled(struct vcpu_svm *svm)
 629{
 630        return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
 631}
 632
 633static inline void enable_gif(struct vcpu_svm *svm)
 634{
 635        if (vgif_enabled(svm))
 636                svm->vmcb->control.int_ctl |= V_GIF_MASK;
 637        else
 638                svm->vcpu.arch.hflags |= HF_GIF_MASK;
 639}
 640
 641static inline void disable_gif(struct vcpu_svm *svm)
 642{
 643        if (vgif_enabled(svm))
 644                svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
 645        else
 646                svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
 647}
 648
 649static inline bool gif_set(struct vcpu_svm *svm)
 650{
 651        if (vgif_enabled(svm))
 652                return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
 653        else
 654                return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
 655}
 656
 657static unsigned long iopm_base;
 658
 659struct kvm_ldttss_desc {
 660        u16 limit0;
 661        u16 base0;
 662        unsigned base1:8, type:5, dpl:2, p:1;
 663        unsigned limit1:4, zero0:3, g:1, base2:8;
 664        u32 base3;
 665        u32 zero1;
 666} __attribute__((packed));
 667
 668struct svm_cpu_data {
 669        int cpu;
 670
 671        u64 asid_generation;
 672        u32 max_asid;
 673        u32 next_asid;
 674        u32 min_asid;
 675        struct kvm_ldttss_desc *tss_desc;
 676
 677        struct page *save_area;
 678        struct vmcb *current_vmcb;
 679
 680        /* index = sev_asid, value = vmcb pointer */
 681        struct vmcb **sev_vmcbs;
 682};
 683
 684static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
 685
 686static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
 687
 688#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
 689#define MSRS_RANGE_SIZE 2048
 690#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
 691
 692static u32 svm_msrpm_offset(u32 msr)
 693{
 694        u32 offset;
 695        int i;
 696
 697        for (i = 0; i < NUM_MSR_MAPS; i++) {
 698                if (msr < msrpm_ranges[i] ||
 699                    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
 700                        continue;
 701
 702                offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
 703                offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
 704
 705                /* Now we have the u8 offset - but need the u32 offset */
 706                return offset / 4;
 707        }
 708
 709        /* MSR not in any range */
 710        return MSR_INVALID;
 711}
 712
 713#define MAX_INST_SIZE 15
 714
 715static inline void clgi(void)
 716{
 717        asm volatile (__ex("clgi"));
 718}
 719
 720static inline void stgi(void)
 721{
 722        asm volatile (__ex("stgi"));
 723}
 724
 725static inline void invlpga(unsigned long addr, u32 asid)
 726{
 727        asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
 728}
 729
 730static int get_npt_level(struct kvm_vcpu *vcpu)
 731{
 732#ifdef CONFIG_X86_64
 733        return PT64_ROOT_4LEVEL;
 734#else
 735        return PT32E_ROOT_LEVEL;
 736#endif
 737}
 738
 739static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
 740{
 741        vcpu->arch.efer = efer;
 742
 743        if (!npt_enabled) {
 744                /* Shadow paging assumes NX to be available.  */
 745                efer |= EFER_NX;
 746
 747                if (!(efer & EFER_LMA))
 748                        efer &= ~EFER_LME;
 749        }
 750
 751        to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
 752        mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
 753}
 754
 755static int is_external_interrupt(u32 info)
 756{
 757        info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
 758        return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
 759}
 760
 761static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
 762{
 763        struct vcpu_svm *svm = to_svm(vcpu);
 764        u32 ret = 0;
 765
 766        if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
 767                ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
 768        return ret;
 769}
 770
 771static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
 772{
 773        struct vcpu_svm *svm = to_svm(vcpu);
 774
 775        if (mask == 0)
 776                svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
 777        else
 778                svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
 779
 780}
 781
 782static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
 783{
 784        struct vcpu_svm *svm = to_svm(vcpu);
 785
 786        if (nrips && svm->vmcb->control.next_rip != 0) {
 787                WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
 788                svm->next_rip = svm->vmcb->control.next_rip;
 789        }
 790
 791        if (!svm->next_rip) {
 792                if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
 793                        return 0;
 794        } else {
 795                if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
 796                        pr_err("%s: ip 0x%lx next 0x%llx\n",
 797                               __func__, kvm_rip_read(vcpu), svm->next_rip);
 798                kvm_rip_write(vcpu, svm->next_rip);
 799        }
 800        svm_set_interrupt_shadow(vcpu, 0);
 801
 802        return 1;
 803}
 804
 805static void svm_queue_exception(struct kvm_vcpu *vcpu)
 806{
 807        struct vcpu_svm *svm = to_svm(vcpu);
 808        unsigned nr = vcpu->arch.exception.nr;
 809        bool has_error_code = vcpu->arch.exception.has_error_code;
 810        bool reinject = vcpu->arch.exception.injected;
 811        u32 error_code = vcpu->arch.exception.error_code;
 812
 813        /*
 814         * If we are within a nested VM we'd better #VMEXIT and let the guest
 815         * handle the exception
 816         */
 817        if (!reinject &&
 818            nested_svm_check_exception(svm, nr, has_error_code, error_code))
 819                return;
 820
 821        kvm_deliver_exception_payload(&svm->vcpu);
 822
 823        if (nr == BP_VECTOR && !nrips) {
 824                unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
 825
 826                /*
 827                 * For guest debugging where we have to reinject #BP if some
 828                 * INT3 is guest-owned:
 829                 * Emulate nRIP by moving RIP forward. Will fail if injection
 830                 * raises a fault that is not intercepted. Still better than
 831                 * failing in all cases.
 832                 */
 833                (void)skip_emulated_instruction(&svm->vcpu);
 834                rip = kvm_rip_read(&svm->vcpu);
 835                svm->int3_rip = rip + svm->vmcb->save.cs.base;
 836                svm->int3_injected = rip - old_rip;
 837        }
 838
 839        svm->vmcb->control.event_inj = nr
 840                | SVM_EVTINJ_VALID
 841                | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
 842                | SVM_EVTINJ_TYPE_EXEPT;
 843        svm->vmcb->control.event_inj_err = error_code;
 844}
 845
 846static void svm_init_erratum_383(void)
 847{
 848        u32 low, high;
 849        int err;
 850        u64 val;
 851
 852        if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
 853                return;
 854
 855        /* Use _safe variants to not break nested virtualization */
 856        val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
 857        if (err)
 858                return;
 859
 860        val |= (1ULL << 47);
 861
 862        low  = lower_32_bits(val);
 863        high = upper_32_bits(val);
 864
 865        native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
 866
 867        erratum_383_found = true;
 868}
 869
 870static void svm_init_osvw(struct kvm_vcpu *vcpu)
 871{
 872        /*
 873         * Guests should see errata 400 and 415 as fixed (assuming that
 874         * HLT and IO instructions are intercepted).
 875         */
 876        vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
 877        vcpu->arch.osvw.status = osvw_status & ~(6ULL);
 878
 879        /*
 880         * By increasing VCPU's osvw.length to 3 we are telling the guest that
 881         * all osvw.status bits inside that length, including bit 0 (which is
 882         * reserved for erratum 298), are valid. However, if host processor's
 883         * osvw_len is 0 then osvw_status[0] carries no information. We need to
 884         * be conservative here and therefore we tell the guest that erratum 298
 885         * is present (because we really don't know).
 886         */
 887        if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
 888                vcpu->arch.osvw.status |= 1;
 889}
 890
 891static int has_svm(void)
 892{
 893        const char *msg;
 894
 895        if (!cpu_has_svm(&msg)) {
 896                printk(KERN_INFO "has_svm: %s\n", msg);
 897                return 0;
 898        }
 899
 900        return 1;
 901}
 902
 903static void svm_hardware_disable(void)
 904{
 905        /* Make sure we clean up behind us */
 906        if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
 907                wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
 908
 909        cpu_svm_disable();
 910
 911        amd_pmu_disable_virt();
 912}
 913
 914static int svm_hardware_enable(void)
 915{
 916
 917        struct svm_cpu_data *sd;
 918        uint64_t efer;
 919        struct desc_struct *gdt;
 920        int me = raw_smp_processor_id();
 921
 922        rdmsrl(MSR_EFER, efer);
 923        if (efer & EFER_SVME)
 924                return -EBUSY;
 925
 926        if (!has_svm()) {
 927                pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
 928                return -EINVAL;
 929        }
 930        sd = per_cpu(svm_data, me);
 931        if (!sd) {
 932                pr_err("%s: svm_data is NULL on %d\n", __func__, me);
 933                return -EINVAL;
 934        }
 935
 936        sd->asid_generation = 1;
 937        sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
 938        sd->next_asid = sd->max_asid + 1;
 939        sd->min_asid = max_sev_asid + 1;
 940
 941        gdt = get_current_gdt_rw();
 942        sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
 943
 944        wrmsrl(MSR_EFER, efer | EFER_SVME);
 945
 946        wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
 947
 948        if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
 949                wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
 950                __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
 951        }
 952
 953
 954        /*
 955         * Get OSVW bits.
 956         *
 957         * Note that it is possible to have a system with mixed processor
 958         * revisions and therefore different OSVW bits. If bits are not the same
 959         * on different processors then choose the worst case (i.e. if erratum
 960         * is present on one processor and not on another then assume that the
 961         * erratum is present everywhere).
 962         */
 963        if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
 964                uint64_t len, status = 0;
 965                int err;
 966
 967                len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
 968                if (!err)
 969                        status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
 970                                                      &err);
 971
 972                if (err)
 973                        osvw_status = osvw_len = 0;
 974                else {
 975                        if (len < osvw_len)
 976                                osvw_len = len;
 977                        osvw_status |= status;
 978                        osvw_status &= (1ULL << osvw_len) - 1;
 979                }
 980        } else
 981                osvw_status = osvw_len = 0;
 982
 983        svm_init_erratum_383();
 984
 985        amd_pmu_enable_virt();
 986
 987        return 0;
 988}
 989
 990static void svm_cpu_uninit(int cpu)
 991{
 992        struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
 993
 994        if (!sd)
 995                return;
 996
 997        per_cpu(svm_data, raw_smp_processor_id()) = NULL;
 998        kfree(sd->sev_vmcbs);
 999        __free_page(sd->save_area);
1000        kfree(sd);
1001}
1002
1003static int svm_cpu_init(int cpu)
1004{
1005        struct svm_cpu_data *sd;
1006        int r;
1007
1008        sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
1009        if (!sd)
1010                return -ENOMEM;
1011        sd->cpu = cpu;
1012        r = -ENOMEM;
1013        sd->save_area = alloc_page(GFP_KERNEL);
1014        if (!sd->save_area)
1015                goto err_1;
1016
1017        if (svm_sev_enabled()) {
1018                r = -ENOMEM;
1019                sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
1020                                              sizeof(void *),
1021                                              GFP_KERNEL);
1022                if (!sd->sev_vmcbs)
1023                        goto err_1;
1024        }
1025
1026        per_cpu(svm_data, cpu) = sd;
1027
1028        return 0;
1029
1030err_1:
1031        kfree(sd);
1032        return r;
1033
1034}
1035
1036static bool valid_msr_intercept(u32 index)
1037{
1038        int i;
1039
1040        for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
1041                if (direct_access_msrs[i].index == index)
1042                        return true;
1043
1044        return false;
1045}
1046
1047static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
1048{
1049        u8 bit_write;
1050        unsigned long tmp;
1051        u32 offset;
1052        u32 *msrpm;
1053
1054        msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
1055                                      to_svm(vcpu)->msrpm;
1056
1057        offset    = svm_msrpm_offset(msr);
1058        bit_write = 2 * (msr & 0x0f) + 1;
1059        tmp       = msrpm[offset];
1060
1061        BUG_ON(offset == MSR_INVALID);
1062
1063        return !!test_bit(bit_write,  &tmp);
1064}
1065
1066static void set_msr_interception(u32 *msrpm, unsigned msr,
1067                                 int read, int write)
1068{
1069        u8 bit_read, bit_write;
1070        unsigned long tmp;
1071        u32 offset;
1072
1073        /*
1074         * If this warning triggers extend the direct_access_msrs list at the
1075         * beginning of the file
1076         */
1077        WARN_ON(!valid_msr_intercept(msr));
1078
1079        offset    = svm_msrpm_offset(msr);
1080        bit_read  = 2 * (msr & 0x0f);
1081        bit_write = 2 * (msr & 0x0f) + 1;
1082        tmp       = msrpm[offset];
1083
1084        BUG_ON(offset == MSR_INVALID);
1085
1086        read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
1087        write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
1088
1089        msrpm[offset] = tmp;
1090}
1091
1092static void svm_vcpu_init_msrpm(u32 *msrpm)
1093{
1094        int i;
1095
1096        memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1097
1098        for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1099                if (!direct_access_msrs[i].always)
1100                        continue;
1101
1102                set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1103        }
1104}
1105
1106static void add_msr_offset(u32 offset)
1107{
1108        int i;
1109
1110        for (i = 0; i < MSRPM_OFFSETS; ++i) {
1111
1112                /* Offset already in list? */
1113                if (msrpm_offsets[i] == offset)
1114                        return;
1115
1116                /* Slot used by another offset? */
1117                if (msrpm_offsets[i] != MSR_INVALID)
1118                        continue;
1119
1120                /* Add offset to list */
1121                msrpm_offsets[i] = offset;
1122
1123                return;
1124        }
1125
1126        /*
1127         * If this BUG triggers the msrpm_offsets table has an overflow. Just
1128         * increase MSRPM_OFFSETS in this case.
1129         */
1130        BUG();
1131}
1132
1133static void init_msrpm_offsets(void)
1134{
1135        int i;
1136
1137        memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1138
1139        for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1140                u32 offset;
1141
1142                offset = svm_msrpm_offset(direct_access_msrs[i].index);
1143                BUG_ON(offset == MSR_INVALID);
1144
1145                add_msr_offset(offset);
1146        }
1147}
1148
1149static void svm_enable_lbrv(struct vcpu_svm *svm)
1150{
1151        u32 *msrpm = svm->msrpm;
1152
1153        svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1154        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1155        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1156        set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1157        set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1158}
1159
1160static void svm_disable_lbrv(struct vcpu_svm *svm)
1161{
1162        u32 *msrpm = svm->msrpm;
1163
1164        svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1165        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1166        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1167        set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1168        set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1169}
1170
1171static void disable_nmi_singlestep(struct vcpu_svm *svm)
1172{
1173        svm->nmi_singlestep = false;
1174
1175        if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1176                /* Clear our flags if they were not set by the guest */
1177                if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1178                        svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1179                if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1180                        svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1181        }
1182}
1183
1184/* Note:
1185 * This hash table is used to map VM_ID to a struct kvm_svm,
1186 * when handling AMD IOMMU GALOG notification to schedule in
1187 * a particular vCPU.
1188 */
1189#define SVM_VM_DATA_HASH_BITS   8
1190static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1191static u32 next_vm_id = 0;
1192static bool next_vm_id_wrapped = 0;
1193static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1194
1195/* Note:
1196 * This function is called from IOMMU driver to notify
1197 * SVM to schedule in a particular vCPU of a particular VM.
1198 */
1199static int avic_ga_log_notifier(u32 ga_tag)
1200{
1201        unsigned long flags;
1202        struct kvm_svm *kvm_svm;
1203        struct kvm_vcpu *vcpu = NULL;
1204        u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1205        u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1206
1207        pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1208
1209        spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1210        hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
1211                if (kvm_svm->avic_vm_id != vm_id)
1212                        continue;
1213                vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
1214                break;
1215        }
1216        spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1217
1218        /* Note:
1219         * At this point, the IOMMU should have already set the pending
1220         * bit in the vAPIC backing page. So, we just need to schedule
1221         * in the vcpu.
1222         */
1223        if (vcpu)
1224                kvm_vcpu_wake_up(vcpu);
1225
1226        return 0;
1227}
1228
1229static __init int sev_hardware_setup(void)
1230{
1231        struct sev_user_data_status *status;
1232        int rc;
1233
1234        /* Maximum number of encrypted guests supported simultaneously */
1235        max_sev_asid = cpuid_ecx(0x8000001F);
1236
1237        if (!max_sev_asid)
1238                return 1;
1239
1240        /* Minimum ASID value that should be used for SEV guest */
1241        min_sev_asid = cpuid_edx(0x8000001F);
1242
1243        /* Initialize SEV ASID bitmaps */
1244        sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1245        if (!sev_asid_bitmap)
1246                return 1;
1247
1248        sev_reclaim_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1249        if (!sev_reclaim_asid_bitmap)
1250                return 1;
1251
1252        status = kmalloc(sizeof(*status), GFP_KERNEL);
1253        if (!status)
1254                return 1;
1255
1256        /*
1257         * Check SEV platform status.
1258         *
1259         * PLATFORM_STATUS can be called in any state, if we failed to query
1260         * the PLATFORM status then either PSP firmware does not support SEV
1261         * feature or SEV firmware is dead.
1262         */
1263        rc = sev_platform_status(status, NULL);
1264        if (rc)
1265                goto err;
1266
1267        pr_info("SEV supported\n");
1268
1269err:
1270        kfree(status);
1271        return rc;
1272}
1273
1274static void grow_ple_window(struct kvm_vcpu *vcpu)
1275{
1276        struct vcpu_svm *svm = to_svm(vcpu);
1277        struct vmcb_control_area *control = &svm->vmcb->control;
1278        int old = control->pause_filter_count;
1279
1280        control->pause_filter_count = __grow_ple_window(old,
1281                                                        pause_filter_count,
1282                                                        pause_filter_count_grow,
1283                                                        pause_filter_count_max);
1284
1285        if (control->pause_filter_count != old) {
1286                mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1287                trace_kvm_ple_window_update(vcpu->vcpu_id,
1288                                            control->pause_filter_count, old);
1289        }
1290}
1291
1292static void shrink_ple_window(struct kvm_vcpu *vcpu)
1293{
1294        struct vcpu_svm *svm = to_svm(vcpu);
1295        struct vmcb_control_area *control = &svm->vmcb->control;
1296        int old = control->pause_filter_count;
1297
1298        control->pause_filter_count =
1299                                __shrink_ple_window(old,
1300                                                    pause_filter_count,
1301                                                    pause_filter_count_shrink,
1302                                                    pause_filter_count);
1303        if (control->pause_filter_count != old) {
1304                mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1305                trace_kvm_ple_window_update(vcpu->vcpu_id,
1306                                            control->pause_filter_count, old);
1307        }
1308}
1309
1310static __init int svm_hardware_setup(void)
1311{
1312        int cpu;
1313        struct page *iopm_pages;
1314        void *iopm_va;
1315        int r;
1316
1317        iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1318
1319        if (!iopm_pages)
1320                return -ENOMEM;
1321
1322        iopm_va = page_address(iopm_pages);
1323        memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1324        iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1325
1326        init_msrpm_offsets();
1327
1328        if (boot_cpu_has(X86_FEATURE_NX))
1329                kvm_enable_efer_bits(EFER_NX);
1330
1331        if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1332                kvm_enable_efer_bits(EFER_FFXSR);
1333
1334        if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1335                kvm_has_tsc_control = true;
1336                kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1337                kvm_tsc_scaling_ratio_frac_bits = 32;
1338        }
1339
1340        /* Check for pause filtering support */
1341        if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1342                pause_filter_count = 0;
1343                pause_filter_thresh = 0;
1344        } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1345                pause_filter_thresh = 0;
1346        }
1347
1348        if (nested) {
1349                printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1350                kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1351        }
1352
1353        if (sev) {
1354                if (boot_cpu_has(X86_FEATURE_SEV) &&
1355                    IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1356                        r = sev_hardware_setup();
1357                        if (r)
1358                                sev = false;
1359                } else {
1360                        sev = false;
1361                }
1362        }
1363
1364        for_each_possible_cpu(cpu) {
1365                r = svm_cpu_init(cpu);
1366                if (r)
1367                        goto err;
1368        }
1369
1370        if (!boot_cpu_has(X86_FEATURE_NPT))
1371                npt_enabled = false;
1372
1373        if (npt_enabled && !npt) {
1374                printk(KERN_INFO "kvm: Nested Paging disabled\n");
1375                npt_enabled = false;
1376        }
1377
1378        if (npt_enabled) {
1379                printk(KERN_INFO "kvm: Nested Paging enabled\n");
1380                kvm_enable_tdp();
1381        } else
1382                kvm_disable_tdp();
1383
1384        if (nrips) {
1385                if (!boot_cpu_has(X86_FEATURE_NRIPS))
1386                        nrips = false;
1387        }
1388
1389        if (avic) {
1390                if (!npt_enabled ||
1391                    !boot_cpu_has(X86_FEATURE_AVIC) ||
1392                    !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1393                        avic = false;
1394                } else {
1395                        pr_info("AVIC enabled\n");
1396
1397                        amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1398                }
1399        }
1400
1401        if (vls) {
1402                if (!npt_enabled ||
1403                    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1404                    !IS_ENABLED(CONFIG_X86_64)) {
1405                        vls = false;
1406                } else {
1407                        pr_info("Virtual VMLOAD VMSAVE supported\n");
1408                }
1409        }
1410
1411        if (vgif) {
1412                if (!boot_cpu_has(X86_FEATURE_VGIF))
1413                        vgif = false;
1414                else
1415                        pr_info("Virtual GIF supported\n");
1416        }
1417
1418        return 0;
1419
1420err:
1421        __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1422        iopm_base = 0;
1423        return r;
1424}
1425
1426static __exit void svm_hardware_unsetup(void)
1427{
1428        int cpu;
1429
1430        if (svm_sev_enabled()) {
1431                bitmap_free(sev_asid_bitmap);
1432                bitmap_free(sev_reclaim_asid_bitmap);
1433
1434                sev_flush_asids();
1435        }
1436
1437        for_each_possible_cpu(cpu)
1438                svm_cpu_uninit(cpu);
1439
1440        __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1441        iopm_base = 0;
1442}
1443
1444static void init_seg(struct vmcb_seg *seg)
1445{
1446        seg->selector = 0;
1447        seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1448                      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1449        seg->limit = 0xffff;
1450        seg->base = 0;
1451}
1452
1453static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1454{
1455        seg->selector = 0;
1456        seg->attrib = SVM_SELECTOR_P_MASK | type;
1457        seg->limit = 0xffff;
1458        seg->base = 0;
1459}
1460
1461static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1462{
1463        struct vcpu_svm *svm = to_svm(vcpu);
1464
1465        if (is_guest_mode(vcpu))
1466                return svm->nested.hsave->control.tsc_offset;
1467
1468        return vcpu->arch.tsc_offset;
1469}
1470
1471static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1472{
1473        struct vcpu_svm *svm = to_svm(vcpu);
1474        u64 g_tsc_offset = 0;
1475
1476        if (is_guest_mode(vcpu)) {
1477                /* Write L1's TSC offset.  */
1478                g_tsc_offset = svm->vmcb->control.tsc_offset -
1479                               svm->nested.hsave->control.tsc_offset;
1480                svm->nested.hsave->control.tsc_offset = offset;
1481        }
1482
1483        trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1484                                   svm->vmcb->control.tsc_offset - g_tsc_offset,
1485                                   offset);
1486
1487        svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1488
1489        mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1490        return svm->vmcb->control.tsc_offset;
1491}
1492
1493static void avic_init_vmcb(struct vcpu_svm *svm)
1494{
1495        struct vmcb *vmcb = svm->vmcb;
1496        struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
1497        phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1498        phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
1499        phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
1500
1501        vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1502        vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1503        vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1504        vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1505        vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1506}
1507
1508static void init_vmcb(struct vcpu_svm *svm)
1509{
1510        struct vmcb_control_area *control = &svm->vmcb->control;
1511        struct vmcb_save_area *save = &svm->vmcb->save;
1512
1513        svm->vcpu.arch.hflags = 0;
1514
1515        set_cr_intercept(svm, INTERCEPT_CR0_READ);
1516        set_cr_intercept(svm, INTERCEPT_CR3_READ);
1517        set_cr_intercept(svm, INTERCEPT_CR4_READ);
1518        set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1519        set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1520        set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1521        if (!kvm_vcpu_apicv_active(&svm->vcpu))
1522                set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1523
1524        set_dr_intercepts(svm);
1525
1526        set_exception_intercept(svm, PF_VECTOR);
1527        set_exception_intercept(svm, UD_VECTOR);
1528        set_exception_intercept(svm, MC_VECTOR);
1529        set_exception_intercept(svm, AC_VECTOR);
1530        set_exception_intercept(svm, DB_VECTOR);
1531        /*
1532         * Guest access to VMware backdoor ports could legitimately
1533         * trigger #GP because of TSS I/O permission bitmap.
1534         * We intercept those #GP and allow access to them anyway
1535         * as VMware does.
1536         */
1537        if (enable_vmware_backdoor)
1538                set_exception_intercept(svm, GP_VECTOR);
1539
1540        set_intercept(svm, INTERCEPT_INTR);
1541        set_intercept(svm, INTERCEPT_NMI);
1542        set_intercept(svm, INTERCEPT_SMI);
1543        set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1544        set_intercept(svm, INTERCEPT_RDPMC);
1545        set_intercept(svm, INTERCEPT_CPUID);
1546        set_intercept(svm, INTERCEPT_INVD);
1547        set_intercept(svm, INTERCEPT_INVLPG);
1548        set_intercept(svm, INTERCEPT_INVLPGA);
1549        set_intercept(svm, INTERCEPT_IOIO_PROT);
1550        set_intercept(svm, INTERCEPT_MSR_PROT);
1551        set_intercept(svm, INTERCEPT_TASK_SWITCH);
1552        set_intercept(svm, INTERCEPT_SHUTDOWN);
1553        set_intercept(svm, INTERCEPT_VMRUN);
1554        set_intercept(svm, INTERCEPT_VMMCALL);
1555        set_intercept(svm, INTERCEPT_VMLOAD);
1556        set_intercept(svm, INTERCEPT_VMSAVE);
1557        set_intercept(svm, INTERCEPT_STGI);
1558        set_intercept(svm, INTERCEPT_CLGI);
1559        set_intercept(svm, INTERCEPT_SKINIT);
1560        set_intercept(svm, INTERCEPT_WBINVD);
1561        set_intercept(svm, INTERCEPT_XSETBV);
1562        set_intercept(svm, INTERCEPT_RDPRU);
1563        set_intercept(svm, INTERCEPT_RSM);
1564
1565        if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1566                set_intercept(svm, INTERCEPT_MONITOR);
1567                set_intercept(svm, INTERCEPT_MWAIT);
1568        }
1569
1570        if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1571                set_intercept(svm, INTERCEPT_HLT);
1572
1573        control->iopm_base_pa = __sme_set(iopm_base);
1574        control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1575        control->int_ctl = V_INTR_MASKING_MASK;
1576
1577        init_seg(&save->es);
1578        init_seg(&save->ss);
1579        init_seg(&save->ds);
1580        init_seg(&save->fs);
1581        init_seg(&save->gs);
1582
1583        save->cs.selector = 0xf000;
1584        save->cs.base = 0xffff0000;
1585        /* Executable/Readable Code Segment */
1586        save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1587                SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1588        save->cs.limit = 0xffff;
1589
1590        save->gdtr.limit = 0xffff;
1591        save->idtr.limit = 0xffff;
1592
1593        init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1594        init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1595
1596        svm_set_efer(&svm->vcpu, 0);
1597        save->dr6 = 0xffff0ff0;
1598        kvm_set_rflags(&svm->vcpu, 2);
1599        save->rip = 0x0000fff0;
1600        svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1601
1602        /*
1603         * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1604         * It also updates the guest-visible cr0 value.
1605         */
1606        svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1607        kvm_mmu_reset_context(&svm->vcpu);
1608
1609        save->cr4 = X86_CR4_PAE;
1610        /* rdx = ?? */
1611
1612        if (npt_enabled) {
1613                /* Setup VMCB for Nested Paging */
1614                control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1615                clr_intercept(svm, INTERCEPT_INVLPG);
1616                clr_exception_intercept(svm, PF_VECTOR);
1617                clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1618                clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1619                save->g_pat = svm->vcpu.arch.pat;
1620                save->cr3 = 0;
1621                save->cr4 = 0;
1622        }
1623        svm->asid_generation = 0;
1624
1625        svm->nested.vmcb = 0;
1626        svm->vcpu.arch.hflags = 0;
1627
1628        if (pause_filter_count) {
1629                control->pause_filter_count = pause_filter_count;
1630                if (pause_filter_thresh)
1631                        control->pause_filter_thresh = pause_filter_thresh;
1632                set_intercept(svm, INTERCEPT_PAUSE);
1633        } else {
1634                clr_intercept(svm, INTERCEPT_PAUSE);
1635        }
1636
1637        if (kvm_vcpu_apicv_active(&svm->vcpu))
1638                avic_init_vmcb(svm);
1639
1640        /*
1641         * If hardware supports Virtual VMLOAD VMSAVE then enable it
1642         * in VMCB and clear intercepts to avoid #VMEXIT.
1643         */
1644        if (vls) {
1645                clr_intercept(svm, INTERCEPT_VMLOAD);
1646                clr_intercept(svm, INTERCEPT_VMSAVE);
1647                svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1648        }
1649
1650        if (vgif) {
1651                clr_intercept(svm, INTERCEPT_STGI);
1652                clr_intercept(svm, INTERCEPT_CLGI);
1653                svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1654        }
1655
1656        if (sev_guest(svm->vcpu.kvm)) {
1657                svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1658                clr_exception_intercept(svm, UD_VECTOR);
1659        }
1660
1661        mark_all_dirty(svm->vmcb);
1662
1663        enable_gif(svm);
1664
1665}
1666
1667static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1668                                       unsigned int index)
1669{
1670        u64 *avic_physical_id_table;
1671        struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
1672
1673        if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1674                return NULL;
1675
1676        avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
1677
1678        return &avic_physical_id_table[index];
1679}
1680
1681/**
1682 * Note:
1683 * AVIC hardware walks the nested page table to check permissions,
1684 * but does not use the SPA address specified in the leaf page
1685 * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
1686 * field of the VMCB. Therefore, we set up the
1687 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1688 */
1689static int avic_init_access_page(struct kvm_vcpu *vcpu)
1690{
1691        struct kvm *kvm = vcpu->kvm;
1692        int ret = 0;
1693
1694        mutex_lock(&kvm->slots_lock);
1695        if (kvm->arch.apic_access_page_done)
1696                goto out;
1697
1698        ret = __x86_set_memory_region(kvm,
1699                                      APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1700                                      APIC_DEFAULT_PHYS_BASE,
1701                                      PAGE_SIZE);
1702        if (ret)
1703                goto out;
1704
1705        kvm->arch.apic_access_page_done = true;
1706out:
1707        mutex_unlock(&kvm->slots_lock);
1708        return ret;
1709}
1710
1711static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1712{
1713        int ret;
1714        u64 *entry, new_entry;
1715        int id = vcpu->vcpu_id;
1716        struct vcpu_svm *svm = to_svm(vcpu);
1717
1718        ret = avic_init_access_page(vcpu);
1719        if (ret)
1720                return ret;
1721
1722        if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1723                return -EINVAL;
1724
1725        if (!svm->vcpu.arch.apic->regs)
1726                return -EINVAL;
1727
1728        svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1729
1730        /* Setting AVIC backing page address in the phy APIC ID table */
1731        entry = avic_get_physical_id_entry(vcpu, id);
1732        if (!entry)
1733                return -EINVAL;
1734
1735        new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1736                              AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1737                              AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1738        WRITE_ONCE(*entry, new_entry);
1739
1740        svm->avic_physical_id_cache = entry;
1741
1742        return 0;
1743}
1744
1745static void sev_asid_free(int asid)
1746{
1747        struct svm_cpu_data *sd;
1748        int cpu, pos;
1749
1750        mutex_lock(&sev_bitmap_lock);
1751
1752        pos = asid - 1;
1753        __set_bit(pos, sev_reclaim_asid_bitmap);
1754
1755        for_each_possible_cpu(cpu) {
1756                sd = per_cpu(svm_data, cpu);
1757                sd->sev_vmcbs[pos] = NULL;
1758        }
1759
1760        mutex_unlock(&sev_bitmap_lock);
1761}
1762
1763static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1764{
1765        struct sev_data_decommission *decommission;
1766        struct sev_data_deactivate *data;
1767
1768        if (!handle)
1769                return;
1770
1771        data = kzalloc(sizeof(*data), GFP_KERNEL);
1772        if (!data)
1773                return;
1774
1775        /* deactivate handle */
1776        data->handle = handle;
1777
1778        /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
1779        down_read(&sev_deactivate_lock);
1780        sev_guest_deactivate(data, NULL);
1781        up_read(&sev_deactivate_lock);
1782
1783        kfree(data);
1784
1785        decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1786        if (!decommission)
1787                return;
1788
1789        /* decommission handle */
1790        decommission->handle = handle;
1791        sev_guest_decommission(decommission, NULL);
1792
1793        kfree(decommission);
1794}
1795
1796static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1797                                    unsigned long ulen, unsigned long *n,
1798                                    int write)
1799{
1800        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1801        unsigned long npages, npinned, size;
1802        unsigned long locked, lock_limit;
1803        struct page **pages;
1804        unsigned long first, last;
1805
1806        if (ulen == 0 || uaddr + ulen < uaddr)
1807                return NULL;
1808
1809        /* Calculate number of pages. */
1810        first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1811        last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1812        npages = (last - first + 1);
1813
1814        locked = sev->pages_locked + npages;
1815        lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1816        if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1817                pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1818                return NULL;
1819        }
1820
1821        /* Avoid using vmalloc for smaller buffers. */
1822        size = npages * sizeof(struct page *);
1823        if (size > PAGE_SIZE)
1824                pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1825                                  PAGE_KERNEL);
1826        else
1827                pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
1828
1829        if (!pages)
1830                return NULL;
1831
1832        /* Pin the user virtual address. */
1833        npinned = get_user_pages_fast(uaddr, npages, FOLL_WRITE, pages);
1834        if (npinned != npages) {
1835                pr_err("SEV: Failure locking %lu pages.\n", npages);
1836                goto err;
1837        }
1838
1839        *n = npages;
1840        sev->pages_locked = locked;
1841
1842        return pages;
1843
1844err:
1845        if (npinned > 0)
1846                release_pages(pages, npinned);
1847
1848        kvfree(pages);
1849        return NULL;
1850}
1851
1852static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1853                             unsigned long npages)
1854{
1855        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1856
1857        release_pages(pages, npages);
1858        kvfree(pages);
1859        sev->pages_locked -= npages;
1860}
1861
1862static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1863{
1864        uint8_t *page_virtual;
1865        unsigned long i;
1866
1867        if (npages == 0 || pages == NULL)
1868                return;
1869
1870        for (i = 0; i < npages; i++) {
1871                page_virtual = kmap_atomic(pages[i]);
1872                clflush_cache_range(page_virtual, PAGE_SIZE);
1873                kunmap_atomic(page_virtual);
1874        }
1875}
1876
1877static void __unregister_enc_region_locked(struct kvm *kvm,
1878                                           struct enc_region *region)
1879{
1880        /*
1881         * The guest may change the memory encryption attribute from C=0 -> C=1
1882         * or vice versa for this memory range. Lets make sure caches are
1883         * flushed to ensure that guest data gets written into memory with
1884         * correct C-bit.
1885         */
1886        sev_clflush_pages(region->pages, region->npages);
1887
1888        sev_unpin_memory(kvm, region->pages, region->npages);
1889        list_del(&region->list);
1890        kfree(region);
1891}
1892
1893static struct kvm *svm_vm_alloc(void)
1894{
1895        struct kvm_svm *kvm_svm = __vmalloc(sizeof(struct kvm_svm),
1896                                            GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1897                                            PAGE_KERNEL);
1898        return &kvm_svm->kvm;
1899}
1900
1901static void svm_vm_free(struct kvm *kvm)
1902{
1903        vfree(to_kvm_svm(kvm));
1904}
1905
1906static void sev_vm_destroy(struct kvm *kvm)
1907{
1908        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1909        struct list_head *head = &sev->regions_list;
1910        struct list_head *pos, *q;
1911
1912        if (!sev_guest(kvm))
1913                return;
1914
1915        mutex_lock(&kvm->lock);
1916
1917        /*
1918         * if userspace was terminated before unregistering the memory regions
1919         * then lets unpin all the registered memory.
1920         */
1921        if (!list_empty(head)) {
1922                list_for_each_safe(pos, q, head) {
1923                        __unregister_enc_region_locked(kvm,
1924                                list_entry(pos, struct enc_region, list));
1925                }
1926        }
1927
1928        mutex_unlock(&kvm->lock);
1929
1930        sev_unbind_asid(kvm, sev->handle);
1931        sev_asid_free(sev->asid);
1932}
1933
1934static void avic_vm_destroy(struct kvm *kvm)
1935{
1936        unsigned long flags;
1937        struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1938
1939        if (!avic)
1940                return;
1941
1942        if (kvm_svm->avic_logical_id_table_page)
1943                __free_page(kvm_svm->avic_logical_id_table_page);
1944        if (kvm_svm->avic_physical_id_table_page)
1945                __free_page(kvm_svm->avic_physical_id_table_page);
1946
1947        spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1948        hash_del(&kvm_svm->hnode);
1949        spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1950}
1951
1952static void svm_vm_destroy(struct kvm *kvm)
1953{
1954        avic_vm_destroy(kvm);
1955        sev_vm_destroy(kvm);
1956}
1957
1958static int avic_vm_init(struct kvm *kvm)
1959{
1960        unsigned long flags;
1961        int err = -ENOMEM;
1962        struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1963        struct kvm_svm *k2;
1964        struct page *p_page;
1965        struct page *l_page;
1966        u32 vm_id;
1967
1968        if (!avic)
1969                return 0;
1970
1971        /* Allocating physical APIC ID table (4KB) */
1972        p_page = alloc_page(GFP_KERNEL_ACCOUNT);
1973        if (!p_page)
1974                goto free_avic;
1975
1976        kvm_svm->avic_physical_id_table_page = p_page;
1977        clear_page(page_address(p_page));
1978
1979        /* Allocating logical APIC ID table (4KB) */
1980        l_page = alloc_page(GFP_KERNEL_ACCOUNT);
1981        if (!l_page)
1982                goto free_avic;
1983
1984        kvm_svm->avic_logical_id_table_page = l_page;
1985        clear_page(page_address(l_page));
1986
1987        spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1988 again:
1989        vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1990        if (vm_id == 0) { /* id is 1-based, zero is not okay */
1991                next_vm_id_wrapped = 1;
1992                goto again;
1993        }
1994        /* Is it still in use? Only possible if wrapped at least once */
1995        if (next_vm_id_wrapped) {
1996                hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
1997                        if (k2->avic_vm_id == vm_id)
1998                                goto again;
1999                }
2000        }
2001        kvm_svm->avic_vm_id = vm_id;
2002        hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
2003        spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
2004
2005        return 0;
2006
2007free_avic:
2008        avic_vm_destroy(kvm);
2009        return err;
2010}
2011
2012static inline int
2013avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
2014{
2015        int ret = 0;
2016        unsigned long flags;
2017        struct amd_svm_iommu_ir *ir;
2018        struct vcpu_svm *svm = to_svm(vcpu);
2019
2020        if (!kvm_arch_has_assigned_device(vcpu->kvm))
2021                return 0;
2022
2023        /*
2024         * Here, we go through the per-vcpu ir_list to update all existing
2025         * interrupt remapping table entry targeting this vcpu.
2026         */
2027        spin_lock_irqsave(&svm->ir_list_lock, flags);
2028
2029        if (list_empty(&svm->ir_list))
2030                goto out;
2031
2032        list_for_each_entry(ir, &svm->ir_list, node) {
2033                ret = amd_iommu_update_ga(cpu, r, ir->data);
2034                if (ret)
2035                        break;
2036        }
2037out:
2038        spin_unlock_irqrestore(&svm->ir_list_lock, flags);
2039        return ret;
2040}
2041
2042static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2043{
2044        u64 entry;
2045        /* ID = 0xff (broadcast), ID > 0xff (reserved) */
2046        int h_physical_id = kvm_cpu_get_apicid(cpu);
2047        struct vcpu_svm *svm = to_svm(vcpu);
2048
2049        if (!kvm_vcpu_apicv_active(vcpu))
2050                return;
2051
2052        /*
2053         * Since the host physical APIC id is 8 bits,
2054         * we can support host APIC ID upto 255.
2055         */
2056        if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
2057                return;
2058
2059        entry = READ_ONCE(*(svm->avic_physical_id_cache));
2060        WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
2061
2062        entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
2063        entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
2064
2065        entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2066        if (svm->avic_is_running)
2067                entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2068
2069        WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2070        avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
2071                                        svm->avic_is_running);
2072}
2073
2074static void avic_vcpu_put(struct kvm_vcpu *vcpu)
2075{
2076        u64 entry;
2077        struct vcpu_svm *svm = to_svm(vcpu);
2078
2079        if (!kvm_vcpu_apicv_active(vcpu))
2080                return;
2081
2082        entry = READ_ONCE(*(svm->avic_physical_id_cache));
2083        if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
2084                avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
2085
2086        entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2087        WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2088}
2089
2090/**
2091 * This function is called during VCPU halt/unhalt.
2092 */
2093static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
2094{
2095        struct vcpu_svm *svm = to_svm(vcpu);
2096
2097        svm->avic_is_running = is_run;
2098        if (is_run)
2099                avic_vcpu_load(vcpu, vcpu->cpu);
2100        else
2101                avic_vcpu_put(vcpu);
2102}
2103
2104static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
2105{
2106        struct vcpu_svm *svm = to_svm(vcpu);
2107        u32 dummy;
2108        u32 eax = 1;
2109
2110        vcpu->arch.microcode_version = 0x01000065;
2111        svm->spec_ctrl = 0;
2112        svm->virt_spec_ctrl = 0;
2113
2114        if (!init_event) {
2115                svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
2116                                           MSR_IA32_APICBASE_ENABLE;
2117                if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
2118                        svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
2119        }
2120        init_vmcb(svm);
2121
2122        kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
2123        kvm_rdx_write(vcpu, eax);
2124
2125        if (kvm_vcpu_apicv_active(vcpu) && !init_event)
2126                avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
2127}
2128
2129static int avic_init_vcpu(struct vcpu_svm *svm)
2130{
2131        int ret;
2132
2133        if (!kvm_vcpu_apicv_active(&svm->vcpu))
2134                return 0;
2135
2136        ret = avic_init_backing_page(&svm->vcpu);
2137        if (ret)
2138                return ret;
2139
2140        INIT_LIST_HEAD(&svm->ir_list);
2141        spin_lock_init(&svm->ir_list_lock);
2142        svm->dfr_reg = APIC_DFR_FLAT;
2143
2144        return ret;
2145}
2146
2147static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
2148{
2149        struct vcpu_svm *svm;
2150        struct page *page;
2151        struct page *msrpm_pages;
2152        struct page *hsave_page;
2153        struct page *nested_msrpm_pages;
2154        int err;
2155
2156        BUILD_BUG_ON_MSG(offsetof(struct vcpu_svm, vcpu) != 0,
2157                "struct kvm_vcpu must be at offset 0 for arch usercopy region");
2158
2159        svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
2160        if (!svm) {
2161                err = -ENOMEM;
2162                goto out;
2163        }
2164
2165        svm->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
2166                                                     GFP_KERNEL_ACCOUNT);
2167        if (!svm->vcpu.arch.user_fpu) {
2168                printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
2169                err = -ENOMEM;
2170                goto free_partial_svm;
2171        }
2172
2173        svm->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
2174                                                     GFP_KERNEL_ACCOUNT);
2175        if (!svm->vcpu.arch.guest_fpu) {
2176                printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
2177                err = -ENOMEM;
2178                goto free_user_fpu;
2179        }
2180
2181        err = kvm_vcpu_init(&svm->vcpu, kvm, id);
2182        if (err)
2183                goto free_svm;
2184
2185        err = -ENOMEM;
2186        page = alloc_page(GFP_KERNEL_ACCOUNT);
2187        if (!page)
2188                goto uninit;
2189
2190        msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2191        if (!msrpm_pages)
2192                goto free_page1;
2193
2194        nested_msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2195        if (!nested_msrpm_pages)
2196                goto free_page2;
2197
2198        hsave_page = alloc_page(GFP_KERNEL_ACCOUNT);
2199        if (!hsave_page)
2200                goto free_page3;
2201
2202        err = avic_init_vcpu(svm);
2203        if (err)
2204                goto free_page4;
2205
2206        /* We initialize this flag to true to make sure that the is_running
2207         * bit would be set the first time the vcpu is loaded.
2208         */
2209        svm->avic_is_running = true;
2210
2211        svm->nested.hsave = page_address(hsave_page);
2212
2213        svm->msrpm = page_address(msrpm_pages);
2214        svm_vcpu_init_msrpm(svm->msrpm);
2215
2216        svm->nested.msrpm = page_address(nested_msrpm_pages);
2217        svm_vcpu_init_msrpm(svm->nested.msrpm);
2218
2219        svm->vmcb = page_address(page);
2220        clear_page(svm->vmcb);
2221        svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2222        svm->asid_generation = 0;
2223        init_vmcb(svm);
2224
2225        svm_init_osvw(&svm->vcpu);
2226
2227        return &svm->vcpu;
2228
2229free_page4:
2230        __free_page(hsave_page);
2231free_page3:
2232        __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2233free_page2:
2234        __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2235free_page1:
2236        __free_page(page);
2237uninit:
2238        kvm_vcpu_uninit(&svm->vcpu);
2239free_svm:
2240        kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2241free_user_fpu:
2242        kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.user_fpu);
2243free_partial_svm:
2244        kmem_cache_free(kvm_vcpu_cache, svm);
2245out:
2246        return ERR_PTR(err);
2247}
2248
2249static void svm_clear_current_vmcb(struct vmcb *vmcb)
2250{
2251        int i;
2252
2253        for_each_online_cpu(i)
2254                cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
2255}
2256
2257static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2258{
2259        struct vcpu_svm *svm = to_svm(vcpu);
2260
2261        /*
2262         * The vmcb page can be recycled, causing a false negative in
2263         * svm_vcpu_load(). So, ensure that no logical CPU has this
2264         * vmcb page recorded as its current vmcb.
2265         */
2266        svm_clear_current_vmcb(svm->vmcb);
2267
2268        __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2269        __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2270        __free_page(virt_to_page(svm->nested.hsave));
2271        __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2272        kvm_vcpu_uninit(vcpu);
2273        kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.user_fpu);
2274        kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2275        kmem_cache_free(kvm_vcpu_cache, svm);
2276}
2277
2278static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2279{
2280        struct vcpu_svm *svm = to_svm(vcpu);
2281        struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2282        int i;
2283
2284        if (unlikely(cpu != vcpu->cpu)) {
2285                svm->asid_generation = 0;
2286                mark_all_dirty(svm->vmcb);
2287        }
2288
2289#ifdef CONFIG_X86_64
2290        rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2291#endif
2292        savesegment(fs, svm->host.fs);
2293        savesegment(gs, svm->host.gs);
2294        svm->host.ldt = kvm_read_ldt();
2295
2296        for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2297                rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2298
2299        if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2300                u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2301                if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2302                        __this_cpu_write(current_tsc_ratio, tsc_ratio);
2303                        wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2304                }
2305        }
2306        /* This assumes that the kernel never uses MSR_TSC_AUX */
2307        if (static_cpu_has(X86_FEATURE_RDTSCP))
2308                wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2309
2310        if (sd->current_vmcb != svm->vmcb) {
2311                sd->current_vmcb = svm->vmcb;
2312                indirect_branch_prediction_barrier();
2313        }
2314        avic_vcpu_load(vcpu, cpu);
2315}
2316
2317static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2318{
2319        struct vcpu_svm *svm = to_svm(vcpu);
2320        int i;
2321
2322        avic_vcpu_put(vcpu);
2323
2324        ++vcpu->stat.host_state_reload;
2325        kvm_load_ldt(svm->host.ldt);
2326#ifdef CONFIG_X86_64
2327        loadsegment(fs, svm->host.fs);
2328        wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2329        load_gs_index(svm->host.gs);
2330#else
2331#ifdef CONFIG_X86_32_LAZY_GS
2332        loadsegment(gs, svm->host.gs);
2333#endif
2334#endif
2335        for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2336                wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2337}
2338
2339static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2340{
2341        avic_set_running(vcpu, false);
2342}
2343
2344static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2345{
2346        avic_set_running(vcpu, true);
2347}
2348
2349static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2350{
2351        struct vcpu_svm *svm = to_svm(vcpu);
2352        unsigned long rflags = svm->vmcb->save.rflags;
2353
2354        if (svm->nmi_singlestep) {
2355                /* Hide our flags if they were not set by the guest */
2356                if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2357                        rflags &= ~X86_EFLAGS_TF;
2358                if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2359                        rflags &= ~X86_EFLAGS_RF;
2360        }
2361        return rflags;
2362}
2363
2364static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2365{
2366        if (to_svm(vcpu)->nmi_singlestep)
2367                rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2368
2369       /*
2370        * Any change of EFLAGS.VM is accompanied by a reload of SS
2371        * (caused by either a task switch or an inter-privilege IRET),
2372        * so we do not need to update the CPL here.
2373        */
2374        to_svm(vcpu)->vmcb->save.rflags = rflags;
2375}
2376
2377static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2378{
2379        switch (reg) {
2380        case VCPU_EXREG_PDPTR:
2381                BUG_ON(!npt_enabled);
2382                load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2383                break;
2384        default:
2385                WARN_ON_ONCE(1);
2386        }
2387}
2388
2389static void svm_set_vintr(struct vcpu_svm *svm)
2390{
2391        set_intercept(svm, INTERCEPT_VINTR);
2392}
2393
2394static void svm_clear_vintr(struct vcpu_svm *svm)
2395{
2396        clr_intercept(svm, INTERCEPT_VINTR);
2397}
2398
2399static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2400{
2401        struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2402
2403        switch (seg) {
2404        case VCPU_SREG_CS: return &save->cs;
2405        case VCPU_SREG_DS: return &save->ds;
2406        case VCPU_SREG_ES: return &save->es;
2407        case VCPU_SREG_FS: return &save->fs;
2408        case VCPU_SREG_GS: return &save->gs;
2409        case VCPU_SREG_SS: return &save->ss;
2410        case VCPU_SREG_TR: return &save->tr;
2411        case VCPU_SREG_LDTR: return &save->ldtr;
2412        }
2413        BUG();
2414        return NULL;
2415}
2416
2417static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2418{
2419        struct vmcb_seg *s = svm_seg(vcpu, seg);
2420
2421        return s->base;
2422}
2423
2424static void svm_get_segment(struct kvm_vcpu *vcpu,
2425                            struct kvm_segment *var, int seg)
2426{
2427        struct vmcb_seg *s = svm_seg(vcpu, seg);
2428
2429        var->base = s->base;
2430        var->limit = s->limit;
2431        var->selector = s->selector;
2432        var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2433        var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2434        var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2435        var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2436        var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2437        var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2438        var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2439
2440        /*
2441         * AMD CPUs circa 2014 track the G bit for all segments except CS.
2442         * However, the SVM spec states that the G bit is not observed by the
2443         * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2444         * So let's synthesize a legal G bit for all segments, this helps
2445         * running KVM nested. It also helps cross-vendor migration, because
2446         * Intel's vmentry has a check on the 'G' bit.
2447         */
2448        var->g = s->limit > 0xfffff;
2449
2450        /*
2451         * AMD's VMCB does not have an explicit unusable field, so emulate it
2452         * for cross vendor migration purposes by "not present"
2453         */
2454        var->unusable = !var->present;
2455
2456        switch (seg) {
2457        case VCPU_SREG_TR:
2458                /*
2459                 * Work around a bug where the busy flag in the tr selector
2460                 * isn't exposed
2461                 */
2462                var->type |= 0x2;
2463                break;
2464        case VCPU_SREG_DS:
2465        case VCPU_SREG_ES:
2466        case VCPU_SREG_FS:
2467        case VCPU_SREG_GS:
2468                /*
2469                 * The accessed bit must always be set in the segment
2470                 * descriptor cache, although it can be cleared in the
2471                 * descriptor, the cached bit always remains at 1. Since
2472                 * Intel has a check on this, set it here to support
2473                 * cross-vendor migration.
2474                 */
2475                if (!var->unusable)
2476                        var->type |= 0x1;
2477                break;
2478        case VCPU_SREG_SS:
2479                /*
2480                 * On AMD CPUs sometimes the DB bit in the segment
2481                 * descriptor is left as 1, although the whole segment has
2482                 * been made unusable. Clear it here to pass an Intel VMX
2483                 * entry check when cross vendor migrating.
2484                 */
2485                if (var->unusable)
2486                        var->db = 0;
2487                /* This is symmetric with svm_set_segment() */
2488                var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2489                break;
2490        }
2491}
2492
2493static int svm_get_cpl(struct kvm_vcpu *vcpu)
2494{
2495        struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2496
2497        return save->cpl;
2498}
2499
2500static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2501{
2502        struct vcpu_svm *svm = to_svm(vcpu);
2503
2504        dt->size = svm->vmcb->save.idtr.limit;
2505        dt->address = svm->vmcb->save.idtr.base;
2506}
2507
2508static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2509{
2510        struct vcpu_svm *svm = to_svm(vcpu);
2511
2512        svm->vmcb->save.idtr.limit = dt->size;
2513        svm->vmcb->save.idtr.base = dt->address ;
2514        mark_dirty(svm->vmcb, VMCB_DT);
2515}
2516
2517static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2518{
2519        struct vcpu_svm *svm = to_svm(vcpu);
2520
2521        dt->size = svm->vmcb->save.gdtr.limit;
2522        dt->address = svm->vmcb->save.gdtr.base;
2523}
2524
2525static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2526{
2527        struct vcpu_svm *svm = to_svm(vcpu);
2528
2529        svm->vmcb->save.gdtr.limit = dt->size;
2530        svm->vmcb->save.gdtr.base = dt->address ;
2531        mark_dirty(svm->vmcb, VMCB_DT);
2532}
2533
2534static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2535{
2536}
2537
2538static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2539{
2540}
2541
2542static void update_cr0_intercept(struct vcpu_svm *svm)
2543{
2544        ulong gcr0 = svm->vcpu.arch.cr0;
2545        u64 *hcr0 = &svm->vmcb->save.cr0;
2546
2547        *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2548                | (gcr0 & SVM_CR0_SELECTIVE_MASK);
2549
2550        mark_dirty(svm->vmcb, VMCB_CR);
2551
2552        if (gcr0 == *hcr0) {
2553                clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2554                clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2555        } else {
2556                set_cr_intercept(svm, INTERCEPT_CR0_READ);
2557                set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2558        }
2559}
2560
2561static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2562{
2563        struct vcpu_svm *svm = to_svm(vcpu);
2564
2565#ifdef CONFIG_X86_64
2566        if (vcpu->arch.efer & EFER_LME) {
2567                if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2568                        vcpu->arch.efer |= EFER_LMA;
2569                        svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2570                }
2571
2572                if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2573                        vcpu->arch.efer &= ~EFER_LMA;
2574                        svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2575                }
2576        }
2577#endif
2578        vcpu->arch.cr0 = cr0;
2579
2580        if (!npt_enabled)
2581                cr0 |= X86_CR0_PG | X86_CR0_WP;
2582
2583        /*
2584         * re-enable caching here because the QEMU bios
2585         * does not do it - this results in some delay at
2586         * reboot
2587         */
2588        if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2589                cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2590        svm->vmcb->save.cr0 = cr0;
2591        mark_dirty(svm->vmcb, VMCB_CR);
2592        update_cr0_intercept(svm);
2593}
2594
2595static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2596{
2597        unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2598        unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2599
2600        if (cr4 & X86_CR4_VMXE)
2601                return 1;
2602
2603        if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2604                svm_flush_tlb(vcpu, true);
2605
2606        vcpu->arch.cr4 = cr4;
2607        if (!npt_enabled)
2608                cr4 |= X86_CR4_PAE;
2609        cr4 |= host_cr4_mce;
2610        to_svm(vcpu)->vmcb->save.cr4 = cr4;
2611        mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2612        return 0;
2613}
2614
2615static void svm_set_segment(struct kvm_vcpu *vcpu,
2616                            struct kvm_segment *var, int seg)
2617{
2618        struct vcpu_svm *svm = to_svm(vcpu);
2619        struct vmcb_seg *s = svm_seg(vcpu, seg);
2620
2621        s->base = var->base;
2622        s->limit = var->limit;
2623        s->selector = var->selector;
2624        s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2625        s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2626        s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2627        s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2628        s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2629        s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2630        s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2631        s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2632
2633        /*
2634         * This is always accurate, except if SYSRET returned to a segment
2635         * with SS.DPL != 3.  Intel does not have this quirk, and always
2636         * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2637         * would entail passing the CPL to userspace and back.
2638         */
2639        if (seg == VCPU_SREG_SS)
2640                /* This is symmetric with svm_get_segment() */
2641                svm->vmcb->save.cpl = (var->dpl & 3);
2642
2643        mark_dirty(svm->vmcb, VMCB_SEG);
2644}
2645
2646static void update_bp_intercept(struct kvm_vcpu *vcpu)
2647{
2648        struct vcpu_svm *svm = to_svm(vcpu);
2649
2650        clr_exception_intercept(svm, BP_VECTOR);
2651
2652        if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2653                if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2654                        set_exception_intercept(svm, BP_VECTOR);
2655        } else
2656                vcpu->guest_debug = 0;
2657}
2658
2659static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2660{
2661        if (sd->next_asid > sd->max_asid) {
2662                ++sd->asid_generation;
2663                sd->next_asid = sd->min_asid;
2664                svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2665        }
2666
2667        svm->asid_generation = sd->asid_generation;
2668        svm->vmcb->control.asid = sd->next_asid++;
2669
2670        mark_dirty(svm->vmcb, VMCB_ASID);
2671}
2672
2673static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2674{
2675        return to_svm(vcpu)->vmcb->save.dr6;
2676}
2677
2678static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2679{
2680        struct vcpu_svm *svm = to_svm(vcpu);
2681
2682        svm->vmcb->save.dr6 = value;
2683        mark_dirty(svm->vmcb, VMCB_DR);
2684}
2685
2686static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2687{
2688        struct vcpu_svm *svm = to_svm(vcpu);
2689
2690        get_debugreg(vcpu->arch.db[0], 0);
2691        get_debugreg(vcpu->arch.db[1], 1);
2692        get_debugreg(vcpu->arch.db[2], 2);
2693        get_debugreg(vcpu->arch.db[3], 3);
2694        vcpu->arch.dr6 = svm_get_dr6(vcpu);
2695        vcpu->arch.dr7 = svm->vmcb->save.dr7;
2696
2697        vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2698        set_dr_intercepts(svm);
2699}
2700
2701static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2702{
2703        struct vcpu_svm *svm = to_svm(vcpu);
2704
2705        svm->vmcb->save.dr7 = value;
2706        mark_dirty(svm->vmcb, VMCB_DR);
2707}
2708
2709static int pf_interception(struct vcpu_svm *svm)
2710{
2711        u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2712        u64 error_code = svm->vmcb->control.exit_info_1;
2713
2714        return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2715                        static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2716                        svm->vmcb->control.insn_bytes : NULL,
2717                        svm->vmcb->control.insn_len);
2718}
2719
2720static int npf_interception(struct vcpu_svm *svm)
2721{
2722        u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2723        u64 error_code = svm->vmcb->control.exit_info_1;
2724
2725        trace_kvm_page_fault(fault_address, error_code);
2726        return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2727                        static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2728                        svm->vmcb->control.insn_bytes : NULL,
2729                        svm->vmcb->control.insn_len);
2730}
2731
2732static int db_interception(struct vcpu_svm *svm)
2733{
2734        struct kvm_run *kvm_run = svm->vcpu.run;
2735        struct kvm_vcpu *vcpu = &svm->vcpu;
2736
2737        if (!(svm->vcpu.guest_debug &
2738              (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2739                !svm->nmi_singlestep) {
2740                kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2741                return 1;
2742        }
2743
2744        if (svm->nmi_singlestep) {
2745                disable_nmi_singlestep(svm);
2746                /* Make sure we check for pending NMIs upon entry */
2747                kvm_make_request(KVM_REQ_EVENT, vcpu);
2748        }
2749
2750        if (svm->vcpu.guest_debug &
2751            (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2752                kvm_run->exit_reason = KVM_EXIT_DEBUG;
2753                kvm_run->debug.arch.pc =
2754                        svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2755                kvm_run->debug.arch.exception = DB_VECTOR;
2756                return 0;
2757        }
2758
2759        return 1;
2760}
2761
2762static int bp_interception(struct vcpu_svm *svm)
2763{
2764        struct kvm_run *kvm_run = svm->vcpu.run;
2765
2766        kvm_run->exit_reason = KVM_EXIT_DEBUG;
2767        kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2768        kvm_run->debug.arch.exception = BP_VECTOR;
2769        return 0;
2770}
2771
2772static int ud_interception(struct vcpu_svm *svm)
2773{
2774        return handle_ud(&svm->vcpu);
2775}
2776
2777static int ac_interception(struct vcpu_svm *svm)
2778{
2779        kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2780        return 1;
2781}
2782
2783static int gp_interception(struct vcpu_svm *svm)
2784{
2785        struct kvm_vcpu *vcpu = &svm->vcpu;
2786        u32 error_code = svm->vmcb->control.exit_info_1;
2787
2788        WARN_ON_ONCE(!enable_vmware_backdoor);
2789
2790        /*
2791         * VMware backdoor emulation on #GP interception only handles IN{S},
2792         * OUT{S}, and RDPMC, none of which generate a non-zero error code.
2793         */
2794        if (error_code) {
2795                kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2796                return 1;
2797        }
2798        return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
2799}
2800
2801static bool is_erratum_383(void)
2802{
2803        int err, i;
2804        u64 value;
2805
2806        if (!erratum_383_found)
2807                return false;
2808
2809        value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2810        if (err)
2811                return false;
2812
2813        /* Bit 62 may or may not be set for this mce */
2814        value &= ~(1ULL << 62);
2815
2816        if (value != 0xb600000000010015ULL)
2817                return false;
2818
2819        /* Clear MCi_STATUS registers */
2820        for (i = 0; i < 6; ++i)
2821                native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2822
2823        value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2824        if (!err) {
2825                u32 low, high;
2826
2827                value &= ~(1ULL << 2);
2828                low    = lower_32_bits(value);
2829                high   = upper_32_bits(value);
2830
2831                native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2832        }
2833
2834        /* Flush tlb to evict multi-match entries */
2835        __flush_tlb_all();
2836
2837        return true;
2838}
2839
2840static void svm_handle_mce(struct vcpu_svm *svm)
2841{
2842        if (is_erratum_383()) {
2843                /*
2844                 * Erratum 383 triggered. Guest state is corrupt so kill the
2845                 * guest.
2846                 */
2847                pr_err("KVM: Guest triggered AMD Erratum 383\n");
2848
2849                kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2850
2851                return;
2852        }
2853
2854        /*
2855         * On an #MC intercept the MCE handler is not called automatically in
2856         * the host. So do it by hand here.
2857         */
2858        asm volatile (
2859                "int $0x12\n");
2860        /* not sure if we ever come back to this point */
2861
2862        return;
2863}
2864
2865static int mc_interception(struct vcpu_svm *svm)
2866{
2867        return 1;
2868}
2869
2870static int shutdown_interception(struct vcpu_svm *svm)
2871{
2872        struct kvm_run *kvm_run = svm->vcpu.run;
2873
2874        /*
2875         * VMCB is undefined after a SHUTDOWN intercept
2876         * so reinitialize it.
2877         */
2878        clear_page(svm->vmcb);
2879        init_vmcb(svm);
2880
2881        kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2882        return 0;
2883}
2884
2885static int io_interception(struct vcpu_svm *svm)
2886{
2887        struct kvm_vcpu *vcpu = &svm->vcpu;
2888        u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2889        int size, in, string;
2890        unsigned port;
2891
2892        ++svm->vcpu.stat.io_exits;
2893        string = (io_info & SVM_IOIO_STR_MASK) != 0;
2894        in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2895        if (string)
2896                return kvm_emulate_instruction(vcpu, 0);
2897
2898        port = io_info >> 16;
2899        size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2900        svm->next_rip = svm->vmcb->control.exit_info_2;
2901
2902        return kvm_fast_pio(&svm->vcpu, size, port, in);
2903}
2904
2905static int nmi_interception(struct vcpu_svm *svm)
2906{
2907        return 1;
2908}
2909
2910static int intr_interception(struct vcpu_svm *svm)
2911{
2912        ++svm->vcpu.stat.irq_exits;
2913        return 1;
2914}
2915
2916static int nop_on_interception(struct vcpu_svm *svm)
2917{
2918        return 1;
2919}
2920
2921static int halt_interception(struct vcpu_svm *svm)
2922{
2923        return kvm_emulate_halt(&svm->vcpu);
2924}
2925
2926static int vmmcall_interception(struct vcpu_svm *svm)
2927{
2928        return kvm_emulate_hypercall(&svm->vcpu);
2929}
2930
2931static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2932{
2933        struct vcpu_svm *svm = to_svm(vcpu);
2934
2935        return svm->nested.nested_cr3;
2936}
2937
2938static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2939{
2940        struct vcpu_svm *svm = to_svm(vcpu);
2941        u64 cr3 = svm->nested.nested_cr3;
2942        u64 pdpte;
2943        int ret;
2944
2945        ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2946                                       offset_in_page(cr3) + index * 8, 8);
2947        if (ret)
2948                return 0;
2949        return pdpte;
2950}
2951
2952static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2953                                   unsigned long root)
2954{
2955        struct vcpu_svm *svm = to_svm(vcpu);
2956
2957        svm->vmcb->control.nested_cr3 = __sme_set(root);
2958        mark_dirty(svm->vmcb, VMCB_NPT);
2959}
2960
2961static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2962                                       struct x86_exception *fault)
2963{
2964        struct vcpu_svm *svm = to_svm(vcpu);
2965
2966        if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2967                /*
2968                 * TODO: track the cause of the nested page fault, and
2969                 * correctly fill in the high bits of exit_info_1.
2970                 */
2971                svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2972                svm->vmcb->control.exit_code_hi = 0;
2973                svm->vmcb->control.exit_info_1 = (1ULL << 32);
2974                svm->vmcb->control.exit_info_2 = fault->address;
2975        }
2976
2977        svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2978        svm->vmcb->control.exit_info_1 |= fault->error_code;
2979
2980        /*
2981         * The present bit is always zero for page structure faults on real
2982         * hardware.
2983         */
2984        if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2985                svm->vmcb->control.exit_info_1 &= ~1;
2986
2987        nested_svm_vmexit(svm);
2988}
2989
2990static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2991{
2992        WARN_ON(mmu_is_nested(vcpu));
2993
2994        vcpu->arch.mmu = &vcpu->arch.guest_mmu;
2995        kvm_init_shadow_mmu(vcpu);
2996        vcpu->arch.mmu->set_cr3           = nested_svm_set_tdp_cr3;
2997        vcpu->arch.mmu->get_cr3           = nested_svm_get_tdp_cr3;
2998        vcpu->arch.mmu->get_pdptr         = nested_svm_get_tdp_pdptr;
2999        vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
3000        vcpu->arch.mmu->shadow_root_level = get_npt_level(vcpu);
3001        reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu);
3002        vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
3003}
3004
3005static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
3006{
3007        vcpu->arch.mmu = &vcpu->arch.root_mmu;
3008        vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
3009}
3010
3011static int nested_svm_check_permissions(struct vcpu_svm *svm)
3012{
3013        if (!(svm->vcpu.arch.efer & EFER_SVME) ||
3014            !is_paging(&svm->vcpu)) {
3015                kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3016                return 1;
3017        }
3018
3019        if (svm->vmcb->save.cpl) {
3020                kvm_inject_gp(&svm->vcpu, 0);
3021                return 1;
3022        }
3023
3024        return 0;
3025}
3026
3027static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
3028                                      bool has_error_code, u32 error_code)
3029{
3030        int vmexit;
3031
3032        if (!is_guest_mode(&svm->vcpu))
3033                return 0;
3034
3035        vmexit = nested_svm_intercept(svm);
3036        if (vmexit != NESTED_EXIT_DONE)
3037                return 0;
3038
3039        svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
3040        svm->vmcb->control.exit_code_hi = 0;
3041        svm->vmcb->control.exit_info_1 = error_code;
3042
3043        /*
3044         * EXITINFO2 is undefined for all exception intercepts other
3045         * than #PF.
3046         */
3047        if (svm->vcpu.arch.exception.nested_apf)
3048                svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
3049        else if (svm->vcpu.arch.exception.has_payload)
3050                svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload;
3051        else
3052                svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
3053
3054        svm->nested.exit_required = true;
3055        return vmexit;
3056}
3057
3058/* This function returns true if it is save to enable the irq window */
3059static inline bool nested_svm_intr(struct vcpu_svm *svm)
3060{
3061        if (!is_guest_mode(&svm->vcpu))
3062                return true;
3063
3064        if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3065                return true;
3066
3067        if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
3068                return false;
3069
3070        /*
3071         * if vmexit was already requested (by intercepted exception
3072         * for instance) do not overwrite it with "external interrupt"
3073         * vmexit.
3074         */
3075        if (svm->nested.exit_required)
3076                return false;
3077
3078        svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
3079        svm->vmcb->control.exit_info_1 = 0;
3080        svm->vmcb->control.exit_info_2 = 0;
3081
3082        if (svm->nested.intercept & 1ULL) {
3083                /*
3084                 * The #vmexit can't be emulated here directly because this
3085                 * code path runs with irqs and preemption disabled. A
3086                 * #vmexit emulation might sleep. Only signal request for
3087                 * the #vmexit here.
3088                 */
3089                svm->nested.exit_required = true;
3090                trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
3091                return false;
3092        }
3093
3094        return true;
3095}
3096
3097/* This function returns true if it is save to enable the nmi window */
3098static inline bool nested_svm_nmi(struct vcpu_svm *svm)
3099{
3100        if (!is_guest_mode(&svm->vcpu))
3101                return true;
3102
3103        if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
3104                return true;
3105
3106        svm->vmcb->control.exit_code = SVM_EXIT_NMI;
3107        svm->nested.exit_required = true;
3108
3109        return false;
3110}
3111
3112static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
3113{
3114        unsigned port, size, iopm_len;
3115        u16 val, mask;
3116        u8 start_bit;
3117        u64 gpa;
3118
3119        if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
3120                return NESTED_EXIT_HOST;
3121
3122        port = svm->vmcb->control.exit_info_1 >> 16;
3123        size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
3124                SVM_IOIO_SIZE_SHIFT;
3125        gpa  = svm->nested.vmcb_iopm + (port / 8);
3126        start_bit = port % 8;
3127        iopm_len = (start_bit + size > 8) ? 2 : 1;
3128        mask = (0xf >> (4 - size)) << start_bit;
3129        val = 0;
3130
3131        if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
3132                return NESTED_EXIT_DONE;
3133
3134        return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3135}
3136
3137static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
3138{
3139        u32 offset, msr, value;
3140        int write, mask;
3141
3142        if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3143                return NESTED_EXIT_HOST;
3144
3145        msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3146        offset = svm_msrpm_offset(msr);
3147        write  = svm->vmcb->control.exit_info_1 & 1;
3148        mask   = 1 << ((2 * (msr & 0xf)) + write);
3149
3150        if (offset == MSR_INVALID)
3151                return NESTED_EXIT_DONE;
3152
3153        /* Offset is in 32 bit units but need in 8 bit units */
3154        offset *= 4;
3155
3156        if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
3157                return NESTED_EXIT_DONE;
3158
3159        return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3160}
3161
3162/* DB exceptions for our internal use must not cause vmexit */
3163static int nested_svm_intercept_db(struct vcpu_svm *svm)
3164{
3165        unsigned long dr6;
3166
3167        /* if we're not singlestepping, it's not ours */
3168        if (!svm->nmi_singlestep)
3169                return NESTED_EXIT_DONE;
3170
3171        /* if it's not a singlestep exception, it's not ours */
3172        if (kvm_get_dr(&svm->vcpu, 6, &dr6))
3173                return NESTED_EXIT_DONE;
3174        if (!(dr6 & DR6_BS))
3175                return NESTED_EXIT_DONE;
3176
3177        /* if the guest is singlestepping, it should get the vmexit */
3178        if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
3179                disable_nmi_singlestep(svm);
3180                return NESTED_EXIT_DONE;
3181        }
3182
3183        /* it's ours, the nested hypervisor must not see this one */
3184        return NESTED_EXIT_HOST;
3185}
3186
3187static int nested_svm_exit_special(struct vcpu_svm *svm)
3188{
3189        u32 exit_code = svm->vmcb->control.exit_code;
3190
3191        switch (exit_code) {
3192        case SVM_EXIT_INTR:
3193        case SVM_EXIT_NMI:
3194        case SVM_EXIT_EXCP_BASE + MC_VECTOR:
3195                return NESTED_EXIT_HOST;
3196        case SVM_EXIT_NPF:
3197                /* For now we are always handling NPFs when using them */
3198                if (npt_enabled)
3199                        return NESTED_EXIT_HOST;
3200                break;
3201        case SVM_EXIT_EXCP_BASE + PF_VECTOR:
3202                /* When we're shadowing, trap PFs, but not async PF */
3203                if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
3204                        return NESTED_EXIT_HOST;
3205                break;
3206        default:
3207                break;
3208        }
3209
3210        return NESTED_EXIT_CONTINUE;
3211}
3212
3213/*
3214 * If this function returns true, this #vmexit was already handled
3215 */
3216static int nested_svm_intercept(struct vcpu_svm *svm)
3217{
3218        u32 exit_code = svm->vmcb->control.exit_code;
3219        int vmexit = NESTED_EXIT_HOST;
3220
3221        switch (exit_code) {
3222        case SVM_EXIT_MSR:
3223                vmexit = nested_svm_exit_handled_msr(svm);
3224                break;
3225        case SVM_EXIT_IOIO:
3226                vmexit = nested_svm_intercept_ioio(svm);
3227                break;
3228        case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3229                u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3230                if (svm->nested.intercept_cr & bit)
3231                        vmexit = NESTED_EXIT_DONE;
3232                break;
3233        }
3234        case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3235                u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3236                if (svm->nested.intercept_dr & bit)
3237                        vmexit = NESTED_EXIT_DONE;
3238                break;
3239        }
3240        case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3241                u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3242                if (svm->nested.intercept_exceptions & excp_bits) {
3243                        if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3244                                vmexit = nested_svm_intercept_db(svm);
3245                        else
3246                                vmexit = NESTED_EXIT_DONE;
3247                }
3248                /* async page fault always cause vmexit */
3249                else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3250                         svm->vcpu.arch.exception.nested_apf != 0)
3251                        vmexit = NESTED_EXIT_DONE;
3252                break;
3253        }
3254        case SVM_EXIT_ERR: {
3255                vmexit = NESTED_EXIT_DONE;
3256                break;
3257        }
3258        default: {
3259                u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3260                if (svm->nested.intercept & exit_bits)
3261                        vmexit = NESTED_EXIT_DONE;
3262        }
3263        }
3264
3265        return vmexit;
3266}
3267
3268static int nested_svm_exit_handled(struct vcpu_svm *svm)
3269{
3270        int vmexit;
3271
3272        vmexit = nested_svm_intercept(svm);
3273
3274        if (vmexit == NESTED_EXIT_DONE)
3275                nested_svm_vmexit(svm);
3276
3277        return vmexit;
3278}
3279
3280static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3281{
3282        struct vmcb_control_area *dst  = &dst_vmcb->control;
3283        struct vmcb_control_area *from = &from_vmcb->control;
3284
3285        dst->intercept_cr         = from->intercept_cr;
3286        dst->intercept_dr         = from->intercept_dr;
3287        dst->intercept_exceptions = from->intercept_exceptions;
3288        dst->intercept            = from->intercept;
3289        dst->iopm_base_pa         = from->iopm_base_pa;
3290        dst->msrpm_base_pa        = from->msrpm_base_pa;
3291        dst->tsc_offset           = from->tsc_offset;
3292        dst->asid                 = from->asid;
3293        dst->tlb_ctl              = from->tlb_ctl;
3294        dst->int_ctl              = from->int_ctl;
3295        dst->int_vector           = from->int_vector;
3296        dst->int_state            = from->int_state;
3297        dst->exit_code            = from->exit_code;
3298        dst->exit_code_hi         = from->exit_code_hi;
3299        dst->exit_info_1          = from->exit_info_1;
3300        dst->exit_info_2          = from->exit_info_2;
3301        dst->exit_int_info        = from->exit_int_info;
3302        dst->exit_int_info_err    = from->exit_int_info_err;
3303        dst->nested_ctl           = from->nested_ctl;
3304        dst->event_inj            = from->event_inj;
3305        dst->event_inj_err        = from->event_inj_err;
3306        dst->nested_cr3           = from->nested_cr3;
3307        dst->virt_ext              = from->virt_ext;
3308        dst->pause_filter_count   = from->pause_filter_count;
3309        dst->pause_filter_thresh  = from->pause_filter_thresh;
3310}
3311
3312static int nested_svm_vmexit(struct vcpu_svm *svm)
3313{
3314        int rc;
3315        struct vmcb *nested_vmcb;
3316        struct vmcb *hsave = svm->nested.hsave;
3317        struct vmcb *vmcb = svm->vmcb;
3318        struct kvm_host_map map;
3319
3320        trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3321                                       vmcb->control.exit_info_1,
3322                                       vmcb->control.exit_info_2,
3323                                       vmcb->control.exit_int_info,
3324                                       vmcb->control.exit_int_info_err,
3325                                       KVM_ISA_SVM);
3326
3327        rc = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->nested.vmcb), &map);
3328        if (rc) {
3329                if (rc == -EINVAL)
3330                        kvm_inject_gp(&svm->vcpu, 0);
3331                return 1;
3332        }
3333
3334        nested_vmcb = map.hva;
3335
3336        /* Exit Guest-Mode */
3337        leave_guest_mode(&svm->vcpu);
3338        svm->nested.vmcb = 0;
3339
3340        /* Give the current vmcb to the guest */
3341        disable_gif(svm);
3342
3343        nested_vmcb->save.es     = vmcb->save.es;
3344        nested_vmcb->save.cs     = vmcb->save.cs;
3345        nested_vmcb->save.ss     = vmcb->save.ss;
3346        nested_vmcb->save.ds     = vmcb->save.ds;
3347        nested_vmcb->save.gdtr   = vmcb->save.gdtr;
3348        nested_vmcb->save.idtr   = vmcb->save.idtr;
3349        nested_vmcb->save.efer   = svm->vcpu.arch.efer;
3350        nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
3351        nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
3352        nested_vmcb->save.cr2    = vmcb->save.cr2;
3353        nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
3354        nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3355        nested_vmcb->save.rip    = vmcb->save.rip;
3356        nested_vmcb->save.rsp    = vmcb->save.rsp;
3357        nested_vmcb->save.rax    = vmcb->save.rax;
3358        nested_vmcb->save.dr7    = vmcb->save.dr7;
3359        nested_vmcb->save.dr6    = vmcb->save.dr6;
3360        nested_vmcb->save.cpl    = vmcb->save.cpl;
3361
3362        nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
3363        nested_vmcb->control.int_vector        = vmcb->control.int_vector;
3364        nested_vmcb->control.int_state         = vmcb->control.int_state;
3365        nested_vmcb->control.exit_code         = vmcb->control.exit_code;
3366        nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
3367        nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
3368        nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
3369        nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
3370        nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3371
3372        if (svm->nrips_enabled)
3373                nested_vmcb->control.next_rip  = vmcb->control.next_rip;
3374
3375        /*
3376         * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3377         * to make sure that we do not lose injected events. So check event_inj
3378         * here and copy it to exit_int_info if it is valid.
3379         * Exit_int_info and event_inj can't be both valid because the case
3380         * below only happens on a VMRUN instruction intercept which has
3381         * no valid exit_int_info set.
3382         */
3383        if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3384                struct vmcb_control_area *nc = &nested_vmcb->control;
3385
3386                nc->exit_int_info     = vmcb->control.event_inj;
3387                nc->exit_int_info_err = vmcb->control.event_inj_err;
3388        }
3389
3390        nested_vmcb->control.tlb_ctl           = 0;
3391        nested_vmcb->control.event_inj         = 0;
3392        nested_vmcb->control.event_inj_err     = 0;
3393
3394        nested_vmcb->control.pause_filter_count =
3395                svm->vmcb->control.pause_filter_count;
3396        nested_vmcb->control.pause_filter_thresh =
3397                svm->vmcb->control.pause_filter_thresh;
3398
3399        /* We always set V_INTR_MASKING and remember the old value in hflags */
3400        if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3401                nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3402
3403        /* Restore the original control entries */
3404        copy_vmcb_control_area(vmcb, hsave);
3405
3406        svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
3407        kvm_clear_exception_queue(&svm->vcpu);
3408        kvm_clear_interrupt_queue(&svm->vcpu);
3409
3410        svm->nested.nested_cr3 = 0;
3411
3412        /* Restore selected save entries */
3413        svm->vmcb->save.es = hsave->save.es;
3414        svm->vmcb->save.cs = hsave->save.cs;
3415        svm->vmcb->save.ss = hsave->save.ss;
3416        svm->vmcb->save.ds = hsave->save.ds;
3417        svm->vmcb->save.gdtr = hsave->save.gdtr;
3418        svm->vmcb->save.idtr = hsave->save.idtr;
3419        kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3420        svm_set_efer(&svm->vcpu, hsave->save.efer);
3421        svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3422        svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3423        if (npt_enabled) {
3424                svm->vmcb->save.cr3 = hsave->save.cr3;
3425                svm->vcpu.arch.cr3 = hsave->save.cr3;
3426        } else {
3427                (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3428        }
3429        kvm_rax_write(&svm->vcpu, hsave->save.rax);
3430        kvm_rsp_write(&svm->vcpu, hsave->save.rsp);
3431        kvm_rip_write(&svm->vcpu, hsave->save.rip);
3432        svm->vmcb->save.dr7 = 0;
3433        svm->vmcb->save.cpl = 0;
3434        svm->vmcb->control.exit_int_info = 0;
3435
3436        mark_all_dirty(svm->vmcb);
3437
3438        kvm_vcpu_unmap(&svm->vcpu, &map, true);
3439
3440        nested_svm_uninit_mmu_context(&svm->vcpu);
3441        kvm_mmu_reset_context(&svm->vcpu);
3442        kvm_mmu_load(&svm->vcpu);
3443
3444        /*
3445         * Drop what we picked up for L2 via svm_complete_interrupts() so it
3446         * doesn't end up in L1.
3447         */
3448        svm->vcpu.arch.nmi_injected = false;
3449        kvm_clear_exception_queue(&svm->vcpu);
3450        kvm_clear_interrupt_queue(&svm->vcpu);
3451
3452        return 0;
3453}
3454
3455static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3456{
3457        /*
3458         * This function merges the msr permission bitmaps of kvm and the
3459         * nested vmcb. It is optimized in that it only merges the parts where
3460         * the kvm msr permission bitmap may contain zero bits
3461         */
3462        int i;
3463
3464        if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3465                return true;
3466
3467        for (i = 0; i < MSRPM_OFFSETS; i++) {
3468                u32 value, p;
3469                u64 offset;
3470
3471                if (msrpm_offsets[i] == 0xffffffff)
3472                        break;
3473
3474                p      = msrpm_offsets[i];
3475                offset = svm->nested.vmcb_msrpm + (p * 4);
3476
3477                if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3478                        return false;
3479
3480                svm->nested.msrpm[p] = svm->msrpm[p] | value;
3481        }
3482
3483        svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3484
3485        return true;
3486}
3487
3488static bool nested_vmcb_checks(struct vmcb *vmcb)
3489{
3490        if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3491                return false;
3492
3493        if (vmcb->control.asid == 0)
3494                return false;
3495
3496        if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3497            !npt_enabled)
3498                return false;
3499
3500        return true;
3501}
3502
3503static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3504                                 struct vmcb *nested_vmcb, struct kvm_host_map *map)
3505{
3506        if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3507                svm->vcpu.arch.hflags |= HF_HIF_MASK;
3508        else
3509                svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3510
3511        if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3512                svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3513                nested_svm_init_mmu_context(&svm->vcpu);
3514        }
3515
3516        /* Load the nested guest state */
3517        svm->vmcb->save.es = nested_vmcb->save.es;
3518        svm->vmcb->save.cs = nested_vmcb->save.cs;
3519        svm->vmcb->save.ss = nested_vmcb->save.ss;
3520        svm->vmcb->save.ds = nested_vmcb->save.ds;
3521        svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3522        svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3523        kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3524        svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3525        svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3526        svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3527        if (npt_enabled) {
3528                svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3529                svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3530        } else
3531                (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3532
3533        /* Guest paging mode is active - reset mmu */
3534        kvm_mmu_reset_context(&svm->vcpu);
3535
3536        svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3537        kvm_rax_write(&svm->vcpu, nested_vmcb->save.rax);
3538        kvm_rsp_write(&svm->vcpu, nested_vmcb->save.rsp);
3539        kvm_rip_write(&svm->vcpu, nested_vmcb->save.rip);
3540
3541        /* In case we don't even reach vcpu_run, the fields are not updated */
3542        svm->vmcb->save.rax = nested_vmcb->save.rax;
3543        svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3544        svm->vmcb->save.rip = nested_vmcb->save.rip;
3545        svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3546        svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3547        svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3548
3549        svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3550        svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
3551
3552        /* cache intercepts */
3553        svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
3554        svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
3555        svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3556        svm->nested.intercept            = nested_vmcb->control.intercept;
3557
3558        svm_flush_tlb(&svm->vcpu, true);
3559        svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3560        if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3561                svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3562        else
3563                svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3564
3565        if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3566                /* We only want the cr8 intercept bits of the guest */
3567                clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3568                clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3569        }
3570
3571        /* We don't want to see VMMCALLs from a nested guest */
3572        clr_intercept(svm, INTERCEPT_VMMCALL);
3573
3574        svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
3575        svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
3576
3577        svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3578        svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3579        svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3580        svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3581        svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3582
3583        svm->vmcb->control.pause_filter_count =
3584                nested_vmcb->control.pause_filter_count;
3585        svm->vmcb->control.pause_filter_thresh =
3586                nested_vmcb->control.pause_filter_thresh;
3587
3588        kvm_vcpu_unmap(&svm->vcpu, map, true);
3589
3590        /* Enter Guest-Mode */
3591        enter_guest_mode(&svm->vcpu);
3592
3593        /*
3594         * Merge guest and host intercepts - must be called  with vcpu in
3595         * guest-mode to take affect here
3596         */
3597        recalc_intercepts(svm);
3598
3599        svm->nested.vmcb = vmcb_gpa;
3600
3601        enable_gif(svm);
3602
3603        mark_all_dirty(svm->vmcb);
3604}
3605
3606static int nested_svm_vmrun(struct vcpu_svm *svm)
3607{
3608        int ret;
3609        struct vmcb *nested_vmcb;
3610        struct vmcb *hsave = svm->nested.hsave;
3611        struct vmcb *vmcb = svm->vmcb;
3612        struct kvm_host_map map;
3613        u64 vmcb_gpa;
3614
3615        vmcb_gpa = svm->vmcb->save.rax;
3616
3617        ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb_gpa), &map);
3618        if (ret == -EINVAL) {
3619                kvm_inject_gp(&svm->vcpu, 0);
3620                return 1;
3621        } else if (ret) {
3622                return kvm_skip_emulated_instruction(&svm->vcpu);
3623        }
3624
3625        ret = kvm_skip_emulated_instruction(&svm->vcpu);
3626
3627        nested_vmcb = map.hva;
3628
3629        if (!nested_vmcb_checks(nested_vmcb)) {
3630                nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
3631                nested_vmcb->control.exit_code_hi = 0;
3632                nested_vmcb->control.exit_info_1  = 0;
3633                nested_vmcb->control.exit_info_2  = 0;
3634
3635                kvm_vcpu_unmap(&svm->vcpu, &map, true);
3636
3637                return ret;
3638        }
3639
3640        trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3641                               nested_vmcb->save.rip,
3642                               nested_vmcb->control.int_ctl,
3643                               nested_vmcb->control.event_inj,
3644                               nested_vmcb->control.nested_ctl);
3645
3646        trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3647                                    nested_vmcb->control.intercept_cr >> 16,
3648                                    nested_vmcb->control.intercept_exceptions,
3649                                    nested_vmcb->control.intercept);
3650
3651        /* Clear internal status */
3652        kvm_clear_exception_queue(&svm->vcpu);
3653        kvm_clear_interrupt_queue(&svm->vcpu);
3654
3655        /*
3656         * Save the old vmcb, so we don't need to pick what we save, but can
3657         * restore everything when a VMEXIT occurs
3658         */
3659        hsave->save.es     = vmcb->save.es;
3660        hsave->save.cs     = vmcb->save.cs;
3661        hsave->save.ss     = vmcb->save.ss;
3662        hsave->save.ds     = vmcb->save.ds;
3663        hsave->save.gdtr   = vmcb->save.gdtr;
3664        hsave->save.idtr   = vmcb->save.idtr;
3665        hsave->save.efer   = svm->vcpu.arch.efer;
3666        hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
3667        hsave->save.cr4    = svm->vcpu.arch.cr4;
3668        hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3669        hsave->save.rip    = kvm_rip_read(&svm->vcpu);
3670        hsave->save.rsp    = vmcb->save.rsp;
3671        hsave->save.rax    = vmcb->save.rax;
3672        if (npt_enabled)
3673                hsave->save.cr3    = vmcb->save.cr3;
3674        else
3675                hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
3676
3677        copy_vmcb_control_area(hsave, vmcb);
3678
3679        enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, &map);
3680
3681        if (!nested_svm_vmrun_msrpm(svm)) {
3682                svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
3683                svm->vmcb->control.exit_code_hi = 0;
3684                svm->vmcb->control.exit_info_1  = 0;
3685                svm->vmcb->control.exit_info_2  = 0;
3686
3687                nested_svm_vmexit(svm);
3688        }
3689
3690        return ret;
3691}
3692
3693static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3694{
3695        to_vmcb->save.fs = from_vmcb->save.fs;
3696        to_vmcb->save.gs = from_vmcb->save.gs;
3697        to_vmcb->save.tr = from_vmcb->save.tr;
3698        to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3699        to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3700        to_vmcb->save.star = from_vmcb->save.star;
3701        to_vmcb->save.lstar = from_vmcb->save.lstar;
3702        to_vmcb->save.cstar = from_vmcb->save.cstar;
3703        to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3704        to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3705        to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3706        to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3707}
3708
3709static int vmload_interception(struct vcpu_svm *svm)
3710{
3711        struct vmcb *nested_vmcb;
3712        struct kvm_host_map map;
3713        int ret;
3714
3715        if (nested_svm_check_permissions(svm))
3716                return 1;
3717
3718        ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
3719        if (ret) {
3720                if (ret == -EINVAL)
3721                        kvm_inject_gp(&svm->vcpu, 0);
3722                return 1;
3723        }
3724
3725        nested_vmcb = map.hva;
3726
3727        ret = kvm_skip_emulated_instruction(&svm->vcpu);
3728
3729        nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3730        kvm_vcpu_unmap(&svm->vcpu, &map, true);
3731
3732        return ret;
3733}
3734
3735static int vmsave_interception(struct vcpu_svm *svm)
3736{
3737        struct vmcb *nested_vmcb;
3738        struct kvm_host_map map;
3739        int ret;
3740
3741        if (nested_svm_check_permissions(svm))
3742                return 1;
3743
3744        ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
3745        if (ret) {
3746                if (ret == -EINVAL)
3747                        kvm_inject_gp(&svm->vcpu, 0);
3748                return 1;
3749        }
3750
3751        nested_vmcb = map.hva;
3752
3753        ret = kvm_skip_emulated_instruction(&svm->vcpu);
3754
3755        nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3756        kvm_vcpu_unmap(&svm->vcpu, &map, true);
3757
3758        return ret;
3759}
3760
3761static int vmrun_interception(struct vcpu_svm *svm)
3762{
3763        if (nested_svm_check_permissions(svm))
3764                return 1;
3765
3766        return nested_svm_vmrun(svm);
3767}
3768
3769static int stgi_interception(struct vcpu_svm *svm)
3770{
3771        int ret;
3772
3773        if (nested_svm_check_permissions(svm))
3774                return 1;
3775
3776        /*
3777         * If VGIF is enabled, the STGI intercept is only added to
3778         * detect the opening of the SMI/NMI window; remove it now.
3779         */
3780        if (vgif_enabled(svm))
3781                clr_intercept(svm, INTERCEPT_STGI);
3782
3783        ret = kvm_skip_emulated_instruction(&svm->vcpu);
3784        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3785
3786        enable_gif(svm);
3787
3788        return ret;
3789}
3790
3791static int clgi_interception(struct vcpu_svm *svm)
3792{
3793        int ret;
3794
3795        if (nested_svm_check_permissions(svm))
3796                return 1;
3797
3798        ret = kvm_skip_emulated_instruction(&svm->vcpu);
3799
3800        disable_gif(svm);
3801
3802        /* After a CLGI no interrupts should come */
3803        if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3804                svm_clear_vintr(svm);
3805                svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3806                mark_dirty(svm->vmcb, VMCB_INTR);
3807        }
3808
3809        return ret;
3810}
3811
3812static int invlpga_interception(struct vcpu_svm *svm)
3813{
3814        struct kvm_vcpu *vcpu = &svm->vcpu;
3815
3816        trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
3817                          kvm_rax_read(&svm->vcpu));
3818
3819        /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3820        kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
3821
3822        return kvm_skip_emulated_instruction(&svm->vcpu);
3823}
3824
3825static int skinit_interception(struct vcpu_svm *svm)
3826{
3827        trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
3828
3829        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3830        return 1;
3831}
3832
3833static int wbinvd_interception(struct vcpu_svm *svm)
3834{
3835        return kvm_emulate_wbinvd(&svm->vcpu);
3836}
3837
3838static int xsetbv_interception(struct vcpu_svm *svm)
3839{
3840        u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3841        u32 index = kvm_rcx_read(&svm->vcpu);
3842
3843        if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3844                return kvm_skip_emulated_instruction(&svm->vcpu);
3845        }
3846
3847        return 1;
3848}
3849
3850static int rdpru_interception(struct vcpu_svm *svm)
3851{
3852        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3853        return 1;
3854}
3855
3856static int task_switch_interception(struct vcpu_svm *svm)
3857{
3858        u16 tss_selector;
3859        int reason;
3860        int int_type = svm->vmcb->control.exit_int_info &
3861                SVM_EXITINTINFO_TYPE_MASK;
3862        int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3863        uint32_t type =
3864                svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3865        uint32_t idt_v =
3866                svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3867        bool has_error_code = false;
3868        u32 error_code = 0;
3869
3870        tss_selector = (u16)svm->vmcb->control.exit_info_1;
3871
3872        if (svm->vmcb->control.exit_info_2 &
3873            (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3874                reason = TASK_SWITCH_IRET;
3875        else if (svm->vmcb->control.exit_info_2 &
3876                 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3877                reason = TASK_SWITCH_JMP;
3878        else if (idt_v)
3879                reason = TASK_SWITCH_GATE;
3880        else
3881                reason = TASK_SWITCH_CALL;
3882
3883        if (reason == TASK_SWITCH_GATE) {
3884                switch (type) {
3885                case SVM_EXITINTINFO_TYPE_NMI:
3886                        svm->vcpu.arch.nmi_injected = false;
3887                        break;
3888                case SVM_EXITINTINFO_TYPE_EXEPT:
3889                        if (svm->vmcb->control.exit_info_2 &
3890                            (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3891                                has_error_code = true;
3892                                error_code =
3893                                        (u32)svm->vmcb->control.exit_info_2;
3894                        }
3895                        kvm_clear_exception_queue(&svm->vcpu);
3896                        break;
3897                case SVM_EXITINTINFO_TYPE_INTR:
3898                        kvm_clear_interrupt_queue(&svm->vcpu);
3899                        break;
3900                default:
3901                        break;
3902                }
3903        }
3904
3905        if (reason != TASK_SWITCH_GATE ||
3906            int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3907            (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3908             (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
3909                if (!skip_emulated_instruction(&svm->vcpu))
3910                        return 0;
3911        }
3912
3913        if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3914                int_vec = -1;
3915
3916        return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3917                               has_error_code, error_code);
3918}
3919
3920static int cpuid_interception(struct vcpu_svm *svm)
3921{
3922        return kvm_emulate_cpuid(&svm->vcpu);
3923}
3924
3925static int iret_interception(struct vcpu_svm *svm)
3926{
3927        ++svm->vcpu.stat.nmi_window_exits;
3928        clr_intercept(svm, INTERCEPT_IRET);
3929        svm->vcpu.arch.hflags |= HF_IRET_MASK;
3930        svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3931        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3932        return 1;
3933}
3934
3935static int invlpg_interception(struct vcpu_svm *svm)
3936{
3937        if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3938                return kvm_emulate_instruction(&svm->vcpu, 0);
3939
3940        kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3941        return kvm_skip_emulated_instruction(&svm->vcpu);
3942}
3943
3944static int emulate_on_interception(struct vcpu_svm *svm)
3945{
3946        return kvm_emulate_instruction(&svm->vcpu, 0);
3947}
3948
3949static int rsm_interception(struct vcpu_svm *svm)
3950{
3951        return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
3952}
3953
3954static int rdpmc_interception(struct vcpu_svm *svm)
3955{
3956        int err;
3957
3958        if (!nrips)
3959                return emulate_on_interception(svm);
3960
3961        err = kvm_rdpmc(&svm->vcpu);
3962        return kvm_complete_insn_gp(&svm->vcpu, err);
3963}
3964
3965static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3966                                            unsigned long val)
3967{
3968        unsigned long cr0 = svm->vcpu.arch.cr0;
3969        bool ret = false;
3970        u64 intercept;
3971
3972        intercept = svm->nested.intercept;
3973
3974        if (!is_guest_mode(&svm->vcpu) ||
3975            (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3976                return false;
3977
3978        cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3979        val &= ~SVM_CR0_SELECTIVE_MASK;
3980
3981        if (cr0 ^ val) {
3982                svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3983                ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3984        }
3985
3986        return ret;
3987}
3988
3989#define CR_VALID (1ULL << 63)
3990
3991static int cr_interception(struct vcpu_svm *svm)
3992{
3993        int reg, cr;
3994        unsigned long val;
3995        int err;
3996
3997        if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3998                return emulate_on_interception(svm);
3999
4000        if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
4001                return emulate_on_interception(svm);
4002
4003        reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4004        if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
4005                cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
4006        else
4007                cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
4008
4009        err = 0;
4010        if (cr >= 16) { /* mov to cr */
4011                cr -= 16;
4012                val = kvm_register_read(&svm->vcpu, reg);
4013                switch (cr) {
4014                case 0:
4015                        if (!check_selective_cr0_intercepted(svm, val))
4016                                err = kvm_set_cr0(&svm->vcpu, val);
4017                        else
4018                                return 1;
4019
4020                        break;
4021                case 3:
4022                        err = kvm_set_cr3(&svm->vcpu, val);
4023                        break;
4024                case 4:
4025                        err = kvm_set_cr4(&svm->vcpu, val);
4026                        break;
4027                case 8:
4028                        err = kvm_set_cr8(&svm->vcpu, val);
4029                        break;
4030                default:
4031                        WARN(1, "unhandled write to CR%d", cr);
4032                        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4033                        return 1;
4034                }
4035        } else { /* mov from cr */
4036                switch (cr) {
4037                case 0:
4038                        val = kvm_read_cr0(&svm->vcpu);
4039                        break;
4040                case 2:
4041                        val = svm->vcpu.arch.cr2;
4042                        break;
4043                case 3:
4044                        val = kvm_read_cr3(&svm->vcpu);
4045                        break;
4046                case 4:
4047                        val = kvm_read_cr4(&svm->vcpu);
4048                        break;
4049                case 8:
4050                        val = kvm_get_cr8(&svm->vcpu);
4051                        break;
4052                default:
4053                        WARN(1, "unhandled read from CR%d", cr);
4054                        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4055                        return 1;
4056                }
4057                kvm_register_write(&svm->vcpu, reg, val);
4058        }
4059        return kvm_complete_insn_gp(&svm->vcpu, err);
4060}
4061
4062static int dr_interception(struct vcpu_svm *svm)
4063{
4064        int reg, dr;
4065        unsigned long val;
4066
4067        if (svm->vcpu.guest_debug == 0) {
4068                /*
4069                 * No more DR vmexits; force a reload of the debug registers
4070                 * and reenter on this instruction.  The next vmexit will
4071                 * retrieve the full state of the debug registers.
4072                 */
4073                clr_dr_intercepts(svm);
4074                svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4075                return 1;
4076        }
4077
4078        if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
4079                return emulate_on_interception(svm);
4080
4081        reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4082        dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
4083
4084        if (dr >= 16) { /* mov to DRn */
4085                if (!kvm_require_dr(&svm->vcpu, dr - 16))
4086                        return 1;
4087                val = kvm_register_read(&svm->vcpu, reg);
4088                kvm_set_dr(&svm->vcpu, dr - 16, val);
4089        } else {
4090                if (!kvm_require_dr(&svm->vcpu, dr))
4091                        return 1;
4092                kvm_get_dr(&svm->vcpu, dr, &val);
4093                kvm_register_write(&svm->vcpu, reg, val);
4094        }
4095
4096        return kvm_skip_emulated_instruction(&svm->vcpu);
4097}
4098
4099static int cr8_write_interception(struct vcpu_svm *svm)
4100{
4101        struct kvm_run *kvm_run = svm->vcpu.run;
4102        int r;
4103
4104        u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
4105        /* instruction emulation calls kvm_set_cr8() */
4106        r = cr_interception(svm);
4107        if (lapic_in_kernel(&svm->vcpu))
4108                return r;
4109        if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
4110                return r;
4111        kvm_run->exit_reason = KVM_EXIT_SET_TPR;
4112        return 0;
4113}
4114
4115static int svm_get_msr_feature(struct kvm_msr_entry *msr)
4116{
4117        msr->data = 0;
4118
4119        switch (msr->index) {
4120        case MSR_F10H_DECFG:
4121                if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
4122                        msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
4123                break;
4124        default:
4125                return 1;
4126        }
4127
4128        return 0;
4129}
4130
4131static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4132{
4133        struct vcpu_svm *svm = to_svm(vcpu);
4134
4135        switch (msr_info->index) {
4136        case MSR_STAR:
4137                msr_info->data = svm->vmcb->save.star;
4138                break;
4139#ifdef CONFIG_X86_64
4140        case MSR_LSTAR:
4141                msr_info->data = svm->vmcb->save.lstar;
4142                break;
4143        case MSR_CSTAR:
4144                msr_info->data = svm->vmcb->save.cstar;
4145                break;
4146        case MSR_KERNEL_GS_BASE:
4147                msr_info->data = svm->vmcb->save.kernel_gs_base;
4148                break;
4149        case MSR_SYSCALL_MASK:
4150                msr_info->data = svm->vmcb->save.sfmask;
4151                break;
4152#endif
4153        case MSR_IA32_SYSENTER_CS:
4154                msr_info->data = svm->vmcb->save.sysenter_cs;
4155                break;
4156        case MSR_IA32_SYSENTER_EIP:
4157                msr_info->data = svm->sysenter_eip;
4158                break;
4159        case MSR_IA32_SYSENTER_ESP:
4160                msr_info->data = svm->sysenter_esp;
4161                break;
4162        case MSR_TSC_AUX:
4163                if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4164                        return 1;
4165                msr_info->data = svm->tsc_aux;
4166                break;
4167        /*
4168         * Nobody will change the following 5 values in the VMCB so we can
4169         * safely return them on rdmsr. They will always be 0 until LBRV is
4170         * implemented.
4171         */
4172        case MSR_IA32_DEBUGCTLMSR:
4173                msr_info->data = svm->vmcb->save.dbgctl;
4174                break;
4175        case MSR_IA32_LASTBRANCHFROMIP:
4176                msr_info->data = svm->vmcb->save.br_from;
4177                break;
4178        case MSR_IA32_LASTBRANCHTOIP:
4179                msr_info->data = svm->vmcb->save.br_to;
4180                break;
4181        case MSR_IA32_LASTINTFROMIP:
4182                msr_info->data = svm->vmcb->save.last_excp_from;
4183                break;
4184        case MSR_IA32_LASTINTTOIP:
4185                msr_info->data = svm->vmcb->save.last_excp_to;
4186                break;
4187        case MSR_VM_HSAVE_PA:
4188                msr_info->data = svm->nested.hsave_msr;
4189                break;
4190        case MSR_VM_CR:
4191                msr_info->data = svm->nested.vm_cr_msr;
4192                break;
4193        case MSR_IA32_SPEC_CTRL:
4194                if (!msr_info->host_initiated &&
4195                    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4196                    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4197                        return 1;
4198
4199                msr_info->data = svm->spec_ctrl;
4200                break;
4201        case MSR_AMD64_VIRT_SPEC_CTRL:
4202                if (!msr_info->host_initiated &&
4203                    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4204                        return 1;
4205
4206                msr_info->data = svm->virt_spec_ctrl;
4207                break;
4208        case MSR_F15H_IC_CFG: {
4209
4210                int family, model;
4211
4212                family = guest_cpuid_family(vcpu);
4213                model  = guest_cpuid_model(vcpu);
4214
4215                if (family < 0 || model < 0)
4216                        return kvm_get_msr_common(vcpu, msr_info);
4217
4218                msr_info->data = 0;
4219
4220                if (family == 0x15 &&
4221                    (model >= 0x2 && model < 0x20))
4222                        msr_info->data = 0x1E;
4223                }
4224                break;
4225        case MSR_F10H_DECFG:
4226                msr_info->data = svm->msr_decfg;
4227                break;
4228        default:
4229                return kvm_get_msr_common(vcpu, msr_info);
4230        }
4231        return 0;
4232}
4233
4234static int rdmsr_interception(struct vcpu_svm *svm)
4235{
4236        return kvm_emulate_rdmsr(&svm->vcpu);
4237}
4238
4239static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4240{
4241        struct vcpu_svm *svm = to_svm(vcpu);
4242        int svm_dis, chg_mask;
4243
4244        if (data & ~SVM_VM_CR_VALID_MASK)
4245                return 1;
4246
4247        chg_mask = SVM_VM_CR_VALID_MASK;
4248
4249        if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4250                chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4251
4252        svm->nested.vm_cr_msr &= ~chg_mask;
4253        svm->nested.vm_cr_msr |= (data & chg_mask);
4254
4255        svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4256
4257        /* check for svm_disable while efer.svme is set */
4258        if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4259                return 1;
4260
4261        return 0;
4262}
4263
4264static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4265{
4266        struct vcpu_svm *svm = to_svm(vcpu);
4267
4268        u32 ecx = msr->index;
4269        u64 data = msr->data;
4270        switch (ecx) {
4271        case MSR_IA32_CR_PAT:
4272                if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4273                        return 1;
4274                vcpu->arch.pat = data;
4275                svm->vmcb->save.g_pat = data;
4276                mark_dirty(svm->vmcb, VMCB_NPT);
4277                break;
4278        case MSR_IA32_SPEC_CTRL:
4279                if (!msr->host_initiated &&
4280                    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4281                    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4282                        return 1;
4283
4284                /* The STIBP bit doesn't fault even if it's not advertised */
4285                if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
4286                        return 1;
4287
4288                svm->spec_ctrl = data;
4289
4290                if (!data)
4291                        break;
4292
4293                /*
4294                 * For non-nested:
4295                 * When it's written (to non-zero) for the first time, pass
4296                 * it through.
4297                 *
4298                 * For nested:
4299                 * The handling of the MSR bitmap for L2 guests is done in
4300                 * nested_svm_vmrun_msrpm.
4301                 * We update the L1 MSR bit as well since it will end up
4302                 * touching the MSR anyway now.
4303                 */
4304                set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4305                break;
4306        case MSR_IA32_PRED_CMD:
4307                if (!msr->host_initiated &&
4308                    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
4309                        return 1;
4310
4311                if (data & ~PRED_CMD_IBPB)
4312                        return 1;
4313
4314                if (!data)
4315                        break;
4316
4317                wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4318                if (is_guest_mode(vcpu))
4319                        break;
4320                set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4321                break;
4322        case MSR_AMD64_VIRT_SPEC_CTRL:
4323                if (!msr->host_initiated &&
4324                    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4325                        return 1;
4326
4327                if (data & ~SPEC_CTRL_SSBD)
4328                        return 1;
4329
4330                svm->virt_spec_ctrl = data;
4331                break;
4332        case MSR_STAR:
4333                svm->vmcb->save.star = data;
4334                break;
4335#ifdef CONFIG_X86_64
4336        case MSR_LSTAR:
4337                svm->vmcb->save.lstar = data;
4338                break;
4339        case MSR_CSTAR:
4340                svm->vmcb->save.cstar = data;
4341                break;
4342        case MSR_KERNEL_GS_BASE:
4343                svm->vmcb->save.kernel_gs_base = data;
4344                break;
4345        case MSR_SYSCALL_MASK:
4346                svm->vmcb->save.sfmask = data;
4347                break;
4348#endif
4349        case MSR_IA32_SYSENTER_CS:
4350                svm->vmcb->save.sysenter_cs = data;
4351                break;
4352        case MSR_IA32_SYSENTER_EIP:
4353                svm->sysenter_eip = data;
4354                svm->vmcb->save.sysenter_eip = data;
4355                break;
4356        case MSR_IA32_SYSENTER_ESP:
4357                svm->sysenter_esp = data;
4358                svm->vmcb->save.sysenter_esp = data;
4359                break;
4360        case MSR_TSC_AUX:
4361                if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4362                        return 1;
4363
4364                /*
4365                 * This is rare, so we update the MSR here instead of using
4366                 * direct_access_msrs.  Doing that would require a rdmsr in
4367                 * svm_vcpu_put.
4368                 */
4369                svm->tsc_aux = data;
4370                wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4371                break;
4372        case MSR_IA32_DEBUGCTLMSR:
4373                if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4374                        vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4375                                    __func__, data);
4376                        break;
4377                }
4378                if (data & DEBUGCTL_RESERVED_BITS)
4379                        return 1;
4380
4381                svm->vmcb->save.dbgctl = data;
4382                mark_dirty(svm->vmcb, VMCB_LBR);
4383                if (data & (1ULL<<0))
4384                        svm_enable_lbrv(svm);
4385                else
4386                        svm_disable_lbrv(svm);
4387                break;
4388        case MSR_VM_HSAVE_PA:
4389                svm->nested.hsave_msr = data;
4390                break;
4391        case MSR_VM_CR:
4392                return svm_set_vm_cr(vcpu, data);
4393        case MSR_VM_IGNNE:
4394                vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4395                break;
4396        case MSR_F10H_DECFG: {
4397                struct kvm_msr_entry msr_entry;
4398
4399                msr_entry.index = msr->index;
4400                if (svm_get_msr_feature(&msr_entry))
4401                        return 1;
4402
4403                /* Check the supported bits */
4404                if (data & ~msr_entry.data)
4405                        return 1;
4406
4407                /* Don't allow the guest to change a bit, #GP */
4408                if (!msr->host_initiated && (data ^ msr_entry.data))
4409                        return 1;
4410
4411                svm->msr_decfg = data;
4412                break;
4413        }
4414        case MSR_IA32_APICBASE:
4415                if (kvm_vcpu_apicv_active(vcpu))
4416                        avic_update_vapic_bar(to_svm(vcpu), data);
4417                /* Fall through */
4418        default:
4419                return kvm_set_msr_common(vcpu, msr);
4420        }
4421        return 0;
4422}
4423
4424static int wrmsr_interception(struct vcpu_svm *svm)
4425{
4426        return kvm_emulate_wrmsr(&svm->vcpu);
4427}
4428
4429static int msr_interception(struct vcpu_svm *svm)
4430{
4431        if (svm->vmcb->control.exit_info_1)
4432                return wrmsr_interception(svm);
4433        else
4434                return rdmsr_interception(svm);
4435}
4436
4437static int interrupt_window_interception(struct vcpu_svm *svm)
4438{
4439        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4440        svm_clear_vintr(svm);
4441        svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4442        mark_dirty(svm->vmcb, VMCB_INTR);
4443        ++svm->vcpu.stat.irq_window_exits;
4444        return 1;
4445}
4446
4447static int pause_interception(struct vcpu_svm *svm)
4448{
4449        struct kvm_vcpu *vcpu = &svm->vcpu;
4450        bool in_kernel = (svm_get_cpl(vcpu) == 0);
4451
4452        if (pause_filter_thresh)
4453                grow_ple_window(vcpu);
4454
4455        kvm_vcpu_on_spin(vcpu, in_kernel);
4456        return 1;
4457}
4458
4459static int nop_interception(struct vcpu_svm *svm)
4460{
4461        return kvm_skip_emulated_instruction(&(svm->vcpu));
4462}
4463
4464static int monitor_interception(struct vcpu_svm *svm)
4465{
4466        printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4467        return nop_interception(svm);
4468}
4469
4470static int mwait_interception(struct vcpu_svm *svm)
4471{
4472        printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4473        return nop_interception(svm);
4474}
4475
4476enum avic_ipi_failure_cause {
4477        AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4478        AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4479        AVIC_IPI_FAILURE_INVALID_TARGET,
4480        AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4481};
4482
4483static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4484{
4485        u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4486        u32 icrl = svm->vmcb->control.exit_info_1;
4487        u32 id = svm->vmcb->control.exit_info_2 >> 32;
4488        u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4489        struct kvm_lapic *apic = svm->vcpu.arch.apic;
4490
4491        trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4492
4493        switch (id) {
4494        case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4495                /*
4496                 * AVIC hardware handles the generation of
4497                 * IPIs when the specified Message Type is Fixed
4498                 * (also known as fixed delivery mode) and
4499                 * the Trigger Mode is edge-triggered. The hardware
4500                 * also supports self and broadcast delivery modes
4501                 * specified via the Destination Shorthand(DSH)
4502                 * field of the ICRL. Logical and physical APIC ID
4503                 * formats are supported. All other IPI types cause
4504                 * a #VMEXIT, which needs to emulated.
4505                 */
4506                kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4507                kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4508                break;
4509        case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4510                int i;
4511                struct kvm_vcpu *vcpu;
4512                struct kvm *kvm = svm->vcpu.kvm;
4513                struct kvm_lapic *apic = svm->vcpu.arch.apic;
4514
4515                /*
4516                 * At this point, we expect that the AVIC HW has already
4517                 * set the appropriate IRR bits on the valid target
4518                 * vcpus. So, we just need to kick the appropriate vcpu.
4519                 */
4520                kvm_for_each_vcpu(i, vcpu, kvm) {
4521                        bool m = kvm_apic_match_dest(vcpu, apic,
4522                                                     icrl & KVM_APIC_SHORT_MASK,
4523                                                     GET_APIC_DEST_FIELD(icrh),
4524                                                     icrl & KVM_APIC_DEST_MASK);
4525
4526                        if (m && !avic_vcpu_is_running(vcpu))
4527                                kvm_vcpu_wake_up(vcpu);
4528                }
4529                break;
4530        }
4531        case AVIC_IPI_FAILURE_INVALID_TARGET:
4532                WARN_ONCE(1, "Invalid IPI target: index=%u, vcpu=%d, icr=%#0x:%#0x\n",
4533                          index, svm->vcpu.vcpu_id, icrh, icrl);
4534                break;
4535        case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4536                WARN_ONCE(1, "Invalid backing page\n");
4537                break;
4538        default:
4539                pr_err("Unknown IPI interception\n");
4540        }
4541
4542        return 1;
4543}
4544
4545static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4546{
4547        struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4548        int index;
4549        u32 *logical_apic_id_table;
4550        int dlid = GET_APIC_LOGICAL_ID(ldr);
4551
4552        if (!dlid)
4553                return NULL;
4554
4555        if (flat) { /* flat */
4556                index = ffs(dlid) - 1;
4557                if (index > 7)
4558                        return NULL;
4559        } else { /* cluster */
4560                int cluster = (dlid & 0xf0) >> 4;
4561                int apic = ffs(dlid & 0x0f) - 1;
4562
4563                if ((apic < 0) || (apic > 7) ||
4564                    (cluster >= 0xf))
4565                        return NULL;
4566                index = (cluster << 2) + apic;
4567        }
4568
4569        logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
4570
4571        return &logical_apic_id_table[index];
4572}
4573
4574static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
4575{
4576        bool flat;
4577        u32 *entry, new_entry;
4578
4579        flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4580        entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4581        if (!entry)
4582                return -EINVAL;
4583
4584        new_entry = READ_ONCE(*entry);
4585        new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4586        new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4587        new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4588        WRITE_ONCE(*entry, new_entry);
4589
4590        return 0;
4591}
4592
4593static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
4594{
4595        struct vcpu_svm *svm = to_svm(vcpu);
4596        bool flat = svm->dfr_reg == APIC_DFR_FLAT;
4597        u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
4598
4599        if (entry)
4600                clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
4601}
4602
4603static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4604{
4605        int ret = 0;
4606        struct vcpu_svm *svm = to_svm(vcpu);
4607        u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4608        u32 id = kvm_xapic_id(vcpu->arch.apic);
4609
4610        if (ldr == svm->ldr_reg)
4611                return 0;
4612
4613        avic_invalidate_logical_id_entry(vcpu);
4614
4615        if (ldr)
4616                ret = avic_ldr_write(vcpu, id, ldr);
4617
4618        if (!ret)
4619                svm->ldr_reg = ldr;
4620
4621        return ret;
4622}
4623
4624static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4625{
4626        u64 *old, *new;
4627        struct vcpu_svm *svm = to_svm(vcpu);
4628        u32 id = kvm_xapic_id(vcpu->arch.apic);
4629
4630        if (vcpu->vcpu_id == id)
4631                return 0;
4632
4633        old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4634        new = avic_get_physical_id_entry(vcpu, id);
4635        if (!new || !old)
4636                return 1;
4637
4638        /* We need to move physical_id_entry to new offset */
4639        *new = *old;
4640        *old = 0ULL;
4641        to_svm(vcpu)->avic_physical_id_cache = new;
4642
4643        /*
4644         * Also update the guest physical APIC ID in the logical
4645         * APIC ID table entry if already setup the LDR.
4646         */
4647        if (svm->ldr_reg)
4648                avic_handle_ldr_update(vcpu);
4649
4650        return 0;
4651}
4652
4653static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4654{
4655        struct vcpu_svm *svm = to_svm(vcpu);
4656        u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4657
4658        if (svm->dfr_reg == dfr)
4659                return;
4660
4661        avic_invalidate_logical_id_entry(vcpu);
4662        svm->dfr_reg = dfr;
4663}
4664
4665static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4666{
4667        struct kvm_lapic *apic = svm->vcpu.arch.apic;
4668        u32 offset = svm->vmcb->control.exit_info_1 &
4669                                AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4670
4671        switch (offset) {
4672        case APIC_ID:
4673                if (avic_handle_apic_id_update(&svm->vcpu))
4674                        return 0;
4675                break;
4676        case APIC_LDR:
4677                if (avic_handle_ldr_update(&svm->vcpu))
4678                        return 0;
4679                break;
4680        case APIC_DFR:
4681                avic_handle_dfr_update(&svm->vcpu);
4682                break;
4683        default:
4684                break;
4685        }
4686
4687        kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4688
4689        return 1;
4690}
4691
4692static bool is_avic_unaccelerated_access_trap(u32 offset)
4693{
4694        bool ret = false;
4695
4696        switch (offset) {
4697        case APIC_ID:
4698        case APIC_EOI:
4699        case APIC_RRR:
4700        case APIC_LDR:
4701        case APIC_DFR:
4702        case APIC_SPIV:
4703        case APIC_ESR:
4704        case APIC_ICR:
4705        case APIC_LVTT:
4706        case APIC_LVTTHMR:
4707        case APIC_LVTPC:
4708        case APIC_LVT0:
4709        case APIC_LVT1:
4710        case APIC_LVTERR:
4711        case APIC_TMICT:
4712        case APIC_TDCR:
4713                ret = true;
4714                break;
4715        default:
4716                break;
4717        }
4718        return ret;
4719}
4720
4721static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4722{
4723        int ret = 0;
4724        u32 offset = svm->vmcb->control.exit_info_1 &
4725                     AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4726        u32 vector = svm->vmcb->control.exit_info_2 &
4727                     AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4728        bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4729                     AVIC_UNACCEL_ACCESS_WRITE_MASK;
4730        bool trap = is_avic_unaccelerated_access_trap(offset);
4731
4732        trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4733                                            trap, write, vector);
4734        if (trap) {
4735                /* Handling Trap */
4736                WARN_ONCE(!write, "svm: Handling trap read.\n");
4737                ret = avic_unaccel_trap_write(svm);
4738        } else {
4739                /* Handling Fault */
4740                ret = kvm_emulate_instruction(&svm->vcpu, 0);
4741        }
4742
4743        return ret;
4744}
4745
4746static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4747        [SVM_EXIT_READ_CR0]                     = cr_interception,
4748        [SVM_EXIT_READ_CR3]                     = cr_interception,
4749        [SVM_EXIT_READ_CR4]                     = cr_interception,
4750        [SVM_EXIT_READ_CR8]                     = cr_interception,
4751        [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
4752        [SVM_EXIT_WRITE_CR0]                    = cr_interception,
4753        [SVM_EXIT_WRITE_CR3]                    = cr_interception,
4754        [SVM_EXIT_WRITE_CR4]                    = cr_interception,
4755        [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
4756        [SVM_EXIT_READ_DR0]                     = dr_interception,
4757        [SVM_EXIT_READ_DR1]                     = dr_interception,
4758        [SVM_EXIT_READ_DR2]                     = dr_interception,
4759        [SVM_EXIT_READ_DR3]                     = dr_interception,
4760        [SVM_EXIT_READ_DR4]                     = dr_interception,
4761        [SVM_EXIT_READ_DR5]                     = dr_interception,
4762        [SVM_EXIT_READ_DR6]                     = dr_interception,
4763        [SVM_EXIT_READ_DR7]                     = dr_interception,
4764        [SVM_EXIT_WRITE_DR0]                    = dr_interception,
4765        [SVM_EXIT_WRITE_DR1]                    = dr_interception,
4766        [SVM_EXIT_WRITE_DR2]                    = dr_interception,
4767        [SVM_EXIT_WRITE_DR3]                    = dr_interception,
4768        [SVM_EXIT_WRITE_DR4]                    = dr_interception,
4769        [SVM_EXIT_WRITE_DR5]                    = dr_interception,
4770        [SVM_EXIT_WRITE_DR6]                    = dr_interception,
4771        [SVM_EXIT_WRITE_DR7]                    = dr_interception,
4772        [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
4773        [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
4774        [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
4775        [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
4776        [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
4777        [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
4778        [SVM_EXIT_EXCP_BASE + GP_VECTOR]        = gp_interception,
4779        [SVM_EXIT_INTR]                         = intr_interception,
4780        [SVM_EXIT_NMI]                          = nmi_interception,
4781        [SVM_EXIT_SMI]                          = nop_on_interception,
4782        [SVM_EXIT_INIT]                         = nop_on_interception,
4783        [SVM_EXIT_VINTR]                        = interrupt_window_interception,
4784        [SVM_EXIT_RDPMC]                        = rdpmc_interception,
4785        [SVM_EXIT_CPUID]                        = cpuid_interception,
4786        [SVM_EXIT_IRET]                         = iret_interception,
4787        [SVM_EXIT_INVD]                         = emulate_on_interception,
4788        [SVM_EXIT_PAUSE]                        = pause_interception,
4789        [SVM_EXIT_HLT]                          = halt_interception,
4790        [SVM_EXIT_INVLPG]                       = invlpg_interception,
4791        [SVM_EXIT_INVLPGA]                      = invlpga_interception,
4792        [SVM_EXIT_IOIO]                         = io_interception,
4793        [SVM_EXIT_MSR]                          = msr_interception,
4794        [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
4795        [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
4796        [SVM_EXIT_VMRUN]                        = vmrun_interception,
4797        [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
4798        [SVM_EXIT_VMLOAD]                       = vmload_interception,
4799        [SVM_EXIT_VMSAVE]                       = vmsave_interception,
4800        [SVM_EXIT_STGI]                         = stgi_interception,
4801        [SVM_EXIT_CLGI]                         = clgi_interception,
4802        [SVM_EXIT_SKINIT]                       = skinit_interception,
4803        [SVM_EXIT_WBINVD]                       = wbinvd_interception,
4804        [SVM_EXIT_MONITOR]                      = monitor_interception,
4805        [SVM_EXIT_MWAIT]                        = mwait_interception,
4806        [SVM_EXIT_XSETBV]                       = xsetbv_interception,
4807        [SVM_EXIT_RDPRU]                        = rdpru_interception,
4808        [SVM_EXIT_NPF]                          = npf_interception,
4809        [SVM_EXIT_RSM]                          = rsm_interception,
4810        [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
4811        [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
4812};
4813
4814static void dump_vmcb(struct kvm_vcpu *vcpu)
4815{
4816        struct vcpu_svm *svm = to_svm(vcpu);
4817        struct vmcb_control_area *control = &svm->vmcb->control;
4818        struct vmcb_save_area *save = &svm->vmcb->save;
4819
4820        if (!dump_invalid_vmcb) {
4821                pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
4822                return;
4823        }
4824
4825        pr_err("VMCB Control Area:\n");
4826        pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4827        pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4828        pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4829        pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4830        pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4831        pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4832        pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4833        pr_err("%-20s%d\n", "pause filter threshold:",
4834               control->pause_filter_thresh);
4835        pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4836        pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4837        pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4838        pr_err("%-20s%d\n", "asid:", control->asid);
4839        pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4840        pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4841        pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4842        pr_err("%-20s%08x\n", "int_state:", control->int_state);
4843        pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4844        pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4845        pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4846        pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4847        pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4848        pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4849        pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4850        pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4851        pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4852        pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4853        pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4854        pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4855        pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4856        pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4857        pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4858        pr_err("VMCB State Save Area:\n");
4859        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4860               "es:",
4861               save->es.selector, save->es.attrib,
4862               save->es.limit, save->es.base);
4863        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4864               "cs:",
4865               save->cs.selector, save->cs.attrib,
4866               save->cs.limit, save->cs.base);
4867        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4868               "ss:",
4869               save->ss.selector, save->ss.attrib,
4870               save->ss.limit, save->ss.base);
4871        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4872               "ds:",
4873               save->ds.selector, save->ds.attrib,
4874               save->ds.limit, save->ds.base);
4875        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4876               "fs:",
4877               save->fs.selector, save->fs.attrib,
4878               save->fs.limit, save->fs.base);
4879        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4880               "gs:",
4881               save->gs.selector, save->gs.attrib,
4882               save->gs.limit, save->gs.base);
4883        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4884               "gdtr:",
4885               save->gdtr.selector, save->gdtr.attrib,
4886               save->gdtr.limit, save->gdtr.base);
4887        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4888               "ldtr:",
4889               save->ldtr.selector, save->ldtr.attrib,
4890               save->ldtr.limit, save->ldtr.base);
4891        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4892               "idtr:",
4893               save->idtr.selector, save->idtr.attrib,
4894               save->idtr.limit, save->idtr.base);
4895        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4896               "tr:",
4897               save->tr.selector, save->tr.attrib,
4898               save->tr.limit, save->tr.base);
4899        pr_err("cpl:            %d                efer:         %016llx\n",
4900                save->cpl, save->efer);
4901        pr_err("%-15s %016llx %-13s %016llx\n",
4902               "cr0:", save->cr0, "cr2:", save->cr2);
4903        pr_err("%-15s %016llx %-13s %016llx\n",
4904               "cr3:", save->cr3, "cr4:", save->cr4);
4905        pr_err("%-15s %016llx %-13s %016llx\n",
4906               "dr6:", save->dr6, "dr7:", save->dr7);
4907        pr_err("%-15s %016llx %-13s %016llx\n",
4908               "rip:", save->rip, "rflags:", save->rflags);
4909        pr_err("%-15s %016llx %-13s %016llx\n",
4910               "rsp:", save->rsp, "rax:", save->rax);
4911        pr_err("%-15s %016llx %-13s %016llx\n",
4912               "star:", save->star, "lstar:", save->lstar);
4913        pr_err("%-15s %016llx %-13s %016llx\n",
4914               "cstar:", save->cstar, "sfmask:", save->sfmask);
4915        pr_err("%-15s %016llx %-13s %016llx\n",
4916               "kernel_gs_base:", save->kernel_gs_base,
4917               "sysenter_cs:", save->sysenter_cs);
4918        pr_err("%-15s %016llx %-13s %016llx\n",
4919               "sysenter_esp:", save->sysenter_esp,
4920               "sysenter_eip:", save->sysenter_eip);
4921        pr_err("%-15s %016llx %-13s %016llx\n",
4922               "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4923        pr_err("%-15s %016llx %-13s %016llx\n",
4924               "br_from:", save->br_from, "br_to:", save->br_to);
4925        pr_err("%-15s %016llx %-13s %016llx\n",
4926               "excp_from:", save->last_excp_from,
4927               "excp_to:", save->last_excp_to);
4928}
4929
4930static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4931{
4932        struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4933
4934        *info1 = control->exit_info_1;
4935        *info2 = control->exit_info_2;
4936}
4937
4938static int handle_exit(struct kvm_vcpu *vcpu)
4939{
4940        struct vcpu_svm *svm = to_svm(vcpu);
4941        struct kvm_run *kvm_run = vcpu->run;
4942        u32 exit_code = svm->vmcb->control.exit_code;
4943
4944        trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4945
4946        if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4947                vcpu->arch.cr0 = svm->vmcb->save.cr0;
4948        if (npt_enabled)
4949                vcpu->arch.cr3 = svm->vmcb->save.cr3;
4950
4951        if (unlikely(svm->nested.exit_required)) {
4952                nested_svm_vmexit(svm);
4953                svm->nested.exit_required = false;
4954
4955                return 1;
4956        }
4957
4958        if (is_guest_mode(vcpu)) {
4959                int vmexit;
4960
4961                trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4962                                        svm->vmcb->control.exit_info_1,
4963                                        svm->vmcb->control.exit_info_2,
4964                                        svm->vmcb->control.exit_int_info,
4965                                        svm->vmcb->control.exit_int_info_err,
4966                                        KVM_ISA_SVM);
4967
4968                vmexit = nested_svm_exit_special(svm);
4969
4970                if (vmexit == NESTED_EXIT_CONTINUE)
4971                        vmexit = nested_svm_exit_handled(svm);
4972
4973                if (vmexit == NESTED_EXIT_DONE)
4974                        return 1;
4975        }
4976
4977        svm_complete_interrupts(svm);
4978
4979        if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4980                kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4981                kvm_run->fail_entry.hardware_entry_failure_reason
4982                        = svm->vmcb->control.exit_code;
4983                dump_vmcb(vcpu);
4984                return 0;
4985        }
4986
4987        if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4988            exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4989            exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4990            exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4991                printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4992                       "exit_code 0x%x\n",
4993                       __func__, svm->vmcb->control.exit_int_info,
4994                       exit_code);
4995
4996        if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4997            || !svm_exit_handlers[exit_code]) {
4998                vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code);
4999                dump_vmcb(vcpu);
5000                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5001                vcpu->run->internal.suberror =
5002                        KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
5003                vcpu->run->internal.ndata = 1;
5004                vcpu->run->internal.data[0] = exit_code;
5005                return 0;
5006        }
5007
5008#ifdef CONFIG_RETPOLINE
5009        if (exit_code == SVM_EXIT_MSR)
5010                return msr_interception(svm);
5011        else if (exit_code == SVM_EXIT_VINTR)
5012                return interrupt_window_interception(svm);
5013        else if (exit_code == SVM_EXIT_INTR)
5014                return intr_interception(svm);
5015        else if (exit_code == SVM_EXIT_HLT)
5016                return halt_interception(svm);
5017        else if (exit_code == SVM_EXIT_NPF)
5018                return npf_interception(svm);
5019#endif
5020        return svm_exit_handlers[exit_code](svm);
5021}
5022
5023static void reload_tss(struct kvm_vcpu *vcpu)
5024{
5025        int cpu = raw_smp_processor_id();
5026
5027        struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5028        sd->tss_desc->type = 9; /* available 32/64-bit TSS */
5029        load_TR_desc();
5030}
5031
5032static void pre_sev_run(struct vcpu_svm *svm, int cpu)
5033{
5034        struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5035        int asid = sev_get_asid(svm->vcpu.kvm);
5036
5037        /* Assign the asid allocated with this SEV guest */
5038        svm->vmcb->control.asid = asid;
5039
5040        /*
5041         * Flush guest TLB:
5042         *
5043         * 1) when different VMCB for the same ASID is to be run on the same host CPU.
5044         * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
5045         */
5046        if (sd->sev_vmcbs[asid] == svm->vmcb &&
5047            svm->last_cpu == cpu)
5048                return;
5049
5050        svm->last_cpu = cpu;
5051        sd->sev_vmcbs[asid] = svm->vmcb;
5052        svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5053        mark_dirty(svm->vmcb, VMCB_ASID);
5054}
5055
5056static void pre_svm_run(struct vcpu_svm *svm)
5057{
5058        int cpu = raw_smp_processor_id();
5059
5060        struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5061
5062        if (sev_guest(svm->vcpu.kvm))
5063                return pre_sev_run(svm, cpu);
5064
5065        /* FIXME: handle wraparound of asid_generation */
5066        if (svm->asid_generation != sd->asid_generation)
5067                new_asid(svm, sd);
5068}
5069
5070static void svm_inject_nmi(struct kvm_vcpu *vcpu)
5071{
5072        struct vcpu_svm *svm = to_svm(vcpu);
5073
5074        svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
5075        vcpu->arch.hflags |= HF_NMI_MASK;
5076        set_intercept(svm, INTERCEPT_IRET);
5077        ++vcpu->stat.nmi_injections;
5078}
5079
5080static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
5081{
5082        struct vmcb_control_area *control;
5083
5084        /* The following fields are ignored when AVIC is enabled */
5085        control = &svm->vmcb->control;
5086        control->int_vector = irq;
5087        control->int_ctl &= ~V_INTR_PRIO_MASK;
5088        control->int_ctl |= V_IRQ_MASK |
5089                ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
5090        mark_dirty(svm->vmcb, VMCB_INTR);
5091}
5092
5093static void svm_set_irq(struct kvm_vcpu *vcpu)
5094{
5095        struct vcpu_svm *svm = to_svm(vcpu);
5096
5097        BUG_ON(!(gif_set(svm)));
5098
5099        trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
5100        ++vcpu->stat.irq_injections;
5101
5102        svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
5103                SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
5104}
5105
5106static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
5107{
5108        return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
5109}
5110
5111static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5112{
5113        struct vcpu_svm *svm = to_svm(vcpu);
5114
5115        if (svm_nested_virtualize_tpr(vcpu))
5116                return;
5117
5118        clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5119
5120        if (irr == -1)
5121                return;
5122
5123        if (tpr >= irr)
5124                set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5125}
5126
5127static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5128{
5129        return;
5130}
5131
5132static bool svm_get_enable_apicv(struct kvm *kvm)
5133{
5134        return avic && irqchip_split(kvm);
5135}
5136
5137static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
5138{
5139}
5140
5141static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5142{
5143}
5144
5145/* Note: Currently only used by Hyper-V. */
5146static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5147{
5148        struct vcpu_svm *svm = to_svm(vcpu);
5149        struct vmcb *vmcb = svm->vmcb;
5150
5151        if (kvm_vcpu_apicv_active(vcpu))
5152                vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
5153        else
5154                vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
5155        mark_dirty(vmcb, VMCB_AVIC);
5156}
5157
5158static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
5159{
5160        return;
5161}
5162
5163static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
5164{
5165        kvm_lapic_set_irr(vec, vcpu->arch.apic);
5166        smp_mb__after_atomic();
5167
5168        if (avic_vcpu_is_running(vcpu)) {
5169                int cpuid = vcpu->cpu;
5170
5171                if (cpuid != get_cpu())
5172                        wrmsrl(SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpuid));
5173                put_cpu();
5174        } else
5175                kvm_vcpu_wake_up(vcpu);
5176}
5177
5178static bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
5179{
5180        return false;
5181}
5182
5183static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5184{
5185        unsigned long flags;
5186        struct amd_svm_iommu_ir *cur;
5187
5188        spin_lock_irqsave(&svm->ir_list_lock, flags);
5189        list_for_each_entry(cur, &svm->ir_list, node) {
5190                if (cur->data != pi->ir_data)
5191                        continue;
5192                list_del(&cur->node);
5193                kfree(cur);
5194                break;
5195        }
5196        spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5197}
5198
5199static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5200{
5201        int ret = 0;
5202        unsigned long flags;
5203        struct amd_svm_iommu_ir *ir;
5204
5205        /**
5206         * In some cases, the existing irte is updaed and re-set,
5207         * so we need to check here if it's already been * added
5208         * to the ir_list.
5209         */
5210        if (pi->ir_data && (pi->prev_ga_tag != 0)) {
5211                struct kvm *kvm = svm->vcpu.kvm;
5212                u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
5213                struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
5214                struct vcpu_svm *prev_svm;
5215
5216                if (!prev_vcpu) {
5217                        ret = -EINVAL;
5218                        goto out;
5219                }
5220
5221                prev_svm = to_svm(prev_vcpu);
5222                svm_ir_list_del(prev_svm, pi);
5223        }
5224
5225        /**
5226         * Allocating new amd_iommu_pi_data, which will get
5227         * add to the per-vcpu ir_list.
5228         */
5229        ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
5230        if (!ir) {
5231                ret = -ENOMEM;
5232                goto out;
5233        }
5234        ir->data = pi->ir_data;
5235
5236        spin_lock_irqsave(&svm->ir_list_lock, flags);
5237        list_add(&ir->node, &svm->ir_list);
5238        spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5239out:
5240        return ret;
5241}
5242
5243/**
5244 * Note:
5245 * The HW cannot support posting multicast/broadcast
5246 * interrupts to a vCPU. So, we still use legacy interrupt
5247 * remapping for these kind of interrupts.
5248 *
5249 * For lowest-priority interrupts, we only support
5250 * those with single CPU as the destination, e.g. user
5251 * configures the interrupts via /proc/irq or uses
5252 * irqbalance to make the interrupts single-CPU.
5253 */
5254static int
5255get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5256                 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5257{
5258        struct kvm_lapic_irq irq;
5259        struct kvm_vcpu *vcpu = NULL;
5260
5261        kvm_set_msi_irq(kvm, e, &irq);
5262
5263        if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
5264            !kvm_irq_is_postable(&irq)) {
5265                pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5266                         __func__, irq.vector);
5267                return -1;
5268        }
5269
5270        pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5271                 irq.vector);
5272        *svm = to_svm(vcpu);
5273        vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5274        vcpu_info->vector = irq.vector;
5275
5276        return 0;
5277}
5278
5279/*
5280 * svm_update_pi_irte - set IRTE for Posted-Interrupts
5281 *
5282 * @kvm: kvm
5283 * @host_irq: host irq of the interrupt
5284 * @guest_irq: gsi of the interrupt
5285 * @set: set or unset PI
5286 * returns 0 on success, < 0 on failure
5287 */
5288static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5289                              uint32_t guest_irq, bool set)
5290{
5291        struct kvm_kernel_irq_routing_entry *e;
5292        struct kvm_irq_routing_table *irq_rt;
5293        int idx, ret = -EINVAL;
5294
5295        if (!kvm_arch_has_assigned_device(kvm) ||
5296            !irq_remapping_cap(IRQ_POSTING_CAP))
5297                return 0;
5298
5299        pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5300                 __func__, host_irq, guest_irq, set);
5301
5302        idx = srcu_read_lock(&kvm->irq_srcu);
5303        irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5304        WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5305
5306        hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5307                struct vcpu_data vcpu_info;
5308                struct vcpu_svm *svm = NULL;
5309
5310                if (e->type != KVM_IRQ_ROUTING_MSI)
5311                        continue;
5312
5313                /**
5314                 * Here, we setup with legacy mode in the following cases:
5315                 * 1. When cannot target interrupt to a specific vcpu.
5316                 * 2. Unsetting posted interrupt.
5317                 * 3. APIC virtialization is disabled for the vcpu.
5318                 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
5319                 */
5320                if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5321                    kvm_vcpu_apicv_active(&svm->vcpu)) {
5322                        struct amd_iommu_pi_data pi;
5323
5324                        /* Try to enable guest_mode in IRTE */
5325                        pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5326                                            AVIC_HPA_MASK);
5327                        pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
5328                                                     svm->vcpu.vcpu_id);
5329                        pi.is_guest_mode = true;
5330                        pi.vcpu_data = &vcpu_info;
5331                        ret = irq_set_vcpu_affinity(host_irq, &pi);
5332
5333                        /**
5334                         * Here, we successfully setting up vcpu affinity in
5335                         * IOMMU guest mode. Now, we need to store the posted
5336                         * interrupt information in a per-vcpu ir_list so that
5337                         * we can reference to them directly when we update vcpu
5338                         * scheduling information in IOMMU irte.
5339                         */
5340                        if (!ret && pi.is_guest_mode)
5341                                svm_ir_list_add(svm, &pi);
5342                } else {
5343                        /* Use legacy mode in IRTE */
5344                        struct amd_iommu_pi_data pi;
5345
5346                        /**
5347                         * Here, pi is used to:
5348                         * - Tell IOMMU to use legacy mode for this interrupt.
5349                         * - Retrieve ga_tag of prior interrupt remapping data.
5350                         */
5351                        pi.is_guest_mode = false;
5352                        ret = irq_set_vcpu_affinity(host_irq, &pi);
5353
5354                        /**
5355                         * Check if the posted interrupt was previously
5356                         * setup with the guest_mode by checking if the ga_tag
5357                         * was cached. If so, we need to clean up the per-vcpu
5358                         * ir_list.
5359                         */
5360                        if (!ret && pi.prev_ga_tag) {
5361                                int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5362                                struct kvm_vcpu *vcpu;
5363
5364                                vcpu = kvm_get_vcpu_by_id(kvm, id);
5365                                if (vcpu)
5366                                        svm_ir_list_del(to_svm(vcpu), &pi);
5367                        }
5368                }
5369
5370                if (!ret && svm) {
5371                        trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
5372                                                 e->gsi, vcpu_info.vector,
5373                                                 vcpu_info.pi_desc_addr, set);
5374                }
5375
5376                if (ret < 0) {
5377                        pr_err("%s: failed to update PI IRTE\n", __func__);
5378                        goto out;
5379                }
5380        }
5381
5382        ret = 0;
5383out:
5384        srcu_read_unlock(&kvm->irq_srcu, idx);
5385        return ret;
5386}
5387
5388static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5389{
5390        struct vcpu_svm *svm = to_svm(vcpu);
5391        struct vmcb *vmcb = svm->vmcb;
5392        int ret;
5393        ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5394              !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5395        ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5396
5397        return ret;
5398}
5399
5400static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5401{
5402        struct vcpu_svm *svm = to_svm(vcpu);
5403
5404        return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5405}
5406
5407static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5408{
5409        struct vcpu_svm *svm = to_svm(vcpu);
5410
5411        if (masked) {
5412                svm->vcpu.arch.hflags |= HF_NMI_MASK;
5413                set_intercept(svm, INTERCEPT_IRET);
5414        } else {
5415                svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5416                clr_intercept(svm, INTERCEPT_IRET);
5417        }
5418}
5419
5420static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5421{
5422        struct vcpu_svm *svm = to_svm(vcpu);
5423        struct vmcb *vmcb = svm->vmcb;
5424        int ret;
5425
5426        if (!gif_set(svm) ||
5427             (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5428                return 0;
5429
5430        ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5431
5432        if (is_guest_mode(vcpu))
5433                return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5434
5435        return ret;
5436}
5437
5438static void enable_irq_window(struct kvm_vcpu *vcpu)
5439{
5440        struct vcpu_svm *svm = to_svm(vcpu);
5441
5442        if (kvm_vcpu_apicv_active(vcpu))
5443                return;
5444
5445        /*
5446         * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5447         * 1, because that's a separate STGI/VMRUN intercept.  The next time we
5448         * get that intercept, this function will be called again though and
5449         * we'll get the vintr intercept. However, if the vGIF feature is
5450         * enabled, the STGI interception will not occur. Enable the irq
5451         * window under the assumption that the hardware will set the GIF.
5452         */
5453        if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5454                svm_set_vintr(svm);
5455                svm_inject_irq(svm, 0x0);
5456        }
5457}
5458
5459static void enable_nmi_window(struct kvm_vcpu *vcpu)
5460{
5461        struct vcpu_svm *svm = to_svm(vcpu);
5462
5463        if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5464            == HF_NMI_MASK)
5465                return; /* IRET will cause a vm exit */
5466
5467        if (!gif_set(svm)) {
5468                if (vgif_enabled(svm))
5469                        set_intercept(svm, INTERCEPT_STGI);
5470                return; /* STGI will cause a vm exit */
5471        }
5472
5473        if (svm->nested.exit_required)
5474                return; /* we're not going to run the guest yet */
5475
5476        /*
5477         * Something prevents NMI from been injected. Single step over possible
5478         * problem (IRET or exception injection or interrupt shadow)
5479         */
5480        svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5481        svm->nmi_singlestep = true;
5482        svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5483}
5484
5485static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5486{
5487        return 0;
5488}
5489
5490static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5491{
5492        return 0;
5493}
5494
5495static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5496{
5497        struct vcpu_svm *svm = to_svm(vcpu);
5498
5499        if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5500                svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5501        else
5502                svm->asid_generation--;
5503}
5504
5505static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
5506{
5507        struct vcpu_svm *svm = to_svm(vcpu);
5508
5509        invlpga(gva, svm->vmcb->control.asid);
5510}
5511
5512static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5513{
5514}
5515
5516static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5517{
5518        struct vcpu_svm *svm = to_svm(vcpu);
5519
5520        if (svm_nested_virtualize_tpr(vcpu))
5521                return;
5522
5523        if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5524                int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5525                kvm_set_cr8(vcpu, cr8);
5526        }
5527}
5528
5529static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5530{
5531        struct vcpu_svm *svm = to_svm(vcpu);
5532        u64 cr8;
5533
5534        if (svm_nested_virtualize_tpr(vcpu) ||
5535            kvm_vcpu_apicv_active(vcpu))
5536                return;
5537
5538        cr8 = kvm_get_cr8(vcpu);
5539        svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5540        svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5541}
5542
5543static void svm_complete_interrupts(struct vcpu_svm *svm)
5544{
5545        u8 vector;
5546        int type;
5547        u32 exitintinfo = svm->vmcb->control.exit_int_info;
5548        unsigned int3_injected = svm->int3_injected;
5549
5550        svm->int3_injected = 0;
5551
5552        /*
5553         * If we've made progress since setting HF_IRET_MASK, we've
5554         * executed an IRET and can allow NMI injection.
5555         */
5556        if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5557            && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5558                svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5559                kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5560        }
5561
5562        svm->vcpu.arch.nmi_injected = false;
5563        kvm_clear_exception_queue(&svm->vcpu);
5564        kvm_clear_interrupt_queue(&svm->vcpu);
5565
5566        if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5567                return;
5568
5569        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5570
5571        vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5572        type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5573
5574        switch (type) {
5575        case SVM_EXITINTINFO_TYPE_NMI:
5576                svm->vcpu.arch.nmi_injected = true;
5577                break;
5578        case SVM_EXITINTINFO_TYPE_EXEPT:
5579                /*
5580                 * In case of software exceptions, do not reinject the vector,
5581                 * but re-execute the instruction instead. Rewind RIP first
5582                 * if we emulated INT3 before.
5583                 */
5584                if (kvm_exception_is_soft(vector)) {
5585                        if (vector == BP_VECTOR && int3_injected &&
5586                            kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5587                                kvm_rip_write(&svm->vcpu,
5588                                              kvm_rip_read(&svm->vcpu) -
5589                                              int3_injected);
5590                        break;
5591                }
5592                if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5593                        u32 err = svm->vmcb->control.exit_int_info_err;
5594                        kvm_requeue_exception_e(&svm->vcpu, vector, err);
5595
5596                } else
5597                        kvm_requeue_exception(&svm->vcpu, vector);
5598                break;
5599        case SVM_EXITINTINFO_TYPE_INTR:
5600                kvm_queue_interrupt(&svm->vcpu, vector, false);
5601                break;
5602        default:
5603                break;
5604        }
5605}
5606
5607static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5608{
5609        struct vcpu_svm *svm = to_svm(vcpu);
5610        struct vmcb_control_area *control = &svm->vmcb->control;
5611
5612        control->exit_int_info = control->event_inj;
5613        control->exit_int_info_err = control->event_inj_err;
5614        control->event_inj = 0;
5615        svm_complete_interrupts(svm);
5616}
5617
5618static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5619{
5620        struct vcpu_svm *svm = to_svm(vcpu);
5621
5622        svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5623        svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5624        svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5625
5626        /*
5627         * A vmexit emulation is required before the vcpu can be executed
5628         * again.
5629         */
5630        if (unlikely(svm->nested.exit_required))
5631                return;
5632
5633        /*
5634         * Disable singlestep if we're injecting an interrupt/exception.
5635         * We don't want our modified rflags to be pushed on the stack where
5636         * we might not be able to easily reset them if we disabled NMI
5637         * singlestep later.
5638         */
5639        if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5640                /*
5641                 * Event injection happens before external interrupts cause a
5642                 * vmexit and interrupts are disabled here, so smp_send_reschedule
5643                 * is enough to force an immediate vmexit.
5644                 */
5645                disable_nmi_singlestep(svm);
5646                smp_send_reschedule(vcpu->cpu);
5647        }
5648
5649        pre_svm_run(svm);
5650
5651        sync_lapic_to_cr8(vcpu);
5652
5653        svm->vmcb->save.cr2 = vcpu->arch.cr2;
5654
5655        clgi();
5656        kvm_load_guest_xsave_state(vcpu);
5657
5658        if (lapic_in_kernel(vcpu) &&
5659                vcpu->arch.apic->lapic_timer.timer_advance_ns)
5660                kvm_wait_lapic_expire(vcpu);
5661
5662        /*
5663         * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5664         * it's non-zero. Since vmentry is serialising on affected CPUs, there
5665         * is no need to worry about the conditional branch over the wrmsr
5666         * being speculatively taken.
5667         */
5668        x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5669
5670        local_irq_enable();
5671
5672        asm volatile (
5673                "push %%" _ASM_BP "; \n\t"
5674                "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5675                "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5676                "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5677                "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5678                "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5679                "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5680#ifdef CONFIG_X86_64
5681                "mov %c[r8](%[svm]),  %%r8  \n\t"
5682                "mov %c[r9](%[svm]),  %%r9  \n\t"
5683                "mov %c[r10](%[svm]), %%r10 \n\t"
5684                "mov %c[r11](%[svm]), %%r11 \n\t"
5685                "mov %c[r12](%[svm]), %%r12 \n\t"
5686                "mov %c[r13](%[svm]), %%r13 \n\t"
5687                "mov %c[r14](%[svm]), %%r14 \n\t"
5688                "mov %c[r15](%[svm]), %%r15 \n\t"
5689#endif
5690
5691                /* Enter guest mode */
5692                "push %%" _ASM_AX " \n\t"
5693                "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5694                __ex("vmload %%" _ASM_AX) "\n\t"
5695                __ex("vmrun %%" _ASM_AX) "\n\t"
5696                __ex("vmsave %%" _ASM_AX) "\n\t"
5697                "pop %%" _ASM_AX " \n\t"
5698
5699                /* Save guest registers, load host registers */
5700                "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5701                "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5702                "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5703                "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5704                "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5705                "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5706#ifdef CONFIG_X86_64
5707                "mov %%r8,  %c[r8](%[svm]) \n\t"
5708                "mov %%r9,  %c[r9](%[svm]) \n\t"
5709                "mov %%r10, %c[r10](%[svm]) \n\t"
5710                "mov %%r11, %c[r11](%[svm]) \n\t"
5711                "mov %%r12, %c[r12](%[svm]) \n\t"
5712                "mov %%r13, %c[r13](%[svm]) \n\t"
5713                "mov %%r14, %c[r14](%[svm]) \n\t"
5714                "mov %%r15, %c[r15](%[svm]) \n\t"
5715                /*
5716                * Clear host registers marked as clobbered to prevent
5717                * speculative use.
5718                */
5719                "xor %%r8d, %%r8d \n\t"
5720                "xor %%r9d, %%r9d \n\t"
5721                "xor %%r10d, %%r10d \n\t"
5722                "xor %%r11d, %%r11d \n\t"
5723                "xor %%r12d, %%r12d \n\t"
5724                "xor %%r13d, %%r13d \n\t"
5725                "xor %%r14d, %%r14d \n\t"
5726                "xor %%r15d, %%r15d \n\t"
5727#endif
5728                "xor %%ebx, %%ebx \n\t"
5729                "xor %%ecx, %%ecx \n\t"
5730                "xor %%edx, %%edx \n\t"
5731                "xor %%esi, %%esi \n\t"
5732                "xor %%edi, %%edi \n\t"
5733                "pop %%" _ASM_BP
5734                :
5735                : [svm]"a"(svm),
5736                  [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5737                  [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5738                  [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5739                  [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5740                  [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5741                  [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5742                  [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5743#ifdef CONFIG_X86_64
5744                  , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5745                  [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5746                  [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5747                  [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5748                  [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5749                  [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5750                  [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5751                  [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5752#endif
5753                : "cc", "memory"
5754#ifdef CONFIG_X86_64
5755                , "rbx", "rcx", "rdx", "rsi", "rdi"
5756                , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5757#else
5758                , "ebx", "ecx", "edx", "esi", "edi"
5759#endif
5760                );
5761
5762        /* Eliminate branch target predictions from guest mode */
5763        vmexit_fill_RSB();
5764
5765#ifdef CONFIG_X86_64
5766        wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5767#else
5768        loadsegment(fs, svm->host.fs);
5769#ifndef CONFIG_X86_32_LAZY_GS
5770        loadsegment(gs, svm->host.gs);
5771#endif
5772#endif
5773
5774        /*
5775         * We do not use IBRS in the kernel. If this vCPU has used the
5776         * SPEC_CTRL MSR it may have left it on; save the value and
5777         * turn it off. This is much more efficient than blindly adding
5778         * it to the atomic save/restore list. Especially as the former
5779         * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5780         *
5781         * For non-nested case:
5782         * If the L01 MSR bitmap does not intercept the MSR, then we need to
5783         * save it.
5784         *
5785         * For nested case:
5786         * If the L02 MSR bitmap does not intercept the MSR, then we need to
5787         * save it.
5788         */
5789        if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5790                svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5791
5792        reload_tss(vcpu);
5793
5794        local_irq_disable();
5795
5796        x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5797
5798        vcpu->arch.cr2 = svm->vmcb->save.cr2;
5799        vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5800        vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5801        vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5802
5803        if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5804                kvm_before_interrupt(&svm->vcpu);
5805
5806        kvm_load_host_xsave_state(vcpu);
5807        stgi();
5808
5809        /* Any pending NMI will happen here */
5810
5811        if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5812                kvm_after_interrupt(&svm->vcpu);
5813
5814        sync_cr8_to_lapic(vcpu);
5815
5816        svm->next_rip = 0;
5817
5818        svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5819
5820        /* if exit due to PF check for async PF */
5821        if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5822                svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5823
5824        if (npt_enabled) {
5825                vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5826                vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5827        }
5828
5829        /*
5830         * We need to handle MC intercepts here before the vcpu has a chance to
5831         * change the physical cpu
5832         */
5833        if (unlikely(svm->vmcb->control.exit_code ==
5834                     SVM_EXIT_EXCP_BASE + MC_VECTOR))
5835                svm_handle_mce(svm);
5836
5837        mark_all_clean(svm->vmcb);
5838}
5839STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5840
5841static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5842{
5843        struct vcpu_svm *svm = to_svm(vcpu);
5844
5845        svm->vmcb->save.cr3 = __sme_set(root);
5846        mark_dirty(svm->vmcb, VMCB_CR);
5847}
5848
5849static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5850{
5851        struct vcpu_svm *svm = to_svm(vcpu);
5852
5853        svm->vmcb->control.nested_cr3 = __sme_set(root);
5854        mark_dirty(svm->vmcb, VMCB_NPT);
5855
5856        /* Also sync guest cr3 here in case we live migrate */
5857        svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5858        mark_dirty(svm->vmcb, VMCB_CR);
5859}
5860
5861static int is_disabled(void)
5862{
5863        u64 vm_cr;
5864
5865        rdmsrl(MSR_VM_CR, vm_cr);
5866        if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5867                return 1;
5868
5869        return 0;
5870}
5871
5872static void
5873svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5874{
5875        /*
5876         * Patch in the VMMCALL instruction:
5877         */
5878        hypercall[0] = 0x0f;
5879        hypercall[1] = 0x01;
5880        hypercall[2] = 0xd9;
5881}
5882
5883static int __init svm_check_processor_compat(void)
5884{
5885        return 0;
5886}
5887
5888static bool svm_cpu_has_accelerated_tpr(void)
5889{
5890        return false;
5891}
5892
5893static bool svm_has_emulated_msr(int index)
5894{
5895        switch (index) {
5896        case MSR_IA32_MCG_EXT_CTL:
5897        case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
5898                return false;
5899        default:
5900                break;
5901        }
5902
5903        return true;
5904}
5905
5906static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5907{
5908        return 0;
5909}
5910
5911static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5912{
5913        struct vcpu_svm *svm = to_svm(vcpu);
5914
5915        vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
5916                                    boot_cpu_has(X86_FEATURE_XSAVES);
5917
5918        /* Update nrips enabled cache */
5919        svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5920
5921        if (!kvm_vcpu_apicv_active(vcpu))
5922                return;
5923
5924        guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5925}
5926
5927#define F(x) bit(X86_FEATURE_##x)
5928
5929static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5930{
5931        switch (func) {
5932        case 0x1:
5933                if (avic)
5934                        entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5935                break;
5936        case 0x80000001:
5937                if (nested)
5938                        entry->ecx |= (1 << 2); /* Set SVM bit */
5939                break;
5940        case 0x80000008:
5941                if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5942                     boot_cpu_has(X86_FEATURE_AMD_SSBD))
5943                        entry->ebx |= F(VIRT_SSBD);
5944                break;
5945        case 0x8000000A:
5946                entry->eax = 1; /* SVM revision 1 */
5947                entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5948                                   ASID emulation to nested SVM */
5949                entry->ecx = 0; /* Reserved */
5950                entry->edx = 0; /* Per default do not support any
5951                                   additional features */
5952
5953                /* Support next_rip if host supports it */
5954                if (boot_cpu_has(X86_FEATURE_NRIPS))
5955                        entry->edx |= F(NRIPS);
5956
5957                /* Support NPT for the guest if enabled */
5958                if (npt_enabled)
5959                        entry->edx |= F(NPT);
5960
5961        }
5962}
5963
5964static int svm_get_lpage_level(void)
5965{
5966        return PT_PDPE_LEVEL;
5967}
5968
5969static bool svm_rdtscp_supported(void)
5970{
5971        return boot_cpu_has(X86_FEATURE_RDTSCP);
5972}
5973
5974static bool svm_invpcid_supported(void)
5975{
5976        return false;
5977}
5978
5979static bool svm_mpx_supported(void)
5980{
5981        return false;
5982}
5983
5984static bool svm_xsaves_supported(void)
5985{
5986        return boot_cpu_has(X86_FEATURE_XSAVES);
5987}
5988
5989static bool svm_umip_emulated(void)
5990{
5991        return false;
5992}
5993
5994static bool svm_pt_supported(void)
5995{
5996        return false;
5997}
5998
5999static bool svm_has_wbinvd_exit(void)
6000{
6001        return true;
6002}
6003
6004#define PRE_EX(exit)  { .exit_code = (exit), \
6005                        .stage = X86_ICPT_PRE_EXCEPT, }
6006#define POST_EX(exit) { .exit_code = (exit), \
6007                        .stage = X86_ICPT_POST_EXCEPT, }
6008#define POST_MEM(exit) { .exit_code = (exit), \
6009                        .stage = X86_ICPT_POST_MEMACCESS, }
6010
6011static const struct __x86_intercept {
6012        u32 exit_code;
6013        enum x86_intercept_stage stage;
6014} x86_intercept_map[] = {
6015        [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
6016        [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
6017        [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
6018        [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
6019        [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
6020        [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
6021        [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
6022        [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
6023        [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
6024        [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
6025        [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
6026        [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
6027        [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
6028        [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
6029        [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
6030        [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
6031        [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
6032        [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
6033        [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
6034        [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
6035        [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
6036        [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
6037        [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
6038        [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
6039        [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
6040        [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
6041        [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
6042        [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
6043        [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
6044        [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
6045        [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
6046        [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
6047        [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
6048        [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
6049        [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
6050        [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
6051        [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
6052        [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
6053        [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
6054        [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
6055        [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
6056        [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
6057        [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
6058        [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
6059        [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
6060        [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
6061        [x86_intercept_xsetbv]          = PRE_EX(SVM_EXIT_XSETBV),
6062};
6063
6064#undef PRE_EX
6065#undef POST_EX
6066#undef POST_MEM
6067
6068static int svm_check_intercept(struct kvm_vcpu *vcpu,
6069                               struct x86_instruction_info *info,
6070                               enum x86_intercept_stage stage)
6071{
6072        struct vcpu_svm *svm = to_svm(vcpu);
6073        int vmexit, ret = X86EMUL_CONTINUE;
6074        struct __x86_intercept icpt_info;
6075        struct vmcb *vmcb = svm->vmcb;
6076
6077        if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
6078                goto out;
6079
6080        icpt_info = x86_intercept_map[info->intercept];
6081
6082        if (stage != icpt_info.stage)
6083                goto out;
6084
6085        switch (icpt_info.exit_code) {
6086        case SVM_EXIT_READ_CR0:
6087                if (info->intercept == x86_intercept_cr_read)
6088                        icpt_info.exit_code += info->modrm_reg;
6089                break;
6090        case SVM_EXIT_WRITE_CR0: {
6091                unsigned long cr0, val;
6092                u64 intercept;
6093
6094                if (info->intercept == x86_intercept_cr_write)
6095                        icpt_info.exit_code += info->modrm_reg;
6096
6097                if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
6098                    info->intercept == x86_intercept_clts)
6099                        break;
6100
6101                intercept = svm->nested.intercept;
6102
6103                if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
6104                        break;
6105
6106                cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
6107                val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
6108
6109                if (info->intercept == x86_intercept_lmsw) {
6110                        cr0 &= 0xfUL;
6111                        val &= 0xfUL;
6112                        /* lmsw can't clear PE - catch this here */
6113                        if (cr0 & X86_CR0_PE)
6114                                val |= X86_CR0_PE;
6115                }
6116
6117                if (cr0 ^ val)
6118                        icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
6119
6120                break;
6121        }
6122        case SVM_EXIT_READ_DR0:
6123        case SVM_EXIT_WRITE_DR0:
6124                icpt_info.exit_code += info->modrm_reg;
6125                break;
6126        case SVM_EXIT_MSR:
6127                if (info->intercept == x86_intercept_wrmsr)
6128                        vmcb->control.exit_info_1 = 1;
6129                else
6130                        vmcb->control.exit_info_1 = 0;
6131                break;
6132        case SVM_EXIT_PAUSE:
6133                /*
6134                 * We get this for NOP only, but pause
6135                 * is rep not, check this here
6136                 */
6137                if (info->rep_prefix != REPE_PREFIX)
6138                        goto out;
6139                break;
6140        case SVM_EXIT_IOIO: {
6141                u64 exit_info;
6142                u32 bytes;
6143
6144                if (info->intercept == x86_intercept_in ||
6145                    info->intercept == x86_intercept_ins) {
6146                        exit_info = ((info->src_val & 0xffff) << 16) |
6147                                SVM_IOIO_TYPE_MASK;
6148                        bytes = info->dst_bytes;
6149                } else {
6150                        exit_info = (info->dst_val & 0xffff) << 16;
6151                        bytes = info->src_bytes;
6152                }
6153
6154                if (info->intercept == x86_intercept_outs ||
6155                    info->intercept == x86_intercept_ins)
6156                        exit_info |= SVM_IOIO_STR_MASK;
6157
6158                if (info->rep_prefix)
6159                        exit_info |= SVM_IOIO_REP_MASK;
6160
6161                bytes = min(bytes, 4u);
6162
6163                exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
6164
6165                exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
6166
6167                vmcb->control.exit_info_1 = exit_info;
6168                vmcb->control.exit_info_2 = info->next_rip;
6169
6170                break;
6171        }
6172        default:
6173                break;
6174        }
6175
6176        /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6177        if (static_cpu_has(X86_FEATURE_NRIPS))
6178                vmcb->control.next_rip  = info->next_rip;
6179        vmcb->control.exit_code = icpt_info.exit_code;
6180        vmexit = nested_svm_exit_handled(svm);
6181
6182        ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
6183                                           : X86EMUL_CONTINUE;
6184
6185out:
6186        return ret;
6187}
6188
6189static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6190{
6191
6192}
6193
6194static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
6195{
6196        if (pause_filter_thresh)
6197                shrink_ple_window(vcpu);
6198}
6199
6200static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
6201{
6202        if (avic_handle_apic_id_update(vcpu) != 0)
6203                return;
6204        avic_handle_dfr_update(vcpu);
6205        avic_handle_ldr_update(vcpu);
6206}
6207
6208static void svm_setup_mce(struct kvm_vcpu *vcpu)
6209{
6210        /* [63:9] are reserved. */
6211        vcpu->arch.mcg_cap &= 0x1ff;
6212}
6213
6214static int svm_smi_allowed(struct kvm_vcpu *vcpu)
6215{
6216        struct vcpu_svm *svm = to_svm(vcpu);
6217
6218        /* Per APM Vol.2 15.22.2 "Response to SMI" */
6219        if (!gif_set(svm))
6220                return 0;
6221
6222        if (is_guest_mode(&svm->vcpu) &&
6223            svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
6224                /* TODO: Might need to set exit_info_1 and exit_info_2 here */
6225                svm->vmcb->control.exit_code = SVM_EXIT_SMI;
6226                svm->nested.exit_required = true;
6227                return 0;
6228        }
6229
6230        return 1;
6231}
6232
6233static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
6234{
6235        struct vcpu_svm *svm = to_svm(vcpu);
6236        int ret;
6237
6238        if (is_guest_mode(vcpu)) {
6239                /* FED8h - SVM Guest */
6240                put_smstate(u64, smstate, 0x7ed8, 1);
6241                /* FEE0h - SVM Guest VMCB Physical Address */
6242                put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
6243
6244                svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
6245                svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
6246                svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
6247
6248                ret = nested_svm_vmexit(svm);
6249                if (ret)
6250                        return ret;
6251        }
6252        return 0;
6253}
6254
6255static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
6256{
6257        struct vcpu_svm *svm = to_svm(vcpu);
6258        struct vmcb *nested_vmcb;
6259        struct kvm_host_map map;
6260        u64 guest;
6261        u64 vmcb;
6262
6263        guest = GET_SMSTATE(u64, smstate, 0x7ed8);
6264        vmcb = GET_SMSTATE(u64, smstate, 0x7ee0);
6265
6266        if (guest) {
6267                if (kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb), &map) == -EINVAL)
6268                        return 1;
6269                nested_vmcb = map.hva;
6270                enter_svm_guest_mode(svm, vmcb, nested_vmcb, &map);
6271        }
6272        return 0;
6273}
6274
6275static int enable_smi_window(struct kvm_vcpu *vcpu)
6276{
6277        struct vcpu_svm *svm = to_svm(vcpu);
6278
6279        if (!gif_set(svm)) {
6280                if (vgif_enabled(svm))
6281                        set_intercept(svm, INTERCEPT_STGI);
6282                /* STGI will cause a vm exit */
6283                return 1;
6284        }
6285        return 0;
6286}
6287
6288static int sev_flush_asids(void)
6289{
6290        int ret, error;
6291
6292        /*
6293         * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
6294         * so it must be guarded.
6295         */
6296        down_write(&sev_deactivate_lock);
6297
6298        wbinvd_on_all_cpus();
6299        ret = sev_guest_df_flush(&error);
6300
6301        up_write(&sev_deactivate_lock);
6302
6303        if (ret)
6304                pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
6305
6306        return ret;
6307}
6308
6309/* Must be called with the sev_bitmap_lock held */
6310static bool __sev_recycle_asids(void)
6311{
6312        int pos;
6313
6314        /* Check if there are any ASIDs to reclaim before performing a flush */
6315        pos = find_next_bit(sev_reclaim_asid_bitmap,
6316                            max_sev_asid, min_sev_asid - 1);
6317        if (pos >= max_sev_asid)
6318                return false;
6319
6320        if (sev_flush_asids())
6321                return false;
6322
6323        bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
6324                   max_sev_asid);
6325        bitmap_zero(sev_reclaim_asid_bitmap, max_sev_asid);
6326
6327        return true;
6328}
6329
6330static int sev_asid_new(void)
6331{
6332        bool retry = true;
6333        int pos;
6334
6335        mutex_lock(&sev_bitmap_lock);
6336
6337        /*
6338         * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6339         */
6340again:
6341        pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6342        if (pos >= max_sev_asid) {
6343                if (retry && __sev_recycle_asids()) {
6344                        retry = false;
6345                        goto again;
6346                }
6347                mutex_unlock(&sev_bitmap_lock);
6348                return -EBUSY;
6349        }
6350
6351        __set_bit(pos, sev_asid_bitmap);
6352
6353        mutex_unlock(&sev_bitmap_lock);
6354
6355        return pos + 1;
6356}
6357
6358static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6359{
6360        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6361        int asid, ret;
6362
6363        ret = -EBUSY;
6364        if (unlikely(sev->active))
6365                return ret;
6366
6367        asid = sev_asid_new();
6368        if (asid < 0)
6369                return ret;
6370
6371        ret = sev_platform_init(&argp->error);
6372        if (ret)
6373                goto e_free;
6374
6375        sev->active = true;
6376        sev->asid = asid;
6377        INIT_LIST_HEAD(&sev->regions_list);
6378
6379        return 0;
6380
6381e_free:
6382        sev_asid_free(asid);
6383        return ret;
6384}
6385
6386static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6387{
6388        struct sev_data_activate *data;
6389        int asid = sev_get_asid(kvm);
6390        int ret;
6391
6392        data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6393        if (!data)
6394                return -ENOMEM;
6395
6396        /* activate ASID on the given handle */
6397        data->handle = handle;
6398        data->asid   = asid;
6399        ret = sev_guest_activate(data, error);
6400        kfree(data);
6401
6402        return ret;
6403}
6404
6405static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6406{
6407        struct fd f;
6408        int ret;
6409
6410        f = fdget(fd);
6411        if (!f.file)
6412                return -EBADF;
6413
6414        ret = sev_issue_cmd_external_user(f.file, id, data, error);
6415
6416        fdput(f);
6417        return ret;
6418}
6419
6420static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6421{
6422        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6423
6424        return __sev_issue_cmd(sev->fd, id, data, error);
6425}
6426
6427static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6428{
6429        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6430        struct sev_data_launch_start *start;
6431        struct kvm_sev_launch_start params;
6432        void *dh_blob, *session_blob;
6433        int *error = &argp->error;
6434        int ret;
6435
6436        if (!sev_guest(kvm))
6437                return -ENOTTY;
6438
6439        if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6440                return -EFAULT;
6441
6442        start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT);
6443        if (!start)
6444                return -ENOMEM;
6445
6446        dh_blob = NULL;
6447        if (params.dh_uaddr) {
6448                dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6449                if (IS_ERR(dh_blob)) {
6450                        ret = PTR_ERR(dh_blob);
6451                        goto e_free;
6452                }
6453
6454                start->dh_cert_address = __sme_set(__pa(dh_blob));
6455                start->dh_cert_len = params.dh_len;
6456        }
6457
6458        session_blob = NULL;
6459        if (params.session_uaddr) {
6460                session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6461                if (IS_ERR(session_blob)) {
6462                        ret = PTR_ERR(session_blob);
6463                        goto e_free_dh;
6464                }
6465
6466                start->session_address = __sme_set(__pa(session_blob));
6467                start->session_len = params.session_len;
6468        }
6469
6470        start->handle = params.handle;
6471        start->policy = params.policy;
6472
6473        /* create memory encryption context */
6474        ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6475        if (ret)
6476                goto e_free_session;
6477
6478        /* Bind ASID to this guest */
6479        ret = sev_bind_asid(kvm, start->handle, error);
6480        if (ret)
6481                goto e_free_session;
6482
6483        /* return handle to userspace */
6484        params.handle = start->handle;
6485        if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
6486                sev_unbind_asid(kvm, start->handle);
6487                ret = -EFAULT;
6488                goto e_free_session;
6489        }
6490
6491        sev->handle = start->handle;
6492        sev->fd = argp->sev_fd;
6493
6494e_free_session:
6495        kfree(session_blob);
6496e_free_dh:
6497        kfree(dh_blob);
6498e_free:
6499        kfree(start);
6500        return ret;
6501}
6502
6503static unsigned long get_num_contig_pages(unsigned long idx,
6504                                struct page **inpages, unsigned long npages)
6505{
6506        unsigned long paddr, next_paddr;
6507        unsigned long i = idx + 1, pages = 1;
6508
6509        /* find the number of contiguous pages starting from idx */
6510        paddr = __sme_page_pa(inpages[idx]);
6511        while (i < npages) {
6512                next_paddr = __sme_page_pa(inpages[i++]);
6513                if ((paddr + PAGE_SIZE) == next_paddr) {
6514                        pages++;
6515                        paddr = next_paddr;
6516                        continue;
6517                }
6518                break;
6519        }
6520
6521        return pages;
6522}
6523
6524static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6525{
6526        unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
6527        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6528        struct kvm_sev_launch_update_data params;
6529        struct sev_data_launch_update_data *data;
6530        struct page **inpages;
6531        int ret;
6532
6533        if (!sev_guest(kvm))
6534                return -ENOTTY;
6535
6536        if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6537                return -EFAULT;
6538
6539        data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6540        if (!data)
6541                return -ENOMEM;
6542
6543        vaddr = params.uaddr;
6544        size = params.len;
6545        vaddr_end = vaddr + size;
6546
6547        /* Lock the user memory. */
6548        inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6549        if (!inpages) {
6550                ret = -ENOMEM;
6551                goto e_free;
6552        }
6553
6554        /*
6555         * The LAUNCH_UPDATE command will perform in-place encryption of the
6556         * memory content (i.e it will write the same memory region with C=1).
6557         * It's possible that the cache may contain the data with C=0, i.e.,
6558         * unencrypted so invalidate it first.
6559         */
6560        sev_clflush_pages(inpages, npages);
6561
6562        for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6563                int offset, len;
6564
6565                /*
6566                 * If the user buffer is not page-aligned, calculate the offset
6567                 * within the page.
6568                 */
6569                offset = vaddr & (PAGE_SIZE - 1);
6570
6571                /* Calculate the number of pages that can be encrypted in one go. */
6572                pages = get_num_contig_pages(i, inpages, npages);
6573
6574                len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6575
6576                data->handle = sev->handle;
6577                data->len = len;
6578                data->address = __sme_page_pa(inpages[i]) + offset;
6579                ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6580                if (ret)
6581                        goto e_unpin;
6582
6583                size -= len;
6584                next_vaddr = vaddr + len;
6585        }
6586
6587e_unpin:
6588        /* content of memory is updated, mark pages dirty */
6589        for (i = 0; i < npages; i++) {
6590                set_page_dirty_lock(inpages[i]);
6591                mark_page_accessed(inpages[i]);
6592        }
6593        /* unlock the user pages */
6594        sev_unpin_memory(kvm, inpages, npages);
6595e_free:
6596        kfree(data);
6597        return ret;
6598}
6599
6600static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6601{
6602        void __user *measure = (void __user *)(uintptr_t)argp->data;
6603        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6604        struct sev_data_launch_measure *data;
6605        struct kvm_sev_launch_measure params;
6606        void __user *p = NULL;
6607        void *blob = NULL;
6608        int ret;
6609
6610        if (!sev_guest(kvm))
6611                return -ENOTTY;
6612
6613        if (copy_from_user(&params, measure, sizeof(params)))
6614                return -EFAULT;
6615
6616        data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6617        if (!data)
6618                return -ENOMEM;
6619
6620        /* User wants to query the blob length */
6621        if (!params.len)
6622                goto cmd;
6623
6624        p = (void __user *)(uintptr_t)params.uaddr;
6625        if (p) {
6626                if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6627                        ret = -EINVAL;
6628                        goto e_free;
6629                }
6630
6631                ret = -ENOMEM;
6632                blob = kmalloc(params.len, GFP_KERNEL);
6633                if (!blob)
6634                        goto e_free;
6635
6636                data->address = __psp_pa(blob);
6637                data->len = params.len;
6638        }
6639
6640cmd:
6641        data->handle = sev->handle;
6642        ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6643
6644        /*
6645         * If we query the session length, FW responded with expected data.
6646         */
6647        if (!params.len)
6648                goto done;
6649
6650        if (ret)
6651                goto e_free_blob;
6652
6653        if (blob) {
6654                if (copy_to_user(p, blob, params.len))
6655                        ret = -EFAULT;
6656        }
6657
6658done:
6659        params.len = data->len;
6660        if (copy_to_user(measure, &params, sizeof(params)))
6661                ret = -EFAULT;
6662e_free_blob:
6663        kfree(blob);
6664e_free:
6665        kfree(data);
6666        return ret;
6667}
6668
6669static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6670{
6671        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6672        struct sev_data_launch_finish *data;
6673        int ret;
6674
6675        if (!sev_guest(kvm))
6676                return -ENOTTY;
6677
6678        data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6679        if (!data)
6680                return -ENOMEM;
6681
6682        data->handle = sev->handle;
6683        ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6684
6685        kfree(data);
6686        return ret;
6687}
6688
6689static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6690{
6691        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6692        struct kvm_sev_guest_status params;
6693        struct sev_data_guest_status *data;
6694        int ret;
6695
6696        if (!sev_guest(kvm))
6697                return -ENOTTY;
6698
6699        data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6700        if (!data)
6701                return -ENOMEM;
6702
6703        data->handle = sev->handle;
6704        ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6705        if (ret)
6706                goto e_free;
6707
6708        params.policy = data->policy;
6709        params.state = data->state;
6710        params.handle = data->handle;
6711
6712        if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
6713                ret = -EFAULT;
6714e_free:
6715        kfree(data);
6716        return ret;
6717}
6718
6719static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6720                               unsigned long dst, int size,
6721                               int *error, bool enc)
6722{
6723        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6724        struct sev_data_dbg *data;
6725        int ret;
6726
6727        data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6728        if (!data)
6729                return -ENOMEM;
6730
6731        data->handle = sev->handle;
6732        data->dst_addr = dst;
6733        data->src_addr = src;
6734        data->len = size;
6735
6736        ret = sev_issue_cmd(kvm,
6737                            enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6738                            data, error);
6739        kfree(data);
6740        return ret;
6741}
6742
6743static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6744                             unsigned long dst_paddr, int sz, int *err)
6745{
6746        int offset;
6747
6748        /*
6749         * Its safe to read more than we are asked, caller should ensure that
6750         * destination has enough space.
6751         */
6752        src_paddr = round_down(src_paddr, 16);
6753        offset = src_paddr & 15;
6754        sz = round_up(sz + offset, 16);
6755
6756        return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6757}
6758
6759static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6760                                  unsigned long __user dst_uaddr,
6761                                  unsigned long dst_paddr,
6762                                  int size, int *err)
6763{
6764        struct page *tpage = NULL;
6765        int ret, offset;
6766
6767        /* if inputs are not 16-byte then use intermediate buffer */
6768        if (!IS_ALIGNED(dst_paddr, 16) ||
6769            !IS_ALIGNED(paddr,     16) ||
6770            !IS_ALIGNED(size,      16)) {
6771                tpage = (void *)alloc_page(GFP_KERNEL);
6772                if (!tpage)
6773                        return -ENOMEM;
6774
6775                dst_paddr = __sme_page_pa(tpage);
6776        }
6777
6778        ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6779        if (ret)
6780                goto e_free;
6781
6782        if (tpage) {
6783                offset = paddr & 15;
6784                if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6785                                 page_address(tpage) + offset, size))
6786                        ret = -EFAULT;
6787        }
6788
6789e_free:
6790        if (tpage)
6791                __free_page(tpage);
6792
6793        return ret;
6794}
6795
6796static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6797                                  unsigned long __user vaddr,
6798                                  unsigned long dst_paddr,
6799                                  unsigned long __user dst_vaddr,
6800                                  int size, int *error)
6801{
6802        struct page *src_tpage = NULL;
6803        struct page *dst_tpage = NULL;
6804        int ret, len = size;
6805
6806        /* If source buffer is not aligned then use an intermediate buffer */
6807        if (!IS_ALIGNED(vaddr, 16)) {
6808                src_tpage = alloc_page(GFP_KERNEL);
6809                if (!src_tpage)
6810                        return -ENOMEM;
6811
6812                if (copy_from_user(page_address(src_tpage),
6813                                (void __user *)(uintptr_t)vaddr, size)) {
6814                        __free_page(src_tpage);
6815                        return -EFAULT;
6816                }
6817
6818                paddr = __sme_page_pa(src_tpage);
6819        }
6820
6821        /*
6822         *  If destination buffer or length is not aligned then do read-modify-write:
6823         *   - decrypt destination in an intermediate buffer
6824         *   - copy the source buffer in an intermediate buffer
6825         *   - use the intermediate buffer as source buffer
6826         */
6827        if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6828                int dst_offset;
6829
6830                dst_tpage = alloc_page(GFP_KERNEL);
6831                if (!dst_tpage) {
6832                        ret = -ENOMEM;
6833                        goto e_free;
6834                }
6835
6836                ret = __sev_dbg_decrypt(kvm, dst_paddr,
6837                                        __sme_page_pa(dst_tpage), size, error);
6838                if (ret)
6839                        goto e_free;
6840
6841                /*
6842                 *  If source is kernel buffer then use memcpy() otherwise
6843                 *  copy_from_user().
6844                 */
6845                dst_offset = dst_paddr & 15;
6846
6847                if (src_tpage)
6848                        memcpy(page_address(dst_tpage) + dst_offset,
6849                               page_address(src_tpage), size);
6850                else {
6851                        if (copy_from_user(page_address(dst_tpage) + dst_offset,
6852                                           (void __user *)(uintptr_t)vaddr, size)) {
6853                                ret = -EFAULT;
6854                                goto e_free;
6855                        }
6856                }
6857
6858                paddr = __sme_page_pa(dst_tpage);
6859                dst_paddr = round_down(dst_paddr, 16);
6860                len = round_up(size, 16);
6861        }
6862
6863        ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6864
6865e_free:
6866        if (src_tpage)
6867                __free_page(src_tpage);
6868        if (dst_tpage)
6869                __free_page(dst_tpage);
6870        return ret;
6871}
6872
6873static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6874{
6875        unsigned long vaddr, vaddr_end, next_vaddr;
6876        unsigned long dst_vaddr;
6877        struct page **src_p, **dst_p;
6878        struct kvm_sev_dbg debug;
6879        unsigned long n;
6880        unsigned int size;
6881        int ret;
6882
6883        if (!sev_guest(kvm))
6884                return -ENOTTY;
6885
6886        if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6887                return -EFAULT;
6888
6889        if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
6890                return -EINVAL;
6891        if (!debug.dst_uaddr)
6892                return -EINVAL;
6893
6894        vaddr = debug.src_uaddr;
6895        size = debug.len;
6896        vaddr_end = vaddr + size;
6897        dst_vaddr = debug.dst_uaddr;
6898
6899        for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6900                int len, s_off, d_off;
6901
6902                /* lock userspace source and destination page */
6903                src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6904                if (!src_p)
6905                        return -EFAULT;
6906
6907                dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6908                if (!dst_p) {
6909                        sev_unpin_memory(kvm, src_p, n);
6910                        return -EFAULT;
6911                }
6912
6913                /*
6914                 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6915                 * memory content (i.e it will write the same memory region with C=1).
6916                 * It's possible that the cache may contain the data with C=0, i.e.,
6917                 * unencrypted so invalidate it first.
6918                 */
6919                sev_clflush_pages(src_p, 1);
6920                sev_clflush_pages(dst_p, 1);
6921
6922                /*
6923                 * Since user buffer may not be page aligned, calculate the
6924                 * offset within the page.
6925                 */
6926                s_off = vaddr & ~PAGE_MASK;
6927                d_off = dst_vaddr & ~PAGE_MASK;
6928                len = min_t(size_t, (PAGE_SIZE - s_off), size);
6929
6930                if (dec)
6931                        ret = __sev_dbg_decrypt_user(kvm,
6932                                                     __sme_page_pa(src_p[0]) + s_off,
6933                                                     dst_vaddr,
6934                                                     __sme_page_pa(dst_p[0]) + d_off,
6935                                                     len, &argp->error);
6936                else
6937                        ret = __sev_dbg_encrypt_user(kvm,
6938                                                     __sme_page_pa(src_p[0]) + s_off,
6939                                                     vaddr,
6940                                                     __sme_page_pa(dst_p[0]) + d_off,
6941                                                     dst_vaddr,
6942                                                     len, &argp->error);
6943
6944                sev_unpin_memory(kvm, src_p, n);
6945                sev_unpin_memory(kvm, dst_p, n);
6946
6947                if (ret)
6948                        goto err;
6949
6950                next_vaddr = vaddr + len;
6951                dst_vaddr = dst_vaddr + len;
6952                size -= len;
6953        }
6954err:
6955        return ret;
6956}
6957
6958static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6959{
6960        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6961        struct sev_data_launch_secret *data;
6962        struct kvm_sev_launch_secret params;
6963        struct page **pages;
6964        void *blob, *hdr;
6965        unsigned long n;
6966        int ret, offset;
6967
6968        if (!sev_guest(kvm))
6969                return -ENOTTY;
6970
6971        if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6972                return -EFAULT;
6973
6974        pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6975        if (!pages)
6976                return -ENOMEM;
6977
6978        /*
6979         * The secret must be copied into contiguous memory region, lets verify
6980         * that userspace memory pages are contiguous before we issue command.
6981         */
6982        if (get_num_contig_pages(0, pages, n) != n) {
6983                ret = -EINVAL;
6984                goto e_unpin_memory;
6985        }
6986
6987        ret = -ENOMEM;
6988        data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6989        if (!data)
6990                goto e_unpin_memory;
6991
6992        offset = params.guest_uaddr & (PAGE_SIZE - 1);
6993        data->guest_address = __sme_page_pa(pages[0]) + offset;
6994        data->guest_len = params.guest_len;
6995
6996        blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
6997        if (IS_ERR(blob)) {
6998                ret = PTR_ERR(blob);
6999                goto e_free;
7000        }
7001
7002        data->trans_address = __psp_pa(blob);
7003        data->trans_len = params.trans_len;
7004
7005        hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
7006        if (IS_ERR(hdr)) {
7007                ret = PTR_ERR(hdr);
7008                goto e_free_blob;
7009        }
7010        data->hdr_address = __psp_pa(hdr);
7011        data->hdr_len = params.hdr_len;
7012
7013        data->handle = sev->handle;
7014        ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
7015
7016        kfree(hdr);
7017
7018e_free_blob:
7019        kfree(blob);
7020e_free:
7021        kfree(data);
7022e_unpin_memory:
7023        sev_unpin_memory(kvm, pages, n);
7024        return ret;
7025}
7026
7027static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
7028{
7029        struct kvm_sev_cmd sev_cmd;
7030        int r;
7031
7032        if (!svm_sev_enabled())
7033                return -ENOTTY;
7034
7035        if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
7036                return -EFAULT;
7037
7038        mutex_lock(&kvm->lock);
7039
7040        switch (sev_cmd.id) {
7041        case KVM_SEV_INIT:
7042                r = sev_guest_init(kvm, &sev_cmd);
7043                break;
7044        case KVM_SEV_LAUNCH_START:
7045                r = sev_launch_start(kvm, &sev_cmd);
7046                break;
7047        case KVM_SEV_LAUNCH_UPDATE_DATA:
7048                r = sev_launch_update_data(kvm, &sev_cmd);
7049                break;
7050        case KVM_SEV_LAUNCH_MEASURE:
7051                r = sev_launch_measure(kvm, &sev_cmd);
7052                break;
7053        case KVM_SEV_LAUNCH_FINISH:
7054                r = sev_launch_finish(kvm, &sev_cmd);
7055                break;
7056        case KVM_SEV_GUEST_STATUS:
7057                r = sev_guest_status(kvm, &sev_cmd);
7058                break;
7059        case KVM_SEV_DBG_DECRYPT:
7060                r = sev_dbg_crypt(kvm, &sev_cmd, true);
7061                break;
7062        case KVM_SEV_DBG_ENCRYPT:
7063                r = sev_dbg_crypt(kvm, &sev_cmd, false);
7064                break;
7065        case KVM_SEV_LAUNCH_SECRET:
7066                r = sev_launch_secret(kvm, &sev_cmd);
7067                break;
7068        default:
7069                r = -EINVAL;
7070                goto out;
7071        }
7072
7073        if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
7074                r = -EFAULT;
7075
7076out:
7077        mutex_unlock(&kvm->lock);
7078        return r;
7079}
7080
7081static int svm_register_enc_region(struct kvm *kvm,
7082                                   struct kvm_enc_region *range)
7083{
7084        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7085        struct enc_region *region;
7086        int ret = 0;
7087
7088        if (!sev_guest(kvm))
7089                return -ENOTTY;
7090
7091        if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
7092                return -EINVAL;
7093
7094        region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
7095        if (!region)
7096                return -ENOMEM;
7097
7098        region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
7099        if (!region->pages) {
7100                ret = -ENOMEM;
7101                goto e_free;
7102        }
7103
7104        /*
7105         * The guest may change the memory encryption attribute from C=0 -> C=1
7106         * or vice versa for this memory range. Lets make sure caches are
7107         * flushed to ensure that guest data gets written into memory with
7108         * correct C-bit.
7109         */
7110        sev_clflush_pages(region->pages, region->npages);
7111
7112        region->uaddr = range->addr;
7113        region->size = range->size;
7114
7115        mutex_lock(&kvm->lock);
7116        list_add_tail(&region->list, &sev->regions_list);
7117        mutex_unlock(&kvm->lock);
7118
7119        return ret;
7120
7121e_free:
7122        kfree(region);
7123        return ret;
7124}
7125
7126static struct enc_region *
7127find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
7128{
7129        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7130        struct list_head *head = &sev->regions_list;
7131        struct enc_region *i;
7132
7133        list_for_each_entry(i, head, list) {
7134                if (i->uaddr == range->addr &&
7135                    i->size == range->size)
7136                        return i;
7137        }
7138
7139        return NULL;
7140}
7141
7142
7143static int svm_unregister_enc_region(struct kvm *kvm,
7144                                     struct kvm_enc_region *range)
7145{
7146        struct enc_region *region;
7147        int ret;
7148
7149        mutex_lock(&kvm->lock);
7150
7151        if (!sev_guest(kvm)) {
7152                ret = -ENOTTY;
7153                goto failed;
7154        }
7155
7156        region = find_enc_region(kvm, range);
7157        if (!region) {
7158                ret = -EINVAL;
7159                goto failed;
7160        }
7161
7162        __unregister_enc_region_locked(kvm, region);
7163
7164        mutex_unlock(&kvm->lock);
7165        return 0;
7166
7167failed:
7168        mutex_unlock(&kvm->lock);
7169        return ret;
7170}
7171
7172static bool svm_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7173{
7174        unsigned long cr4 = kvm_read_cr4(vcpu);
7175        bool smep = cr4 & X86_CR4_SMEP;
7176        bool smap = cr4 & X86_CR4_SMAP;
7177        bool is_user = svm_get_cpl(vcpu) == 3;
7178
7179        /*
7180         * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
7181         *
7182         * Errata:
7183         * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
7184         * possible that CPU microcode implementing DecodeAssist will fail
7185         * to read bytes of instruction which caused #NPF. In this case,
7186         * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
7187         * return 0 instead of the correct guest instruction bytes.
7188         *
7189         * This happens because CPU microcode reading instruction bytes
7190         * uses a special opcode which attempts to read data using CPL=0
7191         * priviledges. The microcode reads CS:RIP and if it hits a SMAP
7192         * fault, it gives up and returns no instruction bytes.
7193         *
7194         * Detection:
7195         * We reach here in case CPU supports DecodeAssist, raised #NPF and
7196         * returned 0 in GuestIntrBytes field of the VMCB.
7197         * First, errata can only be triggered in case vCPU CR4.SMAP=1.
7198         * Second, if vCPU CR4.SMEP=1, errata could only be triggered
7199         * in case vCPU CPL==3 (Because otherwise guest would have triggered
7200         * a SMEP fault instead of #NPF).
7201         * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
7202         * As most guests enable SMAP if they have also enabled SMEP, use above
7203         * logic in order to attempt minimize false-positive of detecting errata
7204         * while still preserving all cases semantic correctness.
7205         *
7206         * Workaround:
7207         * To determine what instruction the guest was executing, the hypervisor
7208         * will have to decode the instruction at the instruction pointer.
7209         *
7210         * In non SEV guest, hypervisor will be able to read the guest
7211         * memory to decode the instruction pointer when insn_len is zero
7212         * so we return true to indicate that decoding is possible.
7213         *
7214         * But in the SEV guest, the guest memory is encrypted with the
7215         * guest specific key and hypervisor will not be able to decode the
7216         * instruction pointer so we will not able to workaround it. Lets
7217         * print the error and request to kill the guest.
7218         */
7219        if (smap && (!smep || is_user)) {
7220                if (!sev_guest(vcpu->kvm))
7221                        return true;
7222
7223                pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
7224                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7225        }
7226
7227        return false;
7228}
7229
7230static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7231{
7232        struct vcpu_svm *svm = to_svm(vcpu);
7233
7234        /*
7235         * TODO: Last condition latch INIT signals on vCPU when
7236         * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
7237         * To properly emulate the INIT intercept, SVM should implement
7238         * kvm_x86_ops->check_nested_events() and call nested_svm_vmexit()
7239         * there if an INIT signal is pending.
7240         */
7241        return !gif_set(svm) ||
7242                   (svm->vmcb->control.intercept & (1ULL << INTERCEPT_INIT));
7243}
7244
7245static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
7246        .cpu_has_kvm_support = has_svm,
7247        .disabled_by_bios = is_disabled,
7248        .hardware_setup = svm_hardware_setup,
7249        .hardware_unsetup = svm_hardware_unsetup,
7250        .check_processor_compatibility = svm_check_processor_compat,
7251        .hardware_enable = svm_hardware_enable,
7252        .hardware_disable = svm_hardware_disable,
7253        .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
7254        .has_emulated_msr = svm_has_emulated_msr,
7255
7256        .vcpu_create = svm_create_vcpu,
7257        .vcpu_free = svm_free_vcpu,
7258        .vcpu_reset = svm_vcpu_reset,
7259
7260        .vm_alloc = svm_vm_alloc,
7261        .vm_free = svm_vm_free,
7262        .vm_init = avic_vm_init,
7263        .vm_destroy = svm_vm_destroy,
7264
7265        .prepare_guest_switch = svm_prepare_guest_switch,
7266        .vcpu_load = svm_vcpu_load,
7267        .vcpu_put = svm_vcpu_put,
7268        .vcpu_blocking = svm_vcpu_blocking,
7269        .vcpu_unblocking = svm_vcpu_unblocking,
7270
7271        .update_bp_intercept = update_bp_intercept,
7272        .get_msr_feature = svm_get_msr_feature,
7273        .get_msr = svm_get_msr,
7274        .set_msr = svm_set_msr,
7275        .get_segment_base = svm_get_segment_base,
7276        .get_segment = svm_get_segment,
7277        .set_segment = svm_set_segment,
7278        .get_cpl = svm_get_cpl,
7279        .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
7280        .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
7281        .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
7282        .set_cr0 = svm_set_cr0,
7283        .set_cr3 = svm_set_cr3,
7284        .set_cr4 = svm_set_cr4,
7285        .set_efer = svm_set_efer,
7286        .get_idt = svm_get_idt,
7287        .set_idt = svm_set_idt,
7288        .get_gdt = svm_get_gdt,
7289        .set_gdt = svm_set_gdt,
7290        .get_dr6 = svm_get_dr6,
7291        .set_dr6 = svm_set_dr6,
7292        .set_dr7 = svm_set_dr7,
7293        .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
7294        .cache_reg = svm_cache_reg,
7295        .get_rflags = svm_get_rflags,
7296        .set_rflags = svm_set_rflags,
7297
7298        .tlb_flush = svm_flush_tlb,
7299        .tlb_flush_gva = svm_flush_tlb_gva,
7300
7301        .run = svm_vcpu_run,
7302        .handle_exit = handle_exit,
7303        .skip_emulated_instruction = skip_emulated_instruction,
7304        .set_interrupt_shadow = svm_set_interrupt_shadow,
7305        .get_interrupt_shadow = svm_get_interrupt_shadow,
7306        .patch_hypercall = svm_patch_hypercall,
7307        .set_irq = svm_set_irq,
7308        .set_nmi = svm_inject_nmi,
7309        .queue_exception = svm_queue_exception,
7310        .cancel_injection = svm_cancel_injection,
7311        .interrupt_allowed = svm_interrupt_allowed,
7312        .nmi_allowed = svm_nmi_allowed,
7313        .get_nmi_mask = svm_get_nmi_mask,
7314        .set_nmi_mask = svm_set_nmi_mask,
7315        .enable_nmi_window = enable_nmi_window,
7316        .enable_irq_window = enable_irq_window,
7317        .update_cr8_intercept = update_cr8_intercept,
7318        .set_virtual_apic_mode = svm_set_virtual_apic_mode,
7319        .get_enable_apicv = svm_get_enable_apicv,
7320        .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
7321        .load_eoi_exitmap = svm_load_eoi_exitmap,
7322        .hwapic_irr_update = svm_hwapic_irr_update,
7323        .hwapic_isr_update = svm_hwapic_isr_update,
7324        .sync_pir_to_irr = kvm_lapic_find_highest_irr,
7325        .apicv_post_state_restore = avic_post_state_restore,
7326
7327        .set_tss_addr = svm_set_tss_addr,
7328        .set_identity_map_addr = svm_set_identity_map_addr,
7329        .get_tdp_level = get_npt_level,
7330        .get_mt_mask = svm_get_mt_mask,
7331
7332        .get_exit_info = svm_get_exit_info,
7333
7334        .get_lpage_level = svm_get_lpage_level,
7335
7336        .cpuid_update = svm_cpuid_update,
7337
7338        .rdtscp_supported = svm_rdtscp_supported,
7339        .invpcid_supported = svm_invpcid_supported,
7340        .mpx_supported = svm_mpx_supported,
7341        .xsaves_supported = svm_xsaves_supported,
7342        .umip_emulated = svm_umip_emulated,
7343        .pt_supported = svm_pt_supported,
7344
7345        .set_supported_cpuid = svm_set_supported_cpuid,
7346
7347        .has_wbinvd_exit = svm_has_wbinvd_exit,
7348
7349        .read_l1_tsc_offset = svm_read_l1_tsc_offset,
7350        .write_l1_tsc_offset = svm_write_l1_tsc_offset,
7351
7352        .set_tdp_cr3 = set_tdp_cr3,
7353
7354        .check_intercept = svm_check_intercept,
7355        .handle_exit_irqoff = svm_handle_exit_irqoff,
7356
7357        .request_immediate_exit = __kvm_request_immediate_exit,
7358
7359        .sched_in = svm_sched_in,
7360
7361        .pmu_ops = &amd_pmu_ops,
7362        .deliver_posted_interrupt = svm_deliver_avic_intr,
7363        .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
7364        .update_pi_irte = svm_update_pi_irte,
7365        .setup_mce = svm_setup_mce,
7366
7367        .smi_allowed = svm_smi_allowed,
7368        .pre_enter_smm = svm_pre_enter_smm,
7369        .pre_leave_smm = svm_pre_leave_smm,
7370        .enable_smi_window = enable_smi_window,
7371
7372        .mem_enc_op = svm_mem_enc_op,
7373        .mem_enc_reg_region = svm_register_enc_region,
7374        .mem_enc_unreg_region = svm_unregister_enc_region,
7375
7376        .nested_enable_evmcs = NULL,
7377        .nested_get_evmcs_version = NULL,
7378
7379        .need_emulation_on_page_fault = svm_need_emulation_on_page_fault,
7380
7381        .apic_init_signal_blocked = svm_apic_init_signal_blocked,
7382};
7383
7384static int __init svm_init(void)
7385{
7386        return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
7387                        __alignof__(struct vcpu_svm), THIS_MODULE);
7388}
7389
7390static void __exit svm_exit(void)
7391{
7392        kvm_exit();
7393}
7394
7395module_init(svm_init)
7396module_exit(svm_exit)
7397