linux/arch/x86/kvm/vmx/vmx.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * This module enables machines with Intel VT-x extensions to run virtual
   6 * machines without emulation or binary translation.
   7 *
   8 * Copyright (C) 2006 Qumranet, Inc.
   9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10 *
  11 * Authors:
  12 *   Avi Kivity   <avi@qumranet.com>
  13 *   Yaniv Kamay  <yaniv@qumranet.com>
  14 */
  15
  16#include <linux/frame.h>
  17#include <linux/highmem.h>
  18#include <linux/hrtimer.h>
  19#include <linux/kernel.h>
  20#include <linux/kvm_host.h>
  21#include <linux/module.h>
  22#include <linux/moduleparam.h>
  23#include <linux/mod_devicetable.h>
  24#include <linux/mm.h>
  25#include <linux/sched.h>
  26#include <linux/sched/smt.h>
  27#include <linux/slab.h>
  28#include <linux/tboot.h>
  29#include <linux/trace_events.h>
  30
  31#include <asm/apic.h>
  32#include <asm/asm.h>
  33#include <asm/cpu.h>
  34#include <asm/debugreg.h>
  35#include <asm/desc.h>
  36#include <asm/fpu/internal.h>
  37#include <asm/io.h>
  38#include <asm/irq_remapping.h>
  39#include <asm/kexec.h>
  40#include <asm/perf_event.h>
  41#include <asm/mce.h>
  42#include <asm/mmu_context.h>
  43#include <asm/mshyperv.h>
  44#include <asm/spec-ctrl.h>
  45#include <asm/virtext.h>
  46#include <asm/vmx.h>
  47
  48#include "capabilities.h"
  49#include "cpuid.h"
  50#include "evmcs.h"
  51#include "irq.h"
  52#include "kvm_cache_regs.h"
  53#include "lapic.h"
  54#include "mmu.h"
  55#include "nested.h"
  56#include "ops.h"
  57#include "pmu.h"
  58#include "trace.h"
  59#include "vmcs.h"
  60#include "vmcs12.h"
  61#include "vmx.h"
  62#include "x86.h"
  63
  64MODULE_AUTHOR("Qumranet");
  65MODULE_LICENSE("GPL");
  66
  67static const struct x86_cpu_id vmx_cpu_id[] = {
  68        X86_FEATURE_MATCH(X86_FEATURE_VMX),
  69        {}
  70};
  71MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
  72
  73bool __read_mostly enable_vpid = 1;
  74module_param_named(vpid, enable_vpid, bool, 0444);
  75
  76static bool __read_mostly enable_vnmi = 1;
  77module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
  78
  79bool __read_mostly flexpriority_enabled = 1;
  80module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  81
  82bool __read_mostly enable_ept = 1;
  83module_param_named(ept, enable_ept, bool, S_IRUGO);
  84
  85bool __read_mostly enable_unrestricted_guest = 1;
  86module_param_named(unrestricted_guest,
  87                        enable_unrestricted_guest, bool, S_IRUGO);
  88
  89bool __read_mostly enable_ept_ad_bits = 1;
  90module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
  91
  92static bool __read_mostly emulate_invalid_guest_state = true;
  93module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  94
  95static bool __read_mostly fasteoi = 1;
  96module_param(fasteoi, bool, S_IRUGO);
  97
  98static bool __read_mostly enable_apicv = 1;
  99module_param(enable_apicv, bool, S_IRUGO);
 100
 101/*
 102 * If nested=1, nested virtualization is supported, i.e., guests may use
 103 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
 104 * use VMX instructions.
 105 */
 106static bool __read_mostly nested = 1;
 107module_param(nested, bool, S_IRUGO);
 108
 109bool __read_mostly enable_pml = 1;
 110module_param_named(pml, enable_pml, bool, S_IRUGO);
 111
 112static bool __read_mostly dump_invalid_vmcs = 0;
 113module_param(dump_invalid_vmcs, bool, 0644);
 114
 115#define MSR_BITMAP_MODE_X2APIC          1
 116#define MSR_BITMAP_MODE_X2APIC_APICV    2
 117
 118#define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
 119
 120/* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
 121static int __read_mostly cpu_preemption_timer_multi;
 122static bool __read_mostly enable_preemption_timer = 1;
 123#ifdef CONFIG_X86_64
 124module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
 125#endif
 126
 127#define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
 128#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
 129#define KVM_VM_CR0_ALWAYS_ON                            \
 130        (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST |      \
 131         X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
 132#define KVM_CR4_GUEST_OWNED_BITS                                      \
 133        (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
 134         | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
 135
 136#define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
 137#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
 138#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
 139
 140#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
 141
 142#define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
 143        RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
 144        RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
 145        RTIT_STATUS_BYTECNT))
 146
 147#define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
 148        (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
 149
 150/*
 151 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
 152 * ple_gap:    upper bound on the amount of time between two successive
 153 *             executions of PAUSE in a loop. Also indicate if ple enabled.
 154 *             According to test, this time is usually smaller than 128 cycles.
 155 * ple_window: upper bound on the amount of time a guest is allowed to execute
 156 *             in a PAUSE loop. Tests indicate that most spinlocks are held for
 157 *             less than 2^12 cycles
 158 * Time is measured based on a counter that runs at the same rate as the TSC,
 159 * refer SDM volume 3b section 21.6.13 & 22.1.3.
 160 */
 161static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
 162module_param(ple_gap, uint, 0444);
 163
 164static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
 165module_param(ple_window, uint, 0444);
 166
 167/* Default doubles per-vcpu window every exit. */
 168static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
 169module_param(ple_window_grow, uint, 0444);
 170
 171/* Default resets per-vcpu window every exit to ple_window. */
 172static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
 173module_param(ple_window_shrink, uint, 0444);
 174
 175/* Default is to compute the maximum so we can never overflow. */
 176static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
 177module_param(ple_window_max, uint, 0444);
 178
 179/* Default is SYSTEM mode, 1 for host-guest mode */
 180int __read_mostly pt_mode = PT_MODE_SYSTEM;
 181module_param(pt_mode, int, S_IRUGO);
 182
 183static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
 184static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
 185static DEFINE_MUTEX(vmx_l1d_flush_mutex);
 186
 187/* Storage for pre module init parameter parsing */
 188static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
 189
 190static const struct {
 191        const char *option;
 192        bool for_parse;
 193} vmentry_l1d_param[] = {
 194        [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
 195        [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
 196        [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
 197        [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
 198        [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
 199        [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
 200};
 201
 202#define L1D_CACHE_ORDER 4
 203static void *vmx_l1d_flush_pages;
 204
 205static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
 206{
 207        struct page *page;
 208        unsigned int i;
 209
 210        if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
 211                l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
 212                return 0;
 213        }
 214
 215        if (!enable_ept) {
 216                l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
 217                return 0;
 218        }
 219
 220        if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
 221                u64 msr;
 222
 223                rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
 224                if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
 225                        l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
 226                        return 0;
 227                }
 228        }
 229
 230        /* If set to auto use the default l1tf mitigation method */
 231        if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
 232                switch (l1tf_mitigation) {
 233                case L1TF_MITIGATION_OFF:
 234                        l1tf = VMENTER_L1D_FLUSH_NEVER;
 235                        break;
 236                case L1TF_MITIGATION_FLUSH_NOWARN:
 237                case L1TF_MITIGATION_FLUSH:
 238                case L1TF_MITIGATION_FLUSH_NOSMT:
 239                        l1tf = VMENTER_L1D_FLUSH_COND;
 240                        break;
 241                case L1TF_MITIGATION_FULL:
 242                case L1TF_MITIGATION_FULL_FORCE:
 243                        l1tf = VMENTER_L1D_FLUSH_ALWAYS;
 244                        break;
 245                }
 246        } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
 247                l1tf = VMENTER_L1D_FLUSH_ALWAYS;
 248        }
 249
 250        if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
 251            !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
 252                /*
 253                 * This allocation for vmx_l1d_flush_pages is not tied to a VM
 254                 * lifetime and so should not be charged to a memcg.
 255                 */
 256                page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
 257                if (!page)
 258                        return -ENOMEM;
 259                vmx_l1d_flush_pages = page_address(page);
 260
 261                /*
 262                 * Initialize each page with a different pattern in
 263                 * order to protect against KSM in the nested
 264                 * virtualization case.
 265                 */
 266                for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
 267                        memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
 268                               PAGE_SIZE);
 269                }
 270        }
 271
 272        l1tf_vmx_mitigation = l1tf;
 273
 274        if (l1tf != VMENTER_L1D_FLUSH_NEVER)
 275                static_branch_enable(&vmx_l1d_should_flush);
 276        else
 277                static_branch_disable(&vmx_l1d_should_flush);
 278
 279        if (l1tf == VMENTER_L1D_FLUSH_COND)
 280                static_branch_enable(&vmx_l1d_flush_cond);
 281        else
 282                static_branch_disable(&vmx_l1d_flush_cond);
 283        return 0;
 284}
 285
 286static int vmentry_l1d_flush_parse(const char *s)
 287{
 288        unsigned int i;
 289
 290        if (s) {
 291                for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
 292                        if (vmentry_l1d_param[i].for_parse &&
 293                            sysfs_streq(s, vmentry_l1d_param[i].option))
 294                                return i;
 295                }
 296        }
 297        return -EINVAL;
 298}
 299
 300static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
 301{
 302        int l1tf, ret;
 303
 304        l1tf = vmentry_l1d_flush_parse(s);
 305        if (l1tf < 0)
 306                return l1tf;
 307
 308        if (!boot_cpu_has(X86_BUG_L1TF))
 309                return 0;
 310
 311        /*
 312         * Has vmx_init() run already? If not then this is the pre init
 313         * parameter parsing. In that case just store the value and let
 314         * vmx_init() do the proper setup after enable_ept has been
 315         * established.
 316         */
 317        if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
 318                vmentry_l1d_flush_param = l1tf;
 319                return 0;
 320        }
 321
 322        mutex_lock(&vmx_l1d_flush_mutex);
 323        ret = vmx_setup_l1d_flush(l1tf);
 324        mutex_unlock(&vmx_l1d_flush_mutex);
 325        return ret;
 326}
 327
 328static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
 329{
 330        if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
 331                return sprintf(s, "???\n");
 332
 333        return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
 334}
 335
 336static const struct kernel_param_ops vmentry_l1d_flush_ops = {
 337        .set = vmentry_l1d_flush_set,
 338        .get = vmentry_l1d_flush_get,
 339};
 340module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
 341
 342static bool guest_state_valid(struct kvm_vcpu *vcpu);
 343static u32 vmx_segment_access_rights(struct kvm_segment *var);
 344static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
 345                                                          u32 msr, int type);
 346
 347void vmx_vmexit(void);
 348
 349#define vmx_insn_failed(fmt...)         \
 350do {                                    \
 351        WARN_ONCE(1, fmt);              \
 352        pr_warn_ratelimited(fmt);       \
 353} while (0)
 354
 355asmlinkage void vmread_error(unsigned long field, bool fault)
 356{
 357        if (fault)
 358                kvm_spurious_fault();
 359        else
 360                vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
 361}
 362
 363noinline void vmwrite_error(unsigned long field, unsigned long value)
 364{
 365        vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
 366                        field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
 367}
 368
 369noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
 370{
 371        vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
 372}
 373
 374noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
 375{
 376        vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
 377}
 378
 379noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
 380{
 381        vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
 382                        ext, vpid, gva);
 383}
 384
 385noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
 386{
 387        vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
 388                        ext, eptp, gpa);
 389}
 390
 391static DEFINE_PER_CPU(struct vmcs *, vmxarea);
 392DEFINE_PER_CPU(struct vmcs *, current_vmcs);
 393/*
 394 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
 395 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
 396 */
 397static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
 398
 399/*
 400 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
 401 * can find which vCPU should be waken up.
 402 */
 403static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
 404static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
 405
 406static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
 407static DEFINE_SPINLOCK(vmx_vpid_lock);
 408
 409struct vmcs_config vmcs_config;
 410struct vmx_capability vmx_capability;
 411
 412#define VMX_SEGMENT_FIELD(seg)                                  \
 413        [VCPU_SREG_##seg] = {                                   \
 414                .selector = GUEST_##seg##_SELECTOR,             \
 415                .base = GUEST_##seg##_BASE,                     \
 416                .limit = GUEST_##seg##_LIMIT,                   \
 417                .ar_bytes = GUEST_##seg##_AR_BYTES,             \
 418        }
 419
 420static const struct kvm_vmx_segment_field {
 421        unsigned selector;
 422        unsigned base;
 423        unsigned limit;
 424        unsigned ar_bytes;
 425} kvm_vmx_segment_fields[] = {
 426        VMX_SEGMENT_FIELD(CS),
 427        VMX_SEGMENT_FIELD(DS),
 428        VMX_SEGMENT_FIELD(ES),
 429        VMX_SEGMENT_FIELD(FS),
 430        VMX_SEGMENT_FIELD(GS),
 431        VMX_SEGMENT_FIELD(SS),
 432        VMX_SEGMENT_FIELD(TR),
 433        VMX_SEGMENT_FIELD(LDTR),
 434};
 435
 436u64 host_efer;
 437static unsigned long host_idt_base;
 438
 439/*
 440 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
 441 * will emulate SYSCALL in legacy mode if the vendor string in guest
 442 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
 443 * support this emulation, IA32_STAR must always be included in
 444 * vmx_msr_index[], even in i386 builds.
 445 */
 446const u32 vmx_msr_index[] = {
 447#ifdef CONFIG_X86_64
 448        MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
 449#endif
 450        MSR_EFER, MSR_TSC_AUX, MSR_STAR,
 451        MSR_IA32_TSX_CTRL,
 452};
 453
 454#if IS_ENABLED(CONFIG_HYPERV)
 455static bool __read_mostly enlightened_vmcs = true;
 456module_param(enlightened_vmcs, bool, 0444);
 457
 458/* check_ept_pointer() should be under protection of ept_pointer_lock. */
 459static void check_ept_pointer_match(struct kvm *kvm)
 460{
 461        struct kvm_vcpu *vcpu;
 462        u64 tmp_eptp = INVALID_PAGE;
 463        int i;
 464
 465        kvm_for_each_vcpu(i, vcpu, kvm) {
 466                if (!VALID_PAGE(tmp_eptp)) {
 467                        tmp_eptp = to_vmx(vcpu)->ept_pointer;
 468                } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
 469                        to_kvm_vmx(kvm)->ept_pointers_match
 470                                = EPT_POINTERS_MISMATCH;
 471                        return;
 472                }
 473        }
 474
 475        to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
 476}
 477
 478static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
 479                void *data)
 480{
 481        struct kvm_tlb_range *range = data;
 482
 483        return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
 484                        range->pages);
 485}
 486
 487static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
 488                struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
 489{
 490        u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
 491
 492        /*
 493         * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
 494         * of the base of EPT PML4 table, strip off EPT configuration
 495         * information.
 496         */
 497        if (range)
 498                return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
 499                                kvm_fill_hv_flush_list_func, (void *)range);
 500        else
 501                return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
 502}
 503
 504static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
 505                struct kvm_tlb_range *range)
 506{
 507        struct kvm_vcpu *vcpu;
 508        int ret = 0, i;
 509
 510        spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
 511
 512        if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
 513                check_ept_pointer_match(kvm);
 514
 515        if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
 516                kvm_for_each_vcpu(i, vcpu, kvm) {
 517                        /* If ept_pointer is invalid pointer, bypass flush request. */
 518                        if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
 519                                ret |= __hv_remote_flush_tlb_with_range(
 520                                        kvm, vcpu, range);
 521                }
 522        } else {
 523                ret = __hv_remote_flush_tlb_with_range(kvm,
 524                                kvm_get_vcpu(kvm, 0), range);
 525        }
 526
 527        spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
 528        return ret;
 529}
 530static int hv_remote_flush_tlb(struct kvm *kvm)
 531{
 532        return hv_remote_flush_tlb_with_range(kvm, NULL);
 533}
 534
 535static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
 536{
 537        struct hv_enlightened_vmcs *evmcs;
 538        struct hv_partition_assist_pg **p_hv_pa_pg =
 539                        &vcpu->kvm->arch.hyperv.hv_pa_pg;
 540        /*
 541         * Synthetic VM-Exit is not enabled in current code and so All
 542         * evmcs in singe VM shares same assist page.
 543         */
 544        if (!*p_hv_pa_pg)
 545                *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
 546
 547        if (!*p_hv_pa_pg)
 548                return -ENOMEM;
 549
 550        evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
 551
 552        evmcs->partition_assist_page =
 553                __pa(*p_hv_pa_pg);
 554        evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
 555        evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
 556
 557        return 0;
 558}
 559
 560#endif /* IS_ENABLED(CONFIG_HYPERV) */
 561
 562/*
 563 * Comment's format: document - errata name - stepping - processor name.
 564 * Refer from
 565 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
 566 */
 567static u32 vmx_preemption_cpu_tfms[] = {
 568/* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
 5690x000206E6,
 570/* 323056.pdf - AAX65  - C2 - Xeon L3406 */
 571/* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
 572/* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
 5730x00020652,
 574/* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
 5750x00020655,
 576/* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
 577/* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
 578/*
 579 * 320767.pdf - AAP86  - B1 -
 580 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
 581 */
 5820x000106E5,
 583/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
 5840x000106A0,
 585/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
 5860x000106A1,
 587/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
 5880x000106A4,
 589 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
 590 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
 591 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
 5920x000106A5,
 593 /* Xeon E3-1220 V2 */
 5940x000306A8,
 595};
 596
 597static inline bool cpu_has_broken_vmx_preemption_timer(void)
 598{
 599        u32 eax = cpuid_eax(0x00000001), i;
 600
 601        /* Clear the reserved bits */
 602        eax &= ~(0x3U << 14 | 0xfU << 28);
 603        for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
 604                if (eax == vmx_preemption_cpu_tfms[i])
 605                        return true;
 606
 607        return false;
 608}
 609
 610static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
 611{
 612        return flexpriority_enabled && lapic_in_kernel(vcpu);
 613}
 614
 615static inline bool report_flexpriority(void)
 616{
 617        return flexpriority_enabled;
 618}
 619
 620static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
 621{
 622        int i;
 623
 624        for (i = 0; i < vmx->nmsrs; ++i)
 625                if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
 626                        return i;
 627        return -1;
 628}
 629
 630struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
 631{
 632        int i;
 633
 634        i = __find_msr_index(vmx, msr);
 635        if (i >= 0)
 636                return &vmx->guest_msrs[i];
 637        return NULL;
 638}
 639
 640static int vmx_set_guest_msr(struct vcpu_vmx *vmx, struct shared_msr_entry *msr, u64 data)
 641{
 642        int ret = 0;
 643
 644        u64 old_msr_data = msr->data;
 645        msr->data = data;
 646        if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
 647                preempt_disable();
 648                ret = kvm_set_shared_msr(msr->index, msr->data,
 649                                         msr->mask);
 650                preempt_enable();
 651                if (ret)
 652                        msr->data = old_msr_data;
 653        }
 654        return ret;
 655}
 656
 657void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
 658{
 659        vmcs_clear(loaded_vmcs->vmcs);
 660        if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
 661                vmcs_clear(loaded_vmcs->shadow_vmcs);
 662        loaded_vmcs->cpu = -1;
 663        loaded_vmcs->launched = 0;
 664}
 665
 666#ifdef CONFIG_KEXEC_CORE
 667/*
 668 * This bitmap is used to indicate whether the vmclear
 669 * operation is enabled on all cpus. All disabled by
 670 * default.
 671 */
 672static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
 673
 674static inline void crash_enable_local_vmclear(int cpu)
 675{
 676        cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
 677}
 678
 679static inline void crash_disable_local_vmclear(int cpu)
 680{
 681        cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
 682}
 683
 684static inline int crash_local_vmclear_enabled(int cpu)
 685{
 686        return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
 687}
 688
 689static void crash_vmclear_local_loaded_vmcss(void)
 690{
 691        int cpu = raw_smp_processor_id();
 692        struct loaded_vmcs *v;
 693
 694        if (!crash_local_vmclear_enabled(cpu))
 695                return;
 696
 697        list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
 698                            loaded_vmcss_on_cpu_link)
 699                vmcs_clear(v->vmcs);
 700}
 701#else
 702static inline void crash_enable_local_vmclear(int cpu) { }
 703static inline void crash_disable_local_vmclear(int cpu) { }
 704#endif /* CONFIG_KEXEC_CORE */
 705
 706static void __loaded_vmcs_clear(void *arg)
 707{
 708        struct loaded_vmcs *loaded_vmcs = arg;
 709        int cpu = raw_smp_processor_id();
 710
 711        if (loaded_vmcs->cpu != cpu)
 712                return; /* vcpu migration can race with cpu offline */
 713        if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
 714                per_cpu(current_vmcs, cpu) = NULL;
 715        crash_disable_local_vmclear(cpu);
 716        list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
 717
 718        /*
 719         * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
 720         * is before setting loaded_vmcs->vcpu to -1 which is done in
 721         * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
 722         * then adds the vmcs into percpu list before it is deleted.
 723         */
 724        smp_wmb();
 725
 726        loaded_vmcs_init(loaded_vmcs);
 727        crash_enable_local_vmclear(cpu);
 728}
 729
 730void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
 731{
 732        int cpu = loaded_vmcs->cpu;
 733
 734        if (cpu != -1)
 735                smp_call_function_single(cpu,
 736                         __loaded_vmcs_clear, loaded_vmcs, 1);
 737}
 738
 739static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
 740                                       unsigned field)
 741{
 742        bool ret;
 743        u32 mask = 1 << (seg * SEG_FIELD_NR + field);
 744
 745        if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
 746                kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
 747                vmx->segment_cache.bitmask = 0;
 748        }
 749        ret = vmx->segment_cache.bitmask & mask;
 750        vmx->segment_cache.bitmask |= mask;
 751        return ret;
 752}
 753
 754static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
 755{
 756        u16 *p = &vmx->segment_cache.seg[seg].selector;
 757
 758        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
 759                *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
 760        return *p;
 761}
 762
 763static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
 764{
 765        ulong *p = &vmx->segment_cache.seg[seg].base;
 766
 767        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
 768                *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
 769        return *p;
 770}
 771
 772static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
 773{
 774        u32 *p = &vmx->segment_cache.seg[seg].limit;
 775
 776        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
 777                *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
 778        return *p;
 779}
 780
 781static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
 782{
 783        u32 *p = &vmx->segment_cache.seg[seg].ar;
 784
 785        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
 786                *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
 787        return *p;
 788}
 789
 790void update_exception_bitmap(struct kvm_vcpu *vcpu)
 791{
 792        u32 eb;
 793
 794        eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
 795             (1u << DB_VECTOR) | (1u << AC_VECTOR);
 796        /*
 797         * Guest access to VMware backdoor ports could legitimately
 798         * trigger #GP because of TSS I/O permission bitmap.
 799         * We intercept those #GP and allow access to them anyway
 800         * as VMware does.
 801         */
 802        if (enable_vmware_backdoor)
 803                eb |= (1u << GP_VECTOR);
 804        if ((vcpu->guest_debug &
 805             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
 806            (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
 807                eb |= 1u << BP_VECTOR;
 808        if (to_vmx(vcpu)->rmode.vm86_active)
 809                eb = ~0;
 810        if (enable_ept)
 811                eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
 812
 813        /* When we are running a nested L2 guest and L1 specified for it a
 814         * certain exception bitmap, we must trap the same exceptions and pass
 815         * them to L1. When running L2, we will only handle the exceptions
 816         * specified above if L1 did not want them.
 817         */
 818        if (is_guest_mode(vcpu))
 819                eb |= get_vmcs12(vcpu)->exception_bitmap;
 820
 821        vmcs_write32(EXCEPTION_BITMAP, eb);
 822}
 823
 824/*
 825 * Check if MSR is intercepted for currently loaded MSR bitmap.
 826 */
 827static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
 828{
 829        unsigned long *msr_bitmap;
 830        int f = sizeof(unsigned long);
 831
 832        if (!cpu_has_vmx_msr_bitmap())
 833                return true;
 834
 835        msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
 836
 837        if (msr <= 0x1fff) {
 838                return !!test_bit(msr, msr_bitmap + 0x800 / f);
 839        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
 840                msr &= 0x1fff;
 841                return !!test_bit(msr, msr_bitmap + 0xc00 / f);
 842        }
 843
 844        return true;
 845}
 846
 847static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
 848                unsigned long entry, unsigned long exit)
 849{
 850        vm_entry_controls_clearbit(vmx, entry);
 851        vm_exit_controls_clearbit(vmx, exit);
 852}
 853
 854int vmx_find_msr_index(struct vmx_msrs *m, u32 msr)
 855{
 856        unsigned int i;
 857
 858        for (i = 0; i < m->nr; ++i) {
 859                if (m->val[i].index == msr)
 860                        return i;
 861        }
 862        return -ENOENT;
 863}
 864
 865static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
 866{
 867        int i;
 868        struct msr_autoload *m = &vmx->msr_autoload;
 869
 870        switch (msr) {
 871        case MSR_EFER:
 872                if (cpu_has_load_ia32_efer()) {
 873                        clear_atomic_switch_msr_special(vmx,
 874                                        VM_ENTRY_LOAD_IA32_EFER,
 875                                        VM_EXIT_LOAD_IA32_EFER);
 876                        return;
 877                }
 878                break;
 879        case MSR_CORE_PERF_GLOBAL_CTRL:
 880                if (cpu_has_load_perf_global_ctrl()) {
 881                        clear_atomic_switch_msr_special(vmx,
 882                                        VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
 883                                        VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
 884                        return;
 885                }
 886                break;
 887        }
 888        i = vmx_find_msr_index(&m->guest, msr);
 889        if (i < 0)
 890                goto skip_guest;
 891        --m->guest.nr;
 892        m->guest.val[i] = m->guest.val[m->guest.nr];
 893        vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
 894
 895skip_guest:
 896        i = vmx_find_msr_index(&m->host, msr);
 897        if (i < 0)
 898                return;
 899
 900        --m->host.nr;
 901        m->host.val[i] = m->host.val[m->host.nr];
 902        vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
 903}
 904
 905static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
 906                unsigned long entry, unsigned long exit,
 907                unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
 908                u64 guest_val, u64 host_val)
 909{
 910        vmcs_write64(guest_val_vmcs, guest_val);
 911        if (host_val_vmcs != HOST_IA32_EFER)
 912                vmcs_write64(host_val_vmcs, host_val);
 913        vm_entry_controls_setbit(vmx, entry);
 914        vm_exit_controls_setbit(vmx, exit);
 915}
 916
 917static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
 918                                  u64 guest_val, u64 host_val, bool entry_only)
 919{
 920        int i, j = 0;
 921        struct msr_autoload *m = &vmx->msr_autoload;
 922
 923        switch (msr) {
 924        case MSR_EFER:
 925                if (cpu_has_load_ia32_efer()) {
 926                        add_atomic_switch_msr_special(vmx,
 927                                        VM_ENTRY_LOAD_IA32_EFER,
 928                                        VM_EXIT_LOAD_IA32_EFER,
 929                                        GUEST_IA32_EFER,
 930                                        HOST_IA32_EFER,
 931                                        guest_val, host_val);
 932                        return;
 933                }
 934                break;
 935        case MSR_CORE_PERF_GLOBAL_CTRL:
 936                if (cpu_has_load_perf_global_ctrl()) {
 937                        add_atomic_switch_msr_special(vmx,
 938                                        VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
 939                                        VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
 940                                        GUEST_IA32_PERF_GLOBAL_CTRL,
 941                                        HOST_IA32_PERF_GLOBAL_CTRL,
 942                                        guest_val, host_val);
 943                        return;
 944                }
 945                break;
 946        case MSR_IA32_PEBS_ENABLE:
 947                /* PEBS needs a quiescent period after being disabled (to write
 948                 * a record).  Disabling PEBS through VMX MSR swapping doesn't
 949                 * provide that period, so a CPU could write host's record into
 950                 * guest's memory.
 951                 */
 952                wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
 953        }
 954
 955        i = vmx_find_msr_index(&m->guest, msr);
 956        if (!entry_only)
 957                j = vmx_find_msr_index(&m->host, msr);
 958
 959        if ((i < 0 && m->guest.nr == NR_LOADSTORE_MSRS) ||
 960                (j < 0 &&  m->host.nr == NR_LOADSTORE_MSRS)) {
 961                printk_once(KERN_WARNING "Not enough msr switch entries. "
 962                                "Can't add msr %x\n", msr);
 963                return;
 964        }
 965        if (i < 0) {
 966                i = m->guest.nr++;
 967                vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
 968        }
 969        m->guest.val[i].index = msr;
 970        m->guest.val[i].value = guest_val;
 971
 972        if (entry_only)
 973                return;
 974
 975        if (j < 0) {
 976                j = m->host.nr++;
 977                vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
 978        }
 979        m->host.val[j].index = msr;
 980        m->host.val[j].value = host_val;
 981}
 982
 983static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
 984{
 985        u64 guest_efer = vmx->vcpu.arch.efer;
 986        u64 ignore_bits = 0;
 987
 988        /* Shadow paging assumes NX to be available.  */
 989        if (!enable_ept)
 990                guest_efer |= EFER_NX;
 991
 992        /*
 993         * LMA and LME handled by hardware; SCE meaningless outside long mode.
 994         */
 995        ignore_bits |= EFER_SCE;
 996#ifdef CONFIG_X86_64
 997        ignore_bits |= EFER_LMA | EFER_LME;
 998        /* SCE is meaningful only in long mode on Intel */
 999        if (guest_efer & EFER_LMA)
1000                ignore_bits &= ~(u64)EFER_SCE;
1001#endif
1002
1003        /*
1004         * On EPT, we can't emulate NX, so we must switch EFER atomically.
1005         * On CPUs that support "load IA32_EFER", always switch EFER
1006         * atomically, since it's faster than switching it manually.
1007         */
1008        if (cpu_has_load_ia32_efer() ||
1009            (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1010                if (!(guest_efer & EFER_LMA))
1011                        guest_efer &= ~EFER_LME;
1012                if (guest_efer != host_efer)
1013                        add_atomic_switch_msr(vmx, MSR_EFER,
1014                                              guest_efer, host_efer, false);
1015                else
1016                        clear_atomic_switch_msr(vmx, MSR_EFER);
1017                return false;
1018        } else {
1019                clear_atomic_switch_msr(vmx, MSR_EFER);
1020
1021                guest_efer &= ~ignore_bits;
1022                guest_efer |= host_efer & ignore_bits;
1023
1024                vmx->guest_msrs[efer_offset].data = guest_efer;
1025                vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1026
1027                return true;
1028        }
1029}
1030
1031#ifdef CONFIG_X86_32
1032/*
1033 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1034 * VMCS rather than the segment table.  KVM uses this helper to figure
1035 * out the current bases to poke them into the VMCS before entry.
1036 */
1037static unsigned long segment_base(u16 selector)
1038{
1039        struct desc_struct *table;
1040        unsigned long v;
1041
1042        if (!(selector & ~SEGMENT_RPL_MASK))
1043                return 0;
1044
1045        table = get_current_gdt_ro();
1046
1047        if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1048                u16 ldt_selector = kvm_read_ldt();
1049
1050                if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1051                        return 0;
1052
1053                table = (struct desc_struct *)segment_base(ldt_selector);
1054        }
1055        v = get_desc_base(&table[selector >> 3]);
1056        return v;
1057}
1058#endif
1059
1060static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1061{
1062        u32 i;
1063
1064        wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1065        wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1066        wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1067        wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1068        for (i = 0; i < addr_range; i++) {
1069                wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1070                wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1071        }
1072}
1073
1074static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1075{
1076        u32 i;
1077
1078        rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1079        rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1080        rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1081        rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1082        for (i = 0; i < addr_range; i++) {
1083                rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1084                rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1085        }
1086}
1087
1088static void pt_guest_enter(struct vcpu_vmx *vmx)
1089{
1090        if (pt_mode == PT_MODE_SYSTEM)
1091                return;
1092
1093        /*
1094         * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1095         * Save host state before VM entry.
1096         */
1097        rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1098        if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1099                wrmsrl(MSR_IA32_RTIT_CTL, 0);
1100                pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1101                pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1102        }
1103}
1104
1105static void pt_guest_exit(struct vcpu_vmx *vmx)
1106{
1107        if (pt_mode == PT_MODE_SYSTEM)
1108                return;
1109
1110        if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1111                pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1112                pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1113        }
1114
1115        /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1116        wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1117}
1118
1119void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1120                        unsigned long fs_base, unsigned long gs_base)
1121{
1122        if (unlikely(fs_sel != host->fs_sel)) {
1123                if (!(fs_sel & 7))
1124                        vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1125                else
1126                        vmcs_write16(HOST_FS_SELECTOR, 0);
1127                host->fs_sel = fs_sel;
1128        }
1129        if (unlikely(gs_sel != host->gs_sel)) {
1130                if (!(gs_sel & 7))
1131                        vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1132                else
1133                        vmcs_write16(HOST_GS_SELECTOR, 0);
1134                host->gs_sel = gs_sel;
1135        }
1136        if (unlikely(fs_base != host->fs_base)) {
1137                vmcs_writel(HOST_FS_BASE, fs_base);
1138                host->fs_base = fs_base;
1139        }
1140        if (unlikely(gs_base != host->gs_base)) {
1141                vmcs_writel(HOST_GS_BASE, gs_base);
1142                host->gs_base = gs_base;
1143        }
1144}
1145
1146void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1147{
1148        struct vcpu_vmx *vmx = to_vmx(vcpu);
1149        struct vmcs_host_state *host_state;
1150#ifdef CONFIG_X86_64
1151        int cpu = raw_smp_processor_id();
1152#endif
1153        unsigned long fs_base, gs_base;
1154        u16 fs_sel, gs_sel;
1155        int i;
1156
1157        vmx->req_immediate_exit = false;
1158
1159        /*
1160         * Note that guest MSRs to be saved/restored can also be changed
1161         * when guest state is loaded. This happens when guest transitions
1162         * to/from long-mode by setting MSR_EFER.LMA.
1163         */
1164        if (!vmx->guest_msrs_ready) {
1165                vmx->guest_msrs_ready = true;
1166                for (i = 0; i < vmx->save_nmsrs; ++i)
1167                        kvm_set_shared_msr(vmx->guest_msrs[i].index,
1168                                           vmx->guest_msrs[i].data,
1169                                           vmx->guest_msrs[i].mask);
1170
1171        }
1172        if (vmx->guest_state_loaded)
1173                return;
1174
1175        host_state = &vmx->loaded_vmcs->host_state;
1176
1177        /*
1178         * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1179         * allow segment selectors with cpl > 0 or ti == 1.
1180         */
1181        host_state->ldt_sel = kvm_read_ldt();
1182
1183#ifdef CONFIG_X86_64
1184        savesegment(ds, host_state->ds_sel);
1185        savesegment(es, host_state->es_sel);
1186
1187        gs_base = cpu_kernelmode_gs_base(cpu);
1188        if (likely(is_64bit_mm(current->mm))) {
1189                save_fsgs_for_kvm();
1190                fs_sel = current->thread.fsindex;
1191                gs_sel = current->thread.gsindex;
1192                fs_base = current->thread.fsbase;
1193                vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1194        } else {
1195                savesegment(fs, fs_sel);
1196                savesegment(gs, gs_sel);
1197                fs_base = read_msr(MSR_FS_BASE);
1198                vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1199        }
1200
1201        wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1202#else
1203        savesegment(fs, fs_sel);
1204        savesegment(gs, gs_sel);
1205        fs_base = segment_base(fs_sel);
1206        gs_base = segment_base(gs_sel);
1207#endif
1208
1209        vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1210        vmx->guest_state_loaded = true;
1211}
1212
1213static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1214{
1215        struct vmcs_host_state *host_state;
1216
1217        if (!vmx->guest_state_loaded)
1218                return;
1219
1220        host_state = &vmx->loaded_vmcs->host_state;
1221
1222        ++vmx->vcpu.stat.host_state_reload;
1223
1224#ifdef CONFIG_X86_64
1225        rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1226#endif
1227        if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1228                kvm_load_ldt(host_state->ldt_sel);
1229#ifdef CONFIG_X86_64
1230                load_gs_index(host_state->gs_sel);
1231#else
1232                loadsegment(gs, host_state->gs_sel);
1233#endif
1234        }
1235        if (host_state->fs_sel & 7)
1236                loadsegment(fs, host_state->fs_sel);
1237#ifdef CONFIG_X86_64
1238        if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1239                loadsegment(ds, host_state->ds_sel);
1240                loadsegment(es, host_state->es_sel);
1241        }
1242#endif
1243        invalidate_tss_limit();
1244#ifdef CONFIG_X86_64
1245        wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1246#endif
1247        load_fixmap_gdt(raw_smp_processor_id());
1248        vmx->guest_state_loaded = false;
1249        vmx->guest_msrs_ready = false;
1250}
1251
1252#ifdef CONFIG_X86_64
1253static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1254{
1255        preempt_disable();
1256        if (vmx->guest_state_loaded)
1257                rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1258        preempt_enable();
1259        return vmx->msr_guest_kernel_gs_base;
1260}
1261
1262static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1263{
1264        preempt_disable();
1265        if (vmx->guest_state_loaded)
1266                wrmsrl(MSR_KERNEL_GS_BASE, data);
1267        preempt_enable();
1268        vmx->msr_guest_kernel_gs_base = data;
1269}
1270#endif
1271
1272static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1273{
1274        struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1275        struct pi_desc old, new;
1276        unsigned int dest;
1277
1278        /*
1279         * In case of hot-plug or hot-unplug, we may have to undo
1280         * vmx_vcpu_pi_put even if there is no assigned device.  And we
1281         * always keep PI.NDST up to date for simplicity: it makes the
1282         * code easier, and CPU migration is not a fast path.
1283         */
1284        if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1285                return;
1286
1287        /*
1288         * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
1289         * PI.NDST: pi_post_block is the one expected to change PID.NDST and the
1290         * wakeup handler expects the vCPU to be on the blocked_vcpu_list that
1291         * matches PI.NDST. Otherwise, a vcpu may not be able to be woken up
1292         * correctly.
1293         */
1294        if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) {
1295                pi_clear_sn(pi_desc);
1296                goto after_clear_sn;
1297        }
1298
1299        /* The full case.  */
1300        do {
1301                old.control = new.control = pi_desc->control;
1302
1303                dest = cpu_physical_id(cpu);
1304
1305                if (x2apic_enabled())
1306                        new.ndst = dest;
1307                else
1308                        new.ndst = (dest << 8) & 0xFF00;
1309
1310                new.sn = 0;
1311        } while (cmpxchg64(&pi_desc->control, old.control,
1312                           new.control) != old.control);
1313
1314after_clear_sn:
1315
1316        /*
1317         * Clear SN before reading the bitmap.  The VT-d firmware
1318         * writes the bitmap and reads SN atomically (5.2.3 in the
1319         * spec), so it doesn't really have a memory barrier that
1320         * pairs with this, but we cannot do that and we need one.
1321         */
1322        smp_mb__after_atomic();
1323
1324        if (!pi_is_pir_empty(pi_desc))
1325                pi_set_on(pi_desc);
1326}
1327
1328void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1329{
1330        struct vcpu_vmx *vmx = to_vmx(vcpu);
1331        bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1332
1333        if (!already_loaded) {
1334                loaded_vmcs_clear(vmx->loaded_vmcs);
1335                local_irq_disable();
1336                crash_disable_local_vmclear(cpu);
1337
1338                /*
1339                 * Read loaded_vmcs->cpu should be before fetching
1340                 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1341                 * See the comments in __loaded_vmcs_clear().
1342                 */
1343                smp_rmb();
1344
1345                list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1346                         &per_cpu(loaded_vmcss_on_cpu, cpu));
1347                crash_enable_local_vmclear(cpu);
1348                local_irq_enable();
1349        }
1350
1351        if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1352                per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1353                vmcs_load(vmx->loaded_vmcs->vmcs);
1354                indirect_branch_prediction_barrier();
1355        }
1356
1357        if (!already_loaded) {
1358                void *gdt = get_current_gdt_ro();
1359                unsigned long sysenter_esp;
1360
1361                kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1362
1363                /*
1364                 * Linux uses per-cpu TSS and GDT, so set these when switching
1365                 * processors.  See 22.2.4.
1366                 */
1367                vmcs_writel(HOST_TR_BASE,
1368                            (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1369                vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1370
1371                rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1372                vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1373
1374                vmx->loaded_vmcs->cpu = cpu;
1375        }
1376
1377        /* Setup TSC multiplier */
1378        if (kvm_has_tsc_control &&
1379            vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1380                decache_tsc_multiplier(vmx);
1381}
1382
1383/*
1384 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1385 * vcpu mutex is already taken.
1386 */
1387void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1388{
1389        struct vcpu_vmx *vmx = to_vmx(vcpu);
1390
1391        vmx_vcpu_load_vmcs(vcpu, cpu);
1392
1393        vmx_vcpu_pi_load(vcpu, cpu);
1394
1395        vmx->host_pkru = read_pkru();
1396        vmx->host_debugctlmsr = get_debugctlmsr();
1397}
1398
1399static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1400{
1401        struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1402
1403        if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1404                !irq_remapping_cap(IRQ_POSTING_CAP)  ||
1405                !kvm_vcpu_apicv_active(vcpu))
1406                return;
1407
1408        /* Set SN when the vCPU is preempted */
1409        if (vcpu->preempted)
1410                pi_set_sn(pi_desc);
1411}
1412
1413static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1414{
1415        vmx_vcpu_pi_put(vcpu);
1416
1417        vmx_prepare_switch_to_host(to_vmx(vcpu));
1418}
1419
1420static bool emulation_required(struct kvm_vcpu *vcpu)
1421{
1422        return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1423}
1424
1425static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1426
1427unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1428{
1429        struct vcpu_vmx *vmx = to_vmx(vcpu);
1430        unsigned long rflags, save_rflags;
1431
1432        if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1433                kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1434                rflags = vmcs_readl(GUEST_RFLAGS);
1435                if (vmx->rmode.vm86_active) {
1436                        rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1437                        save_rflags = vmx->rmode.save_rflags;
1438                        rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1439                }
1440                vmx->rflags = rflags;
1441        }
1442        return vmx->rflags;
1443}
1444
1445void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1446{
1447        struct vcpu_vmx *vmx = to_vmx(vcpu);
1448        unsigned long old_rflags;
1449
1450        if (enable_unrestricted_guest) {
1451                kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1452                vmx->rflags = rflags;
1453                vmcs_writel(GUEST_RFLAGS, rflags);
1454                return;
1455        }
1456
1457        old_rflags = vmx_get_rflags(vcpu);
1458        vmx->rflags = rflags;
1459        if (vmx->rmode.vm86_active) {
1460                vmx->rmode.save_rflags = rflags;
1461                rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1462        }
1463        vmcs_writel(GUEST_RFLAGS, rflags);
1464
1465        if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1466                vmx->emulation_required = emulation_required(vcpu);
1467}
1468
1469u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1470{
1471        u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1472        int ret = 0;
1473
1474        if (interruptibility & GUEST_INTR_STATE_STI)
1475                ret |= KVM_X86_SHADOW_INT_STI;
1476        if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1477                ret |= KVM_X86_SHADOW_INT_MOV_SS;
1478
1479        return ret;
1480}
1481
1482void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1483{
1484        u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1485        u32 interruptibility = interruptibility_old;
1486
1487        interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1488
1489        if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1490                interruptibility |= GUEST_INTR_STATE_MOV_SS;
1491        else if (mask & KVM_X86_SHADOW_INT_STI)
1492                interruptibility |= GUEST_INTR_STATE_STI;
1493
1494        if ((interruptibility != interruptibility_old))
1495                vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1496}
1497
1498static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1499{
1500        struct vcpu_vmx *vmx = to_vmx(vcpu);
1501        unsigned long value;
1502
1503        /*
1504         * Any MSR write that attempts to change bits marked reserved will
1505         * case a #GP fault.
1506         */
1507        if (data & vmx->pt_desc.ctl_bitmask)
1508                return 1;
1509
1510        /*
1511         * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1512         * result in a #GP unless the same write also clears TraceEn.
1513         */
1514        if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1515                ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1516                return 1;
1517
1518        /*
1519         * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1520         * and FabricEn would cause #GP, if
1521         * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1522         */
1523        if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1524                !(data & RTIT_CTL_FABRIC_EN) &&
1525                !intel_pt_validate_cap(vmx->pt_desc.caps,
1526                                        PT_CAP_single_range_output))
1527                return 1;
1528
1529        /*
1530         * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1531         * utilize encodings marked reserved will casue a #GP fault.
1532         */
1533        value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1534        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1535                        !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1536                        RTIT_CTL_MTC_RANGE_OFFSET, &value))
1537                return 1;
1538        value = intel_pt_validate_cap(vmx->pt_desc.caps,
1539                                                PT_CAP_cycle_thresholds);
1540        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1541                        !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1542                        RTIT_CTL_CYC_THRESH_OFFSET, &value))
1543                return 1;
1544        value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1545        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1546                        !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1547                        RTIT_CTL_PSB_FREQ_OFFSET, &value))
1548                return 1;
1549
1550        /*
1551         * If ADDRx_CFG is reserved or the encodings is >2 will
1552         * cause a #GP fault.
1553         */
1554        value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1555        if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1556                return 1;
1557        value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1558        if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1559                return 1;
1560        value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1561        if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1562                return 1;
1563        value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1564        if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1565                return 1;
1566
1567        return 0;
1568}
1569
1570static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1571{
1572        unsigned long rip;
1573
1574        /*
1575         * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1576         * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1577         * set when EPT misconfig occurs.  In practice, real hardware updates
1578         * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1579         * (namely Hyper-V) don't set it due to it being undefined behavior,
1580         * i.e. we end up advancing IP with some random value.
1581         */
1582        if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1583            to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
1584                rip = kvm_rip_read(vcpu);
1585                rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1586                kvm_rip_write(vcpu, rip);
1587        } else {
1588                if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1589                        return 0;
1590        }
1591
1592        /* skipping an emulated instruction also counts */
1593        vmx_set_interrupt_shadow(vcpu, 0);
1594
1595        return 1;
1596}
1597
1598static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1599{
1600        /*
1601         * Ensure that we clear the HLT state in the VMCS.  We don't need to
1602         * explicitly skip the instruction because if the HLT state is set,
1603         * then the instruction is already executing and RIP has already been
1604         * advanced.
1605         */
1606        if (kvm_hlt_in_guest(vcpu->kvm) &&
1607                        vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1608                vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1609}
1610
1611static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1612{
1613        struct vcpu_vmx *vmx = to_vmx(vcpu);
1614        unsigned nr = vcpu->arch.exception.nr;
1615        bool has_error_code = vcpu->arch.exception.has_error_code;
1616        u32 error_code = vcpu->arch.exception.error_code;
1617        u32 intr_info = nr | INTR_INFO_VALID_MASK;
1618
1619        kvm_deliver_exception_payload(vcpu);
1620
1621        if (has_error_code) {
1622                vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1623                intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1624        }
1625
1626        if (vmx->rmode.vm86_active) {
1627                int inc_eip = 0;
1628                if (kvm_exception_is_soft(nr))
1629                        inc_eip = vcpu->arch.event_exit_inst_len;
1630                kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1631                return;
1632        }
1633
1634        WARN_ON_ONCE(vmx->emulation_required);
1635
1636        if (kvm_exception_is_soft(nr)) {
1637                vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1638                             vmx->vcpu.arch.event_exit_inst_len);
1639                intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1640        } else
1641                intr_info |= INTR_TYPE_HARD_EXCEPTION;
1642
1643        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1644
1645        vmx_clear_hlt(vcpu);
1646}
1647
1648static bool vmx_rdtscp_supported(void)
1649{
1650        return cpu_has_vmx_rdtscp();
1651}
1652
1653static bool vmx_invpcid_supported(void)
1654{
1655        return cpu_has_vmx_invpcid();
1656}
1657
1658/*
1659 * Swap MSR entry in host/guest MSR entry array.
1660 */
1661static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1662{
1663        struct shared_msr_entry tmp;
1664
1665        tmp = vmx->guest_msrs[to];
1666        vmx->guest_msrs[to] = vmx->guest_msrs[from];
1667        vmx->guest_msrs[from] = tmp;
1668}
1669
1670/*
1671 * Set up the vmcs to automatically save and restore system
1672 * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1673 * mode, as fiddling with msrs is very expensive.
1674 */
1675static void setup_msrs(struct vcpu_vmx *vmx)
1676{
1677        int save_nmsrs, index;
1678
1679        save_nmsrs = 0;
1680#ifdef CONFIG_X86_64
1681        /*
1682         * The SYSCALL MSRs are only needed on long mode guests, and only
1683         * when EFER.SCE is set.
1684         */
1685        if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1686                index = __find_msr_index(vmx, MSR_STAR);
1687                if (index >= 0)
1688                        move_msr_up(vmx, index, save_nmsrs++);
1689                index = __find_msr_index(vmx, MSR_LSTAR);
1690                if (index >= 0)
1691                        move_msr_up(vmx, index, save_nmsrs++);
1692                index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1693                if (index >= 0)
1694                        move_msr_up(vmx, index, save_nmsrs++);
1695        }
1696#endif
1697        index = __find_msr_index(vmx, MSR_EFER);
1698        if (index >= 0 && update_transition_efer(vmx, index))
1699                move_msr_up(vmx, index, save_nmsrs++);
1700        index = __find_msr_index(vmx, MSR_TSC_AUX);
1701        if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1702                move_msr_up(vmx, index, save_nmsrs++);
1703        index = __find_msr_index(vmx, MSR_IA32_TSX_CTRL);
1704        if (index >= 0)
1705                move_msr_up(vmx, index, save_nmsrs++);
1706
1707        vmx->save_nmsrs = save_nmsrs;
1708        vmx->guest_msrs_ready = false;
1709
1710        if (cpu_has_vmx_msr_bitmap())
1711                vmx_update_msr_bitmap(&vmx->vcpu);
1712}
1713
1714static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1715{
1716        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1717
1718        if (is_guest_mode(vcpu) &&
1719            (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1720                return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1721
1722        return vcpu->arch.tsc_offset;
1723}
1724
1725static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1726{
1727        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1728        u64 g_tsc_offset = 0;
1729
1730        /*
1731         * We're here if L1 chose not to trap WRMSR to TSC. According
1732         * to the spec, this should set L1's TSC; The offset that L1
1733         * set for L2 remains unchanged, and still needs to be added
1734         * to the newly set TSC to get L2's TSC.
1735         */
1736        if (is_guest_mode(vcpu) &&
1737            (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1738                g_tsc_offset = vmcs12->tsc_offset;
1739
1740        trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1741                                   vcpu->arch.tsc_offset - g_tsc_offset,
1742                                   offset);
1743        vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1744        return offset + g_tsc_offset;
1745}
1746
1747/*
1748 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1749 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1750 * all guests if the "nested" module option is off, and can also be disabled
1751 * for a single guest by disabling its VMX cpuid bit.
1752 */
1753bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1754{
1755        return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1756}
1757
1758static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1759                                                 uint64_t val)
1760{
1761        uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1762
1763        return !(val & ~valid_bits);
1764}
1765
1766static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1767{
1768        switch (msr->index) {
1769        case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1770                if (!nested)
1771                        return 1;
1772                return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1773        default:
1774                return 1;
1775        }
1776
1777        return 0;
1778}
1779
1780/*
1781 * Reads an msr value (of 'msr_index') into 'pdata'.
1782 * Returns 0 on success, non-0 otherwise.
1783 * Assumes vcpu_load() was already called.
1784 */
1785static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1786{
1787        struct vcpu_vmx *vmx = to_vmx(vcpu);
1788        struct shared_msr_entry *msr;
1789        u32 index;
1790
1791        switch (msr_info->index) {
1792#ifdef CONFIG_X86_64
1793        case MSR_FS_BASE:
1794                msr_info->data = vmcs_readl(GUEST_FS_BASE);
1795                break;
1796        case MSR_GS_BASE:
1797                msr_info->data = vmcs_readl(GUEST_GS_BASE);
1798                break;
1799        case MSR_KERNEL_GS_BASE:
1800                msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1801                break;
1802#endif
1803        case MSR_EFER:
1804                return kvm_get_msr_common(vcpu, msr_info);
1805        case MSR_IA32_TSX_CTRL:
1806                if (!msr_info->host_initiated &&
1807                    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1808                        return 1;
1809                goto find_shared_msr;
1810        case MSR_IA32_UMWAIT_CONTROL:
1811                if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1812                        return 1;
1813
1814                msr_info->data = vmx->msr_ia32_umwait_control;
1815                break;
1816        case MSR_IA32_SPEC_CTRL:
1817                if (!msr_info->host_initiated &&
1818                    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1819                        return 1;
1820
1821                msr_info->data = to_vmx(vcpu)->spec_ctrl;
1822                break;
1823        case MSR_IA32_SYSENTER_CS:
1824                msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1825                break;
1826        case MSR_IA32_SYSENTER_EIP:
1827                msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1828                break;
1829        case MSR_IA32_SYSENTER_ESP:
1830                msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1831                break;
1832        case MSR_IA32_BNDCFGS:
1833                if (!kvm_mpx_supported() ||
1834                    (!msr_info->host_initiated &&
1835                     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1836                        return 1;
1837                msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1838                break;
1839        case MSR_IA32_MCG_EXT_CTL:
1840                if (!msr_info->host_initiated &&
1841                    !(vmx->msr_ia32_feature_control &
1842                      FEATURE_CONTROL_LMCE))
1843                        return 1;
1844                msr_info->data = vcpu->arch.mcg_ext_ctl;
1845                break;
1846        case MSR_IA32_FEATURE_CONTROL:
1847                msr_info->data = vmx->msr_ia32_feature_control;
1848                break;
1849        case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1850                if (!nested_vmx_allowed(vcpu))
1851                        return 1;
1852                return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1853                                       &msr_info->data);
1854        case MSR_IA32_RTIT_CTL:
1855                if (pt_mode != PT_MODE_HOST_GUEST)
1856                        return 1;
1857                msr_info->data = vmx->pt_desc.guest.ctl;
1858                break;
1859        case MSR_IA32_RTIT_STATUS:
1860                if (pt_mode != PT_MODE_HOST_GUEST)
1861                        return 1;
1862                msr_info->data = vmx->pt_desc.guest.status;
1863                break;
1864        case MSR_IA32_RTIT_CR3_MATCH:
1865                if ((pt_mode != PT_MODE_HOST_GUEST) ||
1866                        !intel_pt_validate_cap(vmx->pt_desc.caps,
1867                                                PT_CAP_cr3_filtering))
1868                        return 1;
1869                msr_info->data = vmx->pt_desc.guest.cr3_match;
1870                break;
1871        case MSR_IA32_RTIT_OUTPUT_BASE:
1872                if ((pt_mode != PT_MODE_HOST_GUEST) ||
1873                        (!intel_pt_validate_cap(vmx->pt_desc.caps,
1874                                        PT_CAP_topa_output) &&
1875                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1876                                        PT_CAP_single_range_output)))
1877                        return 1;
1878                msr_info->data = vmx->pt_desc.guest.output_base;
1879                break;
1880        case MSR_IA32_RTIT_OUTPUT_MASK:
1881                if ((pt_mode != PT_MODE_HOST_GUEST) ||
1882                        (!intel_pt_validate_cap(vmx->pt_desc.caps,
1883                                        PT_CAP_topa_output) &&
1884                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1885                                        PT_CAP_single_range_output)))
1886                        return 1;
1887                msr_info->data = vmx->pt_desc.guest.output_mask;
1888                break;
1889        case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1890                index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1891                if ((pt_mode != PT_MODE_HOST_GUEST) ||
1892                        (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1893                                        PT_CAP_num_address_ranges)))
1894                        return 1;
1895                if (index % 2)
1896                        msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1897                else
1898                        msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1899                break;
1900        case MSR_TSC_AUX:
1901                if (!msr_info->host_initiated &&
1902                    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1903                        return 1;
1904                goto find_shared_msr;
1905        default:
1906        find_shared_msr:
1907                msr = find_msr_entry(vmx, msr_info->index);
1908                if (msr) {
1909                        msr_info->data = msr->data;
1910                        break;
1911                }
1912                return kvm_get_msr_common(vcpu, msr_info);
1913        }
1914
1915        return 0;
1916}
1917
1918/*
1919 * Writes msr value into into the appropriate "register".
1920 * Returns 0 on success, non-0 otherwise.
1921 * Assumes vcpu_load() was already called.
1922 */
1923static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1924{
1925        struct vcpu_vmx *vmx = to_vmx(vcpu);
1926        struct shared_msr_entry *msr;
1927        int ret = 0;
1928        u32 msr_index = msr_info->index;
1929        u64 data = msr_info->data;
1930        u32 index;
1931
1932        switch (msr_index) {
1933        case MSR_EFER:
1934                ret = kvm_set_msr_common(vcpu, msr_info);
1935                break;
1936#ifdef CONFIG_X86_64
1937        case MSR_FS_BASE:
1938                vmx_segment_cache_clear(vmx);
1939                vmcs_writel(GUEST_FS_BASE, data);
1940                break;
1941        case MSR_GS_BASE:
1942                vmx_segment_cache_clear(vmx);
1943                vmcs_writel(GUEST_GS_BASE, data);
1944                break;
1945        case MSR_KERNEL_GS_BASE:
1946                vmx_write_guest_kernel_gs_base(vmx, data);
1947                break;
1948#endif
1949        case MSR_IA32_SYSENTER_CS:
1950                if (is_guest_mode(vcpu))
1951                        get_vmcs12(vcpu)->guest_sysenter_cs = data;
1952                vmcs_write32(GUEST_SYSENTER_CS, data);
1953                break;
1954        case MSR_IA32_SYSENTER_EIP:
1955                if (is_guest_mode(vcpu))
1956                        get_vmcs12(vcpu)->guest_sysenter_eip = data;
1957                vmcs_writel(GUEST_SYSENTER_EIP, data);
1958                break;
1959        case MSR_IA32_SYSENTER_ESP:
1960                if (is_guest_mode(vcpu))
1961                        get_vmcs12(vcpu)->guest_sysenter_esp = data;
1962                vmcs_writel(GUEST_SYSENTER_ESP, data);
1963                break;
1964        case MSR_IA32_DEBUGCTLMSR:
1965                if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
1966                                                VM_EXIT_SAVE_DEBUG_CONTROLS)
1967                        get_vmcs12(vcpu)->guest_ia32_debugctl = data;
1968
1969                ret = kvm_set_msr_common(vcpu, msr_info);
1970                break;
1971
1972        case MSR_IA32_BNDCFGS:
1973                if (!kvm_mpx_supported() ||
1974                    (!msr_info->host_initiated &&
1975                     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1976                        return 1;
1977                if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1978                    (data & MSR_IA32_BNDCFGS_RSVD))
1979                        return 1;
1980                vmcs_write64(GUEST_BNDCFGS, data);
1981                break;
1982        case MSR_IA32_UMWAIT_CONTROL:
1983                if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1984                        return 1;
1985
1986                /* The reserved bit 1 and non-32 bit [63:32] should be zero */
1987                if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
1988                        return 1;
1989
1990                vmx->msr_ia32_umwait_control = data;
1991                break;
1992        case MSR_IA32_SPEC_CTRL:
1993                if (!msr_info->host_initiated &&
1994                    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1995                        return 1;
1996
1997                /* The STIBP bit doesn't fault even if it's not advertised */
1998                if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
1999                        return 1;
2000
2001                vmx->spec_ctrl = data;
2002
2003                if (!data)
2004                        break;
2005
2006                /*
2007                 * For non-nested:
2008                 * When it's written (to non-zero) for the first time, pass
2009                 * it through.
2010                 *
2011                 * For nested:
2012                 * The handling of the MSR bitmap for L2 guests is done in
2013                 * nested_vmx_merge_msr_bitmap. We should not touch the
2014                 * vmcs02.msr_bitmap here since it gets completely overwritten
2015                 * in the merging. We update the vmcs01 here for L1 as well
2016                 * since it will end up touching the MSR anyway now.
2017                 */
2018                vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
2019                                              MSR_IA32_SPEC_CTRL,
2020                                              MSR_TYPE_RW);
2021                break;
2022        case MSR_IA32_TSX_CTRL:
2023                if (!msr_info->host_initiated &&
2024                    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2025                        return 1;
2026                if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2027                        return 1;
2028                goto find_shared_msr;
2029        case MSR_IA32_PRED_CMD:
2030                if (!msr_info->host_initiated &&
2031                    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2032                        return 1;
2033
2034                if (data & ~PRED_CMD_IBPB)
2035                        return 1;
2036
2037                if (!data)
2038                        break;
2039
2040                wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2041
2042                /*
2043                 * For non-nested:
2044                 * When it's written (to non-zero) for the first time, pass
2045                 * it through.
2046                 *
2047                 * For nested:
2048                 * The handling of the MSR bitmap for L2 guests is done in
2049                 * nested_vmx_merge_msr_bitmap. We should not touch the
2050                 * vmcs02.msr_bitmap here since it gets completely overwritten
2051                 * in the merging.
2052                 */
2053                vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
2054                                              MSR_TYPE_W);
2055                break;
2056        case MSR_IA32_CR_PAT:
2057                if (!kvm_pat_valid(data))
2058                        return 1;
2059
2060                if (is_guest_mode(vcpu) &&
2061                    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2062                        get_vmcs12(vcpu)->guest_ia32_pat = data;
2063
2064                if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2065                        vmcs_write64(GUEST_IA32_PAT, data);
2066                        vcpu->arch.pat = data;
2067                        break;
2068                }
2069                ret = kvm_set_msr_common(vcpu, msr_info);
2070                break;
2071        case MSR_IA32_TSC_ADJUST:
2072                ret = kvm_set_msr_common(vcpu, msr_info);
2073                break;
2074        case MSR_IA32_MCG_EXT_CTL:
2075                if ((!msr_info->host_initiated &&
2076                     !(to_vmx(vcpu)->msr_ia32_feature_control &
2077                       FEATURE_CONTROL_LMCE)) ||
2078                    (data & ~MCG_EXT_CTL_LMCE_EN))
2079                        return 1;
2080                vcpu->arch.mcg_ext_ctl = data;
2081                break;
2082        case MSR_IA32_FEATURE_CONTROL:
2083                if (!vmx_feature_control_msr_valid(vcpu, data) ||
2084                    (to_vmx(vcpu)->msr_ia32_feature_control &
2085                     FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2086                        return 1;
2087                vmx->msr_ia32_feature_control = data;
2088                if (msr_info->host_initiated && data == 0)
2089                        vmx_leave_nested(vcpu);
2090                break;
2091        case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2092                if (!msr_info->host_initiated)
2093                        return 1; /* they are read-only */
2094                if (!nested_vmx_allowed(vcpu))
2095                        return 1;
2096                return vmx_set_vmx_msr(vcpu, msr_index, data);
2097        case MSR_IA32_RTIT_CTL:
2098                if ((pt_mode != PT_MODE_HOST_GUEST) ||
2099                        vmx_rtit_ctl_check(vcpu, data) ||
2100                        vmx->nested.vmxon)
2101                        return 1;
2102                vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2103                vmx->pt_desc.guest.ctl = data;
2104                pt_update_intercept_for_msr(vmx);
2105                break;
2106        case MSR_IA32_RTIT_STATUS:
2107                if ((pt_mode != PT_MODE_HOST_GUEST) ||
2108                        (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2109                        (data & MSR_IA32_RTIT_STATUS_MASK))
2110                        return 1;
2111                vmx->pt_desc.guest.status = data;
2112                break;
2113        case MSR_IA32_RTIT_CR3_MATCH:
2114                if ((pt_mode != PT_MODE_HOST_GUEST) ||
2115                        (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2116                        !intel_pt_validate_cap(vmx->pt_desc.caps,
2117                                                PT_CAP_cr3_filtering))
2118                        return 1;
2119                vmx->pt_desc.guest.cr3_match = data;
2120                break;
2121        case MSR_IA32_RTIT_OUTPUT_BASE:
2122                if ((pt_mode != PT_MODE_HOST_GUEST) ||
2123                        (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2124                        (!intel_pt_validate_cap(vmx->pt_desc.caps,
2125                                        PT_CAP_topa_output) &&
2126                         !intel_pt_validate_cap(vmx->pt_desc.caps,
2127                                        PT_CAP_single_range_output)) ||
2128                        (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK))
2129                        return 1;
2130                vmx->pt_desc.guest.output_base = data;
2131                break;
2132        case MSR_IA32_RTIT_OUTPUT_MASK:
2133                if ((pt_mode != PT_MODE_HOST_GUEST) ||
2134                        (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2135                        (!intel_pt_validate_cap(vmx->pt_desc.caps,
2136                                        PT_CAP_topa_output) &&
2137                         !intel_pt_validate_cap(vmx->pt_desc.caps,
2138                                        PT_CAP_single_range_output)))
2139                        return 1;
2140                vmx->pt_desc.guest.output_mask = data;
2141                break;
2142        case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2143                index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2144                if ((pt_mode != PT_MODE_HOST_GUEST) ||
2145                        (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2146                        (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2147                                        PT_CAP_num_address_ranges)))
2148                        return 1;
2149                if (index % 2)
2150                        vmx->pt_desc.guest.addr_b[index / 2] = data;
2151                else
2152                        vmx->pt_desc.guest.addr_a[index / 2] = data;
2153                break;
2154        case MSR_TSC_AUX:
2155                if (!msr_info->host_initiated &&
2156                    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2157                        return 1;
2158                /* Check reserved bit, higher 32 bits should be zero */
2159                if ((data >> 32) != 0)
2160                        return 1;
2161                goto find_shared_msr;
2162
2163        default:
2164        find_shared_msr:
2165                msr = find_msr_entry(vmx, msr_index);
2166                if (msr)
2167                        ret = vmx_set_guest_msr(vmx, msr, data);
2168                else
2169                        ret = kvm_set_msr_common(vcpu, msr_info);
2170        }
2171
2172        return ret;
2173}
2174
2175static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2176{
2177        kvm_register_mark_available(vcpu, reg);
2178
2179        switch (reg) {
2180        case VCPU_REGS_RSP:
2181                vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2182                break;
2183        case VCPU_REGS_RIP:
2184                vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2185                break;
2186        case VCPU_EXREG_PDPTR:
2187                if (enable_ept)
2188                        ept_save_pdptrs(vcpu);
2189                break;
2190        case VCPU_EXREG_CR3:
2191                if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2192                        vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2193                break;
2194        default:
2195                WARN_ON_ONCE(1);
2196                break;
2197        }
2198}
2199
2200static __init int cpu_has_kvm_support(void)
2201{
2202        return cpu_has_vmx();
2203}
2204
2205static __init int vmx_disabled_by_bios(void)
2206{
2207        u64 msr;
2208
2209        rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2210        if (msr & FEATURE_CONTROL_LOCKED) {
2211                /* launched w/ TXT and VMX disabled */
2212                if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2213                        && tboot_enabled())
2214                        return 1;
2215                /* launched w/o TXT and VMX only enabled w/ TXT */
2216                if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2217                        && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2218                        && !tboot_enabled()) {
2219                        printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2220                                "activate TXT before enabling KVM\n");
2221                        return 1;
2222                }
2223                /* launched w/o TXT and VMX disabled */
2224                if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2225                        && !tboot_enabled())
2226                        return 1;
2227        }
2228
2229        return 0;
2230}
2231
2232static void kvm_cpu_vmxon(u64 addr)
2233{
2234        cr4_set_bits(X86_CR4_VMXE);
2235        intel_pt_handle_vmx(1);
2236
2237        asm volatile ("vmxon %0" : : "m"(addr));
2238}
2239
2240static int hardware_enable(void)
2241{
2242        int cpu = raw_smp_processor_id();
2243        u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2244        u64 old, test_bits;
2245
2246        if (cr4_read_shadow() & X86_CR4_VMXE)
2247                return -EBUSY;
2248
2249        /*
2250         * This can happen if we hot-added a CPU but failed to allocate
2251         * VP assist page for it.
2252         */
2253        if (static_branch_unlikely(&enable_evmcs) &&
2254            !hv_get_vp_assist_page(cpu))
2255                return -EFAULT;
2256
2257        INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2258        INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
2259        spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
2260
2261        /*
2262         * Now we can enable the vmclear operation in kdump
2263         * since the loaded_vmcss_on_cpu list on this cpu
2264         * has been initialized.
2265         *
2266         * Though the cpu is not in VMX operation now, there
2267         * is no problem to enable the vmclear operation
2268         * for the loaded_vmcss_on_cpu list is empty!
2269         */
2270        crash_enable_local_vmclear(cpu);
2271
2272        rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2273
2274        test_bits = FEATURE_CONTROL_LOCKED;
2275        test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2276        if (tboot_enabled())
2277                test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2278
2279        if ((old & test_bits) != test_bits) {
2280                /* enable and lock */
2281                wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2282        }
2283        kvm_cpu_vmxon(phys_addr);
2284        if (enable_ept)
2285                ept_sync_global();
2286
2287        return 0;
2288}
2289
2290static void vmclear_local_loaded_vmcss(void)
2291{
2292        int cpu = raw_smp_processor_id();
2293        struct loaded_vmcs *v, *n;
2294
2295        list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2296                                 loaded_vmcss_on_cpu_link)
2297                __loaded_vmcs_clear(v);
2298}
2299
2300
2301/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2302 * tricks.
2303 */
2304static void kvm_cpu_vmxoff(void)
2305{
2306        asm volatile (__ex("vmxoff"));
2307
2308        intel_pt_handle_vmx(0);
2309        cr4_clear_bits(X86_CR4_VMXE);
2310}
2311
2312static void hardware_disable(void)
2313{
2314        vmclear_local_loaded_vmcss();
2315        kvm_cpu_vmxoff();
2316}
2317
2318static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2319                                      u32 msr, u32 *result)
2320{
2321        u32 vmx_msr_low, vmx_msr_high;
2322        u32 ctl = ctl_min | ctl_opt;
2323
2324        rdmsr(msr, vmx_msr_low, vmx_msr_high);
2325
2326        ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2327        ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2328
2329        /* Ensure minimum (required) set of control bits are supported. */
2330        if (ctl_min & ~ctl)
2331                return -EIO;
2332
2333        *result = ctl;
2334        return 0;
2335}
2336
2337static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2338                                    struct vmx_capability *vmx_cap)
2339{
2340        u32 vmx_msr_low, vmx_msr_high;
2341        u32 min, opt, min2, opt2;
2342        u32 _pin_based_exec_control = 0;
2343        u32 _cpu_based_exec_control = 0;
2344        u32 _cpu_based_2nd_exec_control = 0;
2345        u32 _vmexit_control = 0;
2346        u32 _vmentry_control = 0;
2347
2348        memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2349        min = CPU_BASED_HLT_EXITING |
2350#ifdef CONFIG_X86_64
2351              CPU_BASED_CR8_LOAD_EXITING |
2352              CPU_BASED_CR8_STORE_EXITING |
2353#endif
2354              CPU_BASED_CR3_LOAD_EXITING |
2355              CPU_BASED_CR3_STORE_EXITING |
2356              CPU_BASED_UNCOND_IO_EXITING |
2357              CPU_BASED_MOV_DR_EXITING |
2358              CPU_BASED_USE_TSC_OFFSETING |
2359              CPU_BASED_MWAIT_EXITING |
2360              CPU_BASED_MONITOR_EXITING |
2361              CPU_BASED_INVLPG_EXITING |
2362              CPU_BASED_RDPMC_EXITING;
2363
2364        opt = CPU_BASED_TPR_SHADOW |
2365              CPU_BASED_USE_MSR_BITMAPS |
2366              CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2367        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2368                                &_cpu_based_exec_control) < 0)
2369                return -EIO;
2370#ifdef CONFIG_X86_64
2371        if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2372                _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2373                                           ~CPU_BASED_CR8_STORE_EXITING;
2374#endif
2375        if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2376                min2 = 0;
2377                opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2378                        SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2379                        SECONDARY_EXEC_WBINVD_EXITING |
2380                        SECONDARY_EXEC_ENABLE_VPID |
2381                        SECONDARY_EXEC_ENABLE_EPT |
2382                        SECONDARY_EXEC_UNRESTRICTED_GUEST |
2383                        SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2384                        SECONDARY_EXEC_DESC |
2385                        SECONDARY_EXEC_RDTSCP |
2386                        SECONDARY_EXEC_ENABLE_INVPCID |
2387                        SECONDARY_EXEC_APIC_REGISTER_VIRT |
2388                        SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2389                        SECONDARY_EXEC_SHADOW_VMCS |
2390                        SECONDARY_EXEC_XSAVES |
2391                        SECONDARY_EXEC_RDSEED_EXITING |
2392                        SECONDARY_EXEC_RDRAND_EXITING |
2393                        SECONDARY_EXEC_ENABLE_PML |
2394                        SECONDARY_EXEC_TSC_SCALING |
2395                        SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2396                        SECONDARY_EXEC_PT_USE_GPA |
2397                        SECONDARY_EXEC_PT_CONCEAL_VMX |
2398                        SECONDARY_EXEC_ENABLE_VMFUNC |
2399                        SECONDARY_EXEC_ENCLS_EXITING;
2400                if (adjust_vmx_controls(min2, opt2,
2401                                        MSR_IA32_VMX_PROCBASED_CTLS2,
2402                                        &_cpu_based_2nd_exec_control) < 0)
2403                        return -EIO;
2404        }
2405#ifndef CONFIG_X86_64
2406        if (!(_cpu_based_2nd_exec_control &
2407                                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2408                _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2409#endif
2410
2411        if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2412                _cpu_based_2nd_exec_control &= ~(
2413                                SECONDARY_EXEC_APIC_REGISTER_VIRT |
2414                                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2415                                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2416
2417        rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2418                &vmx_cap->ept, &vmx_cap->vpid);
2419
2420        if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2421                /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2422                   enabled */
2423                _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2424                                             CPU_BASED_CR3_STORE_EXITING |
2425                                             CPU_BASED_INVLPG_EXITING);
2426        } else if (vmx_cap->ept) {
2427                vmx_cap->ept = 0;
2428                pr_warn_once("EPT CAP should not exist if not support "
2429                                "1-setting enable EPT VM-execution control\n");
2430        }
2431        if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2432                vmx_cap->vpid) {
2433                vmx_cap->vpid = 0;
2434                pr_warn_once("VPID CAP should not exist if not support "
2435                                "1-setting enable VPID VM-execution control\n");
2436        }
2437
2438        min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2439#ifdef CONFIG_X86_64
2440        min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2441#endif
2442        opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2443              VM_EXIT_LOAD_IA32_PAT |
2444              VM_EXIT_LOAD_IA32_EFER |
2445              VM_EXIT_CLEAR_BNDCFGS |
2446              VM_EXIT_PT_CONCEAL_PIP |
2447              VM_EXIT_CLEAR_IA32_RTIT_CTL;
2448        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2449                                &_vmexit_control) < 0)
2450                return -EIO;
2451
2452        min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2453        opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2454                 PIN_BASED_VMX_PREEMPTION_TIMER;
2455        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2456                                &_pin_based_exec_control) < 0)
2457                return -EIO;
2458
2459        if (cpu_has_broken_vmx_preemption_timer())
2460                _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2461        if (!(_cpu_based_2nd_exec_control &
2462                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2463                _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2464
2465        min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2466        opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2467              VM_ENTRY_LOAD_IA32_PAT |
2468              VM_ENTRY_LOAD_IA32_EFER |
2469              VM_ENTRY_LOAD_BNDCFGS |
2470              VM_ENTRY_PT_CONCEAL_PIP |
2471              VM_ENTRY_LOAD_IA32_RTIT_CTL;
2472        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2473                                &_vmentry_control) < 0)
2474                return -EIO;
2475
2476        /*
2477         * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2478         * can't be used due to an errata where VM Exit may incorrectly clear
2479         * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2480         * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2481         */
2482        if (boot_cpu_data.x86 == 0x6) {
2483                switch (boot_cpu_data.x86_model) {
2484                case 26: /* AAK155 */
2485                case 30: /* AAP115 */
2486                case 37: /* AAT100 */
2487                case 44: /* BC86,AAY89,BD102 */
2488                case 46: /* BA97 */
2489                        _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2490                        _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2491                        pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2492                                        "does not work properly. Using workaround\n");
2493                        break;
2494                default:
2495                        break;
2496                }
2497        }
2498
2499
2500        rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2501
2502        /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2503        if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2504                return -EIO;
2505
2506#ifdef CONFIG_X86_64
2507        /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2508        if (vmx_msr_high & (1u<<16))
2509                return -EIO;
2510#endif
2511
2512        /* Require Write-Back (WB) memory type for VMCS accesses. */
2513        if (((vmx_msr_high >> 18) & 15) != 6)
2514                return -EIO;
2515
2516        vmcs_conf->size = vmx_msr_high & 0x1fff;
2517        vmcs_conf->order = get_order(vmcs_conf->size);
2518        vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2519
2520        vmcs_conf->revision_id = vmx_msr_low;
2521
2522        vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2523        vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2524        vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2525        vmcs_conf->vmexit_ctrl         = _vmexit_control;
2526        vmcs_conf->vmentry_ctrl        = _vmentry_control;
2527
2528        if (static_branch_unlikely(&enable_evmcs))
2529                evmcs_sanitize_exec_ctrls(vmcs_conf);
2530
2531        return 0;
2532}
2533
2534struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2535{
2536        int node = cpu_to_node(cpu);
2537        struct page *pages;
2538        struct vmcs *vmcs;
2539
2540        pages = __alloc_pages_node(node, flags, vmcs_config.order);
2541        if (!pages)
2542                return NULL;
2543        vmcs = page_address(pages);
2544        memset(vmcs, 0, vmcs_config.size);
2545
2546        /* KVM supports Enlightened VMCS v1 only */
2547        if (static_branch_unlikely(&enable_evmcs))
2548                vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2549        else
2550                vmcs->hdr.revision_id = vmcs_config.revision_id;
2551
2552        if (shadow)
2553                vmcs->hdr.shadow_vmcs = 1;
2554        return vmcs;
2555}
2556
2557void free_vmcs(struct vmcs *vmcs)
2558{
2559        free_pages((unsigned long)vmcs, vmcs_config.order);
2560}
2561
2562/*
2563 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2564 */
2565void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2566{
2567        if (!loaded_vmcs->vmcs)
2568                return;
2569        loaded_vmcs_clear(loaded_vmcs);
2570        free_vmcs(loaded_vmcs->vmcs);
2571        loaded_vmcs->vmcs = NULL;
2572        if (loaded_vmcs->msr_bitmap)
2573                free_page((unsigned long)loaded_vmcs->msr_bitmap);
2574        WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2575}
2576
2577int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2578{
2579        loaded_vmcs->vmcs = alloc_vmcs(false);
2580        if (!loaded_vmcs->vmcs)
2581                return -ENOMEM;
2582
2583        loaded_vmcs->shadow_vmcs = NULL;
2584        loaded_vmcs->hv_timer_soft_disabled = false;
2585        loaded_vmcs_init(loaded_vmcs);
2586
2587        if (cpu_has_vmx_msr_bitmap()) {
2588                loaded_vmcs->msr_bitmap = (unsigned long *)
2589                                __get_free_page(GFP_KERNEL_ACCOUNT);
2590                if (!loaded_vmcs->msr_bitmap)
2591                        goto out_vmcs;
2592                memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2593
2594                if (IS_ENABLED(CONFIG_HYPERV) &&
2595                    static_branch_unlikely(&enable_evmcs) &&
2596                    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2597                        struct hv_enlightened_vmcs *evmcs =
2598                                (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2599
2600                        evmcs->hv_enlightenments_control.msr_bitmap = 1;
2601                }
2602        }
2603
2604        memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2605        memset(&loaded_vmcs->controls_shadow, 0,
2606                sizeof(struct vmcs_controls_shadow));
2607
2608        return 0;
2609
2610out_vmcs:
2611        free_loaded_vmcs(loaded_vmcs);
2612        return -ENOMEM;
2613}
2614
2615static void free_kvm_area(void)
2616{
2617        int cpu;
2618
2619        for_each_possible_cpu(cpu) {
2620                free_vmcs(per_cpu(vmxarea, cpu));
2621                per_cpu(vmxarea, cpu) = NULL;
2622        }
2623}
2624
2625static __init int alloc_kvm_area(void)
2626{
2627        int cpu;
2628
2629        for_each_possible_cpu(cpu) {
2630                struct vmcs *vmcs;
2631
2632                vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2633                if (!vmcs) {
2634                        free_kvm_area();
2635                        return -ENOMEM;
2636                }
2637
2638                /*
2639                 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2640                 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2641                 * revision_id reported by MSR_IA32_VMX_BASIC.
2642                 *
2643                 * However, even though not explicitly documented by
2644                 * TLFS, VMXArea passed as VMXON argument should
2645                 * still be marked with revision_id reported by
2646                 * physical CPU.
2647                 */
2648                if (static_branch_unlikely(&enable_evmcs))
2649                        vmcs->hdr.revision_id = vmcs_config.revision_id;
2650
2651                per_cpu(vmxarea, cpu) = vmcs;
2652        }
2653        return 0;
2654}
2655
2656static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2657                struct kvm_segment *save)
2658{
2659        if (!emulate_invalid_guest_state) {
2660                /*
2661                 * CS and SS RPL should be equal during guest entry according
2662                 * to VMX spec, but in reality it is not always so. Since vcpu
2663                 * is in the middle of the transition from real mode to
2664                 * protected mode it is safe to assume that RPL 0 is a good
2665                 * default value.
2666                 */
2667                if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2668                        save->selector &= ~SEGMENT_RPL_MASK;
2669                save->dpl = save->selector & SEGMENT_RPL_MASK;
2670                save->s = 1;
2671        }
2672        vmx_set_segment(vcpu, save, seg);
2673}
2674
2675static void enter_pmode(struct kvm_vcpu *vcpu)
2676{
2677        unsigned long flags;
2678        struct vcpu_vmx *vmx = to_vmx(vcpu);
2679
2680        /*
2681         * Update real mode segment cache. It may be not up-to-date if sement
2682         * register was written while vcpu was in a guest mode.
2683         */
2684        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2685        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2686        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2687        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2688        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2689        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2690
2691        vmx->rmode.vm86_active = 0;
2692
2693        vmx_segment_cache_clear(vmx);
2694
2695        vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2696
2697        flags = vmcs_readl(GUEST_RFLAGS);
2698        flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2699        flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2700        vmcs_writel(GUEST_RFLAGS, flags);
2701
2702        vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2703                        (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2704
2705        update_exception_bitmap(vcpu);
2706
2707        fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2708        fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2709        fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2710        fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2711        fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2712        fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2713}
2714
2715static void fix_rmode_seg(int seg, struct kvm_segment *save)
2716{
2717        const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2718        struct kvm_segment var = *save;
2719
2720        var.dpl = 0x3;
2721        if (seg == VCPU_SREG_CS)
2722                var.type = 0x3;
2723
2724        if (!emulate_invalid_guest_state) {
2725                var.selector = var.base >> 4;
2726                var.base = var.base & 0xffff0;
2727                var.limit = 0xffff;
2728                var.g = 0;
2729                var.db = 0;
2730                var.present = 1;
2731                var.s = 1;
2732                var.l = 0;
2733                var.unusable = 0;
2734                var.type = 0x3;
2735                var.avl = 0;
2736                if (save->base & 0xf)
2737                        printk_once(KERN_WARNING "kvm: segment base is not "
2738                                        "paragraph aligned when entering "
2739                                        "protected mode (seg=%d)", seg);
2740        }
2741
2742        vmcs_write16(sf->selector, var.selector);
2743        vmcs_writel(sf->base, var.base);
2744        vmcs_write32(sf->limit, var.limit);
2745        vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2746}
2747
2748static void enter_rmode(struct kvm_vcpu *vcpu)
2749{
2750        unsigned long flags;
2751        struct vcpu_vmx *vmx = to_vmx(vcpu);
2752        struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2753
2754        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2755        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2756        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2757        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2758        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2759        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2760        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2761
2762        vmx->rmode.vm86_active = 1;
2763
2764        /*
2765         * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2766         * vcpu. Warn the user that an update is overdue.
2767         */
2768        if (!kvm_vmx->tss_addr)
2769                printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2770                             "called before entering vcpu\n");
2771
2772        vmx_segment_cache_clear(vmx);
2773
2774        vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2775        vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2776        vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2777
2778        flags = vmcs_readl(GUEST_RFLAGS);
2779        vmx->rmode.save_rflags = flags;
2780
2781        flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2782
2783        vmcs_writel(GUEST_RFLAGS, flags);
2784        vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2785        update_exception_bitmap(vcpu);
2786
2787        fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2788        fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2789        fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2790        fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2791        fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2792        fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2793
2794        kvm_mmu_reset_context(vcpu);
2795}
2796
2797void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2798{
2799        struct vcpu_vmx *vmx = to_vmx(vcpu);
2800        struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2801
2802        if (!msr)
2803                return;
2804
2805        vcpu->arch.efer = efer;
2806        if (efer & EFER_LMA) {
2807                vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2808                msr->data = efer;
2809        } else {
2810                vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2811
2812                msr->data = efer & ~EFER_LME;
2813        }
2814        setup_msrs(vmx);
2815}
2816
2817#ifdef CONFIG_X86_64
2818
2819static void enter_lmode(struct kvm_vcpu *vcpu)
2820{
2821        u32 guest_tr_ar;
2822
2823        vmx_segment_cache_clear(to_vmx(vcpu));
2824
2825        guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2826        if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2827                pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2828                                     __func__);
2829                vmcs_write32(GUEST_TR_AR_BYTES,
2830                             (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2831                             | VMX_AR_TYPE_BUSY_64_TSS);
2832        }
2833        vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2834}
2835
2836static void exit_lmode(struct kvm_vcpu *vcpu)
2837{
2838        vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2839        vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2840}
2841
2842#endif
2843
2844static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2845{
2846        int vpid = to_vmx(vcpu)->vpid;
2847
2848        if (!vpid_sync_vcpu_addr(vpid, addr))
2849                vpid_sync_context(vpid);
2850
2851        /*
2852         * If VPIDs are not supported or enabled, then the above is a no-op.
2853         * But we don't really need a TLB flush in that case anyway, because
2854         * each VM entry/exit includes an implicit flush when VPID is 0.
2855         */
2856}
2857
2858static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2859{
2860        ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2861
2862        vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2863        vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2864}
2865
2866static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2867{
2868        ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2869
2870        vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2871        vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2872}
2873
2874static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2875{
2876        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2877
2878        if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2879                return;
2880
2881        if (is_pae_paging(vcpu)) {
2882                vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2883                vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2884                vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2885                vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2886        }
2887}
2888
2889void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2890{
2891        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2892
2893        if (is_pae_paging(vcpu)) {
2894                mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2895                mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2896                mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2897                mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2898        }
2899
2900        kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2901}
2902
2903static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2904                                        unsigned long cr0,
2905                                        struct kvm_vcpu *vcpu)
2906{
2907        struct vcpu_vmx *vmx = to_vmx(vcpu);
2908
2909        if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
2910                vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
2911        if (!(cr0 & X86_CR0_PG)) {
2912                /* From paging/starting to nonpaging */
2913                exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2914                                          CPU_BASED_CR3_STORE_EXITING);
2915                vcpu->arch.cr0 = cr0;
2916                vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2917        } else if (!is_paging(vcpu)) {
2918                /* From nonpaging to paging */
2919                exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2920                                            CPU_BASED_CR3_STORE_EXITING);
2921                vcpu->arch.cr0 = cr0;
2922                vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2923        }
2924
2925        if (!(cr0 & X86_CR0_WP))
2926                *hw_cr0 &= ~X86_CR0_WP;
2927}
2928
2929void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2930{
2931        struct vcpu_vmx *vmx = to_vmx(vcpu);
2932        unsigned long hw_cr0;
2933
2934        hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2935        if (enable_unrestricted_guest)
2936                hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2937        else {
2938                hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2939
2940                if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2941                        enter_pmode(vcpu);
2942
2943                if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2944                        enter_rmode(vcpu);
2945        }
2946
2947#ifdef CONFIG_X86_64
2948        if (vcpu->arch.efer & EFER_LME) {
2949                if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2950                        enter_lmode(vcpu);
2951                if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2952                        exit_lmode(vcpu);
2953        }
2954#endif
2955
2956        if (enable_ept && !enable_unrestricted_guest)
2957                ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2958
2959        vmcs_writel(CR0_READ_SHADOW, cr0);
2960        vmcs_writel(GUEST_CR0, hw_cr0);
2961        vcpu->arch.cr0 = cr0;
2962
2963        /* depends on vcpu->arch.cr0 to be set to a new value */
2964        vmx->emulation_required = emulation_required(vcpu);
2965}
2966
2967static int get_ept_level(struct kvm_vcpu *vcpu)
2968{
2969        if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
2970                return 5;
2971        return 4;
2972}
2973
2974u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
2975{
2976        u64 eptp = VMX_EPTP_MT_WB;
2977
2978        eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
2979
2980        if (enable_ept_ad_bits &&
2981            (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
2982                eptp |= VMX_EPTP_AD_ENABLE_BIT;
2983        eptp |= (root_hpa & PAGE_MASK);
2984
2985        return eptp;
2986}
2987
2988void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2989{
2990        struct kvm *kvm = vcpu->kvm;
2991        bool update_guest_cr3 = true;
2992        unsigned long guest_cr3;
2993        u64 eptp;
2994
2995        guest_cr3 = cr3;
2996        if (enable_ept) {
2997                eptp = construct_eptp(vcpu, cr3);
2998                vmcs_write64(EPT_POINTER, eptp);
2999
3000                if (kvm_x86_ops->tlb_remote_flush) {
3001                        spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3002                        to_vmx(vcpu)->ept_pointer = eptp;
3003                        to_kvm_vmx(kvm)->ept_pointers_match
3004                                = EPT_POINTERS_CHECK;
3005                        spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3006                }
3007
3008                /* Loading vmcs02.GUEST_CR3 is handled by nested VM-Enter. */
3009                if (is_guest_mode(vcpu))
3010                        update_guest_cr3 = false;
3011                else if (!enable_unrestricted_guest && !is_paging(vcpu))
3012                        guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3013                else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3014                        guest_cr3 = vcpu->arch.cr3;
3015                else /* vmcs01.GUEST_CR3 is already up-to-date. */
3016                        update_guest_cr3 = false;
3017                ept_load_pdptrs(vcpu);
3018        }
3019
3020        if (update_guest_cr3)
3021                vmcs_writel(GUEST_CR3, guest_cr3);
3022}
3023
3024int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3025{
3026        struct vcpu_vmx *vmx = to_vmx(vcpu);
3027        /*
3028         * Pass through host's Machine Check Enable value to hw_cr4, which
3029         * is in force while we are in guest mode.  Do not let guests control
3030         * this bit, even if host CR4.MCE == 0.
3031         */
3032        unsigned long hw_cr4;
3033
3034        hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3035        if (enable_unrestricted_guest)
3036                hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3037        else if (vmx->rmode.vm86_active)
3038                hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3039        else
3040                hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3041
3042        if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3043                if (cr4 & X86_CR4_UMIP) {
3044                        secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3045                        hw_cr4 &= ~X86_CR4_UMIP;
3046                } else if (!is_guest_mode(vcpu) ||
3047                        !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3048                        secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3049                }
3050        }
3051
3052        if (cr4 & X86_CR4_VMXE) {
3053                /*
3054                 * To use VMXON (and later other VMX instructions), a guest
3055                 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3056                 * So basically the check on whether to allow nested VMX
3057                 * is here.  We operate under the default treatment of SMM,
3058                 * so VMX cannot be enabled under SMM.
3059                 */
3060                if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3061                        return 1;
3062        }
3063
3064        if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3065                return 1;
3066
3067        vcpu->arch.cr4 = cr4;
3068
3069        if (!enable_unrestricted_guest) {
3070                if (enable_ept) {
3071                        if (!is_paging(vcpu)) {
3072                                hw_cr4 &= ~X86_CR4_PAE;
3073                                hw_cr4 |= X86_CR4_PSE;
3074                        } else if (!(cr4 & X86_CR4_PAE)) {
3075                                hw_cr4 &= ~X86_CR4_PAE;
3076                        }
3077                }
3078
3079                /*
3080                 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3081                 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3082                 * to be manually disabled when guest switches to non-paging
3083                 * mode.
3084                 *
3085                 * If !enable_unrestricted_guest, the CPU is always running
3086                 * with CR0.PG=1 and CR4 needs to be modified.
3087                 * If enable_unrestricted_guest, the CPU automatically
3088                 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3089                 */
3090                if (!is_paging(vcpu))
3091                        hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3092        }
3093
3094        vmcs_writel(CR4_READ_SHADOW, cr4);
3095        vmcs_writel(GUEST_CR4, hw_cr4);
3096        return 0;
3097}
3098
3099void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3100{
3101        struct vcpu_vmx *vmx = to_vmx(vcpu);
3102        u32 ar;
3103
3104        if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3105                *var = vmx->rmode.segs[seg];
3106                if (seg == VCPU_SREG_TR
3107                    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3108                        return;
3109                var->base = vmx_read_guest_seg_base(vmx, seg);
3110                var->selector = vmx_read_guest_seg_selector(vmx, seg);
3111                return;
3112        }
3113        var->base = vmx_read_guest_seg_base(vmx, seg);
3114        var->limit = vmx_read_guest_seg_limit(vmx, seg);
3115        var->selector = vmx_read_guest_seg_selector(vmx, seg);
3116        ar = vmx_read_guest_seg_ar(vmx, seg);
3117        var->unusable = (ar >> 16) & 1;
3118        var->type = ar & 15;
3119        var->s = (ar >> 4) & 1;
3120        var->dpl = (ar >> 5) & 3;
3121        /*
3122         * Some userspaces do not preserve unusable property. Since usable
3123         * segment has to be present according to VMX spec we can use present
3124         * property to amend userspace bug by making unusable segment always
3125         * nonpresent. vmx_segment_access_rights() already marks nonpresent
3126         * segment as unusable.
3127         */
3128        var->present = !var->unusable;
3129        var->avl = (ar >> 12) & 1;
3130        var->l = (ar >> 13) & 1;
3131        var->db = (ar >> 14) & 1;
3132        var->g = (ar >> 15) & 1;
3133}
3134
3135static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3136{
3137        struct kvm_segment s;
3138
3139        if (to_vmx(vcpu)->rmode.vm86_active) {
3140                vmx_get_segment(vcpu, &s, seg);
3141                return s.base;
3142        }
3143        return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3144}
3145
3146int vmx_get_cpl(struct kvm_vcpu *vcpu)
3147{
3148        struct vcpu_vmx *vmx = to_vmx(vcpu);
3149
3150        if (unlikely(vmx->rmode.vm86_active))
3151                return 0;
3152        else {
3153                int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3154                return VMX_AR_DPL(ar);
3155        }
3156}
3157
3158static u32 vmx_segment_access_rights(struct kvm_segment *var)
3159{
3160        u32 ar;
3161
3162        if (var->unusable || !var->present)
3163                ar = 1 << 16;
3164        else {
3165                ar = var->type & 15;
3166                ar |= (var->s & 1) << 4;
3167                ar |= (var->dpl & 3) << 5;
3168                ar |= (var->present & 1) << 7;
3169                ar |= (var->avl & 1) << 12;
3170                ar |= (var->l & 1) << 13;
3171                ar |= (var->db & 1) << 14;
3172                ar |= (var->g & 1) << 15;
3173        }
3174
3175        return ar;
3176}
3177
3178void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3179{
3180        struct vcpu_vmx *vmx = to_vmx(vcpu);
3181        const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3182
3183        vmx_segment_cache_clear(vmx);
3184
3185        if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3186                vmx->rmode.segs[seg] = *var;
3187                if (seg == VCPU_SREG_TR)
3188                        vmcs_write16(sf->selector, var->selector);
3189                else if (var->s)
3190                        fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3191                goto out;
3192        }
3193
3194        vmcs_writel(sf->base, var->base);
3195        vmcs_write32(sf->limit, var->limit);
3196        vmcs_write16(sf->selector, var->selector);
3197
3198        /*
3199         *   Fix the "Accessed" bit in AR field of segment registers for older
3200         * qemu binaries.
3201         *   IA32 arch specifies that at the time of processor reset the
3202         * "Accessed" bit in the AR field of segment registers is 1. And qemu
3203         * is setting it to 0 in the userland code. This causes invalid guest
3204         * state vmexit when "unrestricted guest" mode is turned on.
3205         *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3206         * tree. Newer qemu binaries with that qemu fix would not need this
3207         * kvm hack.
3208         */
3209        if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3210                var->type |= 0x1; /* Accessed */
3211
3212        vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3213
3214out:
3215        vmx->emulation_required = emulation_required(vcpu);
3216}
3217
3218static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3219{
3220        u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3221
3222        *db = (ar >> 14) & 1;
3223        *l = (ar >> 13) & 1;
3224}
3225
3226static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3227{
3228        dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3229        dt->address = vmcs_readl(GUEST_IDTR_BASE);
3230}
3231
3232static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3233{
3234        vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3235        vmcs_writel(GUEST_IDTR_BASE, dt->address);
3236}
3237
3238static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3239{
3240        dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3241        dt->address = vmcs_readl(GUEST_GDTR_BASE);
3242}
3243
3244static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3245{
3246        vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3247        vmcs_writel(GUEST_GDTR_BASE, dt->address);
3248}
3249
3250static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3251{
3252        struct kvm_segment var;
3253        u32 ar;
3254
3255        vmx_get_segment(vcpu, &var, seg);
3256        var.dpl = 0x3;
3257        if (seg == VCPU_SREG_CS)
3258                var.type = 0x3;
3259        ar = vmx_segment_access_rights(&var);
3260
3261        if (var.base != (var.selector << 4))
3262                return false;
3263        if (var.limit != 0xffff)
3264                return false;
3265        if (ar != 0xf3)
3266                return false;
3267
3268        return true;
3269}
3270
3271static bool code_segment_valid(struct kvm_vcpu *vcpu)
3272{
3273        struct kvm_segment cs;
3274        unsigned int cs_rpl;
3275
3276        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3277        cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3278
3279        if (cs.unusable)
3280                return false;
3281        if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3282                return false;
3283        if (!cs.s)
3284                return false;
3285        if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3286                if (cs.dpl > cs_rpl)
3287                        return false;
3288        } else {
3289                if (cs.dpl != cs_rpl)
3290                        return false;
3291        }
3292        if (!cs.present)
3293                return false;
3294
3295        /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3296        return true;
3297}
3298
3299static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3300{
3301        struct kvm_segment ss;
3302        unsigned int ss_rpl;
3303
3304        vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3305        ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3306
3307        if (ss.unusable)
3308                return true;
3309        if (ss.type != 3 && ss.type != 7)
3310                return false;
3311        if (!ss.s)
3312                return false;
3313        if (ss.dpl != ss_rpl) /* DPL != RPL */
3314                return false;
3315        if (!ss.present)
3316                return false;
3317
3318        return true;
3319}
3320
3321static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3322{
3323        struct kvm_segment var;
3324        unsigned int rpl;
3325
3326        vmx_get_segment(vcpu, &var, seg);
3327        rpl = var.selector & SEGMENT_RPL_MASK;
3328
3329        if (var.unusable)
3330                return true;
3331        if (!var.s)
3332                return false;
3333        if (!var.present)
3334                return false;
3335        if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3336                if (var.dpl < rpl) /* DPL < RPL */
3337                        return false;
3338        }
3339
3340        /* TODO: Add other members to kvm_segment_field to allow checking for other access
3341         * rights flags
3342         */
3343        return true;
3344}
3345
3346static bool tr_valid(struct kvm_vcpu *vcpu)
3347{
3348        struct kvm_segment tr;
3349
3350        vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3351
3352        if (tr.unusable)
3353                return false;
3354        if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3355                return false;
3356        if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3357                return false;
3358        if (!tr.present)
3359                return false;
3360
3361        return true;
3362}
3363
3364static bool ldtr_valid(struct kvm_vcpu *vcpu)
3365{
3366        struct kvm_segment ldtr;
3367
3368        vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3369
3370        if (ldtr.unusable)
3371                return true;
3372        if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3373                return false;
3374        if (ldtr.type != 2)
3375                return false;
3376        if (!ldtr.present)
3377                return false;
3378
3379        return true;
3380}
3381
3382static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3383{
3384        struct kvm_segment cs, ss;
3385
3386        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3387        vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3388
3389        return ((cs.selector & SEGMENT_RPL_MASK) ==
3390                 (ss.selector & SEGMENT_RPL_MASK));
3391}
3392
3393/*
3394 * Check if guest state is valid. Returns true if valid, false if
3395 * not.
3396 * We assume that registers are always usable
3397 */
3398static bool guest_state_valid(struct kvm_vcpu *vcpu)
3399{
3400        if (enable_unrestricted_guest)
3401                return true;
3402
3403        /* real mode guest state checks */
3404        if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3405                if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3406                        return false;
3407                if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3408                        return false;
3409                if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3410                        return false;
3411                if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3412                        return false;
3413                if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3414                        return false;
3415                if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3416                        return false;
3417        } else {
3418        /* protected mode guest state checks */
3419                if (!cs_ss_rpl_check(vcpu))
3420                        return false;
3421                if (!code_segment_valid(vcpu))
3422                        return false;
3423                if (!stack_segment_valid(vcpu))
3424                        return false;
3425                if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3426                        return false;
3427                if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3428                        return false;
3429                if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3430                        return false;
3431                if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3432                        return false;
3433                if (!tr_valid(vcpu))
3434                        return false;
3435                if (!ldtr_valid(vcpu))
3436                        return false;
3437        }
3438        /* TODO:
3439         * - Add checks on RIP
3440         * - Add checks on RFLAGS
3441         */
3442
3443        return true;
3444}
3445
3446static int init_rmode_tss(struct kvm *kvm)
3447{
3448        gfn_t fn;
3449        u16 data = 0;
3450        int idx, r;
3451
3452        idx = srcu_read_lock(&kvm->srcu);
3453        fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3454        r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3455        if (r < 0)
3456                goto out;
3457        data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3458        r = kvm_write_guest_page(kvm, fn++, &data,
3459                        TSS_IOPB_BASE_OFFSET, sizeof(u16));
3460        if (r < 0)
3461                goto out;
3462        r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3463        if (r < 0)
3464                goto out;
3465        r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3466        if (r < 0)
3467                goto out;
3468        data = ~0;
3469        r = kvm_write_guest_page(kvm, fn, &data,
3470                                 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3471                                 sizeof(u8));
3472out:
3473        srcu_read_unlock(&kvm->srcu, idx);
3474        return r;
3475}
3476
3477static int init_rmode_identity_map(struct kvm *kvm)
3478{
3479        struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3480        int i, idx, r = 0;
3481        kvm_pfn_t identity_map_pfn;
3482        u32 tmp;
3483
3484        /* Protect kvm_vmx->ept_identity_pagetable_done. */
3485        mutex_lock(&kvm->slots_lock);
3486
3487        if (likely(kvm_vmx->ept_identity_pagetable_done))
3488                goto out2;
3489
3490        if (!kvm_vmx->ept_identity_map_addr)
3491                kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3492        identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3493
3494        r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3495                                    kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3496        if (r < 0)
3497                goto out2;
3498
3499        idx = srcu_read_lock(&kvm->srcu);
3500        r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3501        if (r < 0)
3502                goto out;
3503        /* Set up identity-mapping pagetable for EPT in real mode */
3504        for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3505                tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3506                        _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3507                r = kvm_write_guest_page(kvm, identity_map_pfn,
3508                                &tmp, i * sizeof(tmp), sizeof(tmp));
3509                if (r < 0)
3510                        goto out;
3511        }
3512        kvm_vmx->ept_identity_pagetable_done = true;
3513
3514out:
3515        srcu_read_unlock(&kvm->srcu, idx);
3516
3517out2:
3518        mutex_unlock(&kvm->slots_lock);
3519        return r;
3520}
3521
3522static void seg_setup(int seg)
3523{
3524        const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3525        unsigned int ar;
3526
3527        vmcs_write16(sf->selector, 0);
3528        vmcs_writel(sf->base, 0);
3529        vmcs_write32(sf->limit, 0xffff);
3530        ar = 0x93;
3531        if (seg == VCPU_SREG_CS)
3532                ar |= 0x08; /* code segment */
3533
3534        vmcs_write32(sf->ar_bytes, ar);
3535}
3536
3537static int alloc_apic_access_page(struct kvm *kvm)
3538{
3539        struct page *page;
3540        int r = 0;
3541
3542        mutex_lock(&kvm->slots_lock);
3543        if (kvm->arch.apic_access_page_done)
3544                goto out;
3545        r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3546                                    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3547        if (r)
3548                goto out;
3549
3550        page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3551        if (is_error_page(page)) {
3552                r = -EFAULT;
3553                goto out;
3554        }
3555
3556        /*
3557         * Do not pin the page in memory, so that memory hot-unplug
3558         * is able to migrate it.
3559         */
3560        put_page(page);
3561        kvm->arch.apic_access_page_done = true;
3562out:
3563        mutex_unlock(&kvm->slots_lock);
3564        return r;
3565}
3566
3567int allocate_vpid(void)
3568{
3569        int vpid;
3570
3571        if (!enable_vpid)
3572                return 0;
3573        spin_lock(&vmx_vpid_lock);
3574        vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3575        if (vpid < VMX_NR_VPIDS)
3576                __set_bit(vpid, vmx_vpid_bitmap);
3577        else
3578                vpid = 0;
3579        spin_unlock(&vmx_vpid_lock);
3580        return vpid;
3581}
3582
3583void free_vpid(int vpid)
3584{
3585        if (!enable_vpid || vpid == 0)
3586                return;
3587        spin_lock(&vmx_vpid_lock);
3588        __clear_bit(vpid, vmx_vpid_bitmap);
3589        spin_unlock(&vmx_vpid_lock);
3590}
3591
3592static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3593                                                          u32 msr, int type)
3594{
3595        int f = sizeof(unsigned long);
3596
3597        if (!cpu_has_vmx_msr_bitmap())
3598                return;
3599
3600        if (static_branch_unlikely(&enable_evmcs))
3601                evmcs_touch_msr_bitmap();
3602
3603        /*
3604         * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3605         * have the write-low and read-high bitmap offsets the wrong way round.
3606         * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3607         */
3608        if (msr <= 0x1fff) {
3609                if (type & MSR_TYPE_R)
3610                        /* read-low */
3611                        __clear_bit(msr, msr_bitmap + 0x000 / f);
3612
3613                if (type & MSR_TYPE_W)
3614                        /* write-low */
3615                        __clear_bit(msr, msr_bitmap + 0x800 / f);
3616
3617        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3618                msr &= 0x1fff;
3619                if (type & MSR_TYPE_R)
3620                        /* read-high */
3621                        __clear_bit(msr, msr_bitmap + 0x400 / f);
3622
3623                if (type & MSR_TYPE_W)
3624                        /* write-high */
3625                        __clear_bit(msr, msr_bitmap + 0xc00 / f);
3626
3627        }
3628}
3629
3630static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3631                                                         u32 msr, int type)
3632{
3633        int f = sizeof(unsigned long);
3634
3635        if (!cpu_has_vmx_msr_bitmap())
3636                return;
3637
3638        if (static_branch_unlikely(&enable_evmcs))
3639                evmcs_touch_msr_bitmap();
3640
3641        /*
3642         * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3643         * have the write-low and read-high bitmap offsets the wrong way round.
3644         * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3645         */
3646        if (msr <= 0x1fff) {
3647                if (type & MSR_TYPE_R)
3648                        /* read-low */
3649                        __set_bit(msr, msr_bitmap + 0x000 / f);
3650
3651                if (type & MSR_TYPE_W)
3652                        /* write-low */
3653                        __set_bit(msr, msr_bitmap + 0x800 / f);
3654
3655        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3656                msr &= 0x1fff;
3657                if (type & MSR_TYPE_R)
3658                        /* read-high */
3659                        __set_bit(msr, msr_bitmap + 0x400 / f);
3660
3661                if (type & MSR_TYPE_W)
3662                        /* write-high */
3663                        __set_bit(msr, msr_bitmap + 0xc00 / f);
3664
3665        }
3666}
3667
3668static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3669                                                      u32 msr, int type, bool value)
3670{
3671        if (value)
3672                vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3673        else
3674                vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3675}
3676
3677static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3678{
3679        u8 mode = 0;
3680
3681        if (cpu_has_secondary_exec_ctrls() &&
3682            (secondary_exec_controls_get(to_vmx(vcpu)) &
3683             SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3684                mode |= MSR_BITMAP_MODE_X2APIC;
3685                if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3686                        mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3687        }
3688
3689        return mode;
3690}
3691
3692static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3693                                         u8 mode)
3694{
3695        int msr;
3696
3697        for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3698                unsigned word = msr / BITS_PER_LONG;
3699                msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3700                msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3701        }
3702
3703        if (mode & MSR_BITMAP_MODE_X2APIC) {
3704                /*
3705                 * TPR reads and writes can be virtualized even if virtual interrupt
3706                 * delivery is not in use.
3707                 */
3708                vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3709                if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3710                        vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3711                        vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3712                        vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3713                }
3714        }
3715}
3716
3717void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3718{
3719        struct vcpu_vmx *vmx = to_vmx(vcpu);
3720        unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3721        u8 mode = vmx_msr_bitmap_mode(vcpu);
3722        u8 changed = mode ^ vmx->msr_bitmap_mode;
3723
3724        if (!changed)
3725                return;
3726
3727        if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3728                vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3729
3730        vmx->msr_bitmap_mode = mode;
3731}
3732
3733void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3734{
3735        unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3736        bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3737        u32 i;
3738
3739        vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3740                                                        MSR_TYPE_RW, flag);
3741        vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3742                                                        MSR_TYPE_RW, flag);
3743        vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3744                                                        MSR_TYPE_RW, flag);
3745        vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3746                                                        MSR_TYPE_RW, flag);
3747        for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3748                vmx_set_intercept_for_msr(msr_bitmap,
3749                        MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3750                vmx_set_intercept_for_msr(msr_bitmap,
3751                        MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3752        }
3753}
3754
3755static bool vmx_get_enable_apicv(struct kvm *kvm)
3756{
3757        return enable_apicv;
3758}
3759
3760static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3761{
3762        struct vcpu_vmx *vmx = to_vmx(vcpu);
3763        void *vapic_page;
3764        u32 vppr;
3765        int rvi;
3766
3767        if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3768                !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3769                WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3770                return false;
3771
3772        rvi = vmx_get_rvi();
3773
3774        vapic_page = vmx->nested.virtual_apic_map.hva;
3775        vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3776
3777        return ((rvi & 0xf0) > (vppr & 0xf0));
3778}
3779
3780static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3781                                                     bool nested)
3782{
3783#ifdef CONFIG_SMP
3784        int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3785
3786        if (vcpu->mode == IN_GUEST_MODE) {
3787                /*
3788                 * The vector of interrupt to be delivered to vcpu had
3789                 * been set in PIR before this function.
3790                 *
3791                 * Following cases will be reached in this block, and
3792                 * we always send a notification event in all cases as
3793                 * explained below.
3794                 *
3795                 * Case 1: vcpu keeps in non-root mode. Sending a
3796                 * notification event posts the interrupt to vcpu.
3797                 *
3798                 * Case 2: vcpu exits to root mode and is still
3799                 * runnable. PIR will be synced to vIRR before the
3800                 * next vcpu entry. Sending a notification event in
3801                 * this case has no effect, as vcpu is not in root
3802                 * mode.
3803                 *
3804                 * Case 3: vcpu exits to root mode and is blocked.
3805                 * vcpu_block() has already synced PIR to vIRR and
3806                 * never blocks vcpu if vIRR is not cleared. Therefore,
3807                 * a blocked vcpu here does not wait for any requested
3808                 * interrupts in PIR, and sending a notification event
3809                 * which has no effect is safe here.
3810                 */
3811
3812                apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3813                return true;
3814        }
3815#endif
3816        return false;
3817}
3818
3819static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3820                                                int vector)
3821{
3822        struct vcpu_vmx *vmx = to_vmx(vcpu);
3823
3824        if (is_guest_mode(vcpu) &&
3825            vector == vmx->nested.posted_intr_nv) {
3826                /*
3827                 * If a posted intr is not recognized by hardware,
3828                 * we will accomplish it in the next vmentry.
3829                 */
3830                vmx->nested.pi_pending = true;
3831                kvm_make_request(KVM_REQ_EVENT, vcpu);
3832                /* the PIR and ON have been set by L1. */
3833                if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3834                        kvm_vcpu_kick(vcpu);
3835                return 0;
3836        }
3837        return -1;
3838}
3839/*
3840 * Send interrupt to vcpu via posted interrupt way.
3841 * 1. If target vcpu is running(non-root mode), send posted interrupt
3842 * notification to vcpu and hardware will sync PIR to vIRR atomically.
3843 * 2. If target vcpu isn't running(root mode), kick it to pick up the
3844 * interrupt from PIR in next vmentry.
3845 */
3846static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3847{
3848        struct vcpu_vmx *vmx = to_vmx(vcpu);
3849        int r;
3850
3851        r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3852        if (!r)
3853                return;
3854
3855        if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3856                return;
3857
3858        /* If a previous notification has sent the IPI, nothing to do.  */
3859        if (pi_test_and_set_on(&vmx->pi_desc))
3860                return;
3861
3862        if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3863                kvm_vcpu_kick(vcpu);
3864}
3865
3866/*
3867 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3868 * will not change in the lifetime of the guest.
3869 * Note that host-state that does change is set elsewhere. E.g., host-state
3870 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3871 */
3872void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3873{
3874        u32 low32, high32;
3875        unsigned long tmpl;
3876        unsigned long cr0, cr3, cr4;
3877
3878        cr0 = read_cr0();
3879        WARN_ON(cr0 & X86_CR0_TS);
3880        vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3881
3882        /*
3883         * Save the most likely value for this task's CR3 in the VMCS.
3884         * We can't use __get_current_cr3_fast() because we're not atomic.
3885         */
3886        cr3 = __read_cr3();
3887        vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
3888        vmx->loaded_vmcs->host_state.cr3 = cr3;
3889
3890        /* Save the most likely value for this task's CR4 in the VMCS. */
3891        cr4 = cr4_read_shadow();
3892        vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
3893        vmx->loaded_vmcs->host_state.cr4 = cr4;
3894
3895        vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3896#ifdef CONFIG_X86_64
3897        /*
3898         * Load null selectors, so we can avoid reloading them in
3899         * vmx_prepare_switch_to_host(), in case userspace uses
3900         * the null selectors too (the expected case).
3901         */
3902        vmcs_write16(HOST_DS_SELECTOR, 0);
3903        vmcs_write16(HOST_ES_SELECTOR, 0);
3904#else
3905        vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3906        vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3907#endif
3908        vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3909        vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3910
3911        vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
3912
3913        vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3914
3915        rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3916        vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3917        rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3918        vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3919
3920        if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3921                rdmsr(MSR_IA32_CR_PAT, low32, high32);
3922                vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3923        }
3924
3925        if (cpu_has_load_ia32_efer())
3926                vmcs_write64(HOST_IA32_EFER, host_efer);
3927}
3928
3929void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3930{
3931        vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3932        if (enable_ept)
3933                vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3934        if (is_guest_mode(&vmx->vcpu))
3935                vmx->vcpu.arch.cr4_guest_owned_bits &=
3936                        ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3937        vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3938}
3939
3940u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3941{
3942        u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3943
3944        if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3945                pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3946
3947        if (!enable_vnmi)
3948                pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3949
3950        if (!enable_preemption_timer)
3951                pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3952
3953        return pin_based_exec_ctrl;
3954}
3955
3956static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3957{
3958        struct vcpu_vmx *vmx = to_vmx(vcpu);
3959
3960        pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
3961        if (cpu_has_secondary_exec_ctrls()) {
3962                if (kvm_vcpu_apicv_active(vcpu))
3963                        secondary_exec_controls_setbit(vmx,
3964                                      SECONDARY_EXEC_APIC_REGISTER_VIRT |
3965                                      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3966                else
3967                        secondary_exec_controls_clearbit(vmx,
3968                                        SECONDARY_EXEC_APIC_REGISTER_VIRT |
3969                                        SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3970        }
3971
3972        if (cpu_has_vmx_msr_bitmap())
3973                vmx_update_msr_bitmap(vcpu);
3974}
3975
3976u32 vmx_exec_control(struct vcpu_vmx *vmx)
3977{
3978        u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3979
3980        if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
3981                exec_control &= ~CPU_BASED_MOV_DR_EXITING;
3982
3983        if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
3984                exec_control &= ~CPU_BASED_TPR_SHADOW;
3985#ifdef CONFIG_X86_64
3986                exec_control |= CPU_BASED_CR8_STORE_EXITING |
3987                                CPU_BASED_CR8_LOAD_EXITING;
3988#endif
3989        }
3990        if (!enable_ept)
3991                exec_control |= CPU_BASED_CR3_STORE_EXITING |
3992                                CPU_BASED_CR3_LOAD_EXITING  |
3993                                CPU_BASED_INVLPG_EXITING;
3994        if (kvm_mwait_in_guest(vmx->vcpu.kvm))
3995                exec_control &= ~(CPU_BASED_MWAIT_EXITING |
3996                                CPU_BASED_MONITOR_EXITING);
3997        if (kvm_hlt_in_guest(vmx->vcpu.kvm))
3998                exec_control &= ~CPU_BASED_HLT_EXITING;
3999        return exec_control;
4000}
4001
4002
4003static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4004{
4005        struct kvm_vcpu *vcpu = &vmx->vcpu;
4006
4007        u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4008
4009        if (pt_mode == PT_MODE_SYSTEM)
4010                exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4011        if (!cpu_need_virtualize_apic_accesses(vcpu))
4012                exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4013        if (vmx->vpid == 0)
4014                exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4015        if (!enable_ept) {
4016                exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4017                enable_unrestricted_guest = 0;
4018        }
4019        if (!enable_unrestricted_guest)
4020                exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4021        if (kvm_pause_in_guest(vmx->vcpu.kvm))
4022                exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4023        if (!kvm_vcpu_apicv_active(vcpu))
4024                exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4025                                  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4026        exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4027
4028        /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4029         * in vmx_set_cr4.  */
4030        exec_control &= ~SECONDARY_EXEC_DESC;
4031
4032        /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4033           (handle_vmptrld).
4034           We can NOT enable shadow_vmcs here because we don't have yet
4035           a current VMCS12
4036        */
4037        exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4038
4039        if (!enable_pml)
4040                exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4041
4042        if (vmx_xsaves_supported()) {
4043                /* Exposing XSAVES only when XSAVE is exposed */
4044                bool xsaves_enabled =
4045                        guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4046                        guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4047
4048                vcpu->arch.xsaves_enabled = xsaves_enabled;
4049
4050                if (!xsaves_enabled)
4051                        exec_control &= ~SECONDARY_EXEC_XSAVES;
4052
4053                if (nested) {
4054                        if (xsaves_enabled)
4055                                vmx->nested.msrs.secondary_ctls_high |=
4056                                        SECONDARY_EXEC_XSAVES;
4057                        else
4058                                vmx->nested.msrs.secondary_ctls_high &=
4059                                        ~SECONDARY_EXEC_XSAVES;
4060                }
4061        }
4062
4063        if (vmx_rdtscp_supported()) {
4064                bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
4065                if (!rdtscp_enabled)
4066                        exec_control &= ~SECONDARY_EXEC_RDTSCP;
4067
4068                if (nested) {
4069                        if (rdtscp_enabled)
4070                                vmx->nested.msrs.secondary_ctls_high |=
4071                                        SECONDARY_EXEC_RDTSCP;
4072                        else
4073                                vmx->nested.msrs.secondary_ctls_high &=
4074                                        ~SECONDARY_EXEC_RDTSCP;
4075                }
4076        }
4077
4078        if (vmx_invpcid_supported()) {
4079                /* Exposing INVPCID only when PCID is exposed */
4080                bool invpcid_enabled =
4081                        guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
4082                        guest_cpuid_has(vcpu, X86_FEATURE_PCID);
4083
4084                if (!invpcid_enabled) {
4085                        exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4086                        guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4087                }
4088
4089                if (nested) {
4090                        if (invpcid_enabled)
4091                                vmx->nested.msrs.secondary_ctls_high |=
4092                                        SECONDARY_EXEC_ENABLE_INVPCID;
4093                        else
4094                                vmx->nested.msrs.secondary_ctls_high &=
4095                                        ~SECONDARY_EXEC_ENABLE_INVPCID;
4096                }
4097        }
4098
4099        if (vmx_rdrand_supported()) {
4100                bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
4101                if (rdrand_enabled)
4102                        exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
4103
4104                if (nested) {
4105                        if (rdrand_enabled)
4106                                vmx->nested.msrs.secondary_ctls_high |=
4107                                        SECONDARY_EXEC_RDRAND_EXITING;
4108                        else
4109                                vmx->nested.msrs.secondary_ctls_high &=
4110                                        ~SECONDARY_EXEC_RDRAND_EXITING;
4111                }
4112        }
4113
4114        if (vmx_rdseed_supported()) {
4115                bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4116                if (rdseed_enabled)
4117                        exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4118
4119                if (nested) {
4120                        if (rdseed_enabled)
4121                                vmx->nested.msrs.secondary_ctls_high |=
4122                                        SECONDARY_EXEC_RDSEED_EXITING;
4123                        else
4124                                vmx->nested.msrs.secondary_ctls_high &=
4125                                        ~SECONDARY_EXEC_RDSEED_EXITING;
4126                }
4127        }
4128
4129        if (vmx_waitpkg_supported()) {
4130                bool waitpkg_enabled =
4131                        guest_cpuid_has(vcpu, X86_FEATURE_WAITPKG);
4132
4133                if (!waitpkg_enabled)
4134                        exec_control &= ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4135
4136                if (nested) {
4137                        if (waitpkg_enabled)
4138                                vmx->nested.msrs.secondary_ctls_high |=
4139                                        SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4140                        else
4141                                vmx->nested.msrs.secondary_ctls_high &=
4142                                        ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4143                }
4144        }
4145
4146        vmx->secondary_exec_control = exec_control;
4147}
4148
4149static void ept_set_mmio_spte_mask(void)
4150{
4151        /*
4152         * EPT Misconfigurations can be generated if the value of bits 2:0
4153         * of an EPT paging-structure entry is 110b (write/execute).
4154         */
4155        kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
4156                                   VMX_EPT_MISCONFIG_WX_VALUE, 0);
4157}
4158
4159#define VMX_XSS_EXIT_BITMAP 0
4160
4161/*
4162 * Noting that the initialization of Guest-state Area of VMCS is in
4163 * vmx_vcpu_reset().
4164 */
4165static void init_vmcs(struct vcpu_vmx *vmx)
4166{
4167        if (nested)
4168                nested_vmx_set_vmcs_shadowing_bitmap();
4169
4170        if (cpu_has_vmx_msr_bitmap())
4171                vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4172
4173        vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4174
4175        /* Control */
4176        pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4177
4178        exec_controls_set(vmx, vmx_exec_control(vmx));
4179
4180        if (cpu_has_secondary_exec_ctrls()) {
4181                vmx_compute_secondary_exec_control(vmx);
4182                secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4183        }
4184
4185        if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4186                vmcs_write64(EOI_EXIT_BITMAP0, 0);
4187                vmcs_write64(EOI_EXIT_BITMAP1, 0);
4188                vmcs_write64(EOI_EXIT_BITMAP2, 0);
4189                vmcs_write64(EOI_EXIT_BITMAP3, 0);
4190
4191                vmcs_write16(GUEST_INTR_STATUS, 0);
4192
4193                vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4194                vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4195        }
4196
4197        if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4198                vmcs_write32(PLE_GAP, ple_gap);
4199                vmx->ple_window = ple_window;
4200                vmx->ple_window_dirty = true;
4201        }
4202
4203        vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4204        vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4205        vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4206
4207        vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4208        vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4209        vmx_set_constant_host_state(vmx);
4210        vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4211        vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4212
4213        if (cpu_has_vmx_vmfunc())
4214                vmcs_write64(VM_FUNCTION_CONTROL, 0);
4215
4216        vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4217        vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4218        vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4219        vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4220        vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4221
4222        if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4223                vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4224
4225        vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4226
4227        /* 22.2.1, 20.8.1 */
4228        vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4229
4230        vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4231        vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4232
4233        set_cr4_guest_host_mask(vmx);
4234
4235        if (vmx->vpid != 0)
4236                vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4237
4238        if (vmx_xsaves_supported())
4239                vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4240
4241        if (enable_pml) {
4242                vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4243                vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4244        }
4245
4246        if (cpu_has_vmx_encls_vmexit())
4247                vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4248
4249        if (pt_mode == PT_MODE_HOST_GUEST) {
4250                memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4251                /* Bit[6~0] are forced to 1, writes are ignored. */
4252                vmx->pt_desc.guest.output_mask = 0x7F;
4253                vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4254        }
4255}
4256
4257static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4258{
4259        struct vcpu_vmx *vmx = to_vmx(vcpu);
4260        struct msr_data apic_base_msr;
4261        u64 cr0;
4262
4263        vmx->rmode.vm86_active = 0;
4264        vmx->spec_ctrl = 0;
4265
4266        vmx->msr_ia32_umwait_control = 0;
4267
4268        vcpu->arch.microcode_version = 0x100000000ULL;
4269        vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4270        vmx->hv_deadline_tsc = -1;
4271        kvm_set_cr8(vcpu, 0);
4272
4273        if (!init_event) {
4274                apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4275                                     MSR_IA32_APICBASE_ENABLE;
4276                if (kvm_vcpu_is_reset_bsp(vcpu))
4277                        apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4278                apic_base_msr.host_initiated = true;
4279                kvm_set_apic_base(vcpu, &apic_base_msr);
4280        }
4281
4282        vmx_segment_cache_clear(vmx);
4283
4284        seg_setup(VCPU_SREG_CS);
4285        vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4286        vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4287
4288        seg_setup(VCPU_SREG_DS);
4289        seg_setup(VCPU_SREG_ES);
4290        seg_setup(VCPU_SREG_FS);
4291        seg_setup(VCPU_SREG_GS);
4292        seg_setup(VCPU_SREG_SS);
4293
4294        vmcs_write16(GUEST_TR_SELECTOR, 0);
4295        vmcs_writel(GUEST_TR_BASE, 0);
4296        vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4297        vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4298
4299        vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4300        vmcs_writel(GUEST_LDTR_BASE, 0);
4301        vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4302        vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4303
4304        if (!init_event) {
4305                vmcs_write32(GUEST_SYSENTER_CS, 0);
4306                vmcs_writel(GUEST_SYSENTER_ESP, 0);
4307                vmcs_writel(GUEST_SYSENTER_EIP, 0);
4308                vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4309        }
4310
4311        kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4312        kvm_rip_write(vcpu, 0xfff0);
4313
4314        vmcs_writel(GUEST_GDTR_BASE, 0);
4315        vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4316
4317        vmcs_writel(GUEST_IDTR_BASE, 0);
4318        vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4319
4320        vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4321        vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4322        vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4323        if (kvm_mpx_supported())
4324                vmcs_write64(GUEST_BNDCFGS, 0);
4325
4326        setup_msrs(vmx);
4327
4328        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4329
4330        if (cpu_has_vmx_tpr_shadow() && !init_event) {
4331                vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4332                if (cpu_need_tpr_shadow(vcpu))
4333                        vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4334                                     __pa(vcpu->arch.apic->regs));
4335                vmcs_write32(TPR_THRESHOLD, 0);
4336        }
4337
4338        kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4339
4340        cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4341        vmx->vcpu.arch.cr0 = cr0;
4342        vmx_set_cr0(vcpu, cr0); /* enter rmode */
4343        vmx_set_cr4(vcpu, 0);
4344        vmx_set_efer(vcpu, 0);
4345
4346        update_exception_bitmap(vcpu);
4347
4348        vpid_sync_context(vmx->vpid);
4349        if (init_event)
4350                vmx_clear_hlt(vcpu);
4351}
4352
4353static void enable_irq_window(struct kvm_vcpu *vcpu)
4354{
4355        exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
4356}
4357
4358static void enable_nmi_window(struct kvm_vcpu *vcpu)
4359{
4360        if (!enable_vnmi ||
4361            vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4362                enable_irq_window(vcpu);
4363                return;
4364        }
4365
4366        exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
4367}
4368
4369static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4370{
4371        struct vcpu_vmx *vmx = to_vmx(vcpu);
4372        uint32_t intr;
4373        int irq = vcpu->arch.interrupt.nr;
4374
4375        trace_kvm_inj_virq(irq);
4376
4377        ++vcpu->stat.irq_injections;
4378        if (vmx->rmode.vm86_active) {
4379                int inc_eip = 0;
4380                if (vcpu->arch.interrupt.soft)
4381                        inc_eip = vcpu->arch.event_exit_inst_len;
4382                kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4383                return;
4384        }
4385        intr = irq | INTR_INFO_VALID_MASK;
4386        if (vcpu->arch.interrupt.soft) {
4387                intr |= INTR_TYPE_SOFT_INTR;
4388                vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4389                             vmx->vcpu.arch.event_exit_inst_len);
4390        } else
4391                intr |= INTR_TYPE_EXT_INTR;
4392        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4393
4394        vmx_clear_hlt(vcpu);
4395}
4396
4397static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4398{
4399        struct vcpu_vmx *vmx = to_vmx(vcpu);
4400
4401        if (!enable_vnmi) {
4402                /*
4403                 * Tracking the NMI-blocked state in software is built upon
4404                 * finding the next open IRQ window. This, in turn, depends on
4405                 * well-behaving guests: They have to keep IRQs disabled at
4406                 * least as long as the NMI handler runs. Otherwise we may
4407                 * cause NMI nesting, maybe breaking the guest. But as this is
4408                 * highly unlikely, we can live with the residual risk.
4409                 */
4410                vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4411                vmx->loaded_vmcs->vnmi_blocked_time = 0;
4412        }
4413
4414        ++vcpu->stat.nmi_injections;
4415        vmx->loaded_vmcs->nmi_known_unmasked = false;
4416
4417        if (vmx->rmode.vm86_active) {
4418                kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4419                return;
4420        }
4421
4422        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4423                        INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4424
4425        vmx_clear_hlt(vcpu);
4426}
4427
4428bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4429{
4430        struct vcpu_vmx *vmx = to_vmx(vcpu);
4431        bool masked;
4432
4433        if (!enable_vnmi)
4434                return vmx->loaded_vmcs->soft_vnmi_blocked;
4435        if (vmx->loaded_vmcs->nmi_known_unmasked)
4436                return false;
4437        masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4438        vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4439        return masked;
4440}
4441
4442void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4443{
4444        struct vcpu_vmx *vmx = to_vmx(vcpu);
4445
4446        if (!enable_vnmi) {
4447                if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4448                        vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4449                        vmx->loaded_vmcs->vnmi_blocked_time = 0;
4450                }
4451        } else {
4452                vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4453                if (masked)
4454                        vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4455                                      GUEST_INTR_STATE_NMI);
4456                else
4457                        vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4458                                        GUEST_INTR_STATE_NMI);
4459        }
4460}
4461
4462static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4463{
4464        if (to_vmx(vcpu)->nested.nested_run_pending)
4465                return 0;
4466
4467        if (!enable_vnmi &&
4468            to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4469                return 0;
4470
4471        return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4472                  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4473                   | GUEST_INTR_STATE_NMI));
4474}
4475
4476static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4477{
4478        return (!to_vmx(vcpu)->nested.nested_run_pending &&
4479                vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4480                !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4481                        (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4482}
4483
4484static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4485{
4486        int ret;
4487
4488        if (enable_unrestricted_guest)
4489                return 0;
4490
4491        ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4492                                    PAGE_SIZE * 3);
4493        if (ret)
4494                return ret;
4495        to_kvm_vmx(kvm)->tss_addr = addr;
4496        return init_rmode_tss(kvm);
4497}
4498
4499static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4500{
4501        to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4502        return 0;
4503}
4504
4505static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4506{
4507        switch (vec) {
4508        case BP_VECTOR:
4509                /*
4510                 * Update instruction length as we may reinject the exception
4511                 * from user space while in guest debugging mode.
4512                 */
4513                to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4514                        vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4515                if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4516                        return false;
4517                /* fall through */
4518        case DB_VECTOR:
4519                if (vcpu->guest_debug &
4520                        (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4521                        return false;
4522                /* fall through */
4523        case DE_VECTOR:
4524        case OF_VECTOR:
4525        case BR_VECTOR:
4526        case UD_VECTOR:
4527        case DF_VECTOR:
4528        case SS_VECTOR:
4529        case GP_VECTOR:
4530        case MF_VECTOR:
4531                return true;
4532        break;
4533        }
4534        return false;
4535}
4536
4537static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4538                                  int vec, u32 err_code)
4539{
4540        /*
4541         * Instruction with address size override prefix opcode 0x67
4542         * Cause the #SS fault with 0 error code in VM86 mode.
4543         */
4544        if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4545                if (kvm_emulate_instruction(vcpu, 0)) {
4546                        if (vcpu->arch.halt_request) {
4547                                vcpu->arch.halt_request = 0;
4548                                return kvm_vcpu_halt(vcpu);
4549                        }
4550                        return 1;
4551                }
4552                return 0;
4553        }
4554
4555        /*
4556         * Forward all other exceptions that are valid in real mode.
4557         * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4558         *        the required debugging infrastructure rework.
4559         */
4560        kvm_queue_exception(vcpu, vec);
4561        return 1;
4562}
4563
4564/*
4565 * Trigger machine check on the host. We assume all the MSRs are already set up
4566 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4567 * We pass a fake environment to the machine check handler because we want
4568 * the guest to be always treated like user space, no matter what context
4569 * it used internally.
4570 */
4571static void kvm_machine_check(void)
4572{
4573#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4574        struct pt_regs regs = {
4575                .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4576                .flags = X86_EFLAGS_IF,
4577        };
4578
4579        do_machine_check(&regs, 0);
4580#endif
4581}
4582
4583static int handle_machine_check(struct kvm_vcpu *vcpu)
4584{
4585        /* handled by vmx_vcpu_run() */
4586        return 1;
4587}
4588
4589static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4590{
4591        struct vcpu_vmx *vmx = to_vmx(vcpu);
4592        struct kvm_run *kvm_run = vcpu->run;
4593        u32 intr_info, ex_no, error_code;
4594        unsigned long cr2, rip, dr6;
4595        u32 vect_info;
4596
4597        vect_info = vmx->idt_vectoring_info;
4598        intr_info = vmx->exit_intr_info;
4599
4600        if (is_machine_check(intr_info) || is_nmi(intr_info))
4601                return 1; /* handled by handle_exception_nmi_irqoff() */
4602
4603        if (is_invalid_opcode(intr_info))
4604                return handle_ud(vcpu);
4605
4606        error_code = 0;
4607        if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4608                error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4609
4610        if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4611                WARN_ON_ONCE(!enable_vmware_backdoor);
4612
4613                /*
4614                 * VMware backdoor emulation on #GP interception only handles
4615                 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4616                 * error code on #GP.
4617                 */
4618                if (error_code) {
4619                        kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4620                        return 1;
4621                }
4622                return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4623        }
4624
4625        /*
4626         * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4627         * MMIO, it is better to report an internal error.
4628         * See the comments in vmx_handle_exit.
4629         */
4630        if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4631            !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4632                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4633                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4634                vcpu->run->internal.ndata = 3;
4635                vcpu->run->internal.data[0] = vect_info;
4636                vcpu->run->internal.data[1] = intr_info;
4637                vcpu->run->internal.data[2] = error_code;
4638                return 0;
4639        }
4640
4641        if (is_page_fault(intr_info)) {
4642                cr2 = vmcs_readl(EXIT_QUALIFICATION);
4643                /* EPT won't cause page fault directly */
4644                WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4645                return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4646        }
4647
4648        ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4649
4650        if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4651                return handle_rmode_exception(vcpu, ex_no, error_code);
4652
4653        switch (ex_no) {
4654        case AC_VECTOR:
4655                kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4656                return 1;
4657        case DB_VECTOR:
4658                dr6 = vmcs_readl(EXIT_QUALIFICATION);
4659                if (!(vcpu->guest_debug &
4660                      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4661                        vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4662                        vcpu->arch.dr6 |= dr6 | DR6_RTM;
4663                        if (is_icebp(intr_info))
4664                                WARN_ON(!skip_emulated_instruction(vcpu));
4665
4666                        kvm_queue_exception(vcpu, DB_VECTOR);
4667                        return 1;
4668                }
4669                kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4670                kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4671                /* fall through */
4672        case BP_VECTOR:
4673                /*
4674                 * Update instruction length as we may reinject #BP from
4675                 * user space while in guest debugging mode. Reading it for
4676                 * #DB as well causes no harm, it is not used in that case.
4677                 */
4678                vmx->vcpu.arch.event_exit_inst_len =
4679                        vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4680                kvm_run->exit_reason = KVM_EXIT_DEBUG;
4681                rip = kvm_rip_read(vcpu);
4682                kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4683                kvm_run->debug.arch.exception = ex_no;
4684                break;
4685        default:
4686                kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4687                kvm_run->ex.exception = ex_no;
4688                kvm_run->ex.error_code = error_code;
4689                break;
4690        }
4691        return 0;
4692}
4693
4694static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4695{
4696        ++vcpu->stat.irq_exits;
4697        return 1;
4698}
4699
4700static int handle_triple_fault(struct kvm_vcpu *vcpu)
4701{
4702        vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4703        vcpu->mmio_needed = 0;
4704        return 0;
4705}
4706
4707static int handle_io(struct kvm_vcpu *vcpu)
4708{
4709        unsigned long exit_qualification;
4710        int size, in, string;
4711        unsigned port;
4712
4713        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4714        string = (exit_qualification & 16) != 0;
4715
4716        ++vcpu->stat.io_exits;
4717
4718        if (string)
4719                return kvm_emulate_instruction(vcpu, 0);
4720
4721        port = exit_qualification >> 16;
4722        size = (exit_qualification & 7) + 1;
4723        in = (exit_qualification & 8) != 0;
4724
4725        return kvm_fast_pio(vcpu, size, port, in);
4726}
4727
4728static void
4729vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4730{
4731        /*
4732         * Patch in the VMCALL instruction:
4733         */
4734        hypercall[0] = 0x0f;
4735        hypercall[1] = 0x01;
4736        hypercall[2] = 0xc1;
4737}
4738
4739/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4740static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4741{
4742        if (is_guest_mode(vcpu)) {
4743                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4744                unsigned long orig_val = val;
4745
4746                /*
4747                 * We get here when L2 changed cr0 in a way that did not change
4748                 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4749                 * but did change L0 shadowed bits. So we first calculate the
4750                 * effective cr0 value that L1 would like to write into the
4751                 * hardware. It consists of the L2-owned bits from the new
4752                 * value combined with the L1-owned bits from L1's guest_cr0.
4753                 */
4754                val = (val & ~vmcs12->cr0_guest_host_mask) |
4755                        (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4756
4757                if (!nested_guest_cr0_valid(vcpu, val))
4758                        return 1;
4759
4760                if (kvm_set_cr0(vcpu, val))
4761                        return 1;
4762                vmcs_writel(CR0_READ_SHADOW, orig_val);
4763                return 0;
4764        } else {
4765                if (to_vmx(vcpu)->nested.vmxon &&
4766                    !nested_host_cr0_valid(vcpu, val))
4767                        return 1;
4768
4769                return kvm_set_cr0(vcpu, val);
4770        }
4771}
4772
4773static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4774{
4775        if (is_guest_mode(vcpu)) {
4776                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4777                unsigned long orig_val = val;
4778
4779                /* analogously to handle_set_cr0 */
4780                val = (val & ~vmcs12->cr4_guest_host_mask) |
4781                        (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4782                if (kvm_set_cr4(vcpu, val))
4783                        return 1;
4784                vmcs_writel(CR4_READ_SHADOW, orig_val);
4785                return 0;
4786        } else
4787                return kvm_set_cr4(vcpu, val);
4788}
4789
4790static int handle_desc(struct kvm_vcpu *vcpu)
4791{
4792        WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4793        return kvm_emulate_instruction(vcpu, 0);
4794}
4795
4796static int handle_cr(struct kvm_vcpu *vcpu)
4797{
4798        unsigned long exit_qualification, val;
4799        int cr;
4800        int reg;
4801        int err;
4802        int ret;
4803
4804        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4805        cr = exit_qualification & 15;
4806        reg = (exit_qualification >> 8) & 15;
4807        switch ((exit_qualification >> 4) & 3) {
4808        case 0: /* mov to cr */
4809                val = kvm_register_readl(vcpu, reg);
4810                trace_kvm_cr_write(cr, val);
4811                switch (cr) {
4812                case 0:
4813                        err = handle_set_cr0(vcpu, val);
4814                        return kvm_complete_insn_gp(vcpu, err);
4815                case 3:
4816                        WARN_ON_ONCE(enable_unrestricted_guest);
4817                        err = kvm_set_cr3(vcpu, val);
4818                        return kvm_complete_insn_gp(vcpu, err);
4819                case 4:
4820                        err = handle_set_cr4(vcpu, val);
4821                        return kvm_complete_insn_gp(vcpu, err);
4822                case 8: {
4823                                u8 cr8_prev = kvm_get_cr8(vcpu);
4824                                u8 cr8 = (u8)val;
4825                                err = kvm_set_cr8(vcpu, cr8);
4826                                ret = kvm_complete_insn_gp(vcpu, err);
4827                                if (lapic_in_kernel(vcpu))
4828                                        return ret;
4829                                if (cr8_prev <= cr8)
4830                                        return ret;
4831                                /*
4832                                 * TODO: we might be squashing a
4833                                 * KVM_GUESTDBG_SINGLESTEP-triggered
4834                                 * KVM_EXIT_DEBUG here.
4835                                 */
4836                                vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4837                                return 0;
4838                        }
4839                }
4840                break;
4841        case 2: /* clts */
4842                WARN_ONCE(1, "Guest should always own CR0.TS");
4843                vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4844                trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4845                return kvm_skip_emulated_instruction(vcpu);
4846        case 1: /*mov from cr*/
4847                switch (cr) {
4848                case 3:
4849                        WARN_ON_ONCE(enable_unrestricted_guest);
4850                        val = kvm_read_cr3(vcpu);
4851                        kvm_register_write(vcpu, reg, val);
4852                        trace_kvm_cr_read(cr, val);
4853                        return kvm_skip_emulated_instruction(vcpu);
4854                case 8:
4855                        val = kvm_get_cr8(vcpu);
4856                        kvm_register_write(vcpu, reg, val);
4857                        trace_kvm_cr_read(cr, val);
4858                        return kvm_skip_emulated_instruction(vcpu);
4859                }
4860                break;
4861        case 3: /* lmsw */
4862                val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4863                trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4864                kvm_lmsw(vcpu, val);
4865
4866                return kvm_skip_emulated_instruction(vcpu);
4867        default:
4868                break;
4869        }
4870        vcpu->run->exit_reason = 0;
4871        vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4872               (int)(exit_qualification >> 4) & 3, cr);
4873        return 0;
4874}
4875
4876static int handle_dr(struct kvm_vcpu *vcpu)
4877{
4878        unsigned long exit_qualification;
4879        int dr, dr7, reg;
4880
4881        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4882        dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4883
4884        /* First, if DR does not exist, trigger UD */
4885        if (!kvm_require_dr(vcpu, dr))
4886                return 1;
4887
4888        /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4889        if (!kvm_require_cpl(vcpu, 0))
4890                return 1;
4891        dr7 = vmcs_readl(GUEST_DR7);
4892        if (dr7 & DR7_GD) {
4893                /*
4894                 * As the vm-exit takes precedence over the debug trap, we
4895                 * need to emulate the latter, either for the host or the
4896                 * guest debugging itself.
4897                 */
4898                if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4899                        vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4900                        vcpu->run->debug.arch.dr7 = dr7;
4901                        vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4902                        vcpu->run->debug.arch.exception = DB_VECTOR;
4903                        vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4904                        return 0;
4905                } else {
4906                        vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4907                        vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
4908                        kvm_queue_exception(vcpu, DB_VECTOR);
4909                        return 1;
4910                }
4911        }
4912
4913        if (vcpu->guest_debug == 0) {
4914                exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4915
4916                /*
4917                 * No more DR vmexits; force a reload of the debug registers
4918                 * and reenter on this instruction.  The next vmexit will
4919                 * retrieve the full state of the debug registers.
4920                 */
4921                vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4922                return 1;
4923        }
4924
4925        reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4926        if (exit_qualification & TYPE_MOV_FROM_DR) {
4927                unsigned long val;
4928
4929                if (kvm_get_dr(vcpu, dr, &val))
4930                        return 1;
4931                kvm_register_write(vcpu, reg, val);
4932        } else
4933                if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4934                        return 1;
4935
4936        return kvm_skip_emulated_instruction(vcpu);
4937}
4938
4939static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
4940{
4941        return vcpu->arch.dr6;
4942}
4943
4944static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
4945{
4946}
4947
4948static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4949{
4950        get_debugreg(vcpu->arch.db[0], 0);
4951        get_debugreg(vcpu->arch.db[1], 1);
4952        get_debugreg(vcpu->arch.db[2], 2);
4953        get_debugreg(vcpu->arch.db[3], 3);
4954        get_debugreg(vcpu->arch.dr6, 6);
4955        vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4956
4957        vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4958        exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4959}
4960
4961static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4962{
4963        vmcs_writel(GUEST_DR7, val);
4964}
4965
4966static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4967{
4968        kvm_apic_update_ppr(vcpu);
4969        return 1;
4970}
4971
4972static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4973{
4974        exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
4975
4976        kvm_make_request(KVM_REQ_EVENT, vcpu);
4977
4978        ++vcpu->stat.irq_window_exits;
4979        return 1;
4980}
4981
4982static int handle_vmcall(struct kvm_vcpu *vcpu)
4983{
4984        return kvm_emulate_hypercall(vcpu);
4985}
4986
4987static int handle_invd(struct kvm_vcpu *vcpu)
4988{
4989        return kvm_emulate_instruction(vcpu, 0);
4990}
4991
4992static int handle_invlpg(struct kvm_vcpu *vcpu)
4993{
4994        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4995
4996        kvm_mmu_invlpg(vcpu, exit_qualification);
4997        return kvm_skip_emulated_instruction(vcpu);
4998}
4999
5000static int handle_rdpmc(struct kvm_vcpu *vcpu)
5001{
5002        int err;
5003
5004        err = kvm_rdpmc(vcpu);
5005        return kvm_complete_insn_gp(vcpu, err);
5006}
5007
5008static int handle_wbinvd(struct kvm_vcpu *vcpu)
5009{
5010        return kvm_emulate_wbinvd(vcpu);
5011}
5012
5013static int handle_xsetbv(struct kvm_vcpu *vcpu)
5014{
5015        u64 new_bv = kvm_read_edx_eax(vcpu);
5016        u32 index = kvm_rcx_read(vcpu);
5017
5018        if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5019                return kvm_skip_emulated_instruction(vcpu);
5020        return 1;
5021}
5022
5023static int handle_apic_access(struct kvm_vcpu *vcpu)
5024{
5025        if (likely(fasteoi)) {
5026                unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5027                int access_type, offset;
5028
5029                access_type = exit_qualification & APIC_ACCESS_TYPE;
5030                offset = exit_qualification & APIC_ACCESS_OFFSET;
5031                /*
5032                 * Sane guest uses MOV to write EOI, with written value
5033                 * not cared. So make a short-circuit here by avoiding
5034                 * heavy instruction emulation.
5035                 */
5036                if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5037                    (offset == APIC_EOI)) {
5038                        kvm_lapic_set_eoi(vcpu);
5039                        return kvm_skip_emulated_instruction(vcpu);
5040                }
5041        }
5042        return kvm_emulate_instruction(vcpu, 0);
5043}
5044
5045static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5046{
5047        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5048        int vector = exit_qualification & 0xff;
5049
5050        /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5051        kvm_apic_set_eoi_accelerated(vcpu, vector);
5052        return 1;
5053}
5054
5055static int handle_apic_write(struct kvm_vcpu *vcpu)
5056{
5057        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5058        u32 offset = exit_qualification & 0xfff;
5059
5060        /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5061        kvm_apic_write_nodecode(vcpu, offset);
5062        return 1;
5063}
5064
5065static int handle_task_switch(struct kvm_vcpu *vcpu)
5066{
5067        struct vcpu_vmx *vmx = to_vmx(vcpu);
5068        unsigned long exit_qualification;
5069        bool has_error_code = false;
5070        u32 error_code = 0;
5071        u16 tss_selector;
5072        int reason, type, idt_v, idt_index;
5073
5074        idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5075        idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5076        type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5077
5078        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5079
5080        reason = (u32)exit_qualification >> 30;
5081        if (reason == TASK_SWITCH_GATE && idt_v) {
5082                switch (type) {
5083                case INTR_TYPE_NMI_INTR:
5084                        vcpu->arch.nmi_injected = false;
5085                        vmx_set_nmi_mask(vcpu, true);
5086                        break;
5087                case INTR_TYPE_EXT_INTR:
5088                case INTR_TYPE_SOFT_INTR:
5089                        kvm_clear_interrupt_queue(vcpu);
5090                        break;
5091                case INTR_TYPE_HARD_EXCEPTION:
5092                        if (vmx->idt_vectoring_info &
5093                            VECTORING_INFO_DELIVER_CODE_MASK) {
5094                                has_error_code = true;
5095                                error_code =
5096                                        vmcs_read32(IDT_VECTORING_ERROR_CODE);
5097                        }
5098                        /* fall through */
5099                case INTR_TYPE_SOFT_EXCEPTION:
5100                        kvm_clear_exception_queue(vcpu);
5101                        break;
5102                default:
5103                        break;
5104                }
5105        }
5106        tss_selector = exit_qualification;
5107
5108        if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5109                       type != INTR_TYPE_EXT_INTR &&
5110                       type != INTR_TYPE_NMI_INTR))
5111                WARN_ON(!skip_emulated_instruction(vcpu));
5112
5113        /*
5114         * TODO: What about debug traps on tss switch?
5115         *       Are we supposed to inject them and update dr6?
5116         */
5117        return kvm_task_switch(vcpu, tss_selector,
5118                               type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5119                               reason, has_error_code, error_code);
5120}
5121
5122static int handle_ept_violation(struct kvm_vcpu *vcpu)
5123{
5124        unsigned long exit_qualification;
5125        gpa_t gpa;
5126        u64 error_code;
5127
5128        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5129
5130        /*
5131         * EPT violation happened while executing iret from NMI,
5132         * "blocked by NMI" bit has to be set before next VM entry.
5133         * There are errata that may cause this bit to not be set:
5134         * AAK134, BY25.
5135         */
5136        if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5137                        enable_vnmi &&
5138                        (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5139                vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5140
5141        gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5142        trace_kvm_page_fault(gpa, exit_qualification);
5143
5144        /* Is it a read fault? */
5145        error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5146                     ? PFERR_USER_MASK : 0;
5147        /* Is it a write fault? */
5148        error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5149                      ? PFERR_WRITE_MASK : 0;
5150        /* Is it a fetch fault? */
5151        error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5152                      ? PFERR_FETCH_MASK : 0;
5153        /* ept page table entry is present? */
5154        error_code |= (exit_qualification &
5155                       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5156                        EPT_VIOLATION_EXECUTABLE))
5157                      ? PFERR_PRESENT_MASK : 0;
5158
5159        error_code |= (exit_qualification & 0x100) != 0 ?
5160               PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5161
5162        vcpu->arch.exit_qualification = exit_qualification;
5163        return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5164}
5165
5166static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5167{
5168        gpa_t gpa;
5169
5170        /*
5171         * A nested guest cannot optimize MMIO vmexits, because we have an
5172         * nGPA here instead of the required GPA.
5173         */
5174        gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5175        if (!is_guest_mode(vcpu) &&
5176            !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5177                trace_kvm_fast_mmio(gpa);
5178                return kvm_skip_emulated_instruction(vcpu);
5179        }
5180
5181        return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5182}
5183
5184static int handle_nmi_window(struct kvm_vcpu *vcpu)
5185{
5186        WARN_ON_ONCE(!enable_vnmi);
5187        exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
5188        ++vcpu->stat.nmi_window_exits;
5189        kvm_make_request(KVM_REQ_EVENT, vcpu);
5190
5191        return 1;
5192}
5193
5194static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5195{
5196        struct vcpu_vmx *vmx = to_vmx(vcpu);
5197        bool intr_window_requested;
5198        unsigned count = 130;
5199
5200        /*
5201         * We should never reach the point where we are emulating L2
5202         * due to invalid guest state as that means we incorrectly
5203         * allowed a nested VMEntry with an invalid vmcs12.
5204         */
5205        WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5206
5207        intr_window_requested = exec_controls_get(vmx) &
5208                                CPU_BASED_VIRTUAL_INTR_PENDING;
5209
5210        while (vmx->emulation_required && count-- != 0) {
5211                if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5212                        return handle_interrupt_window(&vmx->vcpu);
5213
5214                if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5215                        return 1;
5216
5217                if (!kvm_emulate_instruction(vcpu, 0))
5218                        return 0;
5219
5220                if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5221                    vcpu->arch.exception.pending) {
5222                        vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5223                        vcpu->run->internal.suberror =
5224                                                KVM_INTERNAL_ERROR_EMULATION;
5225                        vcpu->run->internal.ndata = 0;
5226                        return 0;
5227                }
5228
5229                if (vcpu->arch.halt_request) {
5230                        vcpu->arch.halt_request = 0;
5231                        return kvm_vcpu_halt(vcpu);
5232                }
5233
5234                /*
5235                 * Note, return 1 and not 0, vcpu_run() is responsible for
5236                 * morphing the pending signal into the proper return code.
5237                 */
5238                if (signal_pending(current))
5239                        return 1;
5240
5241                if (need_resched())
5242                        schedule();
5243        }
5244
5245        return 1;
5246}
5247
5248static void grow_ple_window(struct kvm_vcpu *vcpu)
5249{
5250        struct vcpu_vmx *vmx = to_vmx(vcpu);
5251        unsigned int old = vmx->ple_window;
5252
5253        vmx->ple_window = __grow_ple_window(old, ple_window,
5254                                            ple_window_grow,
5255                                            ple_window_max);
5256
5257        if (vmx->ple_window != old) {
5258                vmx->ple_window_dirty = true;
5259                trace_kvm_ple_window_update(vcpu->vcpu_id,
5260                                            vmx->ple_window, old);
5261        }
5262}
5263
5264static void shrink_ple_window(struct kvm_vcpu *vcpu)
5265{
5266        struct vcpu_vmx *vmx = to_vmx(vcpu);
5267        unsigned int old = vmx->ple_window;
5268
5269        vmx->ple_window = __shrink_ple_window(old, ple_window,
5270                                              ple_window_shrink,
5271                                              ple_window);
5272
5273        if (vmx->ple_window != old) {
5274                vmx->ple_window_dirty = true;
5275                trace_kvm_ple_window_update(vcpu->vcpu_id,
5276                                            vmx->ple_window, old);
5277        }
5278}
5279
5280/*
5281 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5282 */
5283static void wakeup_handler(void)
5284{
5285        struct kvm_vcpu *vcpu;
5286        int cpu = smp_processor_id();
5287
5288        spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5289        list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5290                        blocked_vcpu_list) {
5291                struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5292
5293                if (pi_test_on(pi_desc) == 1)
5294                        kvm_vcpu_kick(vcpu);
5295        }
5296        spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5297}
5298
5299static void vmx_enable_tdp(void)
5300{
5301        kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5302                enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5303                enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5304                0ull, VMX_EPT_EXECUTABLE_MASK,
5305                cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5306                VMX_EPT_RWX_MASK, 0ull);
5307
5308        ept_set_mmio_spte_mask();
5309        kvm_enable_tdp();
5310}
5311
5312/*
5313 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5314 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5315 */
5316static int handle_pause(struct kvm_vcpu *vcpu)
5317{
5318        if (!kvm_pause_in_guest(vcpu->kvm))
5319                grow_ple_window(vcpu);
5320
5321        /*
5322         * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5323         * VM-execution control is ignored if CPL > 0. OTOH, KVM
5324         * never set PAUSE_EXITING and just set PLE if supported,
5325         * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5326         */
5327        kvm_vcpu_on_spin(vcpu, true);
5328        return kvm_skip_emulated_instruction(vcpu);
5329}
5330
5331static int handle_nop(struct kvm_vcpu *vcpu)
5332{
5333        return kvm_skip_emulated_instruction(vcpu);
5334}
5335
5336static int handle_mwait(struct kvm_vcpu *vcpu)
5337{
5338        printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5339        return handle_nop(vcpu);
5340}
5341
5342static int handle_invalid_op(struct kvm_vcpu *vcpu)
5343{
5344        kvm_queue_exception(vcpu, UD_VECTOR);
5345        return 1;
5346}
5347
5348static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5349{
5350        return 1;
5351}
5352
5353static int handle_monitor(struct kvm_vcpu *vcpu)
5354{
5355        printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5356        return handle_nop(vcpu);
5357}
5358
5359static int handle_invpcid(struct kvm_vcpu *vcpu)
5360{
5361        u32 vmx_instruction_info;
5362        unsigned long type;
5363        bool pcid_enabled;
5364        gva_t gva;
5365        struct x86_exception e;
5366        unsigned i;
5367        unsigned long roots_to_free = 0;
5368        struct {
5369                u64 pcid;
5370                u64 gla;
5371        } operand;
5372
5373        if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5374                kvm_queue_exception(vcpu, UD_VECTOR);
5375                return 1;
5376        }
5377
5378        vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5379        type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5380
5381        if (type > 3) {
5382                kvm_inject_gp(vcpu, 0);
5383                return 1;
5384        }
5385
5386        /* According to the Intel instruction reference, the memory operand
5387         * is read even if it isn't needed (e.g., for type==all)
5388         */
5389        if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5390                                vmx_instruction_info, false,
5391                                sizeof(operand), &gva))
5392                return 1;
5393
5394        if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5395                kvm_inject_page_fault(vcpu, &e);
5396                return 1;
5397        }
5398
5399        if (operand.pcid >> 12 != 0) {
5400                kvm_inject_gp(vcpu, 0);
5401                return 1;
5402        }
5403
5404        pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5405
5406        switch (type) {
5407        case INVPCID_TYPE_INDIV_ADDR:
5408                if ((!pcid_enabled && (operand.pcid != 0)) ||
5409                    is_noncanonical_address(operand.gla, vcpu)) {
5410                        kvm_inject_gp(vcpu, 0);
5411                        return 1;
5412                }
5413                kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5414                return kvm_skip_emulated_instruction(vcpu);
5415
5416        case INVPCID_TYPE_SINGLE_CTXT:
5417                if (!pcid_enabled && (operand.pcid != 0)) {
5418                        kvm_inject_gp(vcpu, 0);
5419                        return 1;
5420                }
5421
5422                if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5423                        kvm_mmu_sync_roots(vcpu);
5424                        kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5425                }
5426
5427                for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5428                        if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5429                            == operand.pcid)
5430                                roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5431
5432                kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5433                /*
5434                 * If neither the current cr3 nor any of the prev_roots use the
5435                 * given PCID, then nothing needs to be done here because a
5436                 * resync will happen anyway before switching to any other CR3.
5437                 */
5438
5439                return kvm_skip_emulated_instruction(vcpu);
5440
5441        case INVPCID_TYPE_ALL_NON_GLOBAL:
5442                /*
5443                 * Currently, KVM doesn't mark global entries in the shadow
5444                 * page tables, so a non-global flush just degenerates to a
5445                 * global flush. If needed, we could optimize this later by
5446                 * keeping track of global entries in shadow page tables.
5447                 */
5448
5449                /* fall-through */
5450        case INVPCID_TYPE_ALL_INCL_GLOBAL:
5451                kvm_mmu_unload(vcpu);
5452                return kvm_skip_emulated_instruction(vcpu);
5453
5454        default:
5455                BUG(); /* We have already checked above that type <= 3 */
5456        }
5457}
5458
5459static int handle_pml_full(struct kvm_vcpu *vcpu)
5460{
5461        unsigned long exit_qualification;
5462
5463        trace_kvm_pml_full(vcpu->vcpu_id);
5464
5465        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5466
5467        /*
5468         * PML buffer FULL happened while executing iret from NMI,
5469         * "blocked by NMI" bit has to be set before next VM entry.
5470         */
5471        if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5472                        enable_vnmi &&
5473                        (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5474                vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5475                                GUEST_INTR_STATE_NMI);
5476
5477        /*
5478         * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5479         * here.., and there's no userspace involvement needed for PML.
5480         */
5481        return 1;
5482}
5483
5484static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5485{
5486        struct vcpu_vmx *vmx = to_vmx(vcpu);
5487
5488        if (!vmx->req_immediate_exit &&
5489            !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5490                kvm_lapic_expired_hv_timer(vcpu);
5491
5492        return 1;
5493}
5494
5495/*
5496 * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5497 * are overwritten by nested_vmx_setup() when nested=1.
5498 */
5499static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5500{
5501        kvm_queue_exception(vcpu, UD_VECTOR);
5502        return 1;
5503}
5504
5505static int handle_encls(struct kvm_vcpu *vcpu)
5506{
5507        /*
5508         * SGX virtualization is not yet supported.  There is no software
5509         * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5510         * to prevent the guest from executing ENCLS.
5511         */
5512        kvm_queue_exception(vcpu, UD_VECTOR);
5513        return 1;
5514}
5515
5516/*
5517 * The exit handlers return 1 if the exit was handled fully and guest execution
5518 * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5519 * to be done to userspace and return 0.
5520 */
5521static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5522        [EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5523        [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5524        [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5525        [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5526        [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5527        [EXIT_REASON_CR_ACCESS]               = handle_cr,
5528        [EXIT_REASON_DR_ACCESS]               = handle_dr,
5529        [EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5530        [EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5531        [EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5532        [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
5533        [EXIT_REASON_HLT]                     = kvm_emulate_halt,
5534        [EXIT_REASON_INVD]                    = handle_invd,
5535        [EXIT_REASON_INVLPG]                  = handle_invlpg,
5536        [EXIT_REASON_RDPMC]                   = handle_rdpmc,
5537        [EXIT_REASON_VMCALL]                  = handle_vmcall,
5538        [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
5539        [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
5540        [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
5541        [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
5542        [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
5543        [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
5544        [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
5545        [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
5546        [EXIT_REASON_VMON]                    = handle_vmx_instruction,
5547        [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5548        [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5549        [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5550        [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5551        [EXIT_REASON_WBINVD]                  = handle_wbinvd,
5552        [EXIT_REASON_XSETBV]                  = handle_xsetbv,
5553        [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5554        [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5555        [EXIT_REASON_GDTR_IDTR]               = handle_desc,
5556        [EXIT_REASON_LDTR_TR]                 = handle_desc,
5557        [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5558        [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5559        [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5560        [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
5561        [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5562        [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5563        [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5564        [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5565        [EXIT_REASON_RDRAND]                  = handle_invalid_op,
5566        [EXIT_REASON_RDSEED]                  = handle_invalid_op,
5567        [EXIT_REASON_PML_FULL]                = handle_pml_full,
5568        [EXIT_REASON_INVPCID]                 = handle_invpcid,
5569        [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
5570        [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
5571        [EXIT_REASON_ENCLS]                   = handle_encls,
5572};
5573
5574static const int kvm_vmx_max_exit_handlers =
5575        ARRAY_SIZE(kvm_vmx_exit_handlers);
5576
5577static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5578{
5579        *info1 = vmcs_readl(EXIT_QUALIFICATION);
5580        *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5581}
5582
5583static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5584{
5585        if (vmx->pml_pg) {
5586                __free_page(vmx->pml_pg);
5587                vmx->pml_pg = NULL;
5588        }
5589}
5590
5591static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5592{
5593        struct vcpu_vmx *vmx = to_vmx(vcpu);
5594        u64 *pml_buf;
5595        u16 pml_idx;
5596
5597        pml_idx = vmcs_read16(GUEST_PML_INDEX);
5598
5599        /* Do nothing if PML buffer is empty */
5600        if (pml_idx == (PML_ENTITY_NUM - 1))
5601                return;
5602
5603        /* PML index always points to next available PML buffer entity */
5604        if (pml_idx >= PML_ENTITY_NUM)
5605                pml_idx = 0;
5606        else
5607                pml_idx++;
5608
5609        pml_buf = page_address(vmx->pml_pg);
5610        for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5611                u64 gpa;
5612
5613                gpa = pml_buf[pml_idx];
5614                WARN_ON(gpa & (PAGE_SIZE - 1));
5615                kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5616        }
5617
5618        /* reset PML index */
5619        vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5620}
5621
5622/*
5623 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5624 * Called before reporting dirty_bitmap to userspace.
5625 */
5626static void kvm_flush_pml_buffers(struct kvm *kvm)
5627{
5628        int i;
5629        struct kvm_vcpu *vcpu;
5630        /*
5631         * We only need to kick vcpu out of guest mode here, as PML buffer
5632         * is flushed at beginning of all VMEXITs, and it's obvious that only
5633         * vcpus running in guest are possible to have unflushed GPAs in PML
5634         * buffer.
5635         */
5636        kvm_for_each_vcpu(i, vcpu, kvm)
5637                kvm_vcpu_kick(vcpu);
5638}
5639
5640static void vmx_dump_sel(char *name, uint32_t sel)
5641{
5642        pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5643               name, vmcs_read16(sel),
5644               vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5645               vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5646               vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5647}
5648
5649static void vmx_dump_dtsel(char *name, uint32_t limit)
5650{
5651        pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5652               name, vmcs_read32(limit),
5653               vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5654}
5655
5656void dump_vmcs(void)
5657{
5658        u32 vmentry_ctl, vmexit_ctl;
5659        u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5660        unsigned long cr4;
5661        u64 efer;
5662        int i, n;
5663
5664        if (!dump_invalid_vmcs) {
5665                pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5666                return;
5667        }
5668
5669        vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5670        vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5671        cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5672        pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5673        cr4 = vmcs_readl(GUEST_CR4);
5674        efer = vmcs_read64(GUEST_IA32_EFER);
5675        secondary_exec_control = 0;
5676        if (cpu_has_secondary_exec_ctrls())
5677                secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5678
5679        pr_err("*** Guest State ***\n");
5680        pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5681               vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5682               vmcs_readl(CR0_GUEST_HOST_MASK));
5683        pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5684               cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5685        pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5686        if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5687            (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5688        {
5689                pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5690                       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5691                pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5692                       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5693        }
5694        pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5695               vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5696        pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5697               vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5698        pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5699               vmcs_readl(GUEST_SYSENTER_ESP),
5700               vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5701        vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5702        vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5703        vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5704        vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5705        vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5706        vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5707        vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5708        vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5709        vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5710        vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5711        if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5712            (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5713                pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5714                       efer, vmcs_read64(GUEST_IA32_PAT));
5715        pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5716               vmcs_read64(GUEST_IA32_DEBUGCTL),
5717               vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5718        if (cpu_has_load_perf_global_ctrl() &&
5719            vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5720                pr_err("PerfGlobCtl = 0x%016llx\n",
5721                       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5722        if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5723                pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5724        pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5725               vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5726               vmcs_read32(GUEST_ACTIVITY_STATE));
5727        if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5728                pr_err("InterruptStatus = %04x\n",
5729                       vmcs_read16(GUEST_INTR_STATUS));
5730
5731        pr_err("*** Host State ***\n");
5732        pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5733               vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5734        pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5735               vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5736               vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5737               vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5738               vmcs_read16(HOST_TR_SELECTOR));
5739        pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5740               vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5741               vmcs_readl(HOST_TR_BASE));
5742        pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5743               vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5744        pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5745               vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5746               vmcs_readl(HOST_CR4));
5747        pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5748               vmcs_readl(HOST_IA32_SYSENTER_ESP),
5749               vmcs_read32(HOST_IA32_SYSENTER_CS),
5750               vmcs_readl(HOST_IA32_SYSENTER_EIP));
5751        if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5752                pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5753                       vmcs_read64(HOST_IA32_EFER),
5754                       vmcs_read64(HOST_IA32_PAT));
5755        if (cpu_has_load_perf_global_ctrl() &&
5756            vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5757                pr_err("PerfGlobCtl = 0x%016llx\n",
5758                       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5759
5760        pr_err("*** Control State ***\n");
5761        pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5762               pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5763        pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5764        pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5765               vmcs_read32(EXCEPTION_BITMAP),
5766               vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5767               vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5768        pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5769               vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5770               vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5771               vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5772        pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5773               vmcs_read32(VM_EXIT_INTR_INFO),
5774               vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5775               vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5776        pr_err("        reason=%08x qualification=%016lx\n",
5777               vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5778        pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5779               vmcs_read32(IDT_VECTORING_INFO_FIELD),
5780               vmcs_read32(IDT_VECTORING_ERROR_CODE));
5781        pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5782        if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5783                pr_err("TSC Multiplier = 0x%016llx\n",
5784                       vmcs_read64(TSC_MULTIPLIER));
5785        if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5786                if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5787                        u16 status = vmcs_read16(GUEST_INTR_STATUS);
5788                        pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5789                }
5790                pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5791                if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5792                        pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5793                pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5794        }
5795        if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5796                pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5797        if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5798                pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5799        n = vmcs_read32(CR3_TARGET_COUNT);
5800        for (i = 0; i + 1 < n; i += 4)
5801                pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5802                       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5803                       i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5804        if (i < n)
5805                pr_err("CR3 target%u=%016lx\n",
5806                       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5807        if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5808                pr_err("PLE Gap=%08x Window=%08x\n",
5809                       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5810        if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5811                pr_err("Virtual processor ID = 0x%04x\n",
5812                       vmcs_read16(VIRTUAL_PROCESSOR_ID));
5813}
5814
5815/*
5816 * The guest has exited.  See if we can fix it or if we need userspace
5817 * assistance.
5818 */
5819static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5820{
5821        struct vcpu_vmx *vmx = to_vmx(vcpu);
5822        u32 exit_reason = vmx->exit_reason;
5823        u32 vectoring_info = vmx->idt_vectoring_info;
5824
5825        trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5826
5827        /*
5828         * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5829         * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5830         * querying dirty_bitmap, we only need to kick all vcpus out of guest
5831         * mode as if vcpus is in root mode, the PML buffer must has been
5832         * flushed already.
5833         */
5834        if (enable_pml)
5835                vmx_flush_pml_buffer(vcpu);
5836
5837        /* If guest state is invalid, start emulating */
5838        if (vmx->emulation_required)
5839                return handle_invalid_guest_state(vcpu);
5840
5841        if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
5842                return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5843
5844        if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5845                dump_vmcs();
5846                vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5847                vcpu->run->fail_entry.hardware_entry_failure_reason
5848                        = exit_reason;
5849                return 0;
5850        }
5851
5852        if (unlikely(vmx->fail)) {
5853                dump_vmcs();
5854                vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5855                vcpu->run->fail_entry.hardware_entry_failure_reason
5856                        = vmcs_read32(VM_INSTRUCTION_ERROR);
5857                return 0;
5858        }
5859
5860        /*
5861         * Note:
5862         * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5863         * delivery event since it indicates guest is accessing MMIO.
5864         * The vm-exit can be triggered again after return to guest that
5865         * will cause infinite loop.
5866         */
5867        if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5868                        (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5869                        exit_reason != EXIT_REASON_EPT_VIOLATION &&
5870                        exit_reason != EXIT_REASON_PML_FULL &&
5871                        exit_reason != EXIT_REASON_TASK_SWITCH)) {
5872                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5873                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5874                vcpu->run->internal.ndata = 3;
5875                vcpu->run->internal.data[0] = vectoring_info;
5876                vcpu->run->internal.data[1] = exit_reason;
5877                vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5878                if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5879                        vcpu->run->internal.ndata++;
5880                        vcpu->run->internal.data[3] =
5881                                vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5882                }
5883                return 0;
5884        }
5885
5886        if (unlikely(!enable_vnmi &&
5887                     vmx->loaded_vmcs->soft_vnmi_blocked)) {
5888                if (vmx_interrupt_allowed(vcpu)) {
5889                        vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5890                } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5891                           vcpu->arch.nmi_pending) {
5892                        /*
5893                         * This CPU don't support us in finding the end of an
5894                         * NMI-blocked window if the guest runs with IRQs
5895                         * disabled. So we pull the trigger after 1 s of
5896                         * futile waiting, but inform the user about this.
5897                         */
5898                        printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5899                               "state on VCPU %d after 1 s timeout\n",
5900                               __func__, vcpu->vcpu_id);
5901                        vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5902                }
5903        }
5904
5905        if (exit_reason < kvm_vmx_max_exit_handlers
5906            && kvm_vmx_exit_handlers[exit_reason]) {
5907#ifdef CONFIG_RETPOLINE
5908                if (exit_reason == EXIT_REASON_MSR_WRITE)
5909                        return kvm_emulate_wrmsr(vcpu);
5910                else if (exit_reason == EXIT_REASON_PREEMPTION_TIMER)
5911                        return handle_preemption_timer(vcpu);
5912                else if (exit_reason == EXIT_REASON_PENDING_INTERRUPT)
5913                        return handle_interrupt_window(vcpu);
5914                else if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
5915                        return handle_external_interrupt(vcpu);
5916                else if (exit_reason == EXIT_REASON_HLT)
5917                        return kvm_emulate_halt(vcpu);
5918                else if (exit_reason == EXIT_REASON_EPT_MISCONFIG)
5919                        return handle_ept_misconfig(vcpu);
5920#endif
5921                return kvm_vmx_exit_handlers[exit_reason](vcpu);
5922        } else {
5923                vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
5924                                exit_reason);
5925                dump_vmcs();
5926                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5927                vcpu->run->internal.suberror =
5928                        KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
5929                vcpu->run->internal.ndata = 1;
5930                vcpu->run->internal.data[0] = exit_reason;
5931                return 0;
5932        }
5933}
5934
5935/*
5936 * Software based L1D cache flush which is used when microcode providing
5937 * the cache control MSR is not loaded.
5938 *
5939 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5940 * flush it is required to read in 64 KiB because the replacement algorithm
5941 * is not exactly LRU. This could be sized at runtime via topology
5942 * information but as all relevant affected CPUs have 32KiB L1D cache size
5943 * there is no point in doing so.
5944 */
5945static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
5946{
5947        int size = PAGE_SIZE << L1D_CACHE_ORDER;
5948
5949        /*
5950         * This code is only executed when the the flush mode is 'cond' or
5951         * 'always'
5952         */
5953        if (static_branch_likely(&vmx_l1d_flush_cond)) {
5954                bool flush_l1d;
5955
5956                /*
5957                 * Clear the per-vcpu flush bit, it gets set again
5958                 * either from vcpu_run() or from one of the unsafe
5959                 * VMEXIT handlers.
5960                 */
5961                flush_l1d = vcpu->arch.l1tf_flush_l1d;
5962                vcpu->arch.l1tf_flush_l1d = false;
5963
5964                /*
5965                 * Clear the per-cpu flush bit, it gets set again from
5966                 * the interrupt handlers.
5967                 */
5968                flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
5969                kvm_clear_cpu_l1tf_flush_l1d();
5970
5971                if (!flush_l1d)
5972                        return;
5973        }
5974
5975        vcpu->stat.l1d_flush++;
5976
5977        if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
5978                wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
5979                return;
5980        }
5981
5982        asm volatile(
5983                /* First ensure the pages are in the TLB */
5984                "xorl   %%eax, %%eax\n"
5985                ".Lpopulate_tlb:\n\t"
5986                "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5987                "addl   $4096, %%eax\n\t"
5988                "cmpl   %%eax, %[size]\n\t"
5989                "jne    .Lpopulate_tlb\n\t"
5990                "xorl   %%eax, %%eax\n\t"
5991                "cpuid\n\t"
5992                /* Now fill the cache */
5993                "xorl   %%eax, %%eax\n"
5994                ".Lfill_cache:\n"
5995                "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5996                "addl   $64, %%eax\n\t"
5997                "cmpl   %%eax, %[size]\n\t"
5998                "jne    .Lfill_cache\n\t"
5999                "lfence\n"
6000                :: [flush_pages] "r" (vmx_l1d_flush_pages),
6001                    [size] "r" (size)
6002                : "eax", "ebx", "ecx", "edx");
6003}
6004
6005static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6006{
6007        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6008        int tpr_threshold;
6009
6010        if (is_guest_mode(vcpu) &&
6011                nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6012                return;
6013
6014        tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6015        if (is_guest_mode(vcpu))
6016                to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6017        else
6018                vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6019}
6020
6021void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6022{
6023        struct vcpu_vmx *vmx = to_vmx(vcpu);
6024        u32 sec_exec_control;
6025
6026        if (!lapic_in_kernel(vcpu))
6027                return;
6028
6029        if (!flexpriority_enabled &&
6030            !cpu_has_vmx_virtualize_x2apic_mode())
6031                return;
6032
6033        /* Postpone execution until vmcs01 is the current VMCS. */
6034        if (is_guest_mode(vcpu)) {
6035                vmx->nested.change_vmcs01_virtual_apic_mode = true;
6036                return;
6037        }
6038
6039        sec_exec_control = secondary_exec_controls_get(vmx);
6040        sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6041                              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6042
6043        switch (kvm_get_apic_mode(vcpu)) {
6044        case LAPIC_MODE_INVALID:
6045                WARN_ONCE(true, "Invalid local APIC state");
6046        case LAPIC_MODE_DISABLED:
6047                break;
6048        case LAPIC_MODE_XAPIC:
6049                if (flexpriority_enabled) {
6050                        sec_exec_control |=
6051                                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6052                        vmx_flush_tlb(vcpu, true);
6053                }
6054                break;
6055        case LAPIC_MODE_X2APIC:
6056                if (cpu_has_vmx_virtualize_x2apic_mode())
6057                        sec_exec_control |=
6058                                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6059                break;
6060        }
6061        secondary_exec_controls_set(vmx, sec_exec_control);
6062
6063        vmx_update_msr_bitmap(vcpu);
6064}
6065
6066static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
6067{
6068        if (!is_guest_mode(vcpu)) {
6069                vmcs_write64(APIC_ACCESS_ADDR, hpa);
6070                vmx_flush_tlb(vcpu, true);
6071        }
6072}
6073
6074static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6075{
6076        u16 status;
6077        u8 old;
6078
6079        if (max_isr == -1)
6080                max_isr = 0;
6081
6082        status = vmcs_read16(GUEST_INTR_STATUS);
6083        old = status >> 8;
6084        if (max_isr != old) {
6085                status &= 0xff;
6086                status |= max_isr << 8;
6087                vmcs_write16(GUEST_INTR_STATUS, status);
6088        }
6089}
6090
6091static void vmx_set_rvi(int vector)
6092{
6093        u16 status;
6094        u8 old;
6095
6096        if (vector == -1)
6097                vector = 0;
6098
6099        status = vmcs_read16(GUEST_INTR_STATUS);
6100        old = (u8)status & 0xff;
6101        if ((u8)vector != old) {
6102                status &= ~0xff;
6103                status |= (u8)vector;
6104                vmcs_write16(GUEST_INTR_STATUS, status);
6105        }
6106}
6107
6108static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6109{
6110        /*
6111         * When running L2, updating RVI is only relevant when
6112         * vmcs12 virtual-interrupt-delivery enabled.
6113         * However, it can be enabled only when L1 also
6114         * intercepts external-interrupts and in that case
6115         * we should not update vmcs02 RVI but instead intercept
6116         * interrupt. Therefore, do nothing when running L2.
6117         */
6118        if (!is_guest_mode(vcpu))
6119                vmx_set_rvi(max_irr);
6120}
6121
6122static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6123{
6124        struct vcpu_vmx *vmx = to_vmx(vcpu);
6125        int max_irr;
6126        bool max_irr_updated;
6127
6128        WARN_ON(!vcpu->arch.apicv_active);
6129        if (pi_test_on(&vmx->pi_desc)) {
6130                pi_clear_on(&vmx->pi_desc);
6131                /*
6132                 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6133                 * But on x86 this is just a compiler barrier anyway.
6134                 */
6135                smp_mb__after_atomic();
6136                max_irr_updated =
6137                        kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6138
6139                /*
6140                 * If we are running L2 and L1 has a new pending interrupt
6141                 * which can be injected, we should re-evaluate
6142                 * what should be done with this new L1 interrupt.
6143                 * If L1 intercepts external-interrupts, we should
6144                 * exit from L2 to L1. Otherwise, interrupt should be
6145                 * delivered directly to L2.
6146                 */
6147                if (is_guest_mode(vcpu) && max_irr_updated) {
6148                        if (nested_exit_on_intr(vcpu))
6149                                kvm_vcpu_exiting_guest_mode(vcpu);
6150                        else
6151                                kvm_make_request(KVM_REQ_EVENT, vcpu);
6152                }
6153        } else {
6154                max_irr = kvm_lapic_find_highest_irr(vcpu);
6155        }
6156        vmx_hwapic_irr_update(vcpu, max_irr);
6157        return max_irr;
6158}
6159
6160static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6161{
6162        struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6163
6164        return pi_test_on(pi_desc) ||
6165                (pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc));
6166}
6167
6168static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6169{
6170        if (!kvm_vcpu_apicv_active(vcpu))
6171                return;
6172
6173        vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6174        vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6175        vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6176        vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6177}
6178
6179static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6180{
6181        struct vcpu_vmx *vmx = to_vmx(vcpu);
6182
6183        pi_clear_on(&vmx->pi_desc);
6184        memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6185}
6186
6187static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6188{
6189        vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6190
6191        /* if exit due to PF check for async PF */
6192        if (is_page_fault(vmx->exit_intr_info))
6193                vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6194
6195        /* Handle machine checks before interrupts are enabled */
6196        if (is_machine_check(vmx->exit_intr_info))
6197                kvm_machine_check();
6198
6199        /* We need to handle NMIs before interrupts are enabled */
6200        if (is_nmi(vmx->exit_intr_info)) {
6201                kvm_before_interrupt(&vmx->vcpu);
6202                asm("int $2");
6203                kvm_after_interrupt(&vmx->vcpu);
6204        }
6205}
6206
6207static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6208{
6209        unsigned int vector;
6210        unsigned long entry;
6211#ifdef CONFIG_X86_64
6212        unsigned long tmp;
6213#endif
6214        gate_desc *desc;
6215        u32 intr_info;
6216
6217        intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6218        if (WARN_ONCE(!is_external_intr(intr_info),
6219            "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6220                return;
6221
6222        vector = intr_info & INTR_INFO_VECTOR_MASK;
6223        desc = (gate_desc *)host_idt_base + vector;
6224        entry = gate_offset(desc);
6225
6226        kvm_before_interrupt(vcpu);
6227
6228        asm volatile(
6229#ifdef CONFIG_X86_64
6230                "mov %%" _ASM_SP ", %[sp]\n\t"
6231                "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6232                "push $%c[ss]\n\t"
6233                "push %[sp]\n\t"
6234#endif
6235                "pushf\n\t"
6236                __ASM_SIZE(push) " $%c[cs]\n\t"
6237                CALL_NOSPEC
6238                :
6239#ifdef CONFIG_X86_64
6240                [sp]"=&r"(tmp),
6241#endif
6242                ASM_CALL_CONSTRAINT
6243                :
6244                THUNK_TARGET(entry),
6245                [ss]"i"(__KERNEL_DS),
6246                [cs]"i"(__KERNEL_CS)
6247        );
6248
6249        kvm_after_interrupt(vcpu);
6250}
6251STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6252
6253static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6254{
6255        struct vcpu_vmx *vmx = to_vmx(vcpu);
6256
6257        if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6258                handle_external_interrupt_irqoff(vcpu);
6259        else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6260                handle_exception_nmi_irqoff(vmx);
6261}
6262
6263static bool vmx_has_emulated_msr(int index)
6264{
6265        switch (index) {
6266        case MSR_IA32_SMBASE:
6267                /*
6268                 * We cannot do SMM unless we can run the guest in big
6269                 * real mode.
6270                 */
6271                return enable_unrestricted_guest || emulate_invalid_guest_state;
6272        case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6273                return nested;
6274        case MSR_AMD64_VIRT_SPEC_CTRL:
6275                /* This is AMD only.  */
6276                return false;
6277        default:
6278                return true;
6279        }
6280}
6281
6282static bool vmx_pt_supported(void)
6283{
6284        return pt_mode == PT_MODE_HOST_GUEST;
6285}
6286
6287static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6288{
6289        u32 exit_intr_info;
6290        bool unblock_nmi;
6291        u8 vector;
6292        bool idtv_info_valid;
6293
6294        idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6295
6296        if (enable_vnmi) {
6297                if (vmx->loaded_vmcs->nmi_known_unmasked)
6298                        return;
6299                /*
6300                 * Can't use vmx->exit_intr_info since we're not sure what
6301                 * the exit reason is.
6302                 */
6303                exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6304                unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6305                vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6306                /*
6307                 * SDM 3: 27.7.1.2 (September 2008)
6308                 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6309                 * a guest IRET fault.
6310                 * SDM 3: 23.2.2 (September 2008)
6311                 * Bit 12 is undefined in any of the following cases:
6312                 *  If the VM exit sets the valid bit in the IDT-vectoring
6313                 *   information field.
6314                 *  If the VM exit is due to a double fault.
6315                 */
6316                if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6317                    vector != DF_VECTOR && !idtv_info_valid)
6318                        vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6319                                      GUEST_INTR_STATE_NMI);
6320                else
6321                        vmx->loaded_vmcs->nmi_known_unmasked =
6322                                !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6323                                  & GUEST_INTR_STATE_NMI);
6324        } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6325                vmx->loaded_vmcs->vnmi_blocked_time +=
6326                        ktime_to_ns(ktime_sub(ktime_get(),
6327                                              vmx->loaded_vmcs->entry_time));
6328}
6329
6330static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6331                                      u32 idt_vectoring_info,
6332                                      int instr_len_field,
6333                                      int error_code_field)
6334{
6335        u8 vector;
6336        int type;
6337        bool idtv_info_valid;
6338
6339        idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6340
6341        vcpu->arch.nmi_injected = false;
6342        kvm_clear_exception_queue(vcpu);
6343        kvm_clear_interrupt_queue(vcpu);
6344
6345        if (!idtv_info_valid)
6346                return;
6347
6348        kvm_make_request(KVM_REQ_EVENT, vcpu);
6349
6350        vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6351        type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6352
6353        switch (type) {
6354        case INTR_TYPE_NMI_INTR:
6355                vcpu->arch.nmi_injected = true;
6356                /*
6357                 * SDM 3: 27.7.1.2 (September 2008)
6358                 * Clear bit "block by NMI" before VM entry if a NMI
6359                 * delivery faulted.
6360                 */
6361                vmx_set_nmi_mask(vcpu, false);
6362                break;
6363        case INTR_TYPE_SOFT_EXCEPTION:
6364                vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6365                /* fall through */
6366        case INTR_TYPE_HARD_EXCEPTION:
6367                if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6368                        u32 err = vmcs_read32(error_code_field);
6369                        kvm_requeue_exception_e(vcpu, vector, err);
6370                } else
6371                        kvm_requeue_exception(vcpu, vector);
6372                break;
6373        case INTR_TYPE_SOFT_INTR:
6374                vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6375                /* fall through */
6376        case INTR_TYPE_EXT_INTR:
6377                kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6378                break;
6379        default:
6380                break;
6381        }
6382}
6383
6384static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6385{
6386        __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6387                                  VM_EXIT_INSTRUCTION_LEN,
6388                                  IDT_VECTORING_ERROR_CODE);
6389}
6390
6391static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6392{
6393        __vmx_complete_interrupts(vcpu,
6394                                  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6395                                  VM_ENTRY_INSTRUCTION_LEN,
6396                                  VM_ENTRY_EXCEPTION_ERROR_CODE);
6397
6398        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6399}
6400
6401static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6402{
6403        int i, nr_msrs;
6404        struct perf_guest_switch_msr *msrs;
6405
6406        msrs = perf_guest_get_msrs(&nr_msrs);
6407
6408        if (!msrs)
6409                return;
6410
6411        for (i = 0; i < nr_msrs; i++)
6412                if (msrs[i].host == msrs[i].guest)
6413                        clear_atomic_switch_msr(vmx, msrs[i].msr);
6414                else
6415                        add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6416                                        msrs[i].host, false);
6417}
6418
6419static void atomic_switch_umwait_control_msr(struct vcpu_vmx *vmx)
6420{
6421        u32 host_umwait_control;
6422
6423        if (!vmx_has_waitpkg(vmx))
6424                return;
6425
6426        host_umwait_control = get_umwait_control_msr();
6427
6428        if (vmx->msr_ia32_umwait_control != host_umwait_control)
6429                add_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL,
6430                        vmx->msr_ia32_umwait_control,
6431                        host_umwait_control, false);
6432        else
6433                clear_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL);
6434}
6435
6436static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6437{
6438        struct vcpu_vmx *vmx = to_vmx(vcpu);
6439        u64 tscl;
6440        u32 delta_tsc;
6441
6442        if (vmx->req_immediate_exit) {
6443                vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6444                vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6445        } else if (vmx->hv_deadline_tsc != -1) {
6446                tscl = rdtsc();
6447                if (vmx->hv_deadline_tsc > tscl)
6448                        /* set_hv_timer ensures the delta fits in 32-bits */
6449                        delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6450                                cpu_preemption_timer_multi);
6451                else
6452                        delta_tsc = 0;
6453
6454                vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6455                vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6456        } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6457                vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6458                vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6459        }
6460}
6461
6462void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6463{
6464        if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6465                vmx->loaded_vmcs->host_state.rsp = host_rsp;
6466                vmcs_writel(HOST_RSP, host_rsp);
6467        }
6468}
6469
6470bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6471
6472static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6473{
6474        struct vcpu_vmx *vmx = to_vmx(vcpu);
6475        unsigned long cr3, cr4;
6476
6477        /* Record the guest's net vcpu time for enforced NMI injections. */
6478        if (unlikely(!enable_vnmi &&
6479                     vmx->loaded_vmcs->soft_vnmi_blocked))
6480                vmx->loaded_vmcs->entry_time = ktime_get();
6481
6482        /* Don't enter VMX if guest state is invalid, let the exit handler
6483           start emulation until we arrive back to a valid state */
6484        if (vmx->emulation_required)
6485                return;
6486
6487        if (vmx->ple_window_dirty) {
6488                vmx->ple_window_dirty = false;
6489                vmcs_write32(PLE_WINDOW, vmx->ple_window);
6490        }
6491
6492        if (vmx->nested.need_vmcs12_to_shadow_sync)
6493                nested_sync_vmcs12_to_shadow(vcpu);
6494
6495        if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6496                vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6497        if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6498                vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6499
6500        cr3 = __get_current_cr3_fast();
6501        if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6502                vmcs_writel(HOST_CR3, cr3);
6503                vmx->loaded_vmcs->host_state.cr3 = cr3;
6504        }
6505
6506        cr4 = cr4_read_shadow();
6507        if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6508                vmcs_writel(HOST_CR4, cr4);
6509                vmx->loaded_vmcs->host_state.cr4 = cr4;
6510        }
6511
6512        /* When single-stepping over STI and MOV SS, we must clear the
6513         * corresponding interruptibility bits in the guest state. Otherwise
6514         * vmentry fails as it then expects bit 14 (BS) in pending debug
6515         * exceptions being set, but that's not correct for the guest debugging
6516         * case. */
6517        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6518                vmx_set_interrupt_shadow(vcpu, 0);
6519
6520        kvm_load_guest_xsave_state(vcpu);
6521
6522        if (static_cpu_has(X86_FEATURE_PKU) &&
6523            kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
6524            vcpu->arch.pkru != vmx->host_pkru)
6525                __write_pkru(vcpu->arch.pkru);
6526
6527        pt_guest_enter(vmx);
6528
6529        atomic_switch_perf_msrs(vmx);
6530        atomic_switch_umwait_control_msr(vmx);
6531
6532        if (enable_preemption_timer)
6533                vmx_update_hv_timer(vcpu);
6534
6535        if (lapic_in_kernel(vcpu) &&
6536                vcpu->arch.apic->lapic_timer.timer_advance_ns)
6537                kvm_wait_lapic_expire(vcpu);
6538
6539        /*
6540         * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6541         * it's non-zero. Since vmentry is serialising on affected CPUs, there
6542         * is no need to worry about the conditional branch over the wrmsr
6543         * being speculatively taken.
6544         */
6545        x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6546
6547        /* L1D Flush includes CPU buffer clear to mitigate MDS */
6548        if (static_branch_unlikely(&vmx_l1d_should_flush))
6549                vmx_l1d_flush(vcpu);
6550        else if (static_branch_unlikely(&mds_user_clear))
6551                mds_clear_cpu_buffers();
6552
6553        if (vcpu->arch.cr2 != read_cr2())
6554                write_cr2(vcpu->arch.cr2);
6555
6556        vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6557                                   vmx->loaded_vmcs->launched);
6558
6559        vcpu->arch.cr2 = read_cr2();
6560
6561        /*
6562         * We do not use IBRS in the kernel. If this vCPU has used the
6563         * SPEC_CTRL MSR it may have left it on; save the value and
6564         * turn it off. This is much more efficient than blindly adding
6565         * it to the atomic save/restore list. Especially as the former
6566         * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6567         *
6568         * For non-nested case:
6569         * If the L01 MSR bitmap does not intercept the MSR, then we need to
6570         * save it.
6571         *
6572         * For nested case:
6573         * If the L02 MSR bitmap does not intercept the MSR, then we need to
6574         * save it.
6575         */
6576        if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6577                vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6578
6579        x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6580
6581        /* All fields are clean at this point */
6582        if (static_branch_unlikely(&enable_evmcs))
6583                current_evmcs->hv_clean_fields |=
6584                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6585
6586        if (static_branch_unlikely(&enable_evmcs))
6587                current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6588
6589        /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6590        if (vmx->host_debugctlmsr)
6591                update_debugctlmsr(vmx->host_debugctlmsr);
6592
6593#ifndef CONFIG_X86_64
6594        /*
6595         * The sysexit path does not restore ds/es, so we must set them to
6596         * a reasonable value ourselves.
6597         *
6598         * We can't defer this to vmx_prepare_switch_to_host() since that
6599         * function may be executed in interrupt context, which saves and
6600         * restore segments around it, nullifying its effect.
6601         */
6602        loadsegment(ds, __USER_DS);
6603        loadsegment(es, __USER_DS);
6604#endif
6605
6606        vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6607                                  | (1 << VCPU_EXREG_RFLAGS)
6608                                  | (1 << VCPU_EXREG_PDPTR)
6609                                  | (1 << VCPU_EXREG_SEGMENTS)
6610                                  | (1 << VCPU_EXREG_CR3));
6611        vcpu->arch.regs_dirty = 0;
6612
6613        pt_guest_exit(vmx);
6614
6615        /*
6616         * eager fpu is enabled if PKEY is supported and CR4 is switched
6617         * back on host, so it is safe to read guest PKRU from current
6618         * XSAVE.
6619         */
6620        if (static_cpu_has(X86_FEATURE_PKU) &&
6621            kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
6622                vcpu->arch.pkru = rdpkru();
6623                if (vcpu->arch.pkru != vmx->host_pkru)
6624                        __write_pkru(vmx->host_pkru);
6625        }
6626
6627        kvm_load_host_xsave_state(vcpu);
6628
6629        vmx->nested.nested_run_pending = 0;
6630        vmx->idt_vectoring_info = 0;
6631
6632        vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6633        if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
6634                kvm_machine_check();
6635
6636        if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6637                return;
6638
6639        vmx->loaded_vmcs->launched = 1;
6640        vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6641
6642        vmx_recover_nmi_blocking(vmx);
6643        vmx_complete_interrupts(vmx);
6644}
6645
6646static struct kvm *vmx_vm_alloc(void)
6647{
6648        struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx),
6649                                            GFP_KERNEL_ACCOUNT | __GFP_ZERO,
6650                                            PAGE_KERNEL);
6651        return &kvm_vmx->kvm;
6652}
6653
6654static void vmx_vm_free(struct kvm *kvm)
6655{
6656        kfree(kvm->arch.hyperv.hv_pa_pg);
6657        vfree(to_kvm_vmx(kvm));
6658}
6659
6660static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6661{
6662        struct vcpu_vmx *vmx = to_vmx(vcpu);
6663
6664        if (enable_pml)
6665                vmx_destroy_pml_buffer(vmx);
6666        free_vpid(vmx->vpid);
6667        nested_vmx_free_vcpu(vcpu);
6668        free_loaded_vmcs(vmx->loaded_vmcs);
6669        kvm_vcpu_uninit(vcpu);
6670        kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6671        kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6672        kmem_cache_free(kvm_vcpu_cache, vmx);
6673}
6674
6675static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6676{
6677        int err;
6678        struct vcpu_vmx *vmx;
6679        unsigned long *msr_bitmap;
6680        int i, cpu;
6681
6682        BUILD_BUG_ON_MSG(offsetof(struct vcpu_vmx, vcpu) != 0,
6683                "struct kvm_vcpu must be at offset 0 for arch usercopy region");
6684
6685        vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
6686        if (!vmx)
6687                return ERR_PTR(-ENOMEM);
6688
6689        vmx->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
6690                        GFP_KERNEL_ACCOUNT);
6691        if (!vmx->vcpu.arch.user_fpu) {
6692                printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
6693                err = -ENOMEM;
6694                goto free_partial_vcpu;
6695        }
6696
6697        vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
6698                        GFP_KERNEL_ACCOUNT);
6699        if (!vmx->vcpu.arch.guest_fpu) {
6700                printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
6701                err = -ENOMEM;
6702                goto free_user_fpu;
6703        }
6704
6705        vmx->vpid = allocate_vpid();
6706
6707        err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6708        if (err)
6709                goto free_vcpu;
6710
6711        err = -ENOMEM;
6712
6713        /*
6714         * If PML is turned on, failure on enabling PML just results in failure
6715         * of creating the vcpu, therefore we can simplify PML logic (by
6716         * avoiding dealing with cases, such as enabling PML partially on vcpus
6717         * for the guest, etc.
6718         */
6719        if (enable_pml) {
6720                vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6721                if (!vmx->pml_pg)
6722                        goto uninit_vcpu;
6723        }
6724
6725        BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) != NR_SHARED_MSRS);
6726
6727        for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6728                u32 index = vmx_msr_index[i];
6729                u32 data_low, data_high;
6730                int j = vmx->nmsrs;
6731
6732                if (rdmsr_safe(index, &data_low, &data_high) < 0)
6733                        continue;
6734                if (wrmsr_safe(index, data_low, data_high) < 0)
6735                        continue;
6736
6737                vmx->guest_msrs[j].index = i;
6738                vmx->guest_msrs[j].data = 0;
6739                switch (index) {
6740                case MSR_IA32_TSX_CTRL:
6741                        /*
6742                         * No need to pass TSX_CTRL_CPUID_CLEAR through, so
6743                         * let's avoid changing CPUID bits under the host
6744                         * kernel's feet.
6745                         */
6746                        vmx->guest_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6747                        break;
6748                default:
6749                        vmx->guest_msrs[j].mask = -1ull;
6750                        break;
6751                }
6752                ++vmx->nmsrs;
6753        }
6754
6755        err = alloc_loaded_vmcs(&vmx->vmcs01);
6756        if (err < 0)
6757                goto free_pml;
6758
6759        msr_bitmap = vmx->vmcs01.msr_bitmap;
6760        vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6761        vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6762        vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6763        vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6764        vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6765        vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6766        vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6767        if (kvm_cstate_in_guest(kvm)) {
6768                vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
6769                vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6770                vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6771                vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6772        }
6773        vmx->msr_bitmap_mode = 0;
6774
6775        vmx->loaded_vmcs = &vmx->vmcs01;
6776        cpu = get_cpu();
6777        vmx_vcpu_load(&vmx->vcpu, cpu);
6778        vmx->vcpu.cpu = cpu;
6779        init_vmcs(vmx);
6780        vmx_vcpu_put(&vmx->vcpu);
6781        put_cpu();
6782        if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
6783                err = alloc_apic_access_page(kvm);
6784                if (err)
6785                        goto free_vmcs;
6786        }
6787
6788        if (enable_ept && !enable_unrestricted_guest) {
6789                err = init_rmode_identity_map(kvm);
6790                if (err)
6791                        goto free_vmcs;
6792        }
6793
6794        if (nested)
6795                nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6796                                           vmx_capability.ept,
6797                                           kvm_vcpu_apicv_active(&vmx->vcpu));
6798        else
6799                memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6800
6801        vmx->nested.posted_intr_nv = -1;
6802        vmx->nested.current_vmptr = -1ull;
6803
6804        vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
6805
6806        /*
6807         * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6808         * or POSTED_INTR_WAKEUP_VECTOR.
6809         */
6810        vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6811        vmx->pi_desc.sn = 1;
6812
6813        vmx->ept_pointer = INVALID_PAGE;
6814
6815        return &vmx->vcpu;
6816
6817free_vmcs:
6818        free_loaded_vmcs(vmx->loaded_vmcs);
6819free_pml:
6820        vmx_destroy_pml_buffer(vmx);
6821uninit_vcpu:
6822        kvm_vcpu_uninit(&vmx->vcpu);
6823free_vcpu:
6824        free_vpid(vmx->vpid);
6825        kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6826free_user_fpu:
6827        kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6828free_partial_vcpu:
6829        kmem_cache_free(kvm_vcpu_cache, vmx);
6830        return ERR_PTR(err);
6831}
6832
6833#define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6834#define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6835
6836static int vmx_vm_init(struct kvm *kvm)
6837{
6838        spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6839
6840        if (!ple_gap)
6841                kvm->arch.pause_in_guest = true;
6842
6843        if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6844                switch (l1tf_mitigation) {
6845                case L1TF_MITIGATION_OFF:
6846                case L1TF_MITIGATION_FLUSH_NOWARN:
6847                        /* 'I explicitly don't care' is set */
6848                        break;
6849                case L1TF_MITIGATION_FLUSH:
6850                case L1TF_MITIGATION_FLUSH_NOSMT:
6851                case L1TF_MITIGATION_FULL:
6852                        /*
6853                         * Warn upon starting the first VM in a potentially
6854                         * insecure environment.
6855                         */
6856                        if (sched_smt_active())
6857                                pr_warn_once(L1TF_MSG_SMT);
6858                        if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6859                                pr_warn_once(L1TF_MSG_L1D);
6860                        break;
6861                case L1TF_MITIGATION_FULL_FORCE:
6862                        /* Flush is enforced */
6863                        break;
6864                }
6865        }
6866        return 0;
6867}
6868
6869static int __init vmx_check_processor_compat(void)
6870{
6871        struct vmcs_config vmcs_conf;
6872        struct vmx_capability vmx_cap;
6873
6874        if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6875                return -EIO;
6876        if (nested)
6877                nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept,
6878                                           enable_apicv);
6879        if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6880                printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6881                                smp_processor_id());
6882                return -EIO;
6883        }
6884        return 0;
6885}
6886
6887static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6888{
6889        u8 cache;
6890        u64 ipat = 0;
6891
6892        /* For VT-d and EPT combination
6893         * 1. MMIO: always map as UC
6894         * 2. EPT with VT-d:
6895         *   a. VT-d without snooping control feature: can't guarantee the
6896         *      result, try to trust guest.
6897         *   b. VT-d with snooping control feature: snooping control feature of
6898         *      VT-d engine can guarantee the cache correctness. Just set it
6899         *      to WB to keep consistent with host. So the same as item 3.
6900         * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6901         *    consistent with host MTRR
6902         */
6903        if (is_mmio) {
6904                cache = MTRR_TYPE_UNCACHABLE;
6905                goto exit;
6906        }
6907
6908        if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6909                ipat = VMX_EPT_IPAT_BIT;
6910                cache = MTRR_TYPE_WRBACK;
6911                goto exit;
6912        }
6913
6914        if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6915                ipat = VMX_EPT_IPAT_BIT;
6916                if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6917                        cache = MTRR_TYPE_WRBACK;
6918                else
6919                        cache = MTRR_TYPE_UNCACHABLE;
6920                goto exit;
6921        }
6922
6923        cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6924
6925exit:
6926        return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6927}
6928
6929static int vmx_get_lpage_level(void)
6930{
6931        if (enable_ept && !cpu_has_vmx_ept_1g_page())
6932                return PT_DIRECTORY_LEVEL;
6933        else
6934                /* For shadow and EPT supported 1GB page */
6935                return PT_PDPE_LEVEL;
6936}
6937
6938static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
6939{
6940        /*
6941         * These bits in the secondary execution controls field
6942         * are dynamic, the others are mostly based on the hypervisor
6943         * architecture and the guest's CPUID.  Do not touch the
6944         * dynamic bits.
6945         */
6946        u32 mask =
6947                SECONDARY_EXEC_SHADOW_VMCS |
6948                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6949                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6950                SECONDARY_EXEC_DESC;
6951
6952        u32 new_ctl = vmx->secondary_exec_control;
6953        u32 cur_ctl = secondary_exec_controls_get(vmx);
6954
6955        secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
6956}
6957
6958/*
6959 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6960 * (indicating "allowed-1") if they are supported in the guest's CPUID.
6961 */
6962static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6963{
6964        struct vcpu_vmx *vmx = to_vmx(vcpu);
6965        struct kvm_cpuid_entry2 *entry;
6966
6967        vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6968        vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6969
6970#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
6971        if (entry && (entry->_reg & (_cpuid_mask)))                     \
6972                vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
6973} while (0)
6974
6975        entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6976        cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
6977        cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
6978        cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
6979        cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
6980        cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
6981        cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
6982        cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
6983        cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
6984        cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
6985        cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
6986        cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
6987        cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
6988        cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
6989        cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
6990
6991        entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6992        cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
6993        cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
6994        cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
6995        cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
6996        cr4_fixed1_update(X86_CR4_UMIP,       ecx, bit(X86_FEATURE_UMIP));
6997        cr4_fixed1_update(X86_CR4_LA57,       ecx, bit(X86_FEATURE_LA57));
6998
6999#undef cr4_fixed1_update
7000}
7001
7002static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7003{
7004        struct vcpu_vmx *vmx = to_vmx(vcpu);
7005
7006        if (kvm_mpx_supported()) {
7007                bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7008
7009                if (mpx_enabled) {
7010                        vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7011                        vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7012                } else {
7013                        vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7014                        vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7015                }
7016        }
7017}
7018
7019static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7020{
7021        struct vcpu_vmx *vmx = to_vmx(vcpu);
7022        struct kvm_cpuid_entry2 *best = NULL;
7023        int i;
7024
7025        for (i = 0; i < PT_CPUID_LEAVES; i++) {
7026                best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7027                if (!best)
7028                        return;
7029                vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7030                vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7031                vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7032                vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7033        }
7034
7035        /* Get the number of configurable Address Ranges for filtering */
7036        vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7037                                                PT_CAP_num_address_ranges);
7038
7039        /* Initialize and clear the no dependency bits */
7040        vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7041                        RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7042
7043        /*
7044         * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7045         * will inject an #GP
7046         */
7047        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7048                vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7049
7050        /*
7051         * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7052         * PSBFreq can be set
7053         */
7054        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7055                vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7056                                RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7057
7058        /*
7059         * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7060         * MTCFreq can be set
7061         */
7062        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7063                vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7064                                RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7065
7066        /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7067        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7068                vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7069                                                        RTIT_CTL_PTW_EN);
7070
7071        /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7072        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7073                vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7074
7075        /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7076        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7077                vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7078
7079        /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7080        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7081                vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7082
7083        /* unmask address range configure area */
7084        for (i = 0; i < vmx->pt_desc.addr_range; i++)
7085                vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7086}
7087
7088static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7089{
7090        struct vcpu_vmx *vmx = to_vmx(vcpu);
7091
7092        /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7093        vcpu->arch.xsaves_enabled = false;
7094
7095        if (cpu_has_secondary_exec_ctrls()) {
7096                vmx_compute_secondary_exec_control(vmx);
7097                vmcs_set_secondary_exec_control(vmx);
7098        }
7099
7100        if (nested_vmx_allowed(vcpu))
7101                to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7102                        FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX |
7103                        FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7104        else
7105                to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7106                        ~(FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX |
7107                          FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX);
7108
7109        if (nested_vmx_allowed(vcpu)) {
7110                nested_vmx_cr_fixed1_bits_update(vcpu);
7111                nested_vmx_entry_exit_ctls_update(vcpu);
7112        }
7113
7114        if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7115                        guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7116                update_intel_pt_cfg(vcpu);
7117
7118        if (boot_cpu_has(X86_FEATURE_RTM)) {
7119                struct shared_msr_entry *msr;
7120                msr = find_msr_entry(vmx, MSR_IA32_TSX_CTRL);
7121                if (msr) {
7122                        bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7123                        vmx_set_guest_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7124                }
7125        }
7126}
7127
7128static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7129{
7130        if (func == 1 && nested)
7131                entry->ecx |= bit(X86_FEATURE_VMX);
7132}
7133
7134static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7135{
7136        to_vmx(vcpu)->req_immediate_exit = true;
7137}
7138
7139static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7140                               struct x86_instruction_info *info,
7141                               enum x86_intercept_stage stage)
7142{
7143        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7144        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7145
7146        /*
7147         * RDPID causes #UD if disabled through secondary execution controls.
7148         * Because it is marked as EmulateOnUD, we need to intercept it here.
7149         */
7150        if (info->intercept == x86_intercept_rdtscp &&
7151            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7152                ctxt->exception.vector = UD_VECTOR;
7153                ctxt->exception.error_code_valid = false;
7154                return X86EMUL_PROPAGATE_FAULT;
7155        }
7156
7157        /* TODO: check more intercepts... */
7158        return X86EMUL_CONTINUE;
7159}
7160
7161#ifdef CONFIG_X86_64
7162/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7163static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7164                                  u64 divisor, u64 *result)
7165{
7166        u64 low = a << shift, high = a >> (64 - shift);
7167
7168        /* To avoid the overflow on divq */
7169        if (high >= divisor)
7170                return 1;
7171
7172        /* Low hold the result, high hold rem which is discarded */
7173        asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7174            "rm" (divisor), "0" (low), "1" (high));
7175        *result = low;
7176
7177        return 0;
7178}
7179
7180static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7181                            bool *expired)
7182{
7183        struct vcpu_vmx *vmx;
7184        u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7185        struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7186
7187        if (kvm_mwait_in_guest(vcpu->kvm) ||
7188                kvm_can_post_timer_interrupt(vcpu))
7189                return -EOPNOTSUPP;
7190
7191        vmx = to_vmx(vcpu);
7192        tscl = rdtsc();
7193        guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7194        delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7195        lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7196                                                    ktimer->timer_advance_ns);
7197
7198        if (delta_tsc > lapic_timer_advance_cycles)
7199                delta_tsc -= lapic_timer_advance_cycles;
7200        else
7201                delta_tsc = 0;
7202
7203        /* Convert to host delta tsc if tsc scaling is enabled */
7204        if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7205            delta_tsc && u64_shl_div_u64(delta_tsc,
7206                                kvm_tsc_scaling_ratio_frac_bits,
7207                                vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7208                return -ERANGE;
7209
7210        /*
7211         * If the delta tsc can't fit in the 32 bit after the multi shift,
7212         * we can't use the preemption timer.
7213         * It's possible that it fits on later vmentries, but checking
7214         * on every vmentry is costly so we just use an hrtimer.
7215         */
7216        if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7217                return -ERANGE;
7218
7219        vmx->hv_deadline_tsc = tscl + delta_tsc;
7220        *expired = !delta_tsc;
7221        return 0;
7222}
7223
7224static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7225{
7226        to_vmx(vcpu)->hv_deadline_tsc = -1;
7227}
7228#endif
7229
7230static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7231{
7232        if (!kvm_pause_in_guest(vcpu->kvm))
7233                shrink_ple_window(vcpu);
7234}
7235
7236static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7237                                     struct kvm_memory_slot *slot)
7238{
7239        kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7240        kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7241}
7242
7243static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7244                                       struct kvm_memory_slot *slot)
7245{
7246        kvm_mmu_slot_set_dirty(kvm, slot);
7247}
7248
7249static void vmx_flush_log_dirty(struct kvm *kvm)
7250{
7251        kvm_flush_pml_buffers(kvm);
7252}
7253
7254static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7255{
7256        struct vmcs12 *vmcs12;
7257        struct vcpu_vmx *vmx = to_vmx(vcpu);
7258        gpa_t gpa, dst;
7259
7260        if (is_guest_mode(vcpu)) {
7261                WARN_ON_ONCE(vmx->nested.pml_full);
7262
7263                /*
7264                 * Check if PML is enabled for the nested guest.
7265                 * Whether eptp bit 6 is set is already checked
7266                 * as part of A/D emulation.
7267                 */
7268                vmcs12 = get_vmcs12(vcpu);
7269                if (!nested_cpu_has_pml(vmcs12))
7270                        return 0;
7271
7272                if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7273                        vmx->nested.pml_full = true;
7274                        return 1;
7275                }
7276
7277                gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7278                dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7279
7280                if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7281                                         offset_in_page(dst), sizeof(gpa)))
7282                        return 0;
7283
7284                vmcs12->guest_pml_index--;
7285        }
7286
7287        return 0;
7288}
7289
7290static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7291                                           struct kvm_memory_slot *memslot,
7292                                           gfn_t offset, unsigned long mask)
7293{
7294        kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7295}
7296
7297static void __pi_post_block(struct kvm_vcpu *vcpu)
7298{
7299        struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7300        struct pi_desc old, new;
7301        unsigned int dest;
7302
7303        do {
7304                old.control = new.control = pi_desc->control;
7305                WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7306                     "Wakeup handler not enabled while the VCPU is blocked\n");
7307
7308                dest = cpu_physical_id(vcpu->cpu);
7309
7310                if (x2apic_enabled())
7311                        new.ndst = dest;
7312                else
7313                        new.ndst = (dest << 8) & 0xFF00;
7314
7315                /* set 'NV' to 'notification vector' */
7316                new.nv = POSTED_INTR_VECTOR;
7317        } while (cmpxchg64(&pi_desc->control, old.control,
7318                           new.control) != old.control);
7319
7320        if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7321                spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7322                list_del(&vcpu->blocked_vcpu_list);
7323                spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7324                vcpu->pre_pcpu = -1;
7325        }
7326}
7327
7328/*
7329 * This routine does the following things for vCPU which is going
7330 * to be blocked if VT-d PI is enabled.
7331 * - Store the vCPU to the wakeup list, so when interrupts happen
7332 *   we can find the right vCPU to wake up.
7333 * - Change the Posted-interrupt descriptor as below:
7334 *      'NDST' <-- vcpu->pre_pcpu
7335 *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7336 * - If 'ON' is set during this process, which means at least one
7337 *   interrupt is posted for this vCPU, we cannot block it, in
7338 *   this case, return 1, otherwise, return 0.
7339 *
7340 */
7341static int pi_pre_block(struct kvm_vcpu *vcpu)
7342{
7343        unsigned int dest;
7344        struct pi_desc old, new;
7345        struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7346
7347        if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7348                !irq_remapping_cap(IRQ_POSTING_CAP)  ||
7349                !kvm_vcpu_apicv_active(vcpu))
7350                return 0;
7351
7352        WARN_ON(irqs_disabled());
7353        local_irq_disable();
7354        if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7355                vcpu->pre_pcpu = vcpu->cpu;
7356                spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7357                list_add_tail(&vcpu->blocked_vcpu_list,
7358                              &per_cpu(blocked_vcpu_on_cpu,
7359                                       vcpu->pre_pcpu));
7360                spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7361        }
7362
7363        do {
7364                old.control = new.control = pi_desc->control;
7365
7366                WARN((pi_desc->sn == 1),
7367                     "Warning: SN field of posted-interrupts "
7368                     "is set before blocking\n");
7369
7370                /*
7371                 * Since vCPU can be preempted during this process,
7372                 * vcpu->cpu could be different with pre_pcpu, we
7373                 * need to set pre_pcpu as the destination of wakeup
7374                 * notification event, then we can find the right vCPU
7375                 * to wakeup in wakeup handler if interrupts happen
7376                 * when the vCPU is in blocked state.
7377                 */
7378                dest = cpu_physical_id(vcpu->pre_pcpu);
7379
7380                if (x2apic_enabled())
7381                        new.ndst = dest;
7382                else
7383                        new.ndst = (dest << 8) & 0xFF00;
7384
7385                /* set 'NV' to 'wakeup vector' */
7386                new.nv = POSTED_INTR_WAKEUP_VECTOR;
7387        } while (cmpxchg64(&pi_desc->control, old.control,
7388                           new.control) != old.control);
7389
7390        /* We should not block the vCPU if an interrupt is posted for it.  */
7391        if (pi_test_on(pi_desc) == 1)
7392                __pi_post_block(vcpu);
7393
7394        local_irq_enable();
7395        return (vcpu->pre_pcpu == -1);
7396}
7397
7398static int vmx_pre_block(struct kvm_vcpu *vcpu)
7399{
7400        if (pi_pre_block(vcpu))
7401                return 1;
7402
7403        if (kvm_lapic_hv_timer_in_use(vcpu))
7404                kvm_lapic_switch_to_sw_timer(vcpu);
7405
7406        return 0;
7407}
7408
7409static void pi_post_block(struct kvm_vcpu *vcpu)
7410{
7411        if (vcpu->pre_pcpu == -1)
7412                return;
7413
7414        WARN_ON(irqs_disabled());
7415        local_irq_disable();
7416        __pi_post_block(vcpu);
7417        local_irq_enable();
7418}
7419
7420static void vmx_post_block(struct kvm_vcpu *vcpu)
7421{
7422        if (kvm_x86_ops->set_hv_timer)
7423                kvm_lapic_switch_to_hv_timer(vcpu);
7424
7425        pi_post_block(vcpu);
7426}
7427
7428/*
7429 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7430 *
7431 * @kvm: kvm
7432 * @host_irq: host irq of the interrupt
7433 * @guest_irq: gsi of the interrupt
7434 * @set: set or unset PI
7435 * returns 0 on success, < 0 on failure
7436 */
7437static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7438                              uint32_t guest_irq, bool set)
7439{
7440        struct kvm_kernel_irq_routing_entry *e;
7441        struct kvm_irq_routing_table *irq_rt;
7442        struct kvm_lapic_irq irq;
7443        struct kvm_vcpu *vcpu;
7444        struct vcpu_data vcpu_info;
7445        int idx, ret = 0;
7446
7447        if (!kvm_arch_has_assigned_device(kvm) ||
7448                !irq_remapping_cap(IRQ_POSTING_CAP) ||
7449                !kvm_vcpu_apicv_active(kvm->vcpus[0]))
7450                return 0;
7451
7452        idx = srcu_read_lock(&kvm->irq_srcu);
7453        irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7454        if (guest_irq >= irq_rt->nr_rt_entries ||
7455            hlist_empty(&irq_rt->map[guest_irq])) {
7456                pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7457                             guest_irq, irq_rt->nr_rt_entries);
7458                goto out;
7459        }
7460
7461        hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7462                if (e->type != KVM_IRQ_ROUTING_MSI)
7463                        continue;
7464                /*
7465                 * VT-d PI cannot support posting multicast/broadcast
7466                 * interrupts to a vCPU, we still use interrupt remapping
7467                 * for these kind of interrupts.
7468                 *
7469                 * For lowest-priority interrupts, we only support
7470                 * those with single CPU as the destination, e.g. user
7471                 * configures the interrupts via /proc/irq or uses
7472                 * irqbalance to make the interrupts single-CPU.
7473                 *
7474                 * We will support full lowest-priority interrupt later.
7475                 *
7476                 * In addition, we can only inject generic interrupts using
7477                 * the PI mechanism, refuse to route others through it.
7478                 */
7479
7480                kvm_set_msi_irq(kvm, e, &irq);
7481                if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
7482                    !kvm_irq_is_postable(&irq)) {
7483                        /*
7484                         * Make sure the IRTE is in remapped mode if
7485                         * we don't handle it in posted mode.
7486                         */
7487                        ret = irq_set_vcpu_affinity(host_irq, NULL);
7488                        if (ret < 0) {
7489                                printk(KERN_INFO
7490                                   "failed to back to remapped mode, irq: %u\n",
7491                                   host_irq);
7492                                goto out;
7493                        }
7494
7495                        continue;
7496                }
7497
7498                vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7499                vcpu_info.vector = irq.vector;
7500
7501                trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7502                                vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7503
7504                if (set)
7505                        ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7506                else
7507                        ret = irq_set_vcpu_affinity(host_irq, NULL);
7508
7509                if (ret < 0) {
7510                        printk(KERN_INFO "%s: failed to update PI IRTE\n",
7511                                        __func__);
7512                        goto out;
7513                }
7514        }
7515
7516        ret = 0;
7517out:
7518        srcu_read_unlock(&kvm->irq_srcu, idx);
7519        return ret;
7520}
7521
7522static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7523{
7524        if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7525                to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7526                        FEATURE_CONTROL_LMCE;
7527        else
7528                to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7529                        ~FEATURE_CONTROL_LMCE;
7530}
7531
7532static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7533{
7534        /* we need a nested vmexit to enter SMM, postpone if run is pending */
7535        if (to_vmx(vcpu)->nested.nested_run_pending)
7536                return 0;
7537        return 1;
7538}
7539
7540static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7541{
7542        struct vcpu_vmx *vmx = to_vmx(vcpu);
7543
7544        vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7545        if (vmx->nested.smm.guest_mode)
7546                nested_vmx_vmexit(vcpu, -1, 0, 0);
7547
7548        vmx->nested.smm.vmxon = vmx->nested.vmxon;
7549        vmx->nested.vmxon = false;
7550        vmx_clear_hlt(vcpu);
7551        return 0;
7552}
7553
7554static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7555{
7556        struct vcpu_vmx *vmx = to_vmx(vcpu);
7557        int ret;
7558
7559        if (vmx->nested.smm.vmxon) {
7560                vmx->nested.vmxon = true;
7561                vmx->nested.smm.vmxon = false;
7562        }
7563
7564        if (vmx->nested.smm.guest_mode) {
7565                ret = nested_vmx_enter_non_root_mode(vcpu, false);
7566                if (ret)
7567                        return ret;
7568
7569                vmx->nested.smm.guest_mode = false;
7570        }
7571        return 0;
7572}
7573
7574static int enable_smi_window(struct kvm_vcpu *vcpu)
7575{
7576        return 0;
7577}
7578
7579static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7580{
7581        return false;
7582}
7583
7584static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7585{
7586        return to_vmx(vcpu)->nested.vmxon;
7587}
7588
7589static __init int hardware_setup(void)
7590{
7591        unsigned long host_bndcfgs;
7592        struct desc_ptr dt;
7593        int r, i;
7594
7595        rdmsrl_safe(MSR_EFER, &host_efer);
7596
7597        store_idt(&dt);
7598        host_idt_base = dt.address;
7599
7600        for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7601                kvm_define_shared_msr(i, vmx_msr_index[i]);
7602
7603        if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7604                return -EIO;
7605
7606        if (boot_cpu_has(X86_FEATURE_NX))
7607                kvm_enable_efer_bits(EFER_NX);
7608
7609        if (boot_cpu_has(X86_FEATURE_MPX)) {
7610                rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7611                WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7612        }
7613
7614        if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7615            !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7616                enable_vpid = 0;
7617
7618        if (!cpu_has_vmx_ept() ||
7619            !cpu_has_vmx_ept_4levels() ||
7620            !cpu_has_vmx_ept_mt_wb() ||
7621            !cpu_has_vmx_invept_global())
7622                enable_ept = 0;
7623
7624        if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7625                enable_ept_ad_bits = 0;
7626
7627        if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7628                enable_unrestricted_guest = 0;
7629
7630        if (!cpu_has_vmx_flexpriority())
7631                flexpriority_enabled = 0;
7632
7633        if (!cpu_has_virtual_nmis())
7634                enable_vnmi = 0;
7635
7636        /*
7637         * set_apic_access_page_addr() is used to reload apic access
7638         * page upon invalidation.  No need to do anything if not
7639         * using the APIC_ACCESS_ADDR VMCS field.
7640         */
7641        if (!flexpriority_enabled)
7642                kvm_x86_ops->set_apic_access_page_addr = NULL;
7643
7644        if (!cpu_has_vmx_tpr_shadow())
7645                kvm_x86_ops->update_cr8_intercept = NULL;
7646
7647        if (enable_ept && !cpu_has_vmx_ept_2m_page())
7648                kvm_disable_largepages();
7649
7650#if IS_ENABLED(CONFIG_HYPERV)
7651        if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7652            && enable_ept) {
7653                kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
7654                kvm_x86_ops->tlb_remote_flush_with_range =
7655                                hv_remote_flush_tlb_with_range;
7656        }
7657#endif
7658
7659        if (!cpu_has_vmx_ple()) {
7660                ple_gap = 0;
7661                ple_window = 0;
7662                ple_window_grow = 0;
7663                ple_window_max = 0;
7664                ple_window_shrink = 0;
7665        }
7666
7667        if (!cpu_has_vmx_apicv()) {
7668                enable_apicv = 0;
7669                kvm_x86_ops->sync_pir_to_irr = NULL;
7670        }
7671
7672        if (cpu_has_vmx_tsc_scaling()) {
7673                kvm_has_tsc_control = true;
7674                kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7675                kvm_tsc_scaling_ratio_frac_bits = 48;
7676        }
7677
7678        set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7679
7680        if (enable_ept)
7681                vmx_enable_tdp();
7682        else
7683                kvm_disable_tdp();
7684
7685        /*
7686         * Only enable PML when hardware supports PML feature, and both EPT
7687         * and EPT A/D bit features are enabled -- PML depends on them to work.
7688         */
7689        if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7690                enable_pml = 0;
7691
7692        if (!enable_pml) {
7693                kvm_x86_ops->slot_enable_log_dirty = NULL;
7694                kvm_x86_ops->slot_disable_log_dirty = NULL;
7695                kvm_x86_ops->flush_log_dirty = NULL;
7696                kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7697        }
7698
7699        if (!cpu_has_vmx_preemption_timer())
7700                enable_preemption_timer = false;
7701
7702        if (enable_preemption_timer) {
7703                u64 use_timer_freq = 5000ULL * 1000 * 1000;
7704                u64 vmx_msr;
7705
7706                rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7707                cpu_preemption_timer_multi =
7708                        vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7709
7710                if (tsc_khz)
7711                        use_timer_freq = (u64)tsc_khz * 1000;
7712                use_timer_freq >>= cpu_preemption_timer_multi;
7713
7714                /*
7715                 * KVM "disables" the preemption timer by setting it to its max
7716                 * value.  Don't use the timer if it might cause spurious exits
7717                 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7718                 */
7719                if (use_timer_freq > 0xffffffffu / 10)
7720                        enable_preemption_timer = false;
7721        }
7722
7723        if (!enable_preemption_timer) {
7724                kvm_x86_ops->set_hv_timer = NULL;
7725                kvm_x86_ops->cancel_hv_timer = NULL;
7726                kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
7727        }
7728
7729        kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7730
7731        kvm_mce_cap_supported |= MCG_LMCE_P;
7732
7733        if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7734                return -EINVAL;
7735        if (!enable_ept || !cpu_has_vmx_intel_pt())
7736                pt_mode = PT_MODE_SYSTEM;
7737
7738        if (nested) {
7739                nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7740                                           vmx_capability.ept, enable_apicv);
7741
7742                r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7743                if (r)
7744                        return r;
7745        }
7746
7747        r = alloc_kvm_area();
7748        if (r)
7749                nested_vmx_hardware_unsetup();
7750        return r;
7751}
7752
7753static __exit void hardware_unsetup(void)
7754{
7755        if (nested)
7756                nested_vmx_hardware_unsetup();
7757
7758        free_kvm_area();
7759}
7760
7761static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
7762        .cpu_has_kvm_support = cpu_has_kvm_support,
7763        .disabled_by_bios = vmx_disabled_by_bios,
7764        .hardware_setup = hardware_setup,
7765        .hardware_unsetup = hardware_unsetup,
7766        .check_processor_compatibility = vmx_check_processor_compat,
7767        .hardware_enable = hardware_enable,
7768        .hardware_disable = hardware_disable,
7769        .cpu_has_accelerated_tpr = report_flexpriority,
7770        .has_emulated_msr = vmx_has_emulated_msr,
7771
7772        .vm_init = vmx_vm_init,
7773        .vm_alloc = vmx_vm_alloc,
7774        .vm_free = vmx_vm_free,
7775
7776        .vcpu_create = vmx_create_vcpu,
7777        .vcpu_free = vmx_free_vcpu,
7778        .vcpu_reset = vmx_vcpu_reset,
7779
7780        .prepare_guest_switch = vmx_prepare_switch_to_guest,
7781        .vcpu_load = vmx_vcpu_load,
7782        .vcpu_put = vmx_vcpu_put,
7783
7784        .update_bp_intercept = update_exception_bitmap,
7785        .get_msr_feature = vmx_get_msr_feature,
7786        .get_msr = vmx_get_msr,
7787        .set_msr = vmx_set_msr,
7788        .get_segment_base = vmx_get_segment_base,
7789        .get_segment = vmx_get_segment,
7790        .set_segment = vmx_set_segment,
7791        .get_cpl = vmx_get_cpl,
7792        .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7793        .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7794        .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7795        .set_cr0 = vmx_set_cr0,
7796        .set_cr3 = vmx_set_cr3,
7797        .set_cr4 = vmx_set_cr4,
7798        .set_efer = vmx_set_efer,
7799        .get_idt = vmx_get_idt,
7800        .set_idt = vmx_set_idt,
7801        .get_gdt = vmx_get_gdt,
7802        .set_gdt = vmx_set_gdt,
7803        .get_dr6 = vmx_get_dr6,
7804        .set_dr6 = vmx_set_dr6,
7805        .set_dr7 = vmx_set_dr7,
7806        .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7807        .cache_reg = vmx_cache_reg,
7808        .get_rflags = vmx_get_rflags,
7809        .set_rflags = vmx_set_rflags,
7810
7811        .tlb_flush = vmx_flush_tlb,
7812        .tlb_flush_gva = vmx_flush_tlb_gva,
7813
7814        .run = vmx_vcpu_run,
7815        .handle_exit = vmx_handle_exit,
7816        .skip_emulated_instruction = skip_emulated_instruction,
7817        .set_interrupt_shadow = vmx_set_interrupt_shadow,
7818        .get_interrupt_shadow = vmx_get_interrupt_shadow,
7819        .patch_hypercall = vmx_patch_hypercall,
7820        .set_irq = vmx_inject_irq,
7821        .set_nmi = vmx_inject_nmi,
7822        .queue_exception = vmx_queue_exception,
7823        .cancel_injection = vmx_cancel_injection,
7824        .interrupt_allowed = vmx_interrupt_allowed,
7825        .nmi_allowed = vmx_nmi_allowed,
7826        .get_nmi_mask = vmx_get_nmi_mask,
7827        .set_nmi_mask = vmx_set_nmi_mask,
7828        .enable_nmi_window = enable_nmi_window,
7829        .enable_irq_window = enable_irq_window,
7830        .update_cr8_intercept = update_cr8_intercept,
7831        .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7832        .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7833        .get_enable_apicv = vmx_get_enable_apicv,
7834        .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7835        .load_eoi_exitmap = vmx_load_eoi_exitmap,
7836        .apicv_post_state_restore = vmx_apicv_post_state_restore,
7837        .hwapic_irr_update = vmx_hwapic_irr_update,
7838        .hwapic_isr_update = vmx_hwapic_isr_update,
7839        .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7840        .sync_pir_to_irr = vmx_sync_pir_to_irr,
7841        .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7842        .dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
7843
7844        .set_tss_addr = vmx_set_tss_addr,
7845        .set_identity_map_addr = vmx_set_identity_map_addr,
7846        .get_tdp_level = get_ept_level,
7847        .get_mt_mask = vmx_get_mt_mask,
7848
7849        .get_exit_info = vmx_get_exit_info,
7850
7851        .get_lpage_level = vmx_get_lpage_level,
7852
7853        .cpuid_update = vmx_cpuid_update,
7854
7855        .rdtscp_supported = vmx_rdtscp_supported,
7856        .invpcid_supported = vmx_invpcid_supported,
7857
7858        .set_supported_cpuid = vmx_set_supported_cpuid,
7859
7860        .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7861
7862        .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7863        .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7864
7865        .set_tdp_cr3 = vmx_set_cr3,
7866
7867        .check_intercept = vmx_check_intercept,
7868        .handle_exit_irqoff = vmx_handle_exit_irqoff,
7869        .mpx_supported = vmx_mpx_supported,
7870        .xsaves_supported = vmx_xsaves_supported,
7871        .umip_emulated = vmx_umip_emulated,
7872        .pt_supported = vmx_pt_supported,
7873
7874        .request_immediate_exit = vmx_request_immediate_exit,
7875
7876        .sched_in = vmx_sched_in,
7877
7878        .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7879        .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7880        .flush_log_dirty = vmx_flush_log_dirty,
7881        .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7882        .write_log_dirty = vmx_write_pml_buffer,
7883
7884        .pre_block = vmx_pre_block,
7885        .post_block = vmx_post_block,
7886
7887        .pmu_ops = &intel_pmu_ops,
7888
7889        .update_pi_irte = vmx_update_pi_irte,
7890
7891#ifdef CONFIG_X86_64
7892        .set_hv_timer = vmx_set_hv_timer,
7893        .cancel_hv_timer = vmx_cancel_hv_timer,
7894#endif
7895
7896        .setup_mce = vmx_setup_mce,
7897
7898        .smi_allowed = vmx_smi_allowed,
7899        .pre_enter_smm = vmx_pre_enter_smm,
7900        .pre_leave_smm = vmx_pre_leave_smm,
7901        .enable_smi_window = enable_smi_window,
7902
7903        .check_nested_events = NULL,
7904        .get_nested_state = NULL,
7905        .set_nested_state = NULL,
7906        .get_vmcs12_pages = NULL,
7907        .nested_enable_evmcs = NULL,
7908        .nested_get_evmcs_version = NULL,
7909        .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7910        .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7911};
7912
7913static void vmx_cleanup_l1d_flush(void)
7914{
7915        if (vmx_l1d_flush_pages) {
7916                free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7917                vmx_l1d_flush_pages = NULL;
7918        }
7919        /* Restore state so sysfs ignores VMX */
7920        l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7921}
7922
7923static void vmx_exit(void)
7924{
7925#ifdef CONFIG_KEXEC_CORE
7926        RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7927        synchronize_rcu();
7928#endif
7929
7930        kvm_exit();
7931
7932#if IS_ENABLED(CONFIG_HYPERV)
7933        if (static_branch_unlikely(&enable_evmcs)) {
7934                int cpu;
7935                struct hv_vp_assist_page *vp_ap;
7936                /*
7937                 * Reset everything to support using non-enlightened VMCS
7938                 * access later (e.g. when we reload the module with
7939                 * enlightened_vmcs=0)
7940                 */
7941                for_each_online_cpu(cpu) {
7942                        vp_ap = hv_get_vp_assist_page(cpu);
7943
7944                        if (!vp_ap)
7945                                continue;
7946
7947                        vp_ap->nested_control.features.directhypercall = 0;
7948                        vp_ap->current_nested_vmcs = 0;
7949                        vp_ap->enlighten_vmentry = 0;
7950                }
7951
7952                static_branch_disable(&enable_evmcs);
7953        }
7954#endif
7955        vmx_cleanup_l1d_flush();
7956}
7957module_exit(vmx_exit);
7958
7959static int __init vmx_init(void)
7960{
7961        int r;
7962
7963#if IS_ENABLED(CONFIG_HYPERV)
7964        /*
7965         * Enlightened VMCS usage should be recommended and the host needs
7966         * to support eVMCS v1 or above. We can also disable eVMCS support
7967         * with module parameter.
7968         */
7969        if (enlightened_vmcs &&
7970            ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7971            (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7972            KVM_EVMCS_VERSION) {
7973                int cpu;
7974
7975                /* Check that we have assist pages on all online CPUs */
7976                for_each_online_cpu(cpu) {
7977                        if (!hv_get_vp_assist_page(cpu)) {
7978                                enlightened_vmcs = false;
7979                                break;
7980                        }
7981                }
7982
7983                if (enlightened_vmcs) {
7984                        pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7985                        static_branch_enable(&enable_evmcs);
7986                }
7987
7988                if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
7989                        vmx_x86_ops.enable_direct_tlbflush
7990                                = hv_enable_direct_tlbflush;
7991
7992        } else {
7993                enlightened_vmcs = false;
7994        }
7995#endif
7996
7997        r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7998                     __alignof__(struct vcpu_vmx), THIS_MODULE);
7999        if (r)
8000                return r;
8001
8002        /*
8003         * Must be called after kvm_init() so enable_ept is properly set
8004         * up. Hand the parameter mitigation value in which was stored in
8005         * the pre module init parser. If no parameter was given, it will
8006         * contain 'auto' which will be turned into the default 'cond'
8007         * mitigation mode.
8008         */
8009        r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8010        if (r) {
8011                vmx_exit();
8012                return r;
8013        }
8014
8015#ifdef CONFIG_KEXEC_CORE
8016        rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8017                           crash_vmclear_local_loaded_vmcss);
8018#endif
8019        vmx_check_vmcs12_offsets();
8020
8021        return 0;
8022}
8023module_init(vmx_init);
8024