linux/arch/x86/kvm/x86.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * derived from drivers/kvm/kvm_main.c
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright (C) 2008 Qumranet, Inc.
   9 * Copyright IBM Corporation, 2008
  10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11 *
  12 * Authors:
  13 *   Avi Kivity   <avi@qumranet.com>
  14 *   Yaniv Kamay  <yaniv@qumranet.com>
  15 *   Amit Shah    <amit.shah@qumranet.com>
  16 *   Ben-Ami Yassour <benami@il.ibm.com>
  17 */
  18
  19#include <linux/kvm_host.h>
  20#include "irq.h"
  21#include "mmu.h"
  22#include "i8254.h"
  23#include "tss.h"
  24#include "kvm_cache_regs.h"
  25#include "x86.h"
  26#include "cpuid.h"
  27#include "pmu.h"
  28#include "hyperv.h"
  29
  30#include <linux/clocksource.h>
  31#include <linux/interrupt.h>
  32#include <linux/kvm.h>
  33#include <linux/fs.h>
  34#include <linux/vmalloc.h>
  35#include <linux/export.h>
  36#include <linux/moduleparam.h>
  37#include <linux/mman.h>
  38#include <linux/highmem.h>
  39#include <linux/iommu.h>
  40#include <linux/intel-iommu.h>
  41#include <linux/cpufreq.h>
  42#include <linux/user-return-notifier.h>
  43#include <linux/srcu.h>
  44#include <linux/slab.h>
  45#include <linux/perf_event.h>
  46#include <linux/uaccess.h>
  47#include <linux/hash.h>
  48#include <linux/pci.h>
  49#include <linux/timekeeper_internal.h>
  50#include <linux/pvclock_gtod.h>
  51#include <linux/kvm_irqfd.h>
  52#include <linux/irqbypass.h>
  53#include <linux/sched/stat.h>
  54#include <linux/sched/isolation.h>
  55#include <linux/mem_encrypt.h>
  56
  57#include <trace/events/kvm.h>
  58
  59#include <asm/debugreg.h>
  60#include <asm/msr.h>
  61#include <asm/desc.h>
  62#include <asm/mce.h>
  63#include <linux/kernel_stat.h>
  64#include <asm/fpu/internal.h> /* Ugh! */
  65#include <asm/pvclock.h>
  66#include <asm/div64.h>
  67#include <asm/irq_remapping.h>
  68#include <asm/mshyperv.h>
  69#include <asm/hypervisor.h>
  70#include <asm/intel_pt.h>
  71#include <asm/emulate_prefix.h>
  72#include <clocksource/hyperv_timer.h>
  73
  74#define CREATE_TRACE_POINTS
  75#include "trace.h"
  76
  77#define MAX_IO_MSRS 256
  78#define KVM_MAX_MCE_BANKS 32
  79u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
  80EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
  81
  82#define emul_to_vcpu(ctxt) \
  83        container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
  84
  85/* EFER defaults:
  86 * - enable syscall per default because its emulated by KVM
  87 * - enable LME and LMA per default on 64 bit KVM
  88 */
  89#ifdef CONFIG_X86_64
  90static
  91u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
  92#else
  93static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
  94#endif
  95
  96#define VM_STAT(x, ...) offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__
  97#define VCPU_STAT(x, ...) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__
  98
  99#define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
 100                                    KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
 101
 102static void update_cr8_intercept(struct kvm_vcpu *vcpu);
 103static void process_nmi(struct kvm_vcpu *vcpu);
 104static void enter_smm(struct kvm_vcpu *vcpu);
 105static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
 106static void store_regs(struct kvm_vcpu *vcpu);
 107static int sync_regs(struct kvm_vcpu *vcpu);
 108
 109struct kvm_x86_ops *kvm_x86_ops __read_mostly;
 110EXPORT_SYMBOL_GPL(kvm_x86_ops);
 111
 112static bool __read_mostly ignore_msrs = 0;
 113module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
 114
 115static bool __read_mostly report_ignored_msrs = true;
 116module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
 117
 118unsigned int min_timer_period_us = 200;
 119module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
 120
 121static bool __read_mostly kvmclock_periodic_sync = true;
 122module_param(kvmclock_periodic_sync, bool, S_IRUGO);
 123
 124bool __read_mostly kvm_has_tsc_control;
 125EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
 126u32  __read_mostly kvm_max_guest_tsc_khz;
 127EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
 128u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
 129EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
 130u64  __read_mostly kvm_max_tsc_scaling_ratio;
 131EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
 132u64 __read_mostly kvm_default_tsc_scaling_ratio;
 133EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
 134
 135/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
 136static u32 __read_mostly tsc_tolerance_ppm = 250;
 137module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
 138
 139/*
 140 * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
 141 * adaptive tuning starting from default advancment of 1000ns.  '0' disables
 142 * advancement entirely.  Any other value is used as-is and disables adaptive
 143 * tuning, i.e. allows priveleged userspace to set an exact advancement time.
 144 */
 145static int __read_mostly lapic_timer_advance_ns = -1;
 146module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
 147
 148static bool __read_mostly vector_hashing = true;
 149module_param(vector_hashing, bool, S_IRUGO);
 150
 151bool __read_mostly enable_vmware_backdoor = false;
 152module_param(enable_vmware_backdoor, bool, S_IRUGO);
 153EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
 154
 155static bool __read_mostly force_emulation_prefix = false;
 156module_param(force_emulation_prefix, bool, S_IRUGO);
 157
 158int __read_mostly pi_inject_timer = -1;
 159module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
 160
 161#define KVM_NR_SHARED_MSRS 16
 162
 163struct kvm_shared_msrs_global {
 164        int nr;
 165        u32 msrs[KVM_NR_SHARED_MSRS];
 166};
 167
 168struct kvm_shared_msrs {
 169        struct user_return_notifier urn;
 170        bool registered;
 171        struct kvm_shared_msr_values {
 172                u64 host;
 173                u64 curr;
 174        } values[KVM_NR_SHARED_MSRS];
 175};
 176
 177static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
 178static struct kvm_shared_msrs __percpu *shared_msrs;
 179
 180static u64 __read_mostly host_xss;
 181
 182struct kvm_stats_debugfs_item debugfs_entries[] = {
 183        { "pf_fixed", VCPU_STAT(pf_fixed) },
 184        { "pf_guest", VCPU_STAT(pf_guest) },
 185        { "tlb_flush", VCPU_STAT(tlb_flush) },
 186        { "invlpg", VCPU_STAT(invlpg) },
 187        { "exits", VCPU_STAT(exits) },
 188        { "io_exits", VCPU_STAT(io_exits) },
 189        { "mmio_exits", VCPU_STAT(mmio_exits) },
 190        { "signal_exits", VCPU_STAT(signal_exits) },
 191        { "irq_window", VCPU_STAT(irq_window_exits) },
 192        { "nmi_window", VCPU_STAT(nmi_window_exits) },
 193        { "halt_exits", VCPU_STAT(halt_exits) },
 194        { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
 195        { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
 196        { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
 197        { "halt_wakeup", VCPU_STAT(halt_wakeup) },
 198        { "hypercalls", VCPU_STAT(hypercalls) },
 199        { "request_irq", VCPU_STAT(request_irq_exits) },
 200        { "irq_exits", VCPU_STAT(irq_exits) },
 201        { "host_state_reload", VCPU_STAT(host_state_reload) },
 202        { "fpu_reload", VCPU_STAT(fpu_reload) },
 203        { "insn_emulation", VCPU_STAT(insn_emulation) },
 204        { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
 205        { "irq_injections", VCPU_STAT(irq_injections) },
 206        { "nmi_injections", VCPU_STAT(nmi_injections) },
 207        { "req_event", VCPU_STAT(req_event) },
 208        { "l1d_flush", VCPU_STAT(l1d_flush) },
 209        { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
 210        { "mmu_pte_write", VM_STAT(mmu_pte_write) },
 211        { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
 212        { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
 213        { "mmu_flooded", VM_STAT(mmu_flooded) },
 214        { "mmu_recycled", VM_STAT(mmu_recycled) },
 215        { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
 216        { "mmu_unsync", VM_STAT(mmu_unsync) },
 217        { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
 218        { "largepages", VM_STAT(lpages, .mode = 0444) },
 219        { "nx_largepages_splitted", VM_STAT(nx_lpage_splits, .mode = 0444) },
 220        { "max_mmu_page_hash_collisions",
 221                VM_STAT(max_mmu_page_hash_collisions) },
 222        { NULL }
 223};
 224
 225u64 __read_mostly host_xcr0;
 226
 227struct kmem_cache *x86_fpu_cache;
 228EXPORT_SYMBOL_GPL(x86_fpu_cache);
 229
 230static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
 231
 232static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
 233{
 234        int i;
 235        for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
 236                vcpu->arch.apf.gfns[i] = ~0;
 237}
 238
 239static void kvm_on_user_return(struct user_return_notifier *urn)
 240{
 241        unsigned slot;
 242        struct kvm_shared_msrs *locals
 243                = container_of(urn, struct kvm_shared_msrs, urn);
 244        struct kvm_shared_msr_values *values;
 245        unsigned long flags;
 246
 247        /*
 248         * Disabling irqs at this point since the following code could be
 249         * interrupted and executed through kvm_arch_hardware_disable()
 250         */
 251        local_irq_save(flags);
 252        if (locals->registered) {
 253                locals->registered = false;
 254                user_return_notifier_unregister(urn);
 255        }
 256        local_irq_restore(flags);
 257        for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
 258                values = &locals->values[slot];
 259                if (values->host != values->curr) {
 260                        wrmsrl(shared_msrs_global.msrs[slot], values->host);
 261                        values->curr = values->host;
 262                }
 263        }
 264}
 265
 266void kvm_define_shared_msr(unsigned slot, u32 msr)
 267{
 268        BUG_ON(slot >= KVM_NR_SHARED_MSRS);
 269        shared_msrs_global.msrs[slot] = msr;
 270        if (slot >= shared_msrs_global.nr)
 271                shared_msrs_global.nr = slot + 1;
 272}
 273EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
 274
 275static void kvm_shared_msr_cpu_online(void)
 276{
 277        unsigned int cpu = smp_processor_id();
 278        struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 279        u64 value;
 280        int i;
 281
 282        for (i = 0; i < shared_msrs_global.nr; ++i) {
 283                rdmsrl_safe(shared_msrs_global.msrs[i], &value);
 284                smsr->values[i].host = value;
 285                smsr->values[i].curr = value;
 286        }
 287}
 288
 289int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
 290{
 291        unsigned int cpu = smp_processor_id();
 292        struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 293        int err;
 294
 295        value = (value & mask) | (smsr->values[slot].host & ~mask);
 296        if (value == smsr->values[slot].curr)
 297                return 0;
 298        err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
 299        if (err)
 300                return 1;
 301
 302        smsr->values[slot].curr = value;
 303        if (!smsr->registered) {
 304                smsr->urn.on_user_return = kvm_on_user_return;
 305                user_return_notifier_register(&smsr->urn);
 306                smsr->registered = true;
 307        }
 308        return 0;
 309}
 310EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
 311
 312static void drop_user_return_notifiers(void)
 313{
 314        unsigned int cpu = smp_processor_id();
 315        struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 316
 317        if (smsr->registered)
 318                kvm_on_user_return(&smsr->urn);
 319}
 320
 321u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
 322{
 323        return vcpu->arch.apic_base;
 324}
 325EXPORT_SYMBOL_GPL(kvm_get_apic_base);
 326
 327enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
 328{
 329        return kvm_apic_mode(kvm_get_apic_base(vcpu));
 330}
 331EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
 332
 333int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
 334{
 335        enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
 336        enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
 337        u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
 338                (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
 339
 340        if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
 341                return 1;
 342        if (!msr_info->host_initiated) {
 343                if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
 344                        return 1;
 345                if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
 346                        return 1;
 347        }
 348
 349        kvm_lapic_set_base(vcpu, msr_info->data);
 350        return 0;
 351}
 352EXPORT_SYMBOL_GPL(kvm_set_apic_base);
 353
 354asmlinkage __visible void kvm_spurious_fault(void)
 355{
 356        /* Fault while not rebooting.  We want the trace. */
 357        BUG_ON(!kvm_rebooting);
 358}
 359EXPORT_SYMBOL_GPL(kvm_spurious_fault);
 360
 361#define EXCPT_BENIGN            0
 362#define EXCPT_CONTRIBUTORY      1
 363#define EXCPT_PF                2
 364
 365static int exception_class(int vector)
 366{
 367        switch (vector) {
 368        case PF_VECTOR:
 369                return EXCPT_PF;
 370        case DE_VECTOR:
 371        case TS_VECTOR:
 372        case NP_VECTOR:
 373        case SS_VECTOR:
 374        case GP_VECTOR:
 375                return EXCPT_CONTRIBUTORY;
 376        default:
 377                break;
 378        }
 379        return EXCPT_BENIGN;
 380}
 381
 382#define EXCPT_FAULT             0
 383#define EXCPT_TRAP              1
 384#define EXCPT_ABORT             2
 385#define EXCPT_INTERRUPT         3
 386
 387static int exception_type(int vector)
 388{
 389        unsigned int mask;
 390
 391        if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
 392                return EXCPT_INTERRUPT;
 393
 394        mask = 1 << vector;
 395
 396        /* #DB is trap, as instruction watchpoints are handled elsewhere */
 397        if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
 398                return EXCPT_TRAP;
 399
 400        if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
 401                return EXCPT_ABORT;
 402
 403        /* Reserved exceptions will result in fault */
 404        return EXCPT_FAULT;
 405}
 406
 407void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
 408{
 409        unsigned nr = vcpu->arch.exception.nr;
 410        bool has_payload = vcpu->arch.exception.has_payload;
 411        unsigned long payload = vcpu->arch.exception.payload;
 412
 413        if (!has_payload)
 414                return;
 415
 416        switch (nr) {
 417        case DB_VECTOR:
 418                /*
 419                 * "Certain debug exceptions may clear bit 0-3.  The
 420                 * remaining contents of the DR6 register are never
 421                 * cleared by the processor".
 422                 */
 423                vcpu->arch.dr6 &= ~DR_TRAP_BITS;
 424                /*
 425                 * DR6.RTM is set by all #DB exceptions that don't clear it.
 426                 */
 427                vcpu->arch.dr6 |= DR6_RTM;
 428                vcpu->arch.dr6 |= payload;
 429                /*
 430                 * Bit 16 should be set in the payload whenever the #DB
 431                 * exception should clear DR6.RTM. This makes the payload
 432                 * compatible with the pending debug exceptions under VMX.
 433                 * Though not currently documented in the SDM, this also
 434                 * makes the payload compatible with the exit qualification
 435                 * for #DB exceptions under VMX.
 436                 */
 437                vcpu->arch.dr6 ^= payload & DR6_RTM;
 438                break;
 439        case PF_VECTOR:
 440                vcpu->arch.cr2 = payload;
 441                break;
 442        }
 443
 444        vcpu->arch.exception.has_payload = false;
 445        vcpu->arch.exception.payload = 0;
 446}
 447EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
 448
 449static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
 450                unsigned nr, bool has_error, u32 error_code,
 451                bool has_payload, unsigned long payload, bool reinject)
 452{
 453        u32 prev_nr;
 454        int class1, class2;
 455
 456        kvm_make_request(KVM_REQ_EVENT, vcpu);
 457
 458        if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
 459        queue:
 460                if (has_error && !is_protmode(vcpu))
 461                        has_error = false;
 462                if (reinject) {
 463                        /*
 464                         * On vmentry, vcpu->arch.exception.pending is only
 465                         * true if an event injection was blocked by
 466                         * nested_run_pending.  In that case, however,
 467                         * vcpu_enter_guest requests an immediate exit,
 468                         * and the guest shouldn't proceed far enough to
 469                         * need reinjection.
 470                         */
 471                        WARN_ON_ONCE(vcpu->arch.exception.pending);
 472                        vcpu->arch.exception.injected = true;
 473                        if (WARN_ON_ONCE(has_payload)) {
 474                                /*
 475                                 * A reinjected event has already
 476                                 * delivered its payload.
 477                                 */
 478                                has_payload = false;
 479                                payload = 0;
 480                        }
 481                } else {
 482                        vcpu->arch.exception.pending = true;
 483                        vcpu->arch.exception.injected = false;
 484                }
 485                vcpu->arch.exception.has_error_code = has_error;
 486                vcpu->arch.exception.nr = nr;
 487                vcpu->arch.exception.error_code = error_code;
 488                vcpu->arch.exception.has_payload = has_payload;
 489                vcpu->arch.exception.payload = payload;
 490                /*
 491                 * In guest mode, payload delivery should be deferred,
 492                 * so that the L1 hypervisor can intercept #PF before
 493                 * CR2 is modified (or intercept #DB before DR6 is
 494                 * modified under nVMX).  However, for ABI
 495                 * compatibility with KVM_GET_VCPU_EVENTS and
 496                 * KVM_SET_VCPU_EVENTS, we can't delay payload
 497                 * delivery unless userspace has enabled this
 498                 * functionality via the per-VM capability,
 499                 * KVM_CAP_EXCEPTION_PAYLOAD.
 500                 */
 501                if (!vcpu->kvm->arch.exception_payload_enabled ||
 502                    !is_guest_mode(vcpu))
 503                        kvm_deliver_exception_payload(vcpu);
 504                return;
 505        }
 506
 507        /* to check exception */
 508        prev_nr = vcpu->arch.exception.nr;
 509        if (prev_nr == DF_VECTOR) {
 510                /* triple fault -> shutdown */
 511                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 512                return;
 513        }
 514        class1 = exception_class(prev_nr);
 515        class2 = exception_class(nr);
 516        if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
 517                || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
 518                /*
 519                 * Generate double fault per SDM Table 5-5.  Set
 520                 * exception.pending = true so that the double fault
 521                 * can trigger a nested vmexit.
 522                 */
 523                vcpu->arch.exception.pending = true;
 524                vcpu->arch.exception.injected = false;
 525                vcpu->arch.exception.has_error_code = true;
 526                vcpu->arch.exception.nr = DF_VECTOR;
 527                vcpu->arch.exception.error_code = 0;
 528                vcpu->arch.exception.has_payload = false;
 529                vcpu->arch.exception.payload = 0;
 530        } else
 531                /* replace previous exception with a new one in a hope
 532                   that instruction re-execution will regenerate lost
 533                   exception */
 534                goto queue;
 535}
 536
 537void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 538{
 539        kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
 540}
 541EXPORT_SYMBOL_GPL(kvm_queue_exception);
 542
 543void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 544{
 545        kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
 546}
 547EXPORT_SYMBOL_GPL(kvm_requeue_exception);
 548
 549static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
 550                                  unsigned long payload)
 551{
 552        kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
 553}
 554
 555static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
 556                                    u32 error_code, unsigned long payload)
 557{
 558        kvm_multiple_exception(vcpu, nr, true, error_code,
 559                               true, payload, false);
 560}
 561
 562int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
 563{
 564        if (err)
 565                kvm_inject_gp(vcpu, 0);
 566        else
 567                return kvm_skip_emulated_instruction(vcpu);
 568
 569        return 1;
 570}
 571EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
 572
 573void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 574{
 575        ++vcpu->stat.pf_guest;
 576        vcpu->arch.exception.nested_apf =
 577                is_guest_mode(vcpu) && fault->async_page_fault;
 578        if (vcpu->arch.exception.nested_apf) {
 579                vcpu->arch.apf.nested_apf_token = fault->address;
 580                kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
 581        } else {
 582                kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
 583                                        fault->address);
 584        }
 585}
 586EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
 587
 588static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 589{
 590        if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
 591                vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
 592        else
 593                vcpu->arch.mmu->inject_page_fault(vcpu, fault);
 594
 595        return fault->nested_page_fault;
 596}
 597
 598void kvm_inject_nmi(struct kvm_vcpu *vcpu)
 599{
 600        atomic_inc(&vcpu->arch.nmi_queued);
 601        kvm_make_request(KVM_REQ_NMI, vcpu);
 602}
 603EXPORT_SYMBOL_GPL(kvm_inject_nmi);
 604
 605void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 606{
 607        kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
 608}
 609EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
 610
 611void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 612{
 613        kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
 614}
 615EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
 616
 617/*
 618 * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
 619 * a #GP and return false.
 620 */
 621bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
 622{
 623        if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
 624                return true;
 625        kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
 626        return false;
 627}
 628EXPORT_SYMBOL_GPL(kvm_require_cpl);
 629
 630bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
 631{
 632        if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 633                return true;
 634
 635        kvm_queue_exception(vcpu, UD_VECTOR);
 636        return false;
 637}
 638EXPORT_SYMBOL_GPL(kvm_require_dr);
 639
 640/*
 641 * This function will be used to read from the physical memory of the currently
 642 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
 643 * can read from guest physical or from the guest's guest physical memory.
 644 */
 645int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 646                            gfn_t ngfn, void *data, int offset, int len,
 647                            u32 access)
 648{
 649        struct x86_exception exception;
 650        gfn_t real_gfn;
 651        gpa_t ngpa;
 652
 653        ngpa     = gfn_to_gpa(ngfn);
 654        real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
 655        if (real_gfn == UNMAPPED_GVA)
 656                return -EFAULT;
 657
 658        real_gfn = gpa_to_gfn(real_gfn);
 659
 660        return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
 661}
 662EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
 663
 664static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
 665                               void *data, int offset, int len, u32 access)
 666{
 667        return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
 668                                       data, offset, len, access);
 669}
 670
 671static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
 672{
 673        return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
 674               rsvd_bits(1, 2);
 675}
 676
 677/*
 678 * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
 679 */
 680int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
 681{
 682        gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
 683        unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
 684        int i;
 685        int ret;
 686        u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
 687
 688        ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
 689                                      offset * sizeof(u64), sizeof(pdpte),
 690                                      PFERR_USER_MASK|PFERR_WRITE_MASK);
 691        if (ret < 0) {
 692                ret = 0;
 693                goto out;
 694        }
 695        for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
 696                if ((pdpte[i] & PT_PRESENT_MASK) &&
 697                    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
 698                        ret = 0;
 699                        goto out;
 700                }
 701        }
 702        ret = 1;
 703
 704        memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
 705        kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
 706
 707out:
 708
 709        return ret;
 710}
 711EXPORT_SYMBOL_GPL(load_pdptrs);
 712
 713bool pdptrs_changed(struct kvm_vcpu *vcpu)
 714{
 715        u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
 716        int offset;
 717        gfn_t gfn;
 718        int r;
 719
 720        if (!is_pae_paging(vcpu))
 721                return false;
 722
 723        if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
 724                return true;
 725
 726        gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
 727        offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
 728        r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
 729                                       PFERR_USER_MASK | PFERR_WRITE_MASK);
 730        if (r < 0)
 731                return true;
 732
 733        return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
 734}
 735EXPORT_SYMBOL_GPL(pdptrs_changed);
 736
 737int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
 738{
 739        unsigned long old_cr0 = kvm_read_cr0(vcpu);
 740        unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
 741
 742        cr0 |= X86_CR0_ET;
 743
 744#ifdef CONFIG_X86_64
 745        if (cr0 & 0xffffffff00000000UL)
 746                return 1;
 747#endif
 748
 749        cr0 &= ~CR0_RESERVED_BITS;
 750
 751        if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
 752                return 1;
 753
 754        if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
 755                return 1;
 756
 757        if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
 758#ifdef CONFIG_X86_64
 759                if ((vcpu->arch.efer & EFER_LME)) {
 760                        int cs_db, cs_l;
 761
 762                        if (!is_pae(vcpu))
 763                                return 1;
 764                        kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
 765                        if (cs_l)
 766                                return 1;
 767                } else
 768#endif
 769                if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
 770                                                 kvm_read_cr3(vcpu)))
 771                        return 1;
 772        }
 773
 774        if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
 775                return 1;
 776
 777        kvm_x86_ops->set_cr0(vcpu, cr0);
 778
 779        if ((cr0 ^ old_cr0) & X86_CR0_PG) {
 780                kvm_clear_async_pf_completion_queue(vcpu);
 781                kvm_async_pf_hash_reset(vcpu);
 782        }
 783
 784        if ((cr0 ^ old_cr0) & update_bits)
 785                kvm_mmu_reset_context(vcpu);
 786
 787        if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
 788            kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
 789            !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
 790                kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
 791
 792        return 0;
 793}
 794EXPORT_SYMBOL_GPL(kvm_set_cr0);
 795
 796void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
 797{
 798        (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
 799}
 800EXPORT_SYMBOL_GPL(kvm_lmsw);
 801
 802void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
 803{
 804        if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
 805
 806                if (vcpu->arch.xcr0 != host_xcr0)
 807                        xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
 808
 809                if (vcpu->arch.xsaves_enabled &&
 810                    vcpu->arch.ia32_xss != host_xss)
 811                        wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
 812        }
 813}
 814EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
 815
 816void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
 817{
 818        if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
 819
 820                if (vcpu->arch.xcr0 != host_xcr0)
 821                        xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
 822
 823                if (vcpu->arch.xsaves_enabled &&
 824                    vcpu->arch.ia32_xss != host_xss)
 825                        wrmsrl(MSR_IA32_XSS, host_xss);
 826        }
 827
 828}
 829EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
 830
 831static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 832{
 833        u64 xcr0 = xcr;
 834        u64 old_xcr0 = vcpu->arch.xcr0;
 835        u64 valid_bits;
 836
 837        /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
 838        if (index != XCR_XFEATURE_ENABLED_MASK)
 839                return 1;
 840        if (!(xcr0 & XFEATURE_MASK_FP))
 841                return 1;
 842        if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
 843                return 1;
 844
 845        /*
 846         * Do not allow the guest to set bits that we do not support
 847         * saving.  However, xcr0 bit 0 is always set, even if the
 848         * emulated CPU does not support XSAVE (see fx_init).
 849         */
 850        valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
 851        if (xcr0 & ~valid_bits)
 852                return 1;
 853
 854        if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
 855            (!(xcr0 & XFEATURE_MASK_BNDCSR)))
 856                return 1;
 857
 858        if (xcr0 & XFEATURE_MASK_AVX512) {
 859                if (!(xcr0 & XFEATURE_MASK_YMM))
 860                        return 1;
 861                if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
 862                        return 1;
 863        }
 864        vcpu->arch.xcr0 = xcr0;
 865
 866        if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
 867                kvm_update_cpuid(vcpu);
 868        return 0;
 869}
 870
 871int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 872{
 873        if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
 874            __kvm_set_xcr(vcpu, index, xcr)) {
 875                kvm_inject_gp(vcpu, 0);
 876                return 1;
 877        }
 878        return 0;
 879}
 880EXPORT_SYMBOL_GPL(kvm_set_xcr);
 881
 882static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
 883{
 884        if (cr4 & CR4_RESERVED_BITS)
 885                return -EINVAL;
 886
 887        if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
 888                return -EINVAL;
 889
 890        if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
 891                return -EINVAL;
 892
 893        if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
 894                return -EINVAL;
 895
 896        if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
 897                return -EINVAL;
 898
 899        if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
 900                return -EINVAL;
 901
 902        if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
 903                return -EINVAL;
 904
 905        if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
 906                return -EINVAL;
 907
 908        return 0;
 909}
 910
 911int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
 912{
 913        unsigned long old_cr4 = kvm_read_cr4(vcpu);
 914        unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
 915                                   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
 916
 917        if (kvm_valid_cr4(vcpu, cr4))
 918                return 1;
 919
 920        if (is_long_mode(vcpu)) {
 921                if (!(cr4 & X86_CR4_PAE))
 922                        return 1;
 923        } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
 924                   && ((cr4 ^ old_cr4) & pdptr_bits)
 925                   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
 926                                   kvm_read_cr3(vcpu)))
 927                return 1;
 928
 929        if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
 930                if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
 931                        return 1;
 932
 933                /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
 934                if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
 935                        return 1;
 936        }
 937
 938        if (kvm_x86_ops->set_cr4(vcpu, cr4))
 939                return 1;
 940
 941        if (((cr4 ^ old_cr4) & pdptr_bits) ||
 942            (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
 943                kvm_mmu_reset_context(vcpu);
 944
 945        if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
 946                kvm_update_cpuid(vcpu);
 947
 948        return 0;
 949}
 950EXPORT_SYMBOL_GPL(kvm_set_cr4);
 951
 952int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
 953{
 954        bool skip_tlb_flush = false;
 955#ifdef CONFIG_X86_64
 956        bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
 957
 958        if (pcid_enabled) {
 959                skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
 960                cr3 &= ~X86_CR3_PCID_NOFLUSH;
 961        }
 962#endif
 963
 964        if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
 965                if (!skip_tlb_flush) {
 966                        kvm_mmu_sync_roots(vcpu);
 967                        kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
 968                }
 969                return 0;
 970        }
 971
 972        if (is_long_mode(vcpu) &&
 973            (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
 974                return 1;
 975        else if (is_pae_paging(vcpu) &&
 976                 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
 977                return 1;
 978
 979        kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
 980        vcpu->arch.cr3 = cr3;
 981        kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
 982
 983        return 0;
 984}
 985EXPORT_SYMBOL_GPL(kvm_set_cr3);
 986
 987int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
 988{
 989        if (cr8 & CR8_RESERVED_BITS)
 990                return 1;
 991        if (lapic_in_kernel(vcpu))
 992                kvm_lapic_set_tpr(vcpu, cr8);
 993        else
 994                vcpu->arch.cr8 = cr8;
 995        return 0;
 996}
 997EXPORT_SYMBOL_GPL(kvm_set_cr8);
 998
 999unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1000{
1001        if (lapic_in_kernel(vcpu))
1002                return kvm_lapic_get_cr8(vcpu);
1003        else
1004                return vcpu->arch.cr8;
1005}
1006EXPORT_SYMBOL_GPL(kvm_get_cr8);
1007
1008static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1009{
1010        int i;
1011
1012        if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1013                for (i = 0; i < KVM_NR_DB_REGS; i++)
1014                        vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1015                vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1016        }
1017}
1018
1019static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1020{
1021        if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1022                kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1023}
1024
1025static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1026{
1027        unsigned long dr7;
1028
1029        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1030                dr7 = vcpu->arch.guest_debug_dr7;
1031        else
1032                dr7 = vcpu->arch.dr7;
1033        kvm_x86_ops->set_dr7(vcpu, dr7);
1034        vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1035        if (dr7 & DR7_BP_EN_MASK)
1036                vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1037}
1038
1039static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1040{
1041        u64 fixed = DR6_FIXED_1;
1042
1043        if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1044                fixed |= DR6_RTM;
1045        return fixed;
1046}
1047
1048static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1049{
1050        switch (dr) {
1051        case 0 ... 3:
1052                vcpu->arch.db[dr] = val;
1053                if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1054                        vcpu->arch.eff_db[dr] = val;
1055                break;
1056        case 4:
1057                /* fall through */
1058        case 6:
1059                if (val & 0xffffffff00000000ULL)
1060                        return -1; /* #GP */
1061                vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1062                kvm_update_dr6(vcpu);
1063                break;
1064        case 5:
1065                /* fall through */
1066        default: /* 7 */
1067                if (val & 0xffffffff00000000ULL)
1068                        return -1; /* #GP */
1069                vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1070                kvm_update_dr7(vcpu);
1071                break;
1072        }
1073
1074        return 0;
1075}
1076
1077int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1078{
1079        if (__kvm_set_dr(vcpu, dr, val)) {
1080                kvm_inject_gp(vcpu, 0);
1081                return 1;
1082        }
1083        return 0;
1084}
1085EXPORT_SYMBOL_GPL(kvm_set_dr);
1086
1087int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1088{
1089        switch (dr) {
1090        case 0 ... 3:
1091                *val = vcpu->arch.db[dr];
1092                break;
1093        case 4:
1094                /* fall through */
1095        case 6:
1096                if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1097                        *val = vcpu->arch.dr6;
1098                else
1099                        *val = kvm_x86_ops->get_dr6(vcpu);
1100                break;
1101        case 5:
1102                /* fall through */
1103        default: /* 7 */
1104                *val = vcpu->arch.dr7;
1105                break;
1106        }
1107        return 0;
1108}
1109EXPORT_SYMBOL_GPL(kvm_get_dr);
1110
1111bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1112{
1113        u32 ecx = kvm_rcx_read(vcpu);
1114        u64 data;
1115        int err;
1116
1117        err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1118        if (err)
1119                return err;
1120        kvm_rax_write(vcpu, (u32)data);
1121        kvm_rdx_write(vcpu, data >> 32);
1122        return err;
1123}
1124EXPORT_SYMBOL_GPL(kvm_rdpmc);
1125
1126/*
1127 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1128 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1129 *
1130 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1131 * extract the supported MSRs from the related const lists.
1132 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1133 * capabilities of the host cpu. This capabilities test skips MSRs that are
1134 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1135 * may depend on host virtualization features rather than host cpu features.
1136 */
1137
1138static const u32 msrs_to_save_all[] = {
1139        MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1140        MSR_STAR,
1141#ifdef CONFIG_X86_64
1142        MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1143#endif
1144        MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1145        MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1146        MSR_IA32_SPEC_CTRL,
1147        MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1148        MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1149        MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1150        MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1151        MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1152        MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1153        MSR_IA32_UMWAIT_CONTROL,
1154
1155        MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1156        MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1157        MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1158        MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1159        MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1160        MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1161        MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1162        MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1163        MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1164        MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1165        MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1166        MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1167        MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1168        MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1169        MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1170        MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1171        MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1172        MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1173        MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1174        MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1175        MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1176        MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1177};
1178
1179static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1180static unsigned num_msrs_to_save;
1181
1182static const u32 emulated_msrs_all[] = {
1183        MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1184        MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1185        HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1186        HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1187        HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1188        HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1189        HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1190        HV_X64_MSR_RESET,
1191        HV_X64_MSR_VP_INDEX,
1192        HV_X64_MSR_VP_RUNTIME,
1193        HV_X64_MSR_SCONTROL,
1194        HV_X64_MSR_STIMER0_CONFIG,
1195        HV_X64_MSR_VP_ASSIST_PAGE,
1196        HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1197        HV_X64_MSR_TSC_EMULATION_STATUS,
1198
1199        MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1200        MSR_KVM_PV_EOI_EN,
1201
1202        MSR_IA32_TSC_ADJUST,
1203        MSR_IA32_TSCDEADLINE,
1204        MSR_IA32_ARCH_CAPABILITIES,
1205        MSR_IA32_MISC_ENABLE,
1206        MSR_IA32_MCG_STATUS,
1207        MSR_IA32_MCG_CTL,
1208        MSR_IA32_MCG_EXT_CTL,
1209        MSR_IA32_SMBASE,
1210        MSR_SMI_COUNT,
1211        MSR_PLATFORM_INFO,
1212        MSR_MISC_FEATURES_ENABLES,
1213        MSR_AMD64_VIRT_SPEC_CTRL,
1214        MSR_IA32_POWER_CTL,
1215
1216        /*
1217         * The following list leaves out MSRs whose values are determined
1218         * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1219         * We always support the "true" VMX control MSRs, even if the host
1220         * processor does not, so I am putting these registers here rather
1221         * than in msrs_to_save_all.
1222         */
1223        MSR_IA32_VMX_BASIC,
1224        MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1225        MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1226        MSR_IA32_VMX_TRUE_EXIT_CTLS,
1227        MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1228        MSR_IA32_VMX_MISC,
1229        MSR_IA32_VMX_CR0_FIXED0,
1230        MSR_IA32_VMX_CR4_FIXED0,
1231        MSR_IA32_VMX_VMCS_ENUM,
1232        MSR_IA32_VMX_PROCBASED_CTLS2,
1233        MSR_IA32_VMX_EPT_VPID_CAP,
1234        MSR_IA32_VMX_VMFUNC,
1235
1236        MSR_K7_HWCR,
1237        MSR_KVM_POLL_CONTROL,
1238};
1239
1240static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1241static unsigned num_emulated_msrs;
1242
1243/*
1244 * List of msr numbers which are used to expose MSR-based features that
1245 * can be used by a hypervisor to validate requested CPU features.
1246 */
1247static const u32 msr_based_features_all[] = {
1248        MSR_IA32_VMX_BASIC,
1249        MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1250        MSR_IA32_VMX_PINBASED_CTLS,
1251        MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1252        MSR_IA32_VMX_PROCBASED_CTLS,
1253        MSR_IA32_VMX_TRUE_EXIT_CTLS,
1254        MSR_IA32_VMX_EXIT_CTLS,
1255        MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1256        MSR_IA32_VMX_ENTRY_CTLS,
1257        MSR_IA32_VMX_MISC,
1258        MSR_IA32_VMX_CR0_FIXED0,
1259        MSR_IA32_VMX_CR0_FIXED1,
1260        MSR_IA32_VMX_CR4_FIXED0,
1261        MSR_IA32_VMX_CR4_FIXED1,
1262        MSR_IA32_VMX_VMCS_ENUM,
1263        MSR_IA32_VMX_PROCBASED_CTLS2,
1264        MSR_IA32_VMX_EPT_VPID_CAP,
1265        MSR_IA32_VMX_VMFUNC,
1266
1267        MSR_F10H_DECFG,
1268        MSR_IA32_UCODE_REV,
1269        MSR_IA32_ARCH_CAPABILITIES,
1270};
1271
1272static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1273static unsigned int num_msr_based_features;
1274
1275static u64 kvm_get_arch_capabilities(void)
1276{
1277        u64 data = 0;
1278
1279        if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1280                rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1281
1282        /*
1283         * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1284         * the nested hypervisor runs with NX huge pages.  If it is not,
1285         * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1286         * L1 guests, so it need not worry about its own (L2) guests.
1287         */
1288        data |= ARCH_CAP_PSCHANGE_MC_NO;
1289
1290        /*
1291         * If we're doing cache flushes (either "always" or "cond")
1292         * we will do one whenever the guest does a vmlaunch/vmresume.
1293         * If an outer hypervisor is doing the cache flush for us
1294         * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1295         * capability to the guest too, and if EPT is disabled we're not
1296         * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1297         * require a nested hypervisor to do a flush of its own.
1298         */
1299        if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1300                data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1301
1302        if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1303                data |= ARCH_CAP_RDCL_NO;
1304        if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1305                data |= ARCH_CAP_SSB_NO;
1306        if (!boot_cpu_has_bug(X86_BUG_MDS))
1307                data |= ARCH_CAP_MDS_NO;
1308
1309        /*
1310         * On TAA affected systems:
1311         *      - nothing to do if TSX is disabled on the host.
1312         *      - we emulate TSX_CTRL if present on the host.
1313         *        This lets the guest use VERW to clear CPU buffers.
1314         */
1315        if (!boot_cpu_has(X86_FEATURE_RTM))
1316                data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1317        else if (!boot_cpu_has_bug(X86_BUG_TAA))
1318                data |= ARCH_CAP_TAA_NO;
1319
1320        return data;
1321}
1322
1323static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1324{
1325        switch (msr->index) {
1326        case MSR_IA32_ARCH_CAPABILITIES:
1327                msr->data = kvm_get_arch_capabilities();
1328                break;
1329        case MSR_IA32_UCODE_REV:
1330                rdmsrl_safe(msr->index, &msr->data);
1331                break;
1332        default:
1333                if (kvm_x86_ops->get_msr_feature(msr))
1334                        return 1;
1335        }
1336        return 0;
1337}
1338
1339static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1340{
1341        struct kvm_msr_entry msr;
1342        int r;
1343
1344        msr.index = index;
1345        r = kvm_get_msr_feature(&msr);
1346        if (r)
1347                return r;
1348
1349        *data = msr.data;
1350
1351        return 0;
1352}
1353
1354static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1355{
1356        if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1357                return false;
1358
1359        if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1360                return false;
1361
1362        if (efer & (EFER_LME | EFER_LMA) &&
1363            !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1364                return false;
1365
1366        if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1367                return false;
1368
1369        return true;
1370
1371}
1372bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1373{
1374        if (efer & efer_reserved_bits)
1375                return false;
1376
1377        return __kvm_valid_efer(vcpu, efer);
1378}
1379EXPORT_SYMBOL_GPL(kvm_valid_efer);
1380
1381static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1382{
1383        u64 old_efer = vcpu->arch.efer;
1384        u64 efer = msr_info->data;
1385
1386        if (efer & efer_reserved_bits)
1387                return 1;
1388
1389        if (!msr_info->host_initiated) {
1390                if (!__kvm_valid_efer(vcpu, efer))
1391                        return 1;
1392
1393                if (is_paging(vcpu) &&
1394                    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1395                        return 1;
1396        }
1397
1398        efer &= ~EFER_LMA;
1399        efer |= vcpu->arch.efer & EFER_LMA;
1400
1401        kvm_x86_ops->set_efer(vcpu, efer);
1402
1403        /* Update reserved bits */
1404        if ((efer ^ old_efer) & EFER_NX)
1405                kvm_mmu_reset_context(vcpu);
1406
1407        return 0;
1408}
1409
1410void kvm_enable_efer_bits(u64 mask)
1411{
1412       efer_reserved_bits &= ~mask;
1413}
1414EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1415
1416/*
1417 * Write @data into the MSR specified by @index.  Select MSR specific fault
1418 * checks are bypassed if @host_initiated is %true.
1419 * Returns 0 on success, non-0 otherwise.
1420 * Assumes vcpu_load() was already called.
1421 */
1422static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1423                         bool host_initiated)
1424{
1425        struct msr_data msr;
1426
1427        switch (index) {
1428        case MSR_FS_BASE:
1429        case MSR_GS_BASE:
1430        case MSR_KERNEL_GS_BASE:
1431        case MSR_CSTAR:
1432        case MSR_LSTAR:
1433                if (is_noncanonical_address(data, vcpu))
1434                        return 1;
1435                break;
1436        case MSR_IA32_SYSENTER_EIP:
1437        case MSR_IA32_SYSENTER_ESP:
1438                /*
1439                 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1440                 * non-canonical address is written on Intel but not on
1441                 * AMD (which ignores the top 32-bits, because it does
1442                 * not implement 64-bit SYSENTER).
1443                 *
1444                 * 64-bit code should hence be able to write a non-canonical
1445                 * value on AMD.  Making the address canonical ensures that
1446                 * vmentry does not fail on Intel after writing a non-canonical
1447                 * value, and that something deterministic happens if the guest
1448                 * invokes 64-bit SYSENTER.
1449                 */
1450                data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1451        }
1452
1453        msr.data = data;
1454        msr.index = index;
1455        msr.host_initiated = host_initiated;
1456
1457        return kvm_x86_ops->set_msr(vcpu, &msr);
1458}
1459
1460/*
1461 * Read the MSR specified by @index into @data.  Select MSR specific fault
1462 * checks are bypassed if @host_initiated is %true.
1463 * Returns 0 on success, non-0 otherwise.
1464 * Assumes vcpu_load() was already called.
1465 */
1466int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1467                  bool host_initiated)
1468{
1469        struct msr_data msr;
1470        int ret;
1471
1472        msr.index = index;
1473        msr.host_initiated = host_initiated;
1474
1475        ret = kvm_x86_ops->get_msr(vcpu, &msr);
1476        if (!ret)
1477                *data = msr.data;
1478        return ret;
1479}
1480
1481int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1482{
1483        return __kvm_get_msr(vcpu, index, data, false);
1484}
1485EXPORT_SYMBOL_GPL(kvm_get_msr);
1486
1487int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1488{
1489        return __kvm_set_msr(vcpu, index, data, false);
1490}
1491EXPORT_SYMBOL_GPL(kvm_set_msr);
1492
1493int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1494{
1495        u32 ecx = kvm_rcx_read(vcpu);
1496        u64 data;
1497
1498        if (kvm_get_msr(vcpu, ecx, &data)) {
1499                trace_kvm_msr_read_ex(ecx);
1500                kvm_inject_gp(vcpu, 0);
1501                return 1;
1502        }
1503
1504        trace_kvm_msr_read(ecx, data);
1505
1506        kvm_rax_write(vcpu, data & -1u);
1507        kvm_rdx_write(vcpu, (data >> 32) & -1u);
1508        return kvm_skip_emulated_instruction(vcpu);
1509}
1510EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1511
1512int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1513{
1514        u32 ecx = kvm_rcx_read(vcpu);
1515        u64 data = kvm_read_edx_eax(vcpu);
1516
1517        if (kvm_set_msr(vcpu, ecx, data)) {
1518                trace_kvm_msr_write_ex(ecx, data);
1519                kvm_inject_gp(vcpu, 0);
1520                return 1;
1521        }
1522
1523        trace_kvm_msr_write(ecx, data);
1524        return kvm_skip_emulated_instruction(vcpu);
1525}
1526EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1527
1528/*
1529 * Adapt set_msr() to msr_io()'s calling convention
1530 */
1531static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1532{
1533        return __kvm_get_msr(vcpu, index, data, true);
1534}
1535
1536static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1537{
1538        return __kvm_set_msr(vcpu, index, *data, true);
1539}
1540
1541#ifdef CONFIG_X86_64
1542struct pvclock_clock {
1543        int vclock_mode;
1544        u64 cycle_last;
1545        u64 mask;
1546        u32 mult;
1547        u32 shift;
1548};
1549
1550struct pvclock_gtod_data {
1551        seqcount_t      seq;
1552
1553        struct pvclock_clock clock; /* extract of a clocksource struct */
1554        struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1555
1556        u64             boot_ns_raw;
1557        u64             boot_ns;
1558        u64             nsec_base;
1559        u64             wall_time_sec;
1560        u64             monotonic_raw_nsec;
1561};
1562
1563static struct pvclock_gtod_data pvclock_gtod_data;
1564
1565static void update_pvclock_gtod(struct timekeeper *tk)
1566{
1567        struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1568        u64 boot_ns, boot_ns_raw;
1569
1570        boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1571        boot_ns_raw = ktime_to_ns(ktime_add(tk->tkr_raw.base, tk->offs_boot));
1572
1573        write_seqcount_begin(&vdata->seq);
1574
1575        /* copy pvclock gtod data */
1576        vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1577        vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1578        vdata->clock.mask               = tk->tkr_mono.mask;
1579        vdata->clock.mult               = tk->tkr_mono.mult;
1580        vdata->clock.shift              = tk->tkr_mono.shift;
1581
1582        vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->archdata.vclock_mode;
1583        vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
1584        vdata->raw_clock.mask           = tk->tkr_raw.mask;
1585        vdata->raw_clock.mult           = tk->tkr_raw.mult;
1586        vdata->raw_clock.shift          = tk->tkr_raw.shift;
1587
1588        vdata->boot_ns                  = boot_ns;
1589        vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1590
1591        vdata->wall_time_sec            = tk->xtime_sec;
1592
1593        vdata->boot_ns_raw              = boot_ns_raw;
1594        vdata->monotonic_raw_nsec       = tk->tkr_raw.xtime_nsec;
1595
1596        write_seqcount_end(&vdata->seq);
1597}
1598#endif
1599
1600void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1601{
1602        kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1603        kvm_vcpu_kick(vcpu);
1604}
1605
1606static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1607{
1608        int version;
1609        int r;
1610        struct pvclock_wall_clock wc;
1611        struct timespec64 boot;
1612
1613        if (!wall_clock)
1614                return;
1615
1616        r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1617        if (r)
1618                return;
1619
1620        if (version & 1)
1621                ++version;  /* first time write, random junk */
1622
1623        ++version;
1624
1625        if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1626                return;
1627
1628        /*
1629         * The guest calculates current wall clock time by adding
1630         * system time (updated by kvm_guest_time_update below) to the
1631         * wall clock specified here.  guest system time equals host
1632         * system time for us, thus we must fill in host boot time here.
1633         */
1634        getboottime64(&boot);
1635
1636        if (kvm->arch.kvmclock_offset) {
1637                struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1638                boot = timespec64_sub(boot, ts);
1639        }
1640        wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1641        wc.nsec = boot.tv_nsec;
1642        wc.version = version;
1643
1644        kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1645
1646        version++;
1647        kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1648}
1649
1650static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1651{
1652        do_shl32_div32(dividend, divisor);
1653        return dividend;
1654}
1655
1656static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1657                               s8 *pshift, u32 *pmultiplier)
1658{
1659        uint64_t scaled64;
1660        int32_t  shift = 0;
1661        uint64_t tps64;
1662        uint32_t tps32;
1663
1664        tps64 = base_hz;
1665        scaled64 = scaled_hz;
1666        while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1667                tps64 >>= 1;
1668                shift--;
1669        }
1670
1671        tps32 = (uint32_t)tps64;
1672        while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1673                if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1674                        scaled64 >>= 1;
1675                else
1676                        tps32 <<= 1;
1677                shift++;
1678        }
1679
1680        *pshift = shift;
1681        *pmultiplier = div_frac(scaled64, tps32);
1682}
1683
1684#ifdef CONFIG_X86_64
1685static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1686#endif
1687
1688static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1689static unsigned long max_tsc_khz;
1690
1691static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1692{
1693        u64 v = (u64)khz * (1000000 + ppm);
1694        do_div(v, 1000000);
1695        return v;
1696}
1697
1698static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1699{
1700        u64 ratio;
1701
1702        /* Guest TSC same frequency as host TSC? */
1703        if (!scale) {
1704                vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1705                return 0;
1706        }
1707
1708        /* TSC scaling supported? */
1709        if (!kvm_has_tsc_control) {
1710                if (user_tsc_khz > tsc_khz) {
1711                        vcpu->arch.tsc_catchup = 1;
1712                        vcpu->arch.tsc_always_catchup = 1;
1713                        return 0;
1714                } else {
1715                        pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1716                        return -1;
1717                }
1718        }
1719
1720        /* TSC scaling required  - calculate ratio */
1721        ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1722                                user_tsc_khz, tsc_khz);
1723
1724        if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1725                pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1726                                    user_tsc_khz);
1727                return -1;
1728        }
1729
1730        vcpu->arch.tsc_scaling_ratio = ratio;
1731        return 0;
1732}
1733
1734static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1735{
1736        u32 thresh_lo, thresh_hi;
1737        int use_scaling = 0;
1738
1739        /* tsc_khz can be zero if TSC calibration fails */
1740        if (user_tsc_khz == 0) {
1741                /* set tsc_scaling_ratio to a safe value */
1742                vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1743                return -1;
1744        }
1745
1746        /* Compute a scale to convert nanoseconds in TSC cycles */
1747        kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1748                           &vcpu->arch.virtual_tsc_shift,
1749                           &vcpu->arch.virtual_tsc_mult);
1750        vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1751
1752        /*
1753         * Compute the variation in TSC rate which is acceptable
1754         * within the range of tolerance and decide if the
1755         * rate being applied is within that bounds of the hardware
1756         * rate.  If so, no scaling or compensation need be done.
1757         */
1758        thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1759        thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1760        if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1761                pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1762                use_scaling = 1;
1763        }
1764        return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1765}
1766
1767static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1768{
1769        u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1770                                      vcpu->arch.virtual_tsc_mult,
1771                                      vcpu->arch.virtual_tsc_shift);
1772        tsc += vcpu->arch.this_tsc_write;
1773        return tsc;
1774}
1775
1776static inline int gtod_is_based_on_tsc(int mode)
1777{
1778        return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1779}
1780
1781static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1782{
1783#ifdef CONFIG_X86_64
1784        bool vcpus_matched;
1785        struct kvm_arch *ka = &vcpu->kvm->arch;
1786        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1787
1788        vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1789                         atomic_read(&vcpu->kvm->online_vcpus));
1790
1791        /*
1792         * Once the masterclock is enabled, always perform request in
1793         * order to update it.
1794         *
1795         * In order to enable masterclock, the host clocksource must be TSC
1796         * and the vcpus need to have matched TSCs.  When that happens,
1797         * perform request to enable masterclock.
1798         */
1799        if (ka->use_master_clock ||
1800            (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1801                kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1802
1803        trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1804                            atomic_read(&vcpu->kvm->online_vcpus),
1805                            ka->use_master_clock, gtod->clock.vclock_mode);
1806#endif
1807}
1808
1809static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1810{
1811        u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1812        vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1813}
1814
1815/*
1816 * Multiply tsc by a fixed point number represented by ratio.
1817 *
1818 * The most significant 64-N bits (mult) of ratio represent the
1819 * integral part of the fixed point number; the remaining N bits
1820 * (frac) represent the fractional part, ie. ratio represents a fixed
1821 * point number (mult + frac * 2^(-N)).
1822 *
1823 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1824 */
1825static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1826{
1827        return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1828}
1829
1830u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1831{
1832        u64 _tsc = tsc;
1833        u64 ratio = vcpu->arch.tsc_scaling_ratio;
1834
1835        if (ratio != kvm_default_tsc_scaling_ratio)
1836                _tsc = __scale_tsc(ratio, tsc);
1837
1838        return _tsc;
1839}
1840EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1841
1842static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1843{
1844        u64 tsc;
1845
1846        tsc = kvm_scale_tsc(vcpu, rdtsc());
1847
1848        return target_tsc - tsc;
1849}
1850
1851u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1852{
1853        u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1854
1855        return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1856}
1857EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1858
1859static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1860{
1861        vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1862}
1863
1864static inline bool kvm_check_tsc_unstable(void)
1865{
1866#ifdef CONFIG_X86_64
1867        /*
1868         * TSC is marked unstable when we're running on Hyper-V,
1869         * 'TSC page' clocksource is good.
1870         */
1871        if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1872                return false;
1873#endif
1874        return check_tsc_unstable();
1875}
1876
1877void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1878{
1879        struct kvm *kvm = vcpu->kvm;
1880        u64 offset, ns, elapsed;
1881        unsigned long flags;
1882        bool matched;
1883        bool already_matched;
1884        u64 data = msr->data;
1885        bool synchronizing = false;
1886
1887        raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1888        offset = kvm_compute_tsc_offset(vcpu, data);
1889        ns = ktime_get_boottime_ns();
1890        elapsed = ns - kvm->arch.last_tsc_nsec;
1891
1892        if (vcpu->arch.virtual_tsc_khz) {
1893                if (data == 0 && msr->host_initiated) {
1894                        /*
1895                         * detection of vcpu initialization -- need to sync
1896                         * with other vCPUs. This particularly helps to keep
1897                         * kvm_clock stable after CPU hotplug
1898                         */
1899                        synchronizing = true;
1900                } else {
1901                        u64 tsc_exp = kvm->arch.last_tsc_write +
1902                                                nsec_to_cycles(vcpu, elapsed);
1903                        u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1904                        /*
1905                         * Special case: TSC write with a small delta (1 second)
1906                         * of virtual cycle time against real time is
1907                         * interpreted as an attempt to synchronize the CPU.
1908                         */
1909                        synchronizing = data < tsc_exp + tsc_hz &&
1910                                        data + tsc_hz > tsc_exp;
1911                }
1912        }
1913
1914        /*
1915         * For a reliable TSC, we can match TSC offsets, and for an unstable
1916         * TSC, we add elapsed time in this computation.  We could let the
1917         * compensation code attempt to catch up if we fall behind, but
1918         * it's better to try to match offsets from the beginning.
1919         */
1920        if (synchronizing &&
1921            vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1922                if (!kvm_check_tsc_unstable()) {
1923                        offset = kvm->arch.cur_tsc_offset;
1924                } else {
1925                        u64 delta = nsec_to_cycles(vcpu, elapsed);
1926                        data += delta;
1927                        offset = kvm_compute_tsc_offset(vcpu, data);
1928                }
1929                matched = true;
1930                already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1931        } else {
1932                /*
1933                 * We split periods of matched TSC writes into generations.
1934                 * For each generation, we track the original measured
1935                 * nanosecond time, offset, and write, so if TSCs are in
1936                 * sync, we can match exact offset, and if not, we can match
1937                 * exact software computation in compute_guest_tsc()
1938                 *
1939                 * These values are tracked in kvm->arch.cur_xxx variables.
1940                 */
1941                kvm->arch.cur_tsc_generation++;
1942                kvm->arch.cur_tsc_nsec = ns;
1943                kvm->arch.cur_tsc_write = data;
1944                kvm->arch.cur_tsc_offset = offset;
1945                matched = false;
1946        }
1947
1948        /*
1949         * We also track th most recent recorded KHZ, write and time to
1950         * allow the matching interval to be extended at each write.
1951         */
1952        kvm->arch.last_tsc_nsec = ns;
1953        kvm->arch.last_tsc_write = data;
1954        kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1955
1956        vcpu->arch.last_guest_tsc = data;
1957
1958        /* Keep track of which generation this VCPU has synchronized to */
1959        vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1960        vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1961        vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1962
1963        if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1964                update_ia32_tsc_adjust_msr(vcpu, offset);
1965
1966        kvm_vcpu_write_tsc_offset(vcpu, offset);
1967        raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1968
1969        spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1970        if (!matched) {
1971                kvm->arch.nr_vcpus_matched_tsc = 0;
1972        } else if (!already_matched) {
1973                kvm->arch.nr_vcpus_matched_tsc++;
1974        }
1975
1976        kvm_track_tsc_matching(vcpu);
1977        spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1978}
1979
1980EXPORT_SYMBOL_GPL(kvm_write_tsc);
1981
1982static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1983                                           s64 adjustment)
1984{
1985        u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1986        kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1987}
1988
1989static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1990{
1991        if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1992                WARN_ON(adjustment < 0);
1993        adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1994        adjust_tsc_offset_guest(vcpu, adjustment);
1995}
1996
1997#ifdef CONFIG_X86_64
1998
1999static u64 read_tsc(void)
2000{
2001        u64 ret = (u64)rdtsc_ordered();
2002        u64 last = pvclock_gtod_data.clock.cycle_last;
2003
2004        if (likely(ret >= last))
2005                return ret;
2006
2007        /*
2008         * GCC likes to generate cmov here, but this branch is extremely
2009         * predictable (it's just a function of time and the likely is
2010         * very likely) and there's a data dependence, so force GCC
2011         * to generate a branch instead.  I don't barrier() because
2012         * we don't actually need a barrier, and if this function
2013         * ever gets inlined it will generate worse code.
2014         */
2015        asm volatile ("");
2016        return last;
2017}
2018
2019static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2020                          int *mode)
2021{
2022        long v;
2023        u64 tsc_pg_val;
2024
2025        switch (clock->vclock_mode) {
2026        case VCLOCK_HVCLOCK:
2027                tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2028                                                  tsc_timestamp);
2029                if (tsc_pg_val != U64_MAX) {
2030                        /* TSC page valid */
2031                        *mode = VCLOCK_HVCLOCK;
2032                        v = (tsc_pg_val - clock->cycle_last) &
2033                                clock->mask;
2034                } else {
2035                        /* TSC page invalid */
2036                        *mode = VCLOCK_NONE;
2037                }
2038                break;
2039        case VCLOCK_TSC:
2040                *mode = VCLOCK_TSC;
2041                *tsc_timestamp = read_tsc();
2042                v = (*tsc_timestamp - clock->cycle_last) &
2043                        clock->mask;
2044                break;
2045        default:
2046                *mode = VCLOCK_NONE;
2047        }
2048
2049        if (*mode == VCLOCK_NONE)
2050                *tsc_timestamp = v = 0;
2051
2052        return v * clock->mult;
2053}
2054
2055static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2056{
2057        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2058        unsigned long seq;
2059        int mode;
2060        u64 ns;
2061
2062        do {
2063                seq = read_seqcount_begin(&gtod->seq);
2064                ns = gtod->monotonic_raw_nsec;
2065                ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2066                ns >>= gtod->clock.shift;
2067                ns += gtod->boot_ns_raw;
2068        } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2069        *t = ns;
2070
2071        return mode;
2072}
2073
2074static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2075{
2076        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2077        unsigned long seq;
2078        int mode;
2079        u64 ns;
2080
2081        do {
2082                seq = read_seqcount_begin(&gtod->seq);
2083                ts->tv_sec = gtod->wall_time_sec;
2084                ns = gtod->nsec_base;
2085                ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2086                ns >>= gtod->clock.shift;
2087        } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2088
2089        ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2090        ts->tv_nsec = ns;
2091
2092        return mode;
2093}
2094
2095/* returns true if host is using TSC based clocksource */
2096static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2097{
2098        /* checked again under seqlock below */
2099        if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2100                return false;
2101
2102        return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2103                                                      tsc_timestamp));
2104}
2105
2106/* returns true if host is using TSC based clocksource */
2107static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2108                                           u64 *tsc_timestamp)
2109{
2110        /* checked again under seqlock below */
2111        if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2112                return false;
2113
2114        return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2115}
2116#endif
2117
2118/*
2119 *
2120 * Assuming a stable TSC across physical CPUS, and a stable TSC
2121 * across virtual CPUs, the following condition is possible.
2122 * Each numbered line represents an event visible to both
2123 * CPUs at the next numbered event.
2124 *
2125 * "timespecX" represents host monotonic time. "tscX" represents
2126 * RDTSC value.
2127 *
2128 *              VCPU0 on CPU0           |       VCPU1 on CPU1
2129 *
2130 * 1.  read timespec0,tsc0
2131 * 2.                                   | timespec1 = timespec0 + N
2132 *                                      | tsc1 = tsc0 + M
2133 * 3. transition to guest               | transition to guest
2134 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2135 * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2136 *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2137 *
2138 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2139 *
2140 *      - ret0 < ret1
2141 *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2142 *              ...
2143 *      - 0 < N - M => M < N
2144 *
2145 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2146 * always the case (the difference between two distinct xtime instances
2147 * might be smaller then the difference between corresponding TSC reads,
2148 * when updating guest vcpus pvclock areas).
2149 *
2150 * To avoid that problem, do not allow visibility of distinct
2151 * system_timestamp/tsc_timestamp values simultaneously: use a master
2152 * copy of host monotonic time values. Update that master copy
2153 * in lockstep.
2154 *
2155 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2156 *
2157 */
2158
2159static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2160{
2161#ifdef CONFIG_X86_64
2162        struct kvm_arch *ka = &kvm->arch;
2163        int vclock_mode;
2164        bool host_tsc_clocksource, vcpus_matched;
2165
2166        vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2167                        atomic_read(&kvm->online_vcpus));
2168
2169        /*
2170         * If the host uses TSC clock, then passthrough TSC as stable
2171         * to the guest.
2172         */
2173        host_tsc_clocksource = kvm_get_time_and_clockread(
2174                                        &ka->master_kernel_ns,
2175                                        &ka->master_cycle_now);
2176
2177        ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2178                                && !ka->backwards_tsc_observed
2179                                && !ka->boot_vcpu_runs_old_kvmclock;
2180
2181        if (ka->use_master_clock)
2182                atomic_set(&kvm_guest_has_master_clock, 1);
2183
2184        vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2185        trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2186                                        vcpus_matched);
2187#endif
2188}
2189
2190void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2191{
2192        kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2193}
2194
2195static void kvm_gen_update_masterclock(struct kvm *kvm)
2196{
2197#ifdef CONFIG_X86_64
2198        int i;
2199        struct kvm_vcpu *vcpu;
2200        struct kvm_arch *ka = &kvm->arch;
2201
2202        spin_lock(&ka->pvclock_gtod_sync_lock);
2203        kvm_make_mclock_inprogress_request(kvm);
2204        /* no guest entries from this point */
2205        pvclock_update_vm_gtod_copy(kvm);
2206
2207        kvm_for_each_vcpu(i, vcpu, kvm)
2208                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2209
2210        /* guest entries allowed */
2211        kvm_for_each_vcpu(i, vcpu, kvm)
2212                kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2213
2214        spin_unlock(&ka->pvclock_gtod_sync_lock);
2215#endif
2216}
2217
2218u64 get_kvmclock_ns(struct kvm *kvm)
2219{
2220        struct kvm_arch *ka = &kvm->arch;
2221        struct pvclock_vcpu_time_info hv_clock;
2222        u64 ret;
2223
2224        spin_lock(&ka->pvclock_gtod_sync_lock);
2225        if (!ka->use_master_clock) {
2226                spin_unlock(&ka->pvclock_gtod_sync_lock);
2227                return ktime_get_boottime_ns() + ka->kvmclock_offset;
2228        }
2229
2230        hv_clock.tsc_timestamp = ka->master_cycle_now;
2231        hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2232        spin_unlock(&ka->pvclock_gtod_sync_lock);
2233
2234        /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2235        get_cpu();
2236
2237        if (__this_cpu_read(cpu_tsc_khz)) {
2238                kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2239                                   &hv_clock.tsc_shift,
2240                                   &hv_clock.tsc_to_system_mul);
2241                ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2242        } else
2243                ret = ktime_get_boottime_ns() + ka->kvmclock_offset;
2244
2245        put_cpu();
2246
2247        return ret;
2248}
2249
2250static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2251{
2252        struct kvm_vcpu_arch *vcpu = &v->arch;
2253        struct pvclock_vcpu_time_info guest_hv_clock;
2254
2255        if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2256                &guest_hv_clock, sizeof(guest_hv_clock))))
2257                return;
2258
2259        /* This VCPU is paused, but it's legal for a guest to read another
2260         * VCPU's kvmclock, so we really have to follow the specification where
2261         * it says that version is odd if data is being modified, and even after
2262         * it is consistent.
2263         *
2264         * Version field updates must be kept separate.  This is because
2265         * kvm_write_guest_cached might use a "rep movs" instruction, and
2266         * writes within a string instruction are weakly ordered.  So there
2267         * are three writes overall.
2268         *
2269         * As a small optimization, only write the version field in the first
2270         * and third write.  The vcpu->pv_time cache is still valid, because the
2271         * version field is the first in the struct.
2272         */
2273        BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2274
2275        if (guest_hv_clock.version & 1)
2276                ++guest_hv_clock.version;  /* first time write, random junk */
2277
2278        vcpu->hv_clock.version = guest_hv_clock.version + 1;
2279        kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2280                                &vcpu->hv_clock,
2281                                sizeof(vcpu->hv_clock.version));
2282
2283        smp_wmb();
2284
2285        /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2286        vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2287
2288        if (vcpu->pvclock_set_guest_stopped_request) {
2289                vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2290                vcpu->pvclock_set_guest_stopped_request = false;
2291        }
2292
2293        trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2294
2295        kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2296                                &vcpu->hv_clock,
2297                                sizeof(vcpu->hv_clock));
2298
2299        smp_wmb();
2300
2301        vcpu->hv_clock.version++;
2302        kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2303                                &vcpu->hv_clock,
2304                                sizeof(vcpu->hv_clock.version));
2305}
2306
2307static int kvm_guest_time_update(struct kvm_vcpu *v)
2308{
2309        unsigned long flags, tgt_tsc_khz;
2310        struct kvm_vcpu_arch *vcpu = &v->arch;
2311        struct kvm_arch *ka = &v->kvm->arch;
2312        s64 kernel_ns;
2313        u64 tsc_timestamp, host_tsc;
2314        u8 pvclock_flags;
2315        bool use_master_clock;
2316
2317        kernel_ns = 0;
2318        host_tsc = 0;
2319
2320        /*
2321         * If the host uses TSC clock, then passthrough TSC as stable
2322         * to the guest.
2323         */
2324        spin_lock(&ka->pvclock_gtod_sync_lock);
2325        use_master_clock = ka->use_master_clock;
2326        if (use_master_clock) {
2327                host_tsc = ka->master_cycle_now;
2328                kernel_ns = ka->master_kernel_ns;
2329        }
2330        spin_unlock(&ka->pvclock_gtod_sync_lock);
2331
2332        /* Keep irq disabled to prevent changes to the clock */
2333        local_irq_save(flags);
2334        tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2335        if (unlikely(tgt_tsc_khz == 0)) {
2336                local_irq_restore(flags);
2337                kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2338                return 1;
2339        }
2340        if (!use_master_clock) {
2341                host_tsc = rdtsc();
2342                kernel_ns = ktime_get_boottime_ns();
2343        }
2344
2345        tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2346
2347        /*
2348         * We may have to catch up the TSC to match elapsed wall clock
2349         * time for two reasons, even if kvmclock is used.
2350         *   1) CPU could have been running below the maximum TSC rate
2351         *   2) Broken TSC compensation resets the base at each VCPU
2352         *      entry to avoid unknown leaps of TSC even when running
2353         *      again on the same CPU.  This may cause apparent elapsed
2354         *      time to disappear, and the guest to stand still or run
2355         *      very slowly.
2356         */
2357        if (vcpu->tsc_catchup) {
2358                u64 tsc = compute_guest_tsc(v, kernel_ns);
2359                if (tsc > tsc_timestamp) {
2360                        adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2361                        tsc_timestamp = tsc;
2362                }
2363        }
2364
2365        local_irq_restore(flags);
2366
2367        /* With all the info we got, fill in the values */
2368
2369        if (kvm_has_tsc_control)
2370                tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2371
2372        if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2373                kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2374                                   &vcpu->hv_clock.tsc_shift,
2375                                   &vcpu->hv_clock.tsc_to_system_mul);
2376                vcpu->hw_tsc_khz = tgt_tsc_khz;
2377        }
2378
2379        vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2380        vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2381        vcpu->last_guest_tsc = tsc_timestamp;
2382
2383        /* If the host uses TSC clocksource, then it is stable */
2384        pvclock_flags = 0;
2385        if (use_master_clock)
2386                pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2387
2388        vcpu->hv_clock.flags = pvclock_flags;
2389
2390        if (vcpu->pv_time_enabled)
2391                kvm_setup_pvclock_page(v);
2392        if (v == kvm_get_vcpu(v->kvm, 0))
2393                kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2394        return 0;
2395}
2396
2397/*
2398 * kvmclock updates which are isolated to a given vcpu, such as
2399 * vcpu->cpu migration, should not allow system_timestamp from
2400 * the rest of the vcpus to remain static. Otherwise ntp frequency
2401 * correction applies to one vcpu's system_timestamp but not
2402 * the others.
2403 *
2404 * So in those cases, request a kvmclock update for all vcpus.
2405 * We need to rate-limit these requests though, as they can
2406 * considerably slow guests that have a large number of vcpus.
2407 * The time for a remote vcpu to update its kvmclock is bound
2408 * by the delay we use to rate-limit the updates.
2409 */
2410
2411#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2412
2413static void kvmclock_update_fn(struct work_struct *work)
2414{
2415        int i;
2416        struct delayed_work *dwork = to_delayed_work(work);
2417        struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2418                                           kvmclock_update_work);
2419        struct kvm *kvm = container_of(ka, struct kvm, arch);
2420        struct kvm_vcpu *vcpu;
2421
2422        kvm_for_each_vcpu(i, vcpu, kvm) {
2423                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2424                kvm_vcpu_kick(vcpu);
2425        }
2426}
2427
2428static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2429{
2430        struct kvm *kvm = v->kvm;
2431
2432        kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2433        schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2434                                        KVMCLOCK_UPDATE_DELAY);
2435}
2436
2437#define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2438
2439static void kvmclock_sync_fn(struct work_struct *work)
2440{
2441        struct delayed_work *dwork = to_delayed_work(work);
2442        struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2443                                           kvmclock_sync_work);
2444        struct kvm *kvm = container_of(ka, struct kvm, arch);
2445
2446        if (!kvmclock_periodic_sync)
2447                return;
2448
2449        schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2450        schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2451                                        KVMCLOCK_SYNC_PERIOD);
2452}
2453
2454/*
2455 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2456 */
2457static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2458{
2459        /* McStatusWrEn enabled? */
2460        if (guest_cpuid_is_amd(vcpu))
2461                return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2462
2463        return false;
2464}
2465
2466static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2467{
2468        u64 mcg_cap = vcpu->arch.mcg_cap;
2469        unsigned bank_num = mcg_cap & 0xff;
2470        u32 msr = msr_info->index;
2471        u64 data = msr_info->data;
2472
2473        switch (msr) {
2474        case MSR_IA32_MCG_STATUS:
2475                vcpu->arch.mcg_status = data;
2476                break;
2477        case MSR_IA32_MCG_CTL:
2478                if (!(mcg_cap & MCG_CTL_P) &&
2479                    (data || !msr_info->host_initiated))
2480                        return 1;
2481                if (data != 0 && data != ~(u64)0)
2482                        return 1;
2483                vcpu->arch.mcg_ctl = data;
2484                break;
2485        default:
2486                if (msr >= MSR_IA32_MC0_CTL &&
2487                    msr < MSR_IA32_MCx_CTL(bank_num)) {
2488                        u32 offset = msr - MSR_IA32_MC0_CTL;
2489                        /* only 0 or all 1s can be written to IA32_MCi_CTL
2490                         * some Linux kernels though clear bit 10 in bank 4 to
2491                         * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2492                         * this to avoid an uncatched #GP in the guest
2493                         */
2494                        if ((offset & 0x3) == 0 &&
2495                            data != 0 && (data | (1 << 10)) != ~(u64)0)
2496                                return -1;
2497
2498                        /* MCi_STATUS */
2499                        if (!msr_info->host_initiated &&
2500                            (offset & 0x3) == 1 && data != 0) {
2501                                if (!can_set_mci_status(vcpu))
2502                                        return -1;
2503                        }
2504
2505                        vcpu->arch.mce_banks[offset] = data;
2506                        break;
2507                }
2508                return 1;
2509        }
2510        return 0;
2511}
2512
2513static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2514{
2515        struct kvm *kvm = vcpu->kvm;
2516        int lm = is_long_mode(vcpu);
2517        u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2518                : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2519        u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2520                : kvm->arch.xen_hvm_config.blob_size_32;
2521        u32 page_num = data & ~PAGE_MASK;
2522        u64 page_addr = data & PAGE_MASK;
2523        u8 *page;
2524        int r;
2525
2526        r = -E2BIG;
2527        if (page_num >= blob_size)
2528                goto out;
2529        r = -ENOMEM;
2530        page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2531        if (IS_ERR(page)) {
2532                r = PTR_ERR(page);
2533                goto out;
2534        }
2535        if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2536                goto out_free;
2537        r = 0;
2538out_free:
2539        kfree(page);
2540out:
2541        return r;
2542}
2543
2544static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2545{
2546        gpa_t gpa = data & ~0x3f;
2547
2548        /* Bits 3:5 are reserved, Should be zero */
2549        if (data & 0x38)
2550                return 1;
2551
2552        vcpu->arch.apf.msr_val = data;
2553
2554        if (!(data & KVM_ASYNC_PF_ENABLED)) {
2555                kvm_clear_async_pf_completion_queue(vcpu);
2556                kvm_async_pf_hash_reset(vcpu);
2557                return 0;
2558        }
2559
2560        if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2561                                        sizeof(u32)))
2562                return 1;
2563
2564        vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2565        vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2566        kvm_async_pf_wakeup_all(vcpu);
2567        return 0;
2568}
2569
2570static void kvmclock_reset(struct kvm_vcpu *vcpu)
2571{
2572        vcpu->arch.pv_time_enabled = false;
2573        vcpu->arch.time = 0;
2574}
2575
2576static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2577{
2578        ++vcpu->stat.tlb_flush;
2579        kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2580}
2581
2582static void record_steal_time(struct kvm_vcpu *vcpu)
2583{
2584        if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2585                return;
2586
2587        if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2588                &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2589                return;
2590
2591        /*
2592         * Doing a TLB flush here, on the guest's behalf, can avoid
2593         * expensive IPIs.
2594         */
2595        trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2596                vcpu->arch.st.steal.preempted & KVM_VCPU_FLUSH_TLB);
2597        if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2598                kvm_vcpu_flush_tlb(vcpu, false);
2599
2600        if (vcpu->arch.st.steal.version & 1)
2601                vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2602
2603        vcpu->arch.st.steal.version += 1;
2604
2605        kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2606                &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2607
2608        smp_wmb();
2609
2610        vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2611                vcpu->arch.st.last_steal;
2612        vcpu->arch.st.last_steal = current->sched_info.run_delay;
2613
2614        kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2615                &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2616
2617        smp_wmb();
2618
2619        vcpu->arch.st.steal.version += 1;
2620
2621        kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2622                &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2623}
2624
2625int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2626{
2627        bool pr = false;
2628        u32 msr = msr_info->index;
2629        u64 data = msr_info->data;
2630
2631        switch (msr) {
2632        case MSR_AMD64_NB_CFG:
2633        case MSR_IA32_UCODE_WRITE:
2634        case MSR_VM_HSAVE_PA:
2635        case MSR_AMD64_PATCH_LOADER:
2636        case MSR_AMD64_BU_CFG2:
2637        case MSR_AMD64_DC_CFG:
2638        case MSR_F15H_EX_CFG:
2639                break;
2640
2641        case MSR_IA32_UCODE_REV:
2642                if (msr_info->host_initiated)
2643                        vcpu->arch.microcode_version = data;
2644                break;
2645        case MSR_IA32_ARCH_CAPABILITIES:
2646                if (!msr_info->host_initiated)
2647                        return 1;
2648                vcpu->arch.arch_capabilities = data;
2649                break;
2650        case MSR_EFER:
2651                return set_efer(vcpu, msr_info);
2652        case MSR_K7_HWCR:
2653                data &= ~(u64)0x40;     /* ignore flush filter disable */
2654                data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2655                data &= ~(u64)0x8;      /* ignore TLB cache disable */
2656
2657                /* Handle McStatusWrEn */
2658                if (data == BIT_ULL(18)) {
2659                        vcpu->arch.msr_hwcr = data;
2660                } else if (data != 0) {
2661                        vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2662                                    data);
2663                        return 1;
2664                }
2665                break;
2666        case MSR_FAM10H_MMIO_CONF_BASE:
2667                if (data != 0) {
2668                        vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2669                                    "0x%llx\n", data);
2670                        return 1;
2671                }
2672                break;
2673        case MSR_IA32_DEBUGCTLMSR:
2674                if (!data) {
2675                        /* We support the non-activated case already */
2676                        break;
2677                } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2678                        /* Values other than LBR and BTF are vendor-specific,
2679                           thus reserved and should throw a #GP */
2680                        return 1;
2681                }
2682                vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2683                            __func__, data);
2684                break;
2685        case 0x200 ... 0x2ff:
2686                return kvm_mtrr_set_msr(vcpu, msr, data);
2687        case MSR_IA32_APICBASE:
2688                return kvm_set_apic_base(vcpu, msr_info);
2689        case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2690                return kvm_x2apic_msr_write(vcpu, msr, data);
2691        case MSR_IA32_TSCDEADLINE:
2692                kvm_set_lapic_tscdeadline_msr(vcpu, data);
2693                break;
2694        case MSR_IA32_TSC_ADJUST:
2695                if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2696                        if (!msr_info->host_initiated) {
2697                                s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2698                                adjust_tsc_offset_guest(vcpu, adj);
2699                        }
2700                        vcpu->arch.ia32_tsc_adjust_msr = data;
2701                }
2702                break;
2703        case MSR_IA32_MISC_ENABLE:
2704                if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2705                    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2706                        if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2707                                return 1;
2708                        vcpu->arch.ia32_misc_enable_msr = data;
2709                        kvm_update_cpuid(vcpu);
2710                } else {
2711                        vcpu->arch.ia32_misc_enable_msr = data;
2712                }
2713                break;
2714        case MSR_IA32_SMBASE:
2715                if (!msr_info->host_initiated)
2716                        return 1;
2717                vcpu->arch.smbase = data;
2718                break;
2719        case MSR_IA32_POWER_CTL:
2720                vcpu->arch.msr_ia32_power_ctl = data;
2721                break;
2722        case MSR_IA32_TSC:
2723                kvm_write_tsc(vcpu, msr_info);
2724                break;
2725        case MSR_IA32_XSS:
2726                if (!msr_info->host_initiated &&
2727                    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
2728                        return 1;
2729                /*
2730                 * We do support PT if kvm_x86_ops->pt_supported(), but we do
2731                 * not support IA32_XSS[bit 8]. Guests will have to use
2732                 * RDMSR/WRMSR rather than XSAVES/XRSTORS to save/restore PT
2733                 * MSRs.
2734                 */
2735                if (data != 0)
2736                        return 1;
2737                vcpu->arch.ia32_xss = data;
2738                break;
2739        case MSR_SMI_COUNT:
2740                if (!msr_info->host_initiated)
2741                        return 1;
2742                vcpu->arch.smi_count = data;
2743                break;
2744        case MSR_KVM_WALL_CLOCK_NEW:
2745        case MSR_KVM_WALL_CLOCK:
2746                vcpu->kvm->arch.wall_clock = data;
2747                kvm_write_wall_clock(vcpu->kvm, data);
2748                break;
2749        case MSR_KVM_SYSTEM_TIME_NEW:
2750        case MSR_KVM_SYSTEM_TIME: {
2751                struct kvm_arch *ka = &vcpu->kvm->arch;
2752
2753                if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2754                        bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2755
2756                        if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2757                                kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2758
2759                        ka->boot_vcpu_runs_old_kvmclock = tmp;
2760                }
2761
2762                vcpu->arch.time = data;
2763                kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2764
2765                /* we verify if the enable bit is set... */
2766                vcpu->arch.pv_time_enabled = false;
2767                if (!(data & 1))
2768                        break;
2769
2770                if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2771                     &vcpu->arch.pv_time, data & ~1ULL,
2772                     sizeof(struct pvclock_vcpu_time_info)))
2773                        vcpu->arch.pv_time_enabled = true;
2774
2775                break;
2776        }
2777        case MSR_KVM_ASYNC_PF_EN:
2778                if (kvm_pv_enable_async_pf(vcpu, data))
2779                        return 1;
2780                break;
2781        case MSR_KVM_STEAL_TIME:
2782
2783                if (unlikely(!sched_info_on()))
2784                        return 1;
2785
2786                if (data & KVM_STEAL_RESERVED_MASK)
2787                        return 1;
2788
2789                if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2790                                                data & KVM_STEAL_VALID_BITS,
2791                                                sizeof(struct kvm_steal_time)))
2792                        return 1;
2793
2794                vcpu->arch.st.msr_val = data;
2795
2796                if (!(data & KVM_MSR_ENABLED))
2797                        break;
2798
2799                kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2800
2801                break;
2802        case MSR_KVM_PV_EOI_EN:
2803                if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2804                        return 1;
2805                break;
2806
2807        case MSR_KVM_POLL_CONTROL:
2808                /* only enable bit supported */
2809                if (data & (-1ULL << 1))
2810                        return 1;
2811
2812                vcpu->arch.msr_kvm_poll_control = data;
2813                break;
2814
2815        case MSR_IA32_MCG_CTL:
2816        case MSR_IA32_MCG_STATUS:
2817        case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2818                return set_msr_mce(vcpu, msr_info);
2819
2820        case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2821        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2822                pr = true; /* fall through */
2823        case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2824        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2825                if (kvm_pmu_is_valid_msr(vcpu, msr))
2826                        return kvm_pmu_set_msr(vcpu, msr_info);
2827
2828                if (pr || data != 0)
2829                        vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2830                                    "0x%x data 0x%llx\n", msr, data);
2831                break;
2832        case MSR_K7_CLK_CTL:
2833                /*
2834                 * Ignore all writes to this no longer documented MSR.
2835                 * Writes are only relevant for old K7 processors,
2836                 * all pre-dating SVM, but a recommended workaround from
2837                 * AMD for these chips. It is possible to specify the
2838                 * affected processor models on the command line, hence
2839                 * the need to ignore the workaround.
2840                 */
2841                break;
2842        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2843        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2844        case HV_X64_MSR_CRASH_CTL:
2845        case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2846        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2847        case HV_X64_MSR_TSC_EMULATION_CONTROL:
2848        case HV_X64_MSR_TSC_EMULATION_STATUS:
2849                return kvm_hv_set_msr_common(vcpu, msr, data,
2850                                             msr_info->host_initiated);
2851        case MSR_IA32_BBL_CR_CTL3:
2852                /* Drop writes to this legacy MSR -- see rdmsr
2853                 * counterpart for further detail.
2854                 */
2855                if (report_ignored_msrs)
2856                        vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2857                                msr, data);
2858                break;
2859        case MSR_AMD64_OSVW_ID_LENGTH:
2860                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2861                        return 1;
2862                vcpu->arch.osvw.length = data;
2863                break;
2864        case MSR_AMD64_OSVW_STATUS:
2865                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2866                        return 1;
2867                vcpu->arch.osvw.status = data;
2868                break;
2869        case MSR_PLATFORM_INFO:
2870                if (!msr_info->host_initiated ||
2871                    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2872                     cpuid_fault_enabled(vcpu)))
2873                        return 1;
2874                vcpu->arch.msr_platform_info = data;
2875                break;
2876        case MSR_MISC_FEATURES_ENABLES:
2877                if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2878                    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2879                     !supports_cpuid_fault(vcpu)))
2880                        return 1;
2881                vcpu->arch.msr_misc_features_enables = data;
2882                break;
2883        default:
2884                if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2885                        return xen_hvm_config(vcpu, data);
2886                if (kvm_pmu_is_valid_msr(vcpu, msr))
2887                        return kvm_pmu_set_msr(vcpu, msr_info);
2888                if (!ignore_msrs) {
2889                        vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2890                                    msr, data);
2891                        return 1;
2892                } else {
2893                        if (report_ignored_msrs)
2894                                vcpu_unimpl(vcpu,
2895                                        "ignored wrmsr: 0x%x data 0x%llx\n",
2896                                        msr, data);
2897                        break;
2898                }
2899        }
2900        return 0;
2901}
2902EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2903
2904static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2905{
2906        u64 data;
2907        u64 mcg_cap = vcpu->arch.mcg_cap;
2908        unsigned bank_num = mcg_cap & 0xff;
2909
2910        switch (msr) {
2911        case MSR_IA32_P5_MC_ADDR:
2912        case MSR_IA32_P5_MC_TYPE:
2913                data = 0;
2914                break;
2915        case MSR_IA32_MCG_CAP:
2916                data = vcpu->arch.mcg_cap;
2917                break;
2918        case MSR_IA32_MCG_CTL:
2919                if (!(mcg_cap & MCG_CTL_P) && !host)
2920                        return 1;
2921                data = vcpu->arch.mcg_ctl;
2922                break;
2923        case MSR_IA32_MCG_STATUS:
2924                data = vcpu->arch.mcg_status;
2925                break;
2926        default:
2927                if (msr >= MSR_IA32_MC0_CTL &&
2928                    msr < MSR_IA32_MCx_CTL(bank_num)) {
2929                        u32 offset = msr - MSR_IA32_MC0_CTL;
2930                        data = vcpu->arch.mce_banks[offset];
2931                        break;
2932                }
2933                return 1;
2934        }
2935        *pdata = data;
2936        return 0;
2937}
2938
2939int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2940{
2941        switch (msr_info->index) {
2942        case MSR_IA32_PLATFORM_ID:
2943        case MSR_IA32_EBL_CR_POWERON:
2944        case MSR_IA32_DEBUGCTLMSR:
2945        case MSR_IA32_LASTBRANCHFROMIP:
2946        case MSR_IA32_LASTBRANCHTOIP:
2947        case MSR_IA32_LASTINTFROMIP:
2948        case MSR_IA32_LASTINTTOIP:
2949        case MSR_K8_SYSCFG:
2950        case MSR_K8_TSEG_ADDR:
2951        case MSR_K8_TSEG_MASK:
2952        case MSR_VM_HSAVE_PA:
2953        case MSR_K8_INT_PENDING_MSG:
2954        case MSR_AMD64_NB_CFG:
2955        case MSR_FAM10H_MMIO_CONF_BASE:
2956        case MSR_AMD64_BU_CFG2:
2957        case MSR_IA32_PERF_CTL:
2958        case MSR_AMD64_DC_CFG:
2959        case MSR_F15H_EX_CFG:
2960                msr_info->data = 0;
2961                break;
2962        case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2963        case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2964        case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2965        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2966        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2967                if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2968                        return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2969                msr_info->data = 0;
2970                break;
2971        case MSR_IA32_UCODE_REV:
2972                msr_info->data = vcpu->arch.microcode_version;
2973                break;
2974        case MSR_IA32_ARCH_CAPABILITIES:
2975                if (!msr_info->host_initiated &&
2976                    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2977                        return 1;
2978                msr_info->data = vcpu->arch.arch_capabilities;
2979                break;
2980        case MSR_IA32_POWER_CTL:
2981                msr_info->data = vcpu->arch.msr_ia32_power_ctl;
2982                break;
2983        case MSR_IA32_TSC:
2984                msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2985                break;
2986        case MSR_MTRRcap:
2987        case 0x200 ... 0x2ff:
2988                return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2989        case 0xcd: /* fsb frequency */
2990                msr_info->data = 3;
2991                break;
2992                /*
2993                 * MSR_EBC_FREQUENCY_ID
2994                 * Conservative value valid for even the basic CPU models.
2995                 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2996                 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2997                 * and 266MHz for model 3, or 4. Set Core Clock
2998                 * Frequency to System Bus Frequency Ratio to 1 (bits
2999                 * 31:24) even though these are only valid for CPU
3000                 * models > 2, however guests may end up dividing or
3001                 * multiplying by zero otherwise.
3002                 */
3003        case MSR_EBC_FREQUENCY_ID:
3004                msr_info->data = 1 << 24;
3005                break;
3006        case MSR_IA32_APICBASE:
3007                msr_info->data = kvm_get_apic_base(vcpu);
3008                break;
3009        case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
3010                return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3011                break;
3012        case MSR_IA32_TSCDEADLINE:
3013                msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3014                break;
3015        case MSR_IA32_TSC_ADJUST:
3016                msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3017                break;
3018        case MSR_IA32_MISC_ENABLE:
3019                msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3020                break;
3021        case MSR_IA32_SMBASE:
3022                if (!msr_info->host_initiated)
3023                        return 1;
3024                msr_info->data = vcpu->arch.smbase;
3025                break;
3026        case MSR_SMI_COUNT:
3027                msr_info->data = vcpu->arch.smi_count;
3028                break;
3029        case MSR_IA32_PERF_STATUS:
3030                /* TSC increment by tick */
3031                msr_info->data = 1000ULL;
3032                /* CPU multiplier */
3033                msr_info->data |= (((uint64_t)4ULL) << 40);
3034                break;
3035        case MSR_EFER:
3036                msr_info->data = vcpu->arch.efer;
3037                break;
3038        case MSR_KVM_WALL_CLOCK:
3039        case MSR_KVM_WALL_CLOCK_NEW:
3040                msr_info->data = vcpu->kvm->arch.wall_clock;
3041                break;
3042        case MSR_KVM_SYSTEM_TIME:
3043        case MSR_KVM_SYSTEM_TIME_NEW:
3044                msr_info->data = vcpu->arch.time;
3045                break;
3046        case MSR_KVM_ASYNC_PF_EN:
3047                msr_info->data = vcpu->arch.apf.msr_val;
3048                break;
3049        case MSR_KVM_STEAL_TIME:
3050                msr_info->data = vcpu->arch.st.msr_val;
3051                break;
3052        case MSR_KVM_PV_EOI_EN:
3053                msr_info->data = vcpu->arch.pv_eoi.msr_val;
3054                break;
3055        case MSR_KVM_POLL_CONTROL:
3056                msr_info->data = vcpu->arch.msr_kvm_poll_control;
3057                break;
3058        case MSR_IA32_P5_MC_ADDR:
3059        case MSR_IA32_P5_MC_TYPE:
3060        case MSR_IA32_MCG_CAP:
3061        case MSR_IA32_MCG_CTL:
3062        case MSR_IA32_MCG_STATUS:
3063        case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3064                return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3065                                   msr_info->host_initiated);
3066        case MSR_IA32_XSS:
3067                if (!msr_info->host_initiated &&
3068                    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3069                        return 1;
3070                msr_info->data = vcpu->arch.ia32_xss;
3071                break;
3072        case MSR_K7_CLK_CTL:
3073                /*
3074                 * Provide expected ramp-up count for K7. All other
3075                 * are set to zero, indicating minimum divisors for
3076                 * every field.
3077                 *
3078                 * This prevents guest kernels on AMD host with CPU
3079                 * type 6, model 8 and higher from exploding due to
3080                 * the rdmsr failing.
3081                 */
3082                msr_info->data = 0x20000000;
3083                break;
3084        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3085        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3086        case HV_X64_MSR_CRASH_CTL:
3087        case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3088        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3089        case HV_X64_MSR_TSC_EMULATION_CONTROL:
3090        case HV_X64_MSR_TSC_EMULATION_STATUS:
3091                return kvm_hv_get_msr_common(vcpu,
3092                                             msr_info->index, &msr_info->data,
3093                                             msr_info->host_initiated);
3094                break;
3095        case MSR_IA32_BBL_CR_CTL3:
3096                /* This legacy MSR exists but isn't fully documented in current
3097                 * silicon.  It is however accessed by winxp in very narrow
3098                 * scenarios where it sets bit #19, itself documented as
3099                 * a "reserved" bit.  Best effort attempt to source coherent
3100                 * read data here should the balance of the register be
3101                 * interpreted by the guest:
3102                 *
3103                 * L2 cache control register 3: 64GB range, 256KB size,
3104                 * enabled, latency 0x1, configured
3105                 */
3106                msr_info->data = 0xbe702111;
3107                break;
3108        case MSR_AMD64_OSVW_ID_LENGTH:
3109                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3110                        return 1;
3111                msr_info->data = vcpu->arch.osvw.length;
3112                break;
3113        case MSR_AMD64_OSVW_STATUS:
3114                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3115                        return 1;
3116                msr_info->data = vcpu->arch.osvw.status;
3117                break;
3118        case MSR_PLATFORM_INFO:
3119                if (!msr_info->host_initiated &&
3120                    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3121                        return 1;
3122                msr_info->data = vcpu->arch.msr_platform_info;
3123                break;
3124        case MSR_MISC_FEATURES_ENABLES:
3125                msr_info->data = vcpu->arch.msr_misc_features_enables;
3126                break;
3127        case MSR_K7_HWCR:
3128                msr_info->data = vcpu->arch.msr_hwcr;
3129                break;
3130        default:
3131                if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3132                        return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3133                if (!ignore_msrs) {
3134                        vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
3135                                               msr_info->index);
3136                        return 1;
3137                } else {
3138                        if (report_ignored_msrs)
3139                                vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
3140                                        msr_info->index);
3141                        msr_info->data = 0;
3142                }
3143                break;
3144        }
3145        return 0;
3146}
3147EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3148
3149/*
3150 * Read or write a bunch of msrs. All parameters are kernel addresses.
3151 *
3152 * @return number of msrs set successfully.
3153 */
3154static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3155                    struct kvm_msr_entry *entries,
3156                    int (*do_msr)(struct kvm_vcpu *vcpu,
3157                                  unsigned index, u64 *data))
3158{
3159        int i;
3160
3161        for (i = 0; i < msrs->nmsrs; ++i)
3162                if (do_msr(vcpu, entries[i].index, &entries[i].data))
3163                        break;
3164
3165        return i;
3166}
3167
3168/*
3169 * Read or write a bunch of msrs. Parameters are user addresses.
3170 *
3171 * @return number of msrs set successfully.
3172 */
3173static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3174                  int (*do_msr)(struct kvm_vcpu *vcpu,
3175                                unsigned index, u64 *data),
3176                  int writeback)
3177{
3178        struct kvm_msrs msrs;
3179        struct kvm_msr_entry *entries;
3180        int r, n;
3181        unsigned size;
3182
3183        r = -EFAULT;
3184        if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3185                goto out;
3186
3187        r = -E2BIG;
3188        if (msrs.nmsrs >= MAX_IO_MSRS)
3189                goto out;
3190
3191        size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3192        entries = memdup_user(user_msrs->entries, size);
3193        if (IS_ERR(entries)) {
3194                r = PTR_ERR(entries);
3195                goto out;
3196        }
3197
3198        r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3199        if (r < 0)
3200                goto out_free;
3201
3202        r = -EFAULT;
3203        if (writeback && copy_to_user(user_msrs->entries, entries, size))
3204                goto out_free;
3205
3206        r = n;
3207
3208out_free:
3209        kfree(entries);
3210out:
3211        return r;
3212}
3213
3214static inline bool kvm_can_mwait_in_guest(void)
3215{
3216        return boot_cpu_has(X86_FEATURE_MWAIT) &&
3217                !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3218                boot_cpu_has(X86_FEATURE_ARAT);
3219}
3220
3221int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3222{
3223        int r = 0;
3224
3225        switch (ext) {
3226        case KVM_CAP_IRQCHIP:
3227        case KVM_CAP_HLT:
3228        case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3229        case KVM_CAP_SET_TSS_ADDR:
3230        case KVM_CAP_EXT_CPUID:
3231        case KVM_CAP_EXT_EMUL_CPUID:
3232        case KVM_CAP_CLOCKSOURCE:
3233        case KVM_CAP_PIT:
3234        case KVM_CAP_NOP_IO_DELAY:
3235        case KVM_CAP_MP_STATE:
3236        case KVM_CAP_SYNC_MMU:
3237        case KVM_CAP_USER_NMI:
3238        case KVM_CAP_REINJECT_CONTROL:
3239        case KVM_CAP_IRQ_INJECT_STATUS:
3240        case KVM_CAP_IOEVENTFD:
3241        case KVM_CAP_IOEVENTFD_NO_LENGTH:
3242        case KVM_CAP_PIT2:
3243        case KVM_CAP_PIT_STATE2:
3244        case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3245        case KVM_CAP_XEN_HVM:
3246        case KVM_CAP_VCPU_EVENTS:
3247        case KVM_CAP_HYPERV:
3248        case KVM_CAP_HYPERV_VAPIC:
3249        case KVM_CAP_HYPERV_SPIN:
3250        case KVM_CAP_HYPERV_SYNIC:
3251        case KVM_CAP_HYPERV_SYNIC2:
3252        case KVM_CAP_HYPERV_VP_INDEX:
3253        case KVM_CAP_HYPERV_EVENTFD:
3254        case KVM_CAP_HYPERV_TLBFLUSH:
3255        case KVM_CAP_HYPERV_SEND_IPI:
3256        case KVM_CAP_HYPERV_CPUID:
3257        case KVM_CAP_PCI_SEGMENT:
3258        case KVM_CAP_DEBUGREGS:
3259        case KVM_CAP_X86_ROBUST_SINGLESTEP:
3260        case KVM_CAP_XSAVE:
3261        case KVM_CAP_ASYNC_PF:
3262        case KVM_CAP_GET_TSC_KHZ:
3263        case KVM_CAP_KVMCLOCK_CTRL:
3264        case KVM_CAP_READONLY_MEM:
3265        case KVM_CAP_HYPERV_TIME:
3266        case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3267        case KVM_CAP_TSC_DEADLINE_TIMER:
3268        case KVM_CAP_DISABLE_QUIRKS:
3269        case KVM_CAP_SET_BOOT_CPU_ID:
3270        case KVM_CAP_SPLIT_IRQCHIP:
3271        case KVM_CAP_IMMEDIATE_EXIT:
3272        case KVM_CAP_PMU_EVENT_FILTER:
3273        case KVM_CAP_GET_MSR_FEATURES:
3274        case KVM_CAP_MSR_PLATFORM_INFO:
3275        case KVM_CAP_EXCEPTION_PAYLOAD:
3276                r = 1;
3277                break;
3278        case KVM_CAP_SYNC_REGS:
3279                r = KVM_SYNC_X86_VALID_FIELDS;
3280                break;
3281        case KVM_CAP_ADJUST_CLOCK:
3282                r = KVM_CLOCK_TSC_STABLE;
3283                break;
3284        case KVM_CAP_X86_DISABLE_EXITS:
3285                r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3286                      KVM_X86_DISABLE_EXITS_CSTATE;
3287                if(kvm_can_mwait_in_guest())
3288                        r |= KVM_X86_DISABLE_EXITS_MWAIT;
3289                break;
3290        case KVM_CAP_X86_SMM:
3291                /* SMBASE is usually relocated above 1M on modern chipsets,
3292                 * and SMM handlers might indeed rely on 4G segment limits,
3293                 * so do not report SMM to be available if real mode is
3294                 * emulated via vm86 mode.  Still, do not go to great lengths
3295                 * to avoid userspace's usage of the feature, because it is a
3296                 * fringe case that is not enabled except via specific settings
3297                 * of the module parameters.
3298                 */
3299                r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3300                break;
3301        case KVM_CAP_VAPIC:
3302                r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3303                break;
3304        case KVM_CAP_NR_VCPUS:
3305                r = KVM_SOFT_MAX_VCPUS;
3306                break;
3307        case KVM_CAP_MAX_VCPUS:
3308                r = KVM_MAX_VCPUS;
3309                break;
3310        case KVM_CAP_MAX_VCPU_ID:
3311                r = KVM_MAX_VCPU_ID;
3312                break;
3313        case KVM_CAP_PV_MMU:    /* obsolete */
3314                r = 0;
3315                break;
3316        case KVM_CAP_MCE:
3317                r = KVM_MAX_MCE_BANKS;
3318                break;
3319        case KVM_CAP_XCRS:
3320                r = boot_cpu_has(X86_FEATURE_XSAVE);
3321                break;
3322        case KVM_CAP_TSC_CONTROL:
3323                r = kvm_has_tsc_control;
3324                break;
3325        case KVM_CAP_X2APIC_API:
3326                r = KVM_X2APIC_API_VALID_FLAGS;
3327                break;
3328        case KVM_CAP_NESTED_STATE:
3329                r = kvm_x86_ops->get_nested_state ?
3330                        kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3331                break;
3332        case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3333                r = kvm_x86_ops->enable_direct_tlbflush != NULL;
3334                break;
3335        case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3336                r = kvm_x86_ops->nested_enable_evmcs != NULL;
3337                break;
3338        default:
3339                break;
3340        }
3341        return r;
3342
3343}
3344
3345long kvm_arch_dev_ioctl(struct file *filp,
3346                        unsigned int ioctl, unsigned long arg)
3347{
3348        void __user *argp = (void __user *)arg;
3349        long r;
3350
3351        switch (ioctl) {
3352        case KVM_GET_MSR_INDEX_LIST: {
3353                struct kvm_msr_list __user *user_msr_list = argp;
3354                struct kvm_msr_list msr_list;
3355                unsigned n;
3356
3357                r = -EFAULT;
3358                if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3359                        goto out;
3360                n = msr_list.nmsrs;
3361                msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3362                if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3363                        goto out;
3364                r = -E2BIG;
3365                if (n < msr_list.nmsrs)
3366                        goto out;
3367                r = -EFAULT;
3368                if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3369                                 num_msrs_to_save * sizeof(u32)))
3370                        goto out;
3371                if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3372                                 &emulated_msrs,
3373                                 num_emulated_msrs * sizeof(u32)))
3374                        goto out;
3375                r = 0;
3376                break;
3377        }
3378        case KVM_GET_SUPPORTED_CPUID:
3379        case KVM_GET_EMULATED_CPUID: {
3380                struct kvm_cpuid2 __user *cpuid_arg = argp;
3381                struct kvm_cpuid2 cpuid;
3382
3383                r = -EFAULT;
3384                if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3385                        goto out;
3386
3387                r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3388                                            ioctl);
3389                if (r)
3390                        goto out;
3391
3392                r = -EFAULT;
3393                if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3394                        goto out;
3395                r = 0;
3396                break;
3397        }
3398        case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3399                r = -EFAULT;
3400                if (copy_to_user(argp, &kvm_mce_cap_supported,
3401                                 sizeof(kvm_mce_cap_supported)))
3402                        goto out;
3403                r = 0;
3404                break;
3405        case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3406                struct kvm_msr_list __user *user_msr_list = argp;
3407                struct kvm_msr_list msr_list;
3408                unsigned int n;
3409
3410                r = -EFAULT;
3411                if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3412                        goto out;
3413                n = msr_list.nmsrs;
3414                msr_list.nmsrs = num_msr_based_features;
3415                if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3416                        goto out;
3417                r = -E2BIG;
3418                if (n < msr_list.nmsrs)
3419                        goto out;
3420                r = -EFAULT;
3421                if (copy_to_user(user_msr_list->indices, &msr_based_features,
3422                                 num_msr_based_features * sizeof(u32)))
3423                        goto out;
3424                r = 0;
3425                break;
3426        }
3427        case KVM_GET_MSRS:
3428                r = msr_io(NULL, argp, do_get_msr_feature, 1);
3429                break;
3430        }
3431        default:
3432                r = -EINVAL;
3433        }
3434out:
3435        return r;
3436}
3437
3438static void wbinvd_ipi(void *garbage)
3439{
3440        wbinvd();
3441}
3442
3443static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3444{
3445        return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3446}
3447
3448void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3449{
3450        /* Address WBINVD may be executed by guest */
3451        if (need_emulate_wbinvd(vcpu)) {
3452                if (kvm_x86_ops->has_wbinvd_exit())
3453                        cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3454                else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3455                        smp_call_function_single(vcpu->cpu,
3456                                        wbinvd_ipi, NULL, 1);
3457        }
3458
3459        kvm_x86_ops->vcpu_load(vcpu, cpu);
3460
3461        fpregs_assert_state_consistent();
3462        if (test_thread_flag(TIF_NEED_FPU_LOAD))
3463                switch_fpu_return();
3464
3465        /* Apply any externally detected TSC adjustments (due to suspend) */
3466        if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3467                adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3468                vcpu->arch.tsc_offset_adjustment = 0;
3469                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3470        }
3471
3472        if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3473                s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3474                                rdtsc() - vcpu->arch.last_host_tsc;
3475                if (tsc_delta < 0)
3476                        mark_tsc_unstable("KVM discovered backwards TSC");
3477
3478                if (kvm_check_tsc_unstable()) {
3479                        u64 offset = kvm_compute_tsc_offset(vcpu,
3480                                                vcpu->arch.last_guest_tsc);
3481                        kvm_vcpu_write_tsc_offset(vcpu, offset);
3482                        vcpu->arch.tsc_catchup = 1;
3483                }
3484
3485                if (kvm_lapic_hv_timer_in_use(vcpu))
3486                        kvm_lapic_restart_hv_timer(vcpu);
3487
3488                /*
3489                 * On a host with synchronized TSC, there is no need to update
3490                 * kvmclock on vcpu->cpu migration
3491                 */
3492                if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3493                        kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3494                if (vcpu->cpu != cpu)
3495                        kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3496                vcpu->cpu = cpu;
3497        }
3498
3499        kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3500}
3501
3502static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3503{
3504        if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3505                return;
3506
3507        vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3508
3509        kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3510                        &vcpu->arch.st.steal.preempted,
3511                        offsetof(struct kvm_steal_time, preempted),
3512                        sizeof(vcpu->arch.st.steal.preempted));
3513}
3514
3515void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3516{
3517        int idx;
3518
3519        if (vcpu->preempted)
3520                vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3521
3522        /*
3523         * Disable page faults because we're in atomic context here.
3524         * kvm_write_guest_offset_cached() would call might_fault()
3525         * that relies on pagefault_disable() to tell if there's a
3526         * bug. NOTE: the write to guest memory may not go through if
3527         * during postcopy live migration or if there's heavy guest
3528         * paging.
3529         */
3530        pagefault_disable();
3531        /*
3532         * kvm_memslots() will be called by
3533         * kvm_write_guest_offset_cached() so take the srcu lock.
3534         */
3535        idx = srcu_read_lock(&vcpu->kvm->srcu);
3536        kvm_steal_time_set_preempted(vcpu);
3537        srcu_read_unlock(&vcpu->kvm->srcu, idx);
3538        pagefault_enable();
3539        kvm_x86_ops->vcpu_put(vcpu);
3540        vcpu->arch.last_host_tsc = rdtsc();
3541        /*
3542         * If userspace has set any breakpoints or watchpoints, dr6 is restored
3543         * on every vmexit, but if not, we might have a stale dr6 from the
3544         * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3545         */
3546        set_debugreg(0, 6);
3547}
3548
3549static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3550                                    struct kvm_lapic_state *s)
3551{
3552        if (vcpu->arch.apicv_active)
3553                kvm_x86_ops->sync_pir_to_irr(vcpu);
3554
3555        return kvm_apic_get_state(vcpu, s);
3556}
3557
3558static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3559                                    struct kvm_lapic_state *s)
3560{
3561        int r;
3562
3563        r = kvm_apic_set_state(vcpu, s);
3564        if (r)
3565                return r;
3566        update_cr8_intercept(vcpu);
3567
3568        return 0;
3569}
3570
3571static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3572{
3573        return (!lapic_in_kernel(vcpu) ||
3574                kvm_apic_accept_pic_intr(vcpu));
3575}
3576
3577/*
3578 * if userspace requested an interrupt window, check that the
3579 * interrupt window is open.
3580 *
3581 * No need to exit to userspace if we already have an interrupt queued.
3582 */
3583static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3584{
3585        return kvm_arch_interrupt_allowed(vcpu) &&
3586                !kvm_cpu_has_interrupt(vcpu) &&
3587                !kvm_event_needs_reinjection(vcpu) &&
3588                kvm_cpu_accept_dm_intr(vcpu);
3589}
3590
3591static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3592                                    struct kvm_interrupt *irq)
3593{
3594        if (irq->irq >= KVM_NR_INTERRUPTS)
3595                return -EINVAL;
3596
3597        if (!irqchip_in_kernel(vcpu->kvm)) {
3598                kvm_queue_interrupt(vcpu, irq->irq, false);
3599                kvm_make_request(KVM_REQ_EVENT, vcpu);
3600                return 0;
3601        }
3602
3603        /*
3604         * With in-kernel LAPIC, we only use this to inject EXTINT, so
3605         * fail for in-kernel 8259.
3606         */
3607        if (pic_in_kernel(vcpu->kvm))
3608                return -ENXIO;
3609
3610        if (vcpu->arch.pending_external_vector != -1)
3611                return -EEXIST;
3612
3613        vcpu->arch.pending_external_vector = irq->irq;
3614        kvm_make_request(KVM_REQ_EVENT, vcpu);
3615        return 0;
3616}
3617
3618static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3619{
3620        kvm_inject_nmi(vcpu);
3621
3622        return 0;
3623}
3624
3625static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3626{
3627        kvm_make_request(KVM_REQ_SMI, vcpu);
3628
3629        return 0;
3630}
3631
3632static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3633                                           struct kvm_tpr_access_ctl *tac)
3634{
3635        if (tac->flags)
3636                return -EINVAL;
3637        vcpu->arch.tpr_access_reporting = !!tac->enabled;
3638        return 0;
3639}
3640
3641static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3642                                        u64 mcg_cap)
3643{
3644        int r;
3645        unsigned bank_num = mcg_cap & 0xff, bank;
3646
3647        r = -EINVAL;
3648        if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3649                goto out;
3650        if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3651                goto out;
3652        r = 0;
3653        vcpu->arch.mcg_cap = mcg_cap;
3654        /* Init IA32_MCG_CTL to all 1s */
3655        if (mcg_cap & MCG_CTL_P)
3656                vcpu->arch.mcg_ctl = ~(u64)0;
3657        /* Init IA32_MCi_CTL to all 1s */
3658        for (bank = 0; bank < bank_num; bank++)
3659                vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3660
3661        kvm_x86_ops->setup_mce(vcpu);
3662out:
3663        return r;
3664}
3665
3666static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3667                                      struct kvm_x86_mce *mce)
3668{
3669        u64 mcg_cap = vcpu->arch.mcg_cap;
3670        unsigned bank_num = mcg_cap & 0xff;
3671        u64 *banks = vcpu->arch.mce_banks;
3672
3673        if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3674                return -EINVAL;
3675        /*
3676         * if IA32_MCG_CTL is not all 1s, the uncorrected error
3677         * reporting is disabled
3678         */
3679        if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3680            vcpu->arch.mcg_ctl != ~(u64)0)
3681                return 0;
3682        banks += 4 * mce->bank;
3683        /*
3684         * if IA32_MCi_CTL is not all 1s, the uncorrected error
3685         * reporting is disabled for the bank
3686         */
3687        if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3688                return 0;
3689        if (mce->status & MCI_STATUS_UC) {
3690                if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3691                    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3692                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3693                        return 0;
3694                }
3695                if (banks[1] & MCI_STATUS_VAL)
3696                        mce->status |= MCI_STATUS_OVER;
3697                banks[2] = mce->addr;
3698                banks[3] = mce->misc;
3699                vcpu->arch.mcg_status = mce->mcg_status;
3700                banks[1] = mce->status;
3701                kvm_queue_exception(vcpu, MC_VECTOR);
3702        } else if (!(banks[1] & MCI_STATUS_VAL)
3703                   || !(banks[1] & MCI_STATUS_UC)) {
3704                if (banks[1] & MCI_STATUS_VAL)
3705                        mce->status |= MCI_STATUS_OVER;
3706                banks[2] = mce->addr;
3707                banks[3] = mce->misc;
3708                banks[1] = mce->status;
3709        } else
3710                banks[1] |= MCI_STATUS_OVER;
3711        return 0;
3712}
3713
3714static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3715                                               struct kvm_vcpu_events *events)
3716{
3717        process_nmi(vcpu);
3718
3719        /*
3720         * The API doesn't provide the instruction length for software
3721         * exceptions, so don't report them. As long as the guest RIP
3722         * isn't advanced, we should expect to encounter the exception
3723         * again.
3724         */
3725        if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3726                events->exception.injected = 0;
3727                events->exception.pending = 0;
3728        } else {
3729                events->exception.injected = vcpu->arch.exception.injected;
3730                events->exception.pending = vcpu->arch.exception.pending;
3731                /*
3732                 * For ABI compatibility, deliberately conflate
3733                 * pending and injected exceptions when
3734                 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3735                 */
3736                if (!vcpu->kvm->arch.exception_payload_enabled)
3737                        events->exception.injected |=
3738                                vcpu->arch.exception.pending;
3739        }
3740        events->exception.nr = vcpu->arch.exception.nr;
3741        events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3742        events->exception.error_code = vcpu->arch.exception.error_code;
3743        events->exception_has_payload = vcpu->arch.exception.has_payload;
3744        events->exception_payload = vcpu->arch.exception.payload;
3745
3746        events->interrupt.injected =
3747                vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3748        events->interrupt.nr = vcpu->arch.interrupt.nr;
3749        events->interrupt.soft = 0;
3750        events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3751
3752        events->nmi.injected = vcpu->arch.nmi_injected;
3753        events->nmi.pending = vcpu->arch.nmi_pending != 0;
3754        events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3755        events->nmi.pad = 0;
3756
3757        events->sipi_vector = 0; /* never valid when reporting to user space */
3758
3759        events->smi.smm = is_smm(vcpu);
3760        events->smi.pending = vcpu->arch.smi_pending;
3761        events->smi.smm_inside_nmi =
3762                !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3763        events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3764
3765        events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3766                         | KVM_VCPUEVENT_VALID_SHADOW
3767                         | KVM_VCPUEVENT_VALID_SMM);
3768        if (vcpu->kvm->arch.exception_payload_enabled)
3769                events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3770
3771        memset(&events->reserved, 0, sizeof(events->reserved));
3772}
3773
3774static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3775
3776static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3777                                              struct kvm_vcpu_events *events)
3778{
3779        if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3780                              | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3781                              | KVM_VCPUEVENT_VALID_SHADOW
3782                              | KVM_VCPUEVENT_VALID_SMM
3783                              | KVM_VCPUEVENT_VALID_PAYLOAD))
3784                return -EINVAL;
3785
3786        if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3787                if (!vcpu->kvm->arch.exception_payload_enabled)
3788                        return -EINVAL;
3789                if (events->exception.pending)
3790                        events->exception.injected = 0;
3791                else
3792                        events->exception_has_payload = 0;
3793        } else {
3794                events->exception.pending = 0;
3795                events->exception_has_payload = 0;
3796        }
3797
3798        if ((events->exception.injected || events->exception.pending) &&
3799            (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3800                return -EINVAL;
3801
3802        /* INITs are latched while in SMM */
3803        if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3804            (events->smi.smm || events->smi.pending) &&
3805            vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3806                return -EINVAL;
3807
3808        process_nmi(vcpu);
3809        vcpu->arch.exception.injected = events->exception.injected;
3810        vcpu->arch.exception.pending = events->exception.pending;
3811        vcpu->arch.exception.nr = events->exception.nr;
3812        vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3813        vcpu->arch.exception.error_code = events->exception.error_code;
3814        vcpu->arch.exception.has_payload = events->exception_has_payload;
3815        vcpu->arch.exception.payload = events->exception_payload;
3816
3817        vcpu->arch.interrupt.injected = events->interrupt.injected;
3818        vcpu->arch.interrupt.nr = events->interrupt.nr;
3819        vcpu->arch.interrupt.soft = events->interrupt.soft;
3820        if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3821                kvm_x86_ops->set_interrupt_shadow(vcpu,
3822                                                  events->interrupt.shadow);
3823
3824        vcpu->arch.nmi_injected = events->nmi.injected;
3825        if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3826                vcpu->arch.nmi_pending = events->nmi.pending;
3827        kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3828
3829        if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3830            lapic_in_kernel(vcpu))
3831                vcpu->arch.apic->sipi_vector = events->sipi_vector;
3832
3833        if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3834                if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3835                        if (events->smi.smm)
3836                                vcpu->arch.hflags |= HF_SMM_MASK;
3837                        else
3838                                vcpu->arch.hflags &= ~HF_SMM_MASK;
3839                        kvm_smm_changed(vcpu);
3840                }
3841
3842                vcpu->arch.smi_pending = events->smi.pending;
3843
3844                if (events->smi.smm) {
3845                        if (events->smi.smm_inside_nmi)
3846                                vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3847                        else
3848                                vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3849                }
3850
3851                if (lapic_in_kernel(vcpu)) {
3852                        if (events->smi.latched_init)
3853                                set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3854                        else
3855                                clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3856                }
3857        }
3858
3859        kvm_make_request(KVM_REQ_EVENT, vcpu);
3860
3861        return 0;
3862}
3863
3864static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3865                                             struct kvm_debugregs *dbgregs)
3866{
3867        unsigned long val;
3868
3869        memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3870        kvm_get_dr(vcpu, 6, &val);
3871        dbgregs->dr6 = val;
3872        dbgregs->dr7 = vcpu->arch.dr7;
3873        dbgregs->flags = 0;
3874        memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3875}
3876
3877static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3878                                            struct kvm_debugregs *dbgregs)
3879{
3880        if (dbgregs->flags)
3881                return -EINVAL;
3882
3883        if (dbgregs->dr6 & ~0xffffffffull)
3884                return -EINVAL;
3885        if (dbgregs->dr7 & ~0xffffffffull)
3886                return -EINVAL;
3887
3888        memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3889        kvm_update_dr0123(vcpu);
3890        vcpu->arch.dr6 = dbgregs->dr6;
3891        kvm_update_dr6(vcpu);
3892        vcpu->arch.dr7 = dbgregs->dr7;
3893        kvm_update_dr7(vcpu);
3894
3895        return 0;
3896}
3897
3898#define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3899
3900static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3901{
3902        struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3903        u64 xstate_bv = xsave->header.xfeatures;
3904        u64 valid;
3905
3906        /*
3907         * Copy legacy XSAVE area, to avoid complications with CPUID
3908         * leaves 0 and 1 in the loop below.
3909         */
3910        memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3911
3912        /* Set XSTATE_BV */
3913        xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3914        *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3915
3916        /*
3917         * Copy each region from the possibly compacted offset to the
3918         * non-compacted offset.
3919         */
3920        valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3921        while (valid) {
3922                u64 xfeature_mask = valid & -valid;
3923                int xfeature_nr = fls64(xfeature_mask) - 1;
3924                void *src = get_xsave_addr(xsave, xfeature_nr);
3925
3926                if (src) {
3927                        u32 size, offset, ecx, edx;
3928                        cpuid_count(XSTATE_CPUID, xfeature_nr,
3929                                    &size, &offset, &ecx, &edx);
3930                        if (xfeature_nr == XFEATURE_PKRU)
3931                                memcpy(dest + offset, &vcpu->arch.pkru,
3932                                       sizeof(vcpu->arch.pkru));
3933                        else
3934                                memcpy(dest + offset, src, size);
3935
3936                }
3937
3938                valid -= xfeature_mask;
3939        }
3940}
3941
3942static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3943{
3944        struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3945        u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3946        u64 valid;
3947
3948        /*
3949         * Copy legacy XSAVE area, to avoid complications with CPUID
3950         * leaves 0 and 1 in the loop below.
3951         */
3952        memcpy(xsave, src, XSAVE_HDR_OFFSET);
3953
3954        /* Set XSTATE_BV and possibly XCOMP_BV.  */
3955        xsave->header.xfeatures = xstate_bv;
3956        if (boot_cpu_has(X86_FEATURE_XSAVES))
3957                xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3958
3959        /*
3960         * Copy each region from the non-compacted offset to the
3961         * possibly compacted offset.
3962         */
3963        valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3964        while (valid) {
3965                u64 xfeature_mask = valid & -valid;
3966                int xfeature_nr = fls64(xfeature_mask) - 1;
3967                void *dest = get_xsave_addr(xsave, xfeature_nr);
3968
3969                if (dest) {
3970                        u32 size, offset, ecx, edx;
3971                        cpuid_count(XSTATE_CPUID, xfeature_nr,
3972                                    &size, &offset, &ecx, &edx);
3973                        if (xfeature_nr == XFEATURE_PKRU)
3974                                memcpy(&vcpu->arch.pkru, src + offset,
3975                                       sizeof(vcpu->arch.pkru));
3976                        else
3977                                memcpy(dest, src + offset, size);
3978                }
3979
3980                valid -= xfeature_mask;
3981        }
3982}
3983
3984static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3985                                         struct kvm_xsave *guest_xsave)
3986{
3987        if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3988                memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3989                fill_xsave((u8 *) guest_xsave->region, vcpu);
3990        } else {
3991                memcpy(guest_xsave->region,
3992                        &vcpu->arch.guest_fpu->state.fxsave,
3993                        sizeof(struct fxregs_state));
3994                *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3995                        XFEATURE_MASK_FPSSE;
3996        }
3997}
3998
3999#define XSAVE_MXCSR_OFFSET 24
4000
4001static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4002                                        struct kvm_xsave *guest_xsave)
4003{
4004        u64 xstate_bv =
4005                *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4006        u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4007
4008        if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4009                /*
4010                 * Here we allow setting states that are not present in
4011                 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4012                 * with old userspace.
4013                 */
4014                if (xstate_bv & ~kvm_supported_xcr0() ||
4015                        mxcsr & ~mxcsr_feature_mask)
4016                        return -EINVAL;
4017                load_xsave(vcpu, (u8 *)guest_xsave->region);
4018        } else {
4019                if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4020                        mxcsr & ~mxcsr_feature_mask)
4021                        return -EINVAL;
4022                memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4023                        guest_xsave->region, sizeof(struct fxregs_state));
4024        }
4025        return 0;
4026}
4027
4028static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4029                                        struct kvm_xcrs *guest_xcrs)
4030{
4031        if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4032                guest_xcrs->nr_xcrs = 0;
4033                return;
4034        }
4035
4036        guest_xcrs->nr_xcrs = 1;
4037        guest_xcrs->flags = 0;
4038        guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4039        guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4040}
4041
4042static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4043                                       struct kvm_xcrs *guest_xcrs)
4044{
4045        int i, r = 0;
4046
4047        if (!boot_cpu_has(X86_FEATURE_XSAVE))
4048                return -EINVAL;
4049
4050        if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4051                return -EINVAL;
4052
4053        for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4054                /* Only support XCR0 currently */
4055                if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4056                        r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4057                                guest_xcrs->xcrs[i].value);
4058                        break;
4059                }
4060        if (r)
4061                r = -EINVAL;
4062        return r;
4063}
4064
4065/*
4066 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4067 * stopped by the hypervisor.  This function will be called from the host only.
4068 * EINVAL is returned when the host attempts to set the flag for a guest that
4069 * does not support pv clocks.
4070 */
4071static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4072{
4073        if (!vcpu->arch.pv_time_enabled)
4074                return -EINVAL;
4075        vcpu->arch.pvclock_set_guest_stopped_request = true;
4076        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4077        return 0;
4078}
4079
4080static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4081                                     struct kvm_enable_cap *cap)
4082{
4083        int r;
4084        uint16_t vmcs_version;
4085        void __user *user_ptr;
4086
4087        if (cap->flags)
4088                return -EINVAL;
4089
4090        switch (cap->cap) {
4091        case KVM_CAP_HYPERV_SYNIC2:
4092                if (cap->args[0])
4093                        return -EINVAL;
4094                /* fall through */
4095
4096        case KVM_CAP_HYPERV_SYNIC:
4097                if (!irqchip_in_kernel(vcpu->kvm))
4098                        return -EINVAL;
4099                return kvm_hv_activate_synic(vcpu, cap->cap ==
4100                                             KVM_CAP_HYPERV_SYNIC2);
4101        case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4102                if (!kvm_x86_ops->nested_enable_evmcs)
4103                        return -ENOTTY;
4104                r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
4105                if (!r) {
4106                        user_ptr = (void __user *)(uintptr_t)cap->args[0];
4107                        if (copy_to_user(user_ptr, &vmcs_version,
4108                                         sizeof(vmcs_version)))
4109                                r = -EFAULT;
4110                }
4111                return r;
4112        case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4113                if (!kvm_x86_ops->enable_direct_tlbflush)
4114                        return -ENOTTY;
4115
4116                return kvm_x86_ops->enable_direct_tlbflush(vcpu);
4117
4118        default:
4119                return -EINVAL;
4120        }
4121}
4122
4123long kvm_arch_vcpu_ioctl(struct file *filp,
4124                         unsigned int ioctl, unsigned long arg)
4125{
4126        struct kvm_vcpu *vcpu = filp->private_data;
4127        void __user *argp = (void __user *)arg;
4128        int r;
4129        union {
4130                struct kvm_lapic_state *lapic;
4131                struct kvm_xsave *xsave;
4132                struct kvm_xcrs *xcrs;
4133                void *buffer;
4134        } u;
4135
4136        vcpu_load(vcpu);
4137
4138        u.buffer = NULL;
4139        switch (ioctl) {
4140        case KVM_GET_LAPIC: {
4141                r = -EINVAL;
4142                if (!lapic_in_kernel(vcpu))
4143                        goto out;
4144                u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4145                                GFP_KERNEL_ACCOUNT);
4146
4147                r = -ENOMEM;
4148                if (!u.lapic)
4149                        goto out;
4150                r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4151                if (r)
4152                        goto out;
4153                r = -EFAULT;
4154                if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4155                        goto out;
4156                r = 0;
4157                break;
4158        }
4159        case KVM_SET_LAPIC: {
4160                r = -EINVAL;
4161                if (!lapic_in_kernel(vcpu))
4162                        goto out;
4163                u.lapic = memdup_user(argp, sizeof(*u.lapic));
4164                if (IS_ERR(u.lapic)) {
4165                        r = PTR_ERR(u.lapic);
4166                        goto out_nofree;
4167                }
4168
4169                r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4170                break;
4171        }
4172        case KVM_INTERRUPT: {
4173                struct kvm_interrupt irq;
4174
4175                r = -EFAULT;
4176                if (copy_from_user(&irq, argp, sizeof(irq)))
4177                        goto out;
4178                r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4179                break;
4180        }
4181        case KVM_NMI: {
4182                r = kvm_vcpu_ioctl_nmi(vcpu);
4183                break;
4184        }
4185        case KVM_SMI: {
4186                r = kvm_vcpu_ioctl_smi(vcpu);
4187                break;
4188        }
4189        case KVM_SET_CPUID: {
4190                struct kvm_cpuid __user *cpuid_arg = argp;
4191                struct kvm_cpuid cpuid;
4192
4193                r = -EFAULT;
4194                if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4195                        goto out;
4196                r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4197                break;
4198        }
4199        case KVM_SET_CPUID2: {
4200                struct kvm_cpuid2 __user *cpuid_arg = argp;
4201                struct kvm_cpuid2 cpuid;
4202
4203                r = -EFAULT;
4204                if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4205                        goto out;
4206                r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4207                                              cpuid_arg->entries);
4208                break;
4209        }
4210        case KVM_GET_CPUID2: {
4211                struct kvm_cpuid2 __user *cpuid_arg = argp;
4212                struct kvm_cpuid2 cpuid;
4213
4214                r = -EFAULT;
4215                if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4216                        goto out;
4217                r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4218                                              cpuid_arg->entries);
4219                if (r)
4220                        goto out;
4221                r = -EFAULT;
4222                if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4223                        goto out;
4224                r = 0;
4225                break;
4226        }
4227        case KVM_GET_MSRS: {
4228                int idx = srcu_read_lock(&vcpu->kvm->srcu);
4229                r = msr_io(vcpu, argp, do_get_msr, 1);
4230                srcu_read_unlock(&vcpu->kvm->srcu, idx);
4231                break;
4232        }
4233        case KVM_SET_MSRS: {
4234                int idx = srcu_read_lock(&vcpu->kvm->srcu);
4235                r = msr_io(vcpu, argp, do_set_msr, 0);
4236                srcu_read_unlock(&vcpu->kvm->srcu, idx);
4237                break;
4238        }
4239        case KVM_TPR_ACCESS_REPORTING: {
4240                struct kvm_tpr_access_ctl tac;
4241
4242                r = -EFAULT;
4243                if (copy_from_user(&tac, argp, sizeof(tac)))
4244                        goto out;
4245                r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4246                if (r)
4247                        goto out;
4248                r = -EFAULT;
4249                if (copy_to_user(argp, &tac, sizeof(tac)))
4250                        goto out;
4251                r = 0;
4252                break;
4253        };
4254        case KVM_SET_VAPIC_ADDR: {
4255                struct kvm_vapic_addr va;
4256                int idx;
4257
4258                r = -EINVAL;
4259                if (!lapic_in_kernel(vcpu))
4260                        goto out;
4261                r = -EFAULT;
4262                if (copy_from_user(&va, argp, sizeof(va)))
4263                        goto out;
4264                idx = srcu_read_lock(&vcpu->kvm->srcu);
4265                r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4266                srcu_read_unlock(&vcpu->kvm->srcu, idx);
4267                break;
4268        }
4269        case KVM_X86_SETUP_MCE: {
4270                u64 mcg_cap;
4271
4272                r = -EFAULT;
4273                if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4274                        goto out;
4275                r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4276                break;
4277        }
4278        case KVM_X86_SET_MCE: {
4279                struct kvm_x86_mce mce;
4280
4281                r = -EFAULT;
4282                if (copy_from_user(&mce, argp, sizeof(mce)))
4283                        goto out;
4284                r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4285                break;
4286        }
4287        case KVM_GET_VCPU_EVENTS: {
4288                struct kvm_vcpu_events events;
4289
4290                kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4291
4292                r = -EFAULT;
4293                if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4294                        break;
4295                r = 0;
4296                break;
4297        }
4298        case KVM_SET_VCPU_EVENTS: {
4299                struct kvm_vcpu_events events;
4300
4301                r = -EFAULT;
4302                if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4303                        break;
4304
4305                r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4306                break;
4307        }
4308        case KVM_GET_DEBUGREGS: {
4309                struct kvm_debugregs dbgregs;
4310
4311                kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4312
4313                r = -EFAULT;
4314                if (copy_to_user(argp, &dbgregs,
4315                                 sizeof(struct kvm_debugregs)))
4316                        break;
4317                r = 0;
4318                break;
4319        }
4320        case KVM_SET_DEBUGREGS: {
4321                struct kvm_debugregs dbgregs;
4322
4323                r = -EFAULT;
4324                if (copy_from_user(&dbgregs, argp,
4325                                   sizeof(struct kvm_debugregs)))
4326                        break;
4327
4328                r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4329                break;
4330        }
4331        case KVM_GET_XSAVE: {
4332                u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4333                r = -ENOMEM;
4334                if (!u.xsave)
4335                        break;
4336
4337                kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4338
4339                r = -EFAULT;
4340                if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4341                        break;
4342                r = 0;
4343                break;
4344        }
4345        case KVM_SET_XSAVE: {
4346                u.xsave = memdup_user(argp, sizeof(*u.xsave));
4347                if (IS_ERR(u.xsave)) {
4348                        r = PTR_ERR(u.xsave);
4349                        goto out_nofree;
4350                }
4351
4352                r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4353                break;
4354        }
4355        case KVM_GET_XCRS: {
4356                u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4357                r = -ENOMEM;
4358                if (!u.xcrs)
4359                        break;
4360
4361                kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4362
4363                r = -EFAULT;
4364                if (copy_to_user(argp, u.xcrs,
4365                                 sizeof(struct kvm_xcrs)))
4366                        break;
4367                r = 0;
4368                break;
4369        }
4370        case KVM_SET_XCRS: {
4371                u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4372                if (IS_ERR(u.xcrs)) {
4373                        r = PTR_ERR(u.xcrs);
4374                        goto out_nofree;
4375                }
4376
4377                r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4378                break;
4379        }
4380        case KVM_SET_TSC_KHZ: {
4381                u32 user_tsc_khz;
4382
4383                r = -EINVAL;
4384                user_tsc_khz = (u32)arg;
4385
4386                if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4387                        goto out;
4388
4389                if (user_tsc_khz == 0)
4390                        user_tsc_khz = tsc_khz;
4391
4392                if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4393                        r = 0;
4394
4395                goto out;
4396        }
4397        case KVM_GET_TSC_KHZ: {
4398                r = vcpu->arch.virtual_tsc_khz;
4399                goto out;
4400        }
4401        case KVM_KVMCLOCK_CTRL: {
4402                r = kvm_set_guest_paused(vcpu);
4403                goto out;
4404        }
4405        case KVM_ENABLE_CAP: {
4406                struct kvm_enable_cap cap;
4407
4408                r = -EFAULT;
4409                if (copy_from_user(&cap, argp, sizeof(cap)))
4410                        goto out;
4411                r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4412                break;
4413        }
4414        case KVM_GET_NESTED_STATE: {
4415                struct kvm_nested_state __user *user_kvm_nested_state = argp;
4416                u32 user_data_size;
4417
4418                r = -EINVAL;
4419                if (!kvm_x86_ops->get_nested_state)
4420                        break;
4421
4422                BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4423                r = -EFAULT;
4424                if (get_user(user_data_size, &user_kvm_nested_state->size))
4425                        break;
4426
4427                r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4428                                                  user_data_size);
4429                if (r < 0)
4430                        break;
4431
4432                if (r > user_data_size) {
4433                        if (put_user(r, &user_kvm_nested_state->size))
4434                                r = -EFAULT;
4435                        else
4436                                r = -E2BIG;
4437                        break;
4438                }
4439
4440                r = 0;
4441                break;
4442        }
4443        case KVM_SET_NESTED_STATE: {
4444                struct kvm_nested_state __user *user_kvm_nested_state = argp;
4445                struct kvm_nested_state kvm_state;
4446                int idx;
4447
4448                r = -EINVAL;
4449                if (!kvm_x86_ops->set_nested_state)
4450                        break;
4451
4452                r = -EFAULT;
4453                if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4454                        break;
4455
4456                r = -EINVAL;
4457                if (kvm_state.size < sizeof(kvm_state))
4458                        break;
4459
4460                if (kvm_state.flags &
4461                    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4462                      | KVM_STATE_NESTED_EVMCS))
4463                        break;
4464
4465                /* nested_run_pending implies guest_mode.  */
4466                if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4467                    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4468                        break;
4469
4470                idx = srcu_read_lock(&vcpu->kvm->srcu);
4471                r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4472                srcu_read_unlock(&vcpu->kvm->srcu, idx);
4473                break;
4474        }
4475        case KVM_GET_SUPPORTED_HV_CPUID: {
4476                struct kvm_cpuid2 __user *cpuid_arg = argp;
4477                struct kvm_cpuid2 cpuid;
4478
4479                r = -EFAULT;
4480                if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4481                        goto out;
4482
4483                r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4484                                                cpuid_arg->entries);
4485                if (r)
4486                        goto out;
4487
4488                r = -EFAULT;
4489                if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4490                        goto out;
4491                r = 0;
4492                break;
4493        }
4494        default:
4495                r = -EINVAL;
4496        }
4497out:
4498        kfree(u.buffer);
4499out_nofree:
4500        vcpu_put(vcpu);
4501        return r;
4502}
4503
4504vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4505{
4506        return VM_FAULT_SIGBUS;
4507}
4508
4509static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4510{
4511        int ret;
4512
4513        if (addr > (unsigned int)(-3 * PAGE_SIZE))
4514                return -EINVAL;
4515        ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4516        return ret;
4517}
4518
4519static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4520                                              u64 ident_addr)
4521{
4522        return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4523}
4524
4525static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4526                                         unsigned long kvm_nr_mmu_pages)
4527{
4528        if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4529                return -EINVAL;
4530
4531        mutex_lock(&kvm->slots_lock);
4532
4533        kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4534        kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4535
4536        mutex_unlock(&kvm->slots_lock);
4537        return 0;
4538}
4539
4540static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4541{
4542        return kvm->arch.n_max_mmu_pages;
4543}
4544
4545static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4546{
4547        struct kvm_pic *pic = kvm->arch.vpic;
4548        int r;
4549
4550        r = 0;
4551        switch (chip->chip_id) {
4552        case KVM_IRQCHIP_PIC_MASTER:
4553                memcpy(&chip->chip.pic, &pic->pics[0],
4554                        sizeof(struct kvm_pic_state));
4555                break;
4556        case KVM_IRQCHIP_PIC_SLAVE:
4557                memcpy(&chip->chip.pic, &pic->pics[1],
4558                        sizeof(struct kvm_pic_state));
4559                break;
4560        case KVM_IRQCHIP_IOAPIC:
4561                kvm_get_ioapic(kvm, &chip->chip.ioapic);
4562                break;
4563        default:
4564                r = -EINVAL;
4565                break;
4566        }
4567        return r;
4568}
4569
4570static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4571{
4572        struct kvm_pic *pic = kvm->arch.vpic;
4573        int r;
4574
4575        r = 0;
4576        switch (chip->chip_id) {
4577        case KVM_IRQCHIP_PIC_MASTER:
4578                spin_lock(&pic->lock);
4579                memcpy(&pic->pics[0], &chip->chip.pic,
4580                        sizeof(struct kvm_pic_state));
4581                spin_unlock(&pic->lock);
4582                break;
4583        case KVM_IRQCHIP_PIC_SLAVE:
4584                spin_lock(&pic->lock);
4585                memcpy(&pic->pics[1], &chip->chip.pic,
4586                        sizeof(struct kvm_pic_state));
4587                spin_unlock(&pic->lock);
4588                break;
4589        case KVM_IRQCHIP_IOAPIC:
4590                kvm_set_ioapic(kvm, &chip->chip.ioapic);
4591                break;
4592        default:
4593                r = -EINVAL;
4594                break;
4595        }
4596        kvm_pic_update_irq(pic);
4597        return r;
4598}
4599
4600static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4601{
4602        struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4603
4604        BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4605
4606        mutex_lock(&kps->lock);
4607        memcpy(ps, &kps->channels, sizeof(*ps));
4608        mutex_unlock(&kps->lock);
4609        return 0;
4610}
4611
4612static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4613{
4614        int i;
4615        struct kvm_pit *pit = kvm->arch.vpit;
4616
4617        mutex_lock(&pit->pit_state.lock);
4618        memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4619        for (i = 0; i < 3; i++)
4620                kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4621        mutex_unlock(&pit->pit_state.lock);
4622        return 0;
4623}
4624
4625static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4626{
4627        mutex_lock(&kvm->arch.vpit->pit_state.lock);
4628        memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4629                sizeof(ps->channels));
4630        ps->flags = kvm->arch.vpit->pit_state.flags;
4631        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4632        memset(&ps->reserved, 0, sizeof(ps->reserved));
4633        return 0;
4634}
4635
4636static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4637{
4638        int start = 0;
4639        int i;
4640        u32 prev_legacy, cur_legacy;
4641        struct kvm_pit *pit = kvm->arch.vpit;
4642
4643        mutex_lock(&pit->pit_state.lock);
4644        prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4645        cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4646        if (!prev_legacy && cur_legacy)
4647                start = 1;
4648        memcpy(&pit->pit_state.channels, &ps->channels,
4649               sizeof(pit->pit_state.channels));
4650        pit->pit_state.flags = ps->flags;
4651        for (i = 0; i < 3; i++)
4652                kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4653                                   start && i == 0);
4654        mutex_unlock(&pit->pit_state.lock);
4655        return 0;
4656}
4657
4658static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4659                                 struct kvm_reinject_control *control)
4660{
4661        struct kvm_pit *pit = kvm->arch.vpit;
4662
4663        if (!pit)
4664                return -ENXIO;
4665
4666        /* pit->pit_state.lock was overloaded to prevent userspace from getting
4667         * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4668         * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4669         */
4670        mutex_lock(&pit->pit_state.lock);
4671        kvm_pit_set_reinject(pit, control->pit_reinject);
4672        mutex_unlock(&pit->pit_state.lock);
4673
4674        return 0;
4675}
4676
4677/**
4678 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4679 * @kvm: kvm instance
4680 * @log: slot id and address to which we copy the log
4681 *
4682 * Steps 1-4 below provide general overview of dirty page logging. See
4683 * kvm_get_dirty_log_protect() function description for additional details.
4684 *
4685 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4686 * always flush the TLB (step 4) even if previous step failed  and the dirty
4687 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4688 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4689 * writes will be marked dirty for next log read.
4690 *
4691 *   1. Take a snapshot of the bit and clear it if needed.
4692 *   2. Write protect the corresponding page.
4693 *   3. Copy the snapshot to the userspace.
4694 *   4. Flush TLB's if needed.
4695 */
4696int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4697{
4698        bool flush = false;
4699        int r;
4700
4701        mutex_lock(&kvm->slots_lock);
4702
4703        /*
4704         * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4705         */
4706        if (kvm_x86_ops->flush_log_dirty)
4707                kvm_x86_ops->flush_log_dirty(kvm);
4708
4709        r = kvm_get_dirty_log_protect(kvm, log, &flush);
4710
4711        /*
4712         * All the TLBs can be flushed out of mmu lock, see the comments in
4713         * kvm_mmu_slot_remove_write_access().
4714         */
4715        lockdep_assert_held(&kvm->slots_lock);
4716        if (flush)
4717                kvm_flush_remote_tlbs(kvm);
4718
4719        mutex_unlock(&kvm->slots_lock);
4720        return r;
4721}
4722
4723int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4724{
4725        bool flush = false;
4726        int r;
4727
4728        mutex_lock(&kvm->slots_lock);
4729
4730        /*
4731         * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4732         */
4733        if (kvm_x86_ops->flush_log_dirty)
4734                kvm_x86_ops->flush_log_dirty(kvm);
4735
4736        r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4737
4738        /*
4739         * All the TLBs can be flushed out of mmu lock, see the comments in
4740         * kvm_mmu_slot_remove_write_access().
4741         */
4742        lockdep_assert_held(&kvm->slots_lock);
4743        if (flush)
4744                kvm_flush_remote_tlbs(kvm);
4745
4746        mutex_unlock(&kvm->slots_lock);
4747        return r;
4748}
4749
4750int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4751                        bool line_status)
4752{
4753        if (!irqchip_in_kernel(kvm))
4754                return -ENXIO;
4755
4756        irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4757                                        irq_event->irq, irq_event->level,
4758                                        line_status);
4759        return 0;
4760}
4761
4762int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4763                            struct kvm_enable_cap *cap)
4764{
4765        int r;
4766
4767        if (cap->flags)
4768                return -EINVAL;
4769
4770        switch (cap->cap) {
4771        case KVM_CAP_DISABLE_QUIRKS:
4772                kvm->arch.disabled_quirks = cap->args[0];
4773                r = 0;
4774                break;
4775        case KVM_CAP_SPLIT_IRQCHIP: {
4776                mutex_lock(&kvm->lock);
4777                r = -EINVAL;
4778                if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4779                        goto split_irqchip_unlock;
4780                r = -EEXIST;
4781                if (irqchip_in_kernel(kvm))
4782                        goto split_irqchip_unlock;
4783                if (kvm->created_vcpus)
4784                        goto split_irqchip_unlock;
4785                r = kvm_setup_empty_irq_routing(kvm);
4786                if (r)
4787                        goto split_irqchip_unlock;
4788                /* Pairs with irqchip_in_kernel. */
4789                smp_wmb();
4790                kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4791                kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4792                r = 0;
4793split_irqchip_unlock:
4794                mutex_unlock(&kvm->lock);
4795                break;
4796        }
4797        case KVM_CAP_X2APIC_API:
4798                r = -EINVAL;
4799                if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4800                        break;
4801
4802                if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4803                        kvm->arch.x2apic_format = true;
4804                if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4805                        kvm->arch.x2apic_broadcast_quirk_disabled = true;
4806
4807                r = 0;
4808                break;
4809        case KVM_CAP_X86_DISABLE_EXITS:
4810                r = -EINVAL;
4811                if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4812                        break;
4813
4814                if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4815                        kvm_can_mwait_in_guest())
4816                        kvm->arch.mwait_in_guest = true;
4817                if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4818                        kvm->arch.hlt_in_guest = true;
4819                if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4820                        kvm->arch.pause_in_guest = true;
4821                if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4822                        kvm->arch.cstate_in_guest = true;
4823                r = 0;
4824                break;
4825        case KVM_CAP_MSR_PLATFORM_INFO:
4826                kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4827                r = 0;
4828                break;
4829        case KVM_CAP_EXCEPTION_PAYLOAD:
4830                kvm->arch.exception_payload_enabled = cap->args[0];
4831                r = 0;
4832                break;
4833        default:
4834                r = -EINVAL;
4835                break;
4836        }
4837        return r;
4838}
4839
4840long kvm_arch_vm_ioctl(struct file *filp,
4841                       unsigned int ioctl, unsigned long arg)
4842{
4843        struct kvm *kvm = filp->private_data;
4844        void __user *argp = (void __user *)arg;
4845        int r = -ENOTTY;
4846        /*
4847         * This union makes it completely explicit to gcc-3.x
4848         * that these two variables' stack usage should be
4849         * combined, not added together.
4850         */
4851        union {
4852                struct kvm_pit_state ps;
4853                struct kvm_pit_state2 ps2;
4854                struct kvm_pit_config pit_config;
4855        } u;
4856
4857        switch (ioctl) {
4858        case KVM_SET_TSS_ADDR:
4859                r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4860                break;
4861        case KVM_SET_IDENTITY_MAP_ADDR: {
4862                u64 ident_addr;
4863
4864                mutex_lock(&kvm->lock);
4865                r = -EINVAL;
4866                if (kvm->created_vcpus)
4867                        goto set_identity_unlock;
4868                r = -EFAULT;
4869                if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4870                        goto set_identity_unlock;
4871                r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4872set_identity_unlock:
4873                mutex_unlock(&kvm->lock);
4874                break;
4875        }
4876        case KVM_SET_NR_MMU_PAGES:
4877                r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4878                break;
4879        case KVM_GET_NR_MMU_PAGES:
4880                r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4881                break;
4882        case KVM_CREATE_IRQCHIP: {
4883                mutex_lock(&kvm->lock);
4884
4885                r = -EEXIST;
4886                if (irqchip_in_kernel(kvm))
4887                        goto create_irqchip_unlock;
4888
4889                r = -EINVAL;
4890                if (kvm->created_vcpus)
4891                        goto create_irqchip_unlock;
4892
4893                r = kvm_pic_init(kvm);
4894                if (r)
4895                        goto create_irqchip_unlock;
4896
4897                r = kvm_ioapic_init(kvm);
4898                if (r) {
4899                        kvm_pic_destroy(kvm);
4900                        goto create_irqchip_unlock;
4901                }
4902
4903                r = kvm_setup_default_irq_routing(kvm);
4904                if (r) {
4905                        kvm_ioapic_destroy(kvm);
4906                        kvm_pic_destroy(kvm);
4907                        goto create_irqchip_unlock;
4908                }
4909                /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4910                smp_wmb();
4911                kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4912        create_irqchip_unlock:
4913                mutex_unlock(&kvm->lock);
4914                break;
4915        }
4916        case KVM_CREATE_PIT:
4917                u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4918                goto create_pit;
4919        case KVM_CREATE_PIT2:
4920                r = -EFAULT;
4921                if (copy_from_user(&u.pit_config, argp,
4922                                   sizeof(struct kvm_pit_config)))
4923                        goto out;
4924        create_pit:
4925                mutex_lock(&kvm->lock);
4926                r = -EEXIST;
4927                if (kvm->arch.vpit)
4928                        goto create_pit_unlock;
4929                r = -ENOMEM;
4930                kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4931                if (kvm->arch.vpit)
4932                        r = 0;
4933        create_pit_unlock:
4934                mutex_unlock(&kvm->lock);
4935                break;
4936        case KVM_GET_IRQCHIP: {
4937                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4938                struct kvm_irqchip *chip;
4939
4940                chip = memdup_user(argp, sizeof(*chip));
4941                if (IS_ERR(chip)) {
4942                        r = PTR_ERR(chip);
4943                        goto out;
4944                }
4945
4946                r = -ENXIO;
4947                if (!irqchip_kernel(kvm))
4948                        goto get_irqchip_out;
4949                r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4950                if (r)
4951                        goto get_irqchip_out;
4952                r = -EFAULT;
4953                if (copy_to_user(argp, chip, sizeof(*chip)))
4954                        goto get_irqchip_out;
4955                r = 0;
4956        get_irqchip_out:
4957                kfree(chip);
4958                break;
4959        }
4960        case KVM_SET_IRQCHIP: {
4961                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4962                struct kvm_irqchip *chip;
4963
4964                chip = memdup_user(argp, sizeof(*chip));
4965                if (IS_ERR(chip)) {
4966                        r = PTR_ERR(chip);
4967                        goto out;
4968                }
4969
4970                r = -ENXIO;
4971                if (!irqchip_kernel(kvm))
4972                        goto set_irqchip_out;
4973                r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4974        set_irqchip_out:
4975                kfree(chip);
4976                break;
4977        }
4978        case KVM_GET_PIT: {
4979                r = -EFAULT;
4980                if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4981                        goto out;
4982                r = -ENXIO;
4983                if (!kvm->arch.vpit)
4984                        goto out;
4985                r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4986                if (r)
4987                        goto out;
4988                r = -EFAULT;
4989                if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4990                        goto out;
4991                r = 0;
4992                break;
4993        }
4994        case KVM_SET_PIT: {
4995                r = -EFAULT;
4996                if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4997                        goto out;
4998                r = -ENXIO;
4999                if (!kvm->arch.vpit)
5000                        goto out;
5001                r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5002                break;
5003        }
5004        case KVM_GET_PIT2: {
5005                r = -ENXIO;
5006                if (!kvm->arch.vpit)
5007                        goto out;
5008                r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5009                if (r)
5010                        goto out;
5011                r = -EFAULT;
5012                if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5013                        goto out;
5014                r = 0;
5015                break;
5016        }
5017        case KVM_SET_PIT2: {
5018                r = -EFAULT;
5019                if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5020                        goto out;
5021                r = -ENXIO;
5022                if (!kvm->arch.vpit)
5023                        goto out;
5024                r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5025                break;
5026        }
5027        case KVM_REINJECT_CONTROL: {
5028                struct kvm_reinject_control control;
5029                r =  -EFAULT;
5030                if (copy_from_user(&control, argp, sizeof(control)))
5031                        goto out;
5032                r = kvm_vm_ioctl_reinject(kvm, &control);
5033                break;
5034        }
5035        case KVM_SET_BOOT_CPU_ID:
5036                r = 0;
5037                mutex_lock(&kvm->lock);
5038                if (kvm->created_vcpus)
5039                        r = -EBUSY;
5040                else
5041                        kvm->arch.bsp_vcpu_id = arg;
5042                mutex_unlock(&kvm->lock);
5043                break;
5044        case KVM_XEN_HVM_CONFIG: {
5045                struct kvm_xen_hvm_config xhc;
5046                r = -EFAULT;
5047                if (copy_from_user(&xhc, argp, sizeof(xhc)))
5048                        goto out;
5049                r = -EINVAL;
5050                if (xhc.flags)
5051                        goto out;
5052                memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5053                r = 0;
5054                break;
5055        }
5056        case KVM_SET_CLOCK: {
5057                struct kvm_clock_data user_ns;
5058                u64 now_ns;
5059
5060                r = -EFAULT;
5061                if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5062                        goto out;
5063
5064                r = -EINVAL;
5065                if (user_ns.flags)
5066                        goto out;
5067
5068                r = 0;
5069                /*
5070                 * TODO: userspace has to take care of races with VCPU_RUN, so
5071                 * kvm_gen_update_masterclock() can be cut down to locked
5072                 * pvclock_update_vm_gtod_copy().
5073                 */
5074                kvm_gen_update_masterclock(kvm);
5075                now_ns = get_kvmclock_ns(kvm);
5076                kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5077                kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5078                break;
5079        }
5080        case KVM_GET_CLOCK: {
5081                struct kvm_clock_data user_ns;
5082                u64 now_ns;
5083
5084                now_ns = get_kvmclock_ns(kvm);
5085                user_ns.clock = now_ns;
5086                user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5087                memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5088
5089                r = -EFAULT;
5090                if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5091                        goto out;
5092                r = 0;
5093                break;
5094        }
5095        case KVM_MEMORY_ENCRYPT_OP: {
5096                r = -ENOTTY;
5097                if (kvm_x86_ops->mem_enc_op)
5098                        r = kvm_x86_ops->mem_enc_op(kvm, argp);
5099                break;
5100        }
5101        case KVM_MEMORY_ENCRYPT_REG_REGION: {
5102                struct kvm_enc_region region;
5103
5104                r = -EFAULT;
5105                if (copy_from_user(&region, argp, sizeof(region)))
5106                        goto out;
5107
5108                r = -ENOTTY;
5109                if (kvm_x86_ops->mem_enc_reg_region)
5110                        r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
5111                break;
5112        }
5113        case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5114                struct kvm_enc_region region;
5115
5116                r = -EFAULT;
5117                if (copy_from_user(&region, argp, sizeof(region)))
5118                        goto out;
5119
5120                r = -ENOTTY;
5121                if (kvm_x86_ops->mem_enc_unreg_region)
5122                        r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
5123                break;
5124        }
5125        case KVM_HYPERV_EVENTFD: {
5126                struct kvm_hyperv_eventfd hvevfd;
5127
5128                r = -EFAULT;
5129                if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5130                        goto out;
5131                r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5132                break;
5133        }
5134        case KVM_SET_PMU_EVENT_FILTER:
5135                r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5136                break;
5137        default:
5138                r = -ENOTTY;
5139        }
5140out:
5141        return r;
5142}
5143
5144static void kvm_init_msr_list(void)
5145{
5146        struct x86_pmu_capability x86_pmu;
5147        u32 dummy[2];
5148        unsigned i;
5149
5150        BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5151                         "Please update the fixed PMCs in msrs_to_saved_all[]");
5152
5153        perf_get_x86_pmu_capability(&x86_pmu);
5154
5155        num_msrs_to_save = 0;
5156        num_emulated_msrs = 0;
5157        num_msr_based_features = 0;
5158
5159        for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5160                if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5161                        continue;
5162
5163                /*
5164                 * Even MSRs that are valid in the host may not be exposed
5165                 * to the guests in some cases.
5166                 */
5167                switch (msrs_to_save_all[i]) {
5168                case MSR_IA32_BNDCFGS:
5169                        if (!kvm_mpx_supported())
5170                                continue;
5171                        break;
5172                case MSR_TSC_AUX:
5173                        if (!kvm_x86_ops->rdtscp_supported())
5174                                continue;
5175                        break;
5176                case MSR_IA32_RTIT_CTL:
5177                case MSR_IA32_RTIT_STATUS:
5178                        if (!kvm_x86_ops->pt_supported())
5179                                continue;
5180                        break;
5181                case MSR_IA32_RTIT_CR3_MATCH:
5182                        if (!kvm_x86_ops->pt_supported() ||
5183                            !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5184                                continue;
5185                        break;
5186                case MSR_IA32_RTIT_OUTPUT_BASE:
5187                case MSR_IA32_RTIT_OUTPUT_MASK:
5188                        if (!kvm_x86_ops->pt_supported() ||
5189                                (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5190                                 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5191                                continue;
5192                        break;
5193                case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
5194                        if (!kvm_x86_ops->pt_supported() ||
5195                                msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5196                                intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5197                                continue;
5198                        break;
5199                case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5200                        if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5201                            min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5202                                continue;
5203                        break;
5204                case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5205                        if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5206                            min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5207                                continue;
5208                }
5209                default:
5210                        break;
5211                }
5212
5213                msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5214        }
5215
5216        for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5217                if (!kvm_x86_ops->has_emulated_msr(emulated_msrs_all[i]))
5218                        continue;
5219
5220                emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5221        }
5222
5223        for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5224                struct kvm_msr_entry msr;
5225
5226                msr.index = msr_based_features_all[i];
5227                if (kvm_get_msr_feature(&msr))
5228                        continue;
5229
5230                msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5231        }
5232}
5233
5234static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5235                           const void *v)
5236{
5237        int handled = 0;
5238        int n;
5239
5240        do {
5241                n = min(len, 8);
5242                if (!(lapic_in_kernel(vcpu) &&
5243                      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5244                    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5245                        break;
5246                handled += n;
5247                addr += n;
5248                len -= n;
5249                v += n;
5250        } while (len);
5251
5252        return handled;
5253}
5254
5255static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5256{
5257        int handled = 0;
5258        int n;
5259
5260        do {
5261                n = min(len, 8);
5262                if (!(lapic_in_kernel(vcpu) &&
5263                      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5264                                         addr, n, v))
5265                    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5266                        break;
5267                trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5268                handled += n;
5269                addr += n;
5270                len -= n;
5271                v += n;
5272        } while (len);
5273
5274        return handled;
5275}
5276
5277static void kvm_set_segment(struct kvm_vcpu *vcpu,
5278                        struct kvm_segment *var, int seg)
5279{
5280        kvm_x86_ops->set_segment(vcpu, var, seg);
5281}
5282
5283void kvm_get_segment(struct kvm_vcpu *vcpu,
5284                     struct kvm_segment *var, int seg)
5285{
5286        kvm_x86_ops->get_segment(vcpu, var, seg);
5287}
5288
5289gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5290                           struct x86_exception *exception)
5291{
5292        gpa_t t_gpa;
5293
5294        BUG_ON(!mmu_is_nested(vcpu));
5295
5296        /* NPT walks are always user-walks */
5297        access |= PFERR_USER_MASK;
5298        t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5299
5300        return t_gpa;
5301}
5302
5303gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5304                              struct x86_exception *exception)
5305{
5306        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5307        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5308}
5309
5310 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5311                                struct x86_exception *exception)
5312{
5313        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5314        access |= PFERR_FETCH_MASK;
5315        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5316}
5317
5318gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5319                               struct x86_exception *exception)
5320{
5321        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5322        access |= PFERR_WRITE_MASK;
5323        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5324}
5325
5326/* uses this to access any guest's mapped memory without checking CPL */
5327gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5328                                struct x86_exception *exception)
5329{
5330        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5331}
5332
5333static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5334                                      struct kvm_vcpu *vcpu, u32 access,
5335                                      struct x86_exception *exception)
5336{
5337        void *data = val;
5338        int r = X86EMUL_CONTINUE;
5339
5340        while (bytes) {
5341                gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5342                                                            exception);
5343                unsigned offset = addr & (PAGE_SIZE-1);
5344                unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5345                int ret;
5346
5347                if (gpa == UNMAPPED_GVA)
5348                        return X86EMUL_PROPAGATE_FAULT;
5349                ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5350                                               offset, toread);
5351                if (ret < 0) {
5352                        r = X86EMUL_IO_NEEDED;
5353                        goto out;
5354                }
5355
5356                bytes -= toread;
5357                data += toread;
5358                addr += toread;
5359        }
5360out:
5361        return r;
5362}
5363
5364/* used for instruction fetching */
5365static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5366                                gva_t addr, void *val, unsigned int bytes,
5367                                struct x86_exception *exception)
5368{
5369        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5370        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5371        unsigned offset;
5372        int ret;
5373
5374        /* Inline kvm_read_guest_virt_helper for speed.  */
5375        gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5376                                                    exception);
5377        if (unlikely(gpa == UNMAPPED_GVA))
5378                return X86EMUL_PROPAGATE_FAULT;
5379
5380        offset = addr & (PAGE_SIZE-1);
5381        if (WARN_ON(offset + bytes > PAGE_SIZE))
5382                bytes = (unsigned)PAGE_SIZE - offset;
5383        ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5384                                       offset, bytes);
5385        if (unlikely(ret < 0))
5386                return X86EMUL_IO_NEEDED;
5387
5388        return X86EMUL_CONTINUE;
5389}
5390
5391int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5392                               gva_t addr, void *val, unsigned int bytes,
5393                               struct x86_exception *exception)
5394{
5395        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5396
5397        /*
5398         * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5399         * is returned, but our callers are not ready for that and they blindly
5400         * call kvm_inject_page_fault.  Ensure that they at least do not leak
5401         * uninitialized kernel stack memory into cr2 and error code.
5402         */
5403        memset(exception, 0, sizeof(*exception));
5404        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5405                                          exception);
5406}
5407EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5408
5409static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5410                             gva_t addr, void *val, unsigned int bytes,
5411                             struct x86_exception *exception, bool system)
5412{
5413        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5414        u32 access = 0;
5415
5416        if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5417                access |= PFERR_USER_MASK;
5418
5419        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5420}
5421
5422static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5423                unsigned long addr, void *val, unsigned int bytes)
5424{
5425        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5426        int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5427
5428        return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5429}
5430
5431static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5432                                      struct kvm_vcpu *vcpu, u32 access,
5433                                      struct x86_exception *exception)
5434{
5435        void *data = val;
5436        int r = X86EMUL_CONTINUE;
5437
5438        while (bytes) {
5439                gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5440                                                             access,
5441                                                             exception);
5442                unsigned offset = addr & (PAGE_SIZE-1);
5443                unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5444                int ret;
5445
5446                if (gpa == UNMAPPED_GVA)
5447                        return X86EMUL_PROPAGATE_FAULT;
5448                ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5449                if (ret < 0) {
5450                        r = X86EMUL_IO_NEEDED;
5451                        goto out;
5452                }
5453
5454                bytes -= towrite;
5455                data += towrite;
5456                addr += towrite;
5457        }
5458out:
5459        return r;
5460}
5461
5462static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5463                              unsigned int bytes, struct x86_exception *exception,
5464                              bool system)
5465{
5466        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5467        u32 access = PFERR_WRITE_MASK;
5468
5469        if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5470                access |= PFERR_USER_MASK;
5471
5472        return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5473                                           access, exception);
5474}
5475
5476int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5477                                unsigned int bytes, struct x86_exception *exception)
5478{
5479        /* kvm_write_guest_virt_system can pull in tons of pages. */
5480        vcpu->arch.l1tf_flush_l1d = true;
5481
5482        /*
5483         * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5484         * is returned, but our callers are not ready for that and they blindly
5485         * call kvm_inject_page_fault.  Ensure that they at least do not leak
5486         * uninitialized kernel stack memory into cr2 and error code.
5487         */
5488        memset(exception, 0, sizeof(*exception));
5489        return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5490                                           PFERR_WRITE_MASK, exception);
5491}
5492EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5493
5494int handle_ud(struct kvm_vcpu *vcpu)
5495{
5496        static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
5497        int emul_type = EMULTYPE_TRAP_UD;
5498        char sig[5]; /* ud2; .ascii "kvm" */
5499        struct x86_exception e;
5500
5501        if (force_emulation_prefix &&
5502            kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5503                                sig, sizeof(sig), &e) == 0 &&
5504            memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
5505                kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5506                emul_type = EMULTYPE_TRAP_UD_FORCED;
5507        }
5508
5509        return kvm_emulate_instruction(vcpu, emul_type);
5510}
5511EXPORT_SYMBOL_GPL(handle_ud);
5512
5513static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5514                            gpa_t gpa, bool write)
5515{
5516        /* For APIC access vmexit */
5517        if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5518                return 1;
5519
5520        if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5521                trace_vcpu_match_mmio(gva, gpa, write, true);
5522                return 1;
5523        }
5524
5525        return 0;
5526}
5527
5528static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5529                                gpa_t *gpa, struct x86_exception *exception,
5530                                bool write)
5531{
5532        u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5533                | (write ? PFERR_WRITE_MASK : 0);
5534
5535        /*
5536         * currently PKRU is only applied to ept enabled guest so
5537         * there is no pkey in EPT page table for L1 guest or EPT
5538         * shadow page table for L2 guest.
5539         */
5540        if (vcpu_match_mmio_gva(vcpu, gva)
5541            && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5542                                 vcpu->arch.mmio_access, 0, access)) {
5543                *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5544                                        (gva & (PAGE_SIZE - 1));
5545                trace_vcpu_match_mmio(gva, *gpa, write, false);
5546                return 1;
5547        }
5548
5549        *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5550
5551        if (*gpa == UNMAPPED_GVA)
5552                return -1;
5553
5554        return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5555}
5556
5557int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5558                        const void *val, int bytes)
5559{
5560        int ret;
5561
5562        ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5563        if (ret < 0)
5564                return 0;
5565        kvm_page_track_write(vcpu, gpa, val, bytes);
5566        return 1;
5567}
5568
5569struct read_write_emulator_ops {
5570        int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5571                                  int bytes);
5572        int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5573                                  void *val, int bytes);
5574        int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5575                               int bytes, void *val);
5576        int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5577                                    void *val, int bytes);
5578        bool write;
5579};
5580
5581static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5582{
5583        if (vcpu->mmio_read_completed) {
5584                trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5585                               vcpu->mmio_fragments[0].gpa, val);
5586                vcpu->mmio_read_completed = 0;
5587                return 1;
5588        }
5589
5590        return 0;
5591}
5592
5593static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5594                        void *val, int bytes)
5595{
5596        return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5597}
5598
5599static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5600                         void *val, int bytes)
5601{
5602        return emulator_write_phys(vcpu, gpa, val, bytes);
5603}
5604
5605static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5606{
5607        trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5608        return vcpu_mmio_write(vcpu, gpa, bytes, val);
5609}
5610
5611static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5612                          void *val, int bytes)
5613{
5614        trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5615        return X86EMUL_IO_NEEDED;
5616}
5617
5618static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5619                           void *val, int bytes)
5620{
5621        struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5622
5623        memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5624        return X86EMUL_CONTINUE;
5625}
5626
5627static const struct read_write_emulator_ops read_emultor = {
5628        .read_write_prepare = read_prepare,
5629        .read_write_emulate = read_emulate,
5630        .read_write_mmio = vcpu_mmio_read,
5631        .read_write_exit_mmio = read_exit_mmio,
5632};
5633
5634static const struct read_write_emulator_ops write_emultor = {
5635        .read_write_emulate = write_emulate,
5636        .read_write_mmio = write_mmio,
5637        .read_write_exit_mmio = write_exit_mmio,
5638        .write = true,
5639};
5640
5641static int emulator_read_write_onepage(unsigned long addr, void *val,
5642                                       unsigned int bytes,
5643                                       struct x86_exception *exception,
5644                                       struct kvm_vcpu *vcpu,
5645                                       const struct read_write_emulator_ops *ops)
5646{
5647        gpa_t gpa;
5648        int handled, ret;
5649        bool write = ops->write;
5650        struct kvm_mmio_fragment *frag;
5651        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5652
5653        /*
5654         * If the exit was due to a NPF we may already have a GPA.
5655         * If the GPA is present, use it to avoid the GVA to GPA table walk.
5656         * Note, this cannot be used on string operations since string
5657         * operation using rep will only have the initial GPA from the NPF
5658         * occurred.
5659         */
5660        if (vcpu->arch.gpa_available &&
5661            emulator_can_use_gpa(ctxt) &&
5662            (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5663                gpa = vcpu->arch.gpa_val;
5664                ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5665        } else {
5666                ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5667                if (ret < 0)
5668                        return X86EMUL_PROPAGATE_FAULT;
5669        }
5670
5671        if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5672                return X86EMUL_CONTINUE;
5673
5674        /*
5675         * Is this MMIO handled locally?
5676         */
5677        handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5678        if (handled == bytes)
5679                return X86EMUL_CONTINUE;
5680
5681        gpa += handled;
5682        bytes -= handled;
5683        val += handled;
5684
5685        WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5686        frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5687        frag->gpa = gpa;
5688        frag->data = val;
5689        frag->len = bytes;
5690        return X86EMUL_CONTINUE;
5691}
5692
5693static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5694                        unsigned long addr,
5695                        void *val, unsigned int bytes,
5696                        struct x86_exception *exception,
5697                        const struct read_write_emulator_ops *ops)
5698{
5699        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5700        gpa_t gpa;
5701        int rc;
5702
5703        if (ops->read_write_prepare &&
5704                  ops->read_write_prepare(vcpu, val, bytes))
5705                return X86EMUL_CONTINUE;
5706
5707        vcpu->mmio_nr_fragments = 0;
5708
5709        /* Crossing a page boundary? */
5710        if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5711                int now;
5712
5713                now = -addr & ~PAGE_MASK;
5714                rc = emulator_read_write_onepage(addr, val, now, exception,
5715                                                 vcpu, ops);
5716
5717                if (rc != X86EMUL_CONTINUE)
5718                        return rc;
5719                addr += now;
5720                if (ctxt->mode != X86EMUL_MODE_PROT64)
5721                        addr = (u32)addr;
5722                val += now;
5723                bytes -= now;
5724        }
5725
5726        rc = emulator_read_write_onepage(addr, val, bytes, exception,
5727                                         vcpu, ops);
5728        if (rc != X86EMUL_CONTINUE)
5729                return rc;
5730
5731        if (!vcpu->mmio_nr_fragments)
5732                return rc;
5733
5734        gpa = vcpu->mmio_fragments[0].gpa;
5735
5736        vcpu->mmio_needed = 1;
5737        vcpu->mmio_cur_fragment = 0;
5738
5739        vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5740        vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5741        vcpu->run->exit_reason = KVM_EXIT_MMIO;
5742        vcpu->run->mmio.phys_addr = gpa;
5743
5744        return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5745}
5746
5747static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5748                                  unsigned long addr,
5749                                  void *val,
5750                                  unsigned int bytes,
5751                                  struct x86_exception *exception)
5752{
5753        return emulator_read_write(ctxt, addr, val, bytes,
5754                                   exception, &read_emultor);
5755}
5756
5757static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5758                            unsigned long addr,
5759                            const void *val,
5760                            unsigned int bytes,
5761                            struct x86_exception *exception)
5762{
5763        return emulator_read_write(ctxt, addr, (void *)val, bytes,
5764                                   exception, &write_emultor);
5765}
5766
5767#define CMPXCHG_TYPE(t, ptr, old, new) \
5768        (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5769
5770#ifdef CONFIG_X86_64
5771#  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5772#else
5773#  define CMPXCHG64(ptr, old, new) \
5774        (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5775#endif
5776
5777static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5778                                     unsigned long addr,
5779                                     const void *old,
5780                                     const void *new,
5781                                     unsigned int bytes,
5782                                     struct x86_exception *exception)
5783{
5784        struct kvm_host_map map;
5785        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5786        gpa_t gpa;
5787        char *kaddr;
5788        bool exchanged;
5789
5790        /* guests cmpxchg8b have to be emulated atomically */
5791        if (bytes > 8 || (bytes & (bytes - 1)))
5792                goto emul_write;
5793
5794        gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5795
5796        if (gpa == UNMAPPED_GVA ||
5797            (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5798                goto emul_write;
5799
5800        if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5801                goto emul_write;
5802
5803        if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5804                goto emul_write;
5805
5806        kaddr = map.hva + offset_in_page(gpa);
5807
5808        switch (bytes) {
5809        case 1:
5810                exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5811                break;
5812        case 2:
5813                exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5814                break;
5815        case 4:
5816                exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5817                break;
5818        case 8:
5819                exchanged = CMPXCHG64(kaddr, old, new);
5820                break;
5821        default:
5822                BUG();
5823        }
5824
5825        kvm_vcpu_unmap(vcpu, &map, true);
5826
5827        if (!exchanged)
5828                return X86EMUL_CMPXCHG_FAILED;
5829
5830        kvm_page_track_write(vcpu, gpa, new, bytes);
5831
5832        return X86EMUL_CONTINUE;
5833
5834emul_write:
5835        printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5836
5837        return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5838}
5839
5840static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5841{
5842        int r = 0, i;
5843
5844        for (i = 0; i < vcpu->arch.pio.count; i++) {
5845                if (vcpu->arch.pio.in)
5846                        r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5847                                            vcpu->arch.pio.size, pd);
5848                else
5849                        r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5850                                             vcpu->arch.pio.port, vcpu->arch.pio.size,
5851                                             pd);
5852                if (r)
5853                        break;
5854                pd += vcpu->arch.pio.size;
5855        }
5856        return r;
5857}
5858
5859static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5860                               unsigned short port, void *val,
5861                               unsigned int count, bool in)
5862{
5863        vcpu->arch.pio.port = port;
5864        vcpu->arch.pio.in = in;
5865        vcpu->arch.pio.count  = count;
5866        vcpu->arch.pio.size = size;
5867
5868        if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5869                vcpu->arch.pio.count = 0;
5870                return 1;
5871        }
5872
5873        vcpu->run->exit_reason = KVM_EXIT_IO;
5874        vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5875        vcpu->run->io.size = size;
5876        vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5877        vcpu->run->io.count = count;
5878        vcpu->run->io.port = port;
5879
5880        return 0;
5881}
5882
5883static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5884                                    int size, unsigned short port, void *val,
5885                                    unsigned int count)
5886{
5887        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5888        int ret;
5889
5890        if (vcpu->arch.pio.count)
5891                goto data_avail;
5892
5893        memset(vcpu->arch.pio_data, 0, size * count);
5894
5895        ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5896        if (ret) {
5897data_avail:
5898                memcpy(val, vcpu->arch.pio_data, size * count);
5899                trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5900                vcpu->arch.pio.count = 0;
5901                return 1;
5902        }
5903
5904        return 0;
5905}
5906
5907static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5908                                     int size, unsigned short port,
5909                                     const void *val, unsigned int count)
5910{
5911        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5912
5913        memcpy(vcpu->arch.pio_data, val, size * count);
5914        trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5915        return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5916}
5917
5918static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5919{
5920        return kvm_x86_ops->get_segment_base(vcpu, seg);
5921}
5922
5923static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5924{
5925        kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5926}
5927
5928static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5929{
5930        if (!need_emulate_wbinvd(vcpu))
5931                return X86EMUL_CONTINUE;
5932
5933        if (kvm_x86_ops->has_wbinvd_exit()) {
5934                int cpu = get_cpu();
5935
5936                cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5937                smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5938                                wbinvd_ipi, NULL, 1);
5939                put_cpu();
5940                cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5941        } else
5942                wbinvd();
5943        return X86EMUL_CONTINUE;
5944}
5945
5946int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5947{
5948        kvm_emulate_wbinvd_noskip(vcpu);
5949        return kvm_skip_emulated_instruction(vcpu);
5950}
5951EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5952
5953
5954
5955static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5956{
5957        kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5958}
5959
5960static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5961                           unsigned long *dest)
5962{
5963        return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5964}
5965
5966static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5967                           unsigned long value)
5968{
5969
5970        return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5971}
5972
5973static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5974{
5975        return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5976}
5977
5978static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5979{
5980        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5981        unsigned long value;
5982
5983        switch (cr) {
5984        case 0:
5985                value = kvm_read_cr0(vcpu);
5986                break;
5987        case 2:
5988                value = vcpu->arch.cr2;
5989                break;
5990        case 3:
5991                value = kvm_read_cr3(vcpu);
5992                break;
5993        case 4:
5994                value = kvm_read_cr4(vcpu);
5995                break;
5996        case 8:
5997                value = kvm_get_cr8(vcpu);
5998                break;
5999        default:
6000                kvm_err("%s: unexpected cr %u\n", __func__, cr);
6001                return 0;
6002        }
6003
6004        return value;
6005}
6006
6007static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6008{
6009        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6010        int res = 0;
6011
6012        switch (cr) {
6013        case 0:
6014                res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6015                break;
6016        case 2:
6017                vcpu->arch.cr2 = val;
6018                break;
6019        case 3:
6020                res = kvm_set_cr3(vcpu, val);
6021                break;
6022        case 4:
6023                res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6024                break;
6025        case 8:
6026                res = kvm_set_cr8(vcpu, val);
6027                break;
6028        default:
6029                kvm_err("%s: unexpected cr %u\n", __func__, cr);
6030                res = -1;
6031        }
6032
6033        return res;
6034}
6035
6036static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6037{
6038        return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
6039}
6040
6041static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6042{
6043        kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
6044}
6045
6046static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6047{
6048        kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
6049}
6050
6051static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6052{
6053        kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
6054}
6055
6056static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6057{
6058        kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
6059}
6060
6061static unsigned long emulator_get_cached_segment_base(
6062        struct x86_emulate_ctxt *ctxt, int seg)
6063{
6064        return get_segment_base(emul_to_vcpu(ctxt), seg);
6065}
6066
6067static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6068                                 struct desc_struct *desc, u32 *base3,
6069                                 int seg)
6070{
6071        struct kvm_segment var;
6072
6073        kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6074        *selector = var.selector;
6075
6076        if (var.unusable) {
6077                memset(desc, 0, sizeof(*desc));
6078                if (base3)
6079                        *base3 = 0;
6080                return false;
6081        }
6082
6083        if (var.g)
6084                var.limit >>= 12;
6085        set_desc_limit(desc, var.limit);
6086        set_desc_base(desc, (unsigned long)var.base);
6087#ifdef CONFIG_X86_64
6088        if (base3)
6089                *base3 = var.base >> 32;
6090#endif
6091        desc->type = var.type;
6092        desc->s = var.s;
6093        desc->dpl = var.dpl;
6094        desc->p = var.present;
6095        desc->avl = var.avl;
6096        desc->l = var.l;
6097        desc->d = var.db;
6098        desc->g = var.g;
6099
6100        return true;
6101}
6102
6103static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6104                                 struct desc_struct *desc, u32 base3,
6105                                 int seg)
6106{
6107        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6108        struct kvm_segment var;
6109
6110        var.selector = selector;
6111        var.base = get_desc_base(desc);
6112#ifdef CONFIG_X86_64
6113        var.base |= ((u64)base3) << 32;
6114#endif
6115        var.limit = get_desc_limit(desc);
6116        if (desc->g)
6117                var.limit = (var.limit << 12) | 0xfff;
6118        var.type = desc->type;
6119        var.dpl = desc->dpl;
6120        var.db = desc->d;
6121        var.s = desc->s;
6122        var.l = desc->l;
6123        var.g = desc->g;
6124        var.avl = desc->avl;
6125        var.present = desc->p;
6126        var.unusable = !var.present;
6127        var.padding = 0;
6128
6129        kvm_set_segment(vcpu, &var, seg);
6130        return;
6131}
6132
6133static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6134                            u32 msr_index, u64 *pdata)
6135{
6136        return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6137}
6138
6139static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6140                            u32 msr_index, u64 data)
6141{
6142        return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6143}
6144
6145static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6146{
6147        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6148
6149        return vcpu->arch.smbase;
6150}
6151
6152static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6153{
6154        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6155
6156        vcpu->arch.smbase = smbase;
6157}
6158
6159static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6160                              u32 pmc)
6161{
6162        return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6163}
6164
6165static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6166                             u32 pmc, u64 *pdata)
6167{
6168        return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6169}
6170
6171static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6172{
6173        emul_to_vcpu(ctxt)->arch.halt_request = 1;
6174}
6175
6176static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6177                              struct x86_instruction_info *info,
6178                              enum x86_intercept_stage stage)
6179{
6180        return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
6181}
6182
6183static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6184                        u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
6185{
6186        return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
6187}
6188
6189static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6190{
6191        return kvm_register_read(emul_to_vcpu(ctxt), reg);
6192}
6193
6194static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6195{
6196        kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6197}
6198
6199static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6200{
6201        kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
6202}
6203
6204static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6205{
6206        return emul_to_vcpu(ctxt)->arch.hflags;
6207}
6208
6209static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6210{
6211        emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6212}
6213
6214static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6215                                  const char *smstate)
6216{
6217        return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6218}
6219
6220static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6221{
6222        kvm_smm_changed(emul_to_vcpu(ctxt));
6223}
6224
6225static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6226{
6227        return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6228}
6229
6230static const struct x86_emulate_ops emulate_ops = {
6231        .read_gpr            = emulator_read_gpr,
6232        .write_gpr           = emulator_write_gpr,
6233        .read_std            = emulator_read_std,
6234        .write_std           = emulator_write_std,
6235        .read_phys           = kvm_read_guest_phys_system,
6236        .fetch               = kvm_fetch_guest_virt,
6237        .read_emulated       = emulator_read_emulated,
6238        .write_emulated      = emulator_write_emulated,
6239        .cmpxchg_emulated    = emulator_cmpxchg_emulated,
6240        .invlpg              = emulator_invlpg,
6241        .pio_in_emulated     = emulator_pio_in_emulated,
6242        .pio_out_emulated    = emulator_pio_out_emulated,
6243        .get_segment         = emulator_get_segment,
6244        .set_segment         = emulator_set_segment,
6245        .get_cached_segment_base = emulator_get_cached_segment_base,
6246        .get_gdt             = emulator_get_gdt,
6247        .get_idt             = emulator_get_idt,
6248        .set_gdt             = emulator_set_gdt,
6249        .set_idt             = emulator_set_idt,
6250        .get_cr              = emulator_get_cr,
6251        .set_cr              = emulator_set_cr,
6252        .cpl                 = emulator_get_cpl,
6253        .get_dr              = emulator_get_dr,
6254        .set_dr              = emulator_set_dr,
6255        .get_smbase          = emulator_get_smbase,
6256        .set_smbase          = emulator_set_smbase,
6257        .set_msr             = emulator_set_msr,
6258        .get_msr             = emulator_get_msr,
6259        .check_pmc           = emulator_check_pmc,
6260        .read_pmc            = emulator_read_pmc,
6261        .halt                = emulator_halt,
6262        .wbinvd              = emulator_wbinvd,
6263        .fix_hypercall       = emulator_fix_hypercall,
6264        .intercept           = emulator_intercept,
6265        .get_cpuid           = emulator_get_cpuid,
6266        .set_nmi_mask        = emulator_set_nmi_mask,
6267        .get_hflags          = emulator_get_hflags,
6268        .set_hflags          = emulator_set_hflags,
6269        .pre_leave_smm       = emulator_pre_leave_smm,
6270        .post_leave_smm      = emulator_post_leave_smm,
6271        .set_xcr             = emulator_set_xcr,
6272};
6273
6274static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6275{
6276        u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6277        /*
6278         * an sti; sti; sequence only disable interrupts for the first
6279         * instruction. So, if the last instruction, be it emulated or
6280         * not, left the system with the INT_STI flag enabled, it
6281         * means that the last instruction is an sti. We should not
6282         * leave the flag on in this case. The same goes for mov ss
6283         */
6284        if (int_shadow & mask)
6285                mask = 0;
6286        if (unlikely(int_shadow || mask)) {
6287                kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6288                if (!mask)
6289                        kvm_make_request(KVM_REQ_EVENT, vcpu);
6290        }
6291}
6292
6293static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6294{
6295        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6296        if (ctxt->exception.vector == PF_VECTOR)
6297                return kvm_propagate_fault(vcpu, &ctxt->exception);
6298
6299        if (ctxt->exception.error_code_valid)
6300                kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6301                                      ctxt->exception.error_code);
6302        else
6303                kvm_queue_exception(vcpu, ctxt->exception.vector);
6304        return false;
6305}
6306
6307static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6308{
6309        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6310        int cs_db, cs_l;
6311
6312        kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6313
6314        ctxt->eflags = kvm_get_rflags(vcpu);
6315        ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6316
6317        ctxt->eip = kvm_rip_read(vcpu);
6318        ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6319                     (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6320                     (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6321                     cs_db                              ? X86EMUL_MODE_PROT32 :
6322                                                          X86EMUL_MODE_PROT16;
6323        BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6324        BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6325        BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6326
6327        init_decode_cache(ctxt);
6328        vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6329}
6330
6331void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6332{
6333        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6334        int ret;
6335
6336        init_emulate_ctxt(vcpu);
6337
6338        ctxt->op_bytes = 2;
6339        ctxt->ad_bytes = 2;
6340        ctxt->_eip = ctxt->eip + inc_eip;
6341        ret = emulate_int_real(ctxt, irq);
6342
6343        if (ret != X86EMUL_CONTINUE) {
6344                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6345        } else {
6346                ctxt->eip = ctxt->_eip;
6347                kvm_rip_write(vcpu, ctxt->eip);
6348                kvm_set_rflags(vcpu, ctxt->eflags);
6349        }
6350}
6351EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6352
6353static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6354{
6355        ++vcpu->stat.insn_emulation_fail;
6356        trace_kvm_emulate_insn_failed(vcpu);
6357
6358        if (emulation_type & EMULTYPE_VMWARE_GP) {
6359                kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6360                return 1;
6361        }
6362
6363        if (emulation_type & EMULTYPE_SKIP) {
6364                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6365                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6366                vcpu->run->internal.ndata = 0;
6367                return 0;
6368        }
6369
6370        kvm_queue_exception(vcpu, UD_VECTOR);
6371
6372        if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6373                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6374                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6375                vcpu->run->internal.ndata = 0;
6376                return 0;
6377        }
6378
6379        return 1;
6380}
6381
6382static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6383                                  bool write_fault_to_shadow_pgtable,
6384                                  int emulation_type)
6385{
6386        gpa_t gpa = cr2;
6387        kvm_pfn_t pfn;
6388
6389        if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6390                return false;
6391
6392        if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6393                return false;
6394
6395        if (!vcpu->arch.mmu->direct_map) {
6396                /*
6397                 * Write permission should be allowed since only
6398                 * write access need to be emulated.
6399                 */
6400                gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6401
6402                /*
6403                 * If the mapping is invalid in guest, let cpu retry
6404                 * it to generate fault.
6405                 */
6406                if (gpa == UNMAPPED_GVA)
6407                        return true;
6408        }
6409
6410        /*
6411         * Do not retry the unhandleable instruction if it faults on the
6412         * readonly host memory, otherwise it will goto a infinite loop:
6413         * retry instruction -> write #PF -> emulation fail -> retry
6414         * instruction -> ...
6415         */
6416        pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6417
6418        /*
6419         * If the instruction failed on the error pfn, it can not be fixed,
6420         * report the error to userspace.
6421         */
6422        if (is_error_noslot_pfn(pfn))
6423                return false;
6424
6425        kvm_release_pfn_clean(pfn);
6426
6427        /* The instructions are well-emulated on direct mmu. */
6428        if (vcpu->arch.mmu->direct_map) {
6429                unsigned int indirect_shadow_pages;
6430
6431                spin_lock(&vcpu->kvm->mmu_lock);
6432                indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6433                spin_unlock(&vcpu->kvm->mmu_lock);
6434
6435                if (indirect_shadow_pages)
6436                        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6437
6438                return true;
6439        }
6440
6441        /*
6442         * if emulation was due to access to shadowed page table
6443         * and it failed try to unshadow page and re-enter the
6444         * guest to let CPU execute the instruction.
6445         */
6446        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6447
6448        /*
6449         * If the access faults on its page table, it can not
6450         * be fixed by unprotecting shadow page and it should
6451         * be reported to userspace.
6452         */
6453        return !write_fault_to_shadow_pgtable;
6454}
6455
6456static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6457                              unsigned long cr2,  int emulation_type)
6458{
6459        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6460        unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6461
6462        last_retry_eip = vcpu->arch.last_retry_eip;
6463        last_retry_addr = vcpu->arch.last_retry_addr;
6464
6465        /*
6466         * If the emulation is caused by #PF and it is non-page_table
6467         * writing instruction, it means the VM-EXIT is caused by shadow
6468         * page protected, we can zap the shadow page and retry this
6469         * instruction directly.
6470         *
6471         * Note: if the guest uses a non-page-table modifying instruction
6472         * on the PDE that points to the instruction, then we will unmap
6473         * the instruction and go to an infinite loop. So, we cache the
6474         * last retried eip and the last fault address, if we meet the eip
6475         * and the address again, we can break out of the potential infinite
6476         * loop.
6477         */
6478        vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6479
6480        if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6481                return false;
6482
6483        if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6484                return false;
6485
6486        if (x86_page_table_writing_insn(ctxt))
6487                return false;
6488
6489        if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6490                return false;
6491
6492        vcpu->arch.last_retry_eip = ctxt->eip;
6493        vcpu->arch.last_retry_addr = cr2;
6494
6495        if (!vcpu->arch.mmu->direct_map)
6496                gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6497
6498        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6499
6500        return true;
6501}
6502
6503static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6504static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6505
6506static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6507{
6508        if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6509                /* This is a good place to trace that we are exiting SMM.  */
6510                trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6511
6512                /* Process a latched INIT or SMI, if any.  */
6513                kvm_make_request(KVM_REQ_EVENT, vcpu);
6514        }
6515
6516        kvm_mmu_reset_context(vcpu);
6517}
6518
6519static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6520                                unsigned long *db)
6521{
6522        u32 dr6 = 0;
6523        int i;
6524        u32 enable, rwlen;
6525
6526        enable = dr7;
6527        rwlen = dr7 >> 16;
6528        for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6529                if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6530                        dr6 |= (1 << i);
6531        return dr6;
6532}
6533
6534static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
6535{
6536        struct kvm_run *kvm_run = vcpu->run;
6537
6538        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6539                kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6540                kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6541                kvm_run->debug.arch.exception = DB_VECTOR;
6542                kvm_run->exit_reason = KVM_EXIT_DEBUG;
6543                return 0;
6544        }
6545        kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6546        return 1;
6547}
6548
6549int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6550{
6551        unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6552        int r;
6553
6554        r = kvm_x86_ops->skip_emulated_instruction(vcpu);
6555        if (unlikely(!r))
6556                return 0;
6557
6558        /*
6559         * rflags is the old, "raw" value of the flags.  The new value has
6560         * not been saved yet.
6561         *
6562         * This is correct even for TF set by the guest, because "the
6563         * processor will not generate this exception after the instruction
6564         * that sets the TF flag".
6565         */
6566        if (unlikely(rflags & X86_EFLAGS_TF))
6567                r = kvm_vcpu_do_singlestep(vcpu);
6568        return r;
6569}
6570EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6571
6572static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6573{
6574        if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6575            (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6576                struct kvm_run *kvm_run = vcpu->run;
6577                unsigned long eip = kvm_get_linear_rip(vcpu);
6578                u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6579                                           vcpu->arch.guest_debug_dr7,
6580                                           vcpu->arch.eff_db);
6581
6582                if (dr6 != 0) {
6583                        kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6584                        kvm_run->debug.arch.pc = eip;
6585                        kvm_run->debug.arch.exception = DB_VECTOR;
6586                        kvm_run->exit_reason = KVM_EXIT_DEBUG;
6587                        *r = 0;
6588                        return true;
6589                }
6590        }
6591
6592        if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6593            !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6594                unsigned long eip = kvm_get_linear_rip(vcpu);
6595                u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6596                                           vcpu->arch.dr7,
6597                                           vcpu->arch.db);
6598
6599                if (dr6 != 0) {
6600                        vcpu->arch.dr6 &= ~DR_TRAP_BITS;
6601                        vcpu->arch.dr6 |= dr6 | DR6_RTM;
6602                        kvm_queue_exception(vcpu, DB_VECTOR);
6603                        *r = 1;
6604                        return true;
6605                }
6606        }
6607
6608        return false;
6609}
6610
6611static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6612{
6613        switch (ctxt->opcode_len) {
6614        case 1:
6615                switch (ctxt->b) {
6616                case 0xe4:      /* IN */
6617                case 0xe5:
6618                case 0xec:
6619                case 0xed:
6620                case 0xe6:      /* OUT */
6621                case 0xe7:
6622                case 0xee:
6623                case 0xef:
6624                case 0x6c:      /* INS */
6625                case 0x6d:
6626                case 0x6e:      /* OUTS */
6627                case 0x6f:
6628                        return true;
6629                }
6630                break;
6631        case 2:
6632                switch (ctxt->b) {
6633                case 0x33:      /* RDPMC */
6634                        return true;
6635                }
6636                break;
6637        }
6638
6639        return false;
6640}
6641
6642int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6643                            unsigned long cr2,
6644                            int emulation_type,
6645                            void *insn,
6646                            int insn_len)
6647{
6648        int r;
6649        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6650        bool writeback = true;
6651        bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6652
6653        vcpu->arch.l1tf_flush_l1d = true;
6654
6655        /*
6656         * Clear write_fault_to_shadow_pgtable here to ensure it is
6657         * never reused.
6658         */
6659        vcpu->arch.write_fault_to_shadow_pgtable = false;
6660        kvm_clear_exception_queue(vcpu);
6661
6662        if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6663                init_emulate_ctxt(vcpu);
6664
6665                /*
6666                 * We will reenter on the same instruction since
6667                 * we do not set complete_userspace_io.  This does not
6668                 * handle watchpoints yet, those would be handled in
6669                 * the emulate_ops.
6670                 */
6671                if (!(emulation_type & EMULTYPE_SKIP) &&
6672                    kvm_vcpu_check_breakpoint(vcpu, &r))
6673                        return r;
6674
6675                ctxt->interruptibility = 0;
6676                ctxt->have_exception = false;
6677                ctxt->exception.vector = -1;
6678                ctxt->perm_ok = false;
6679
6680                ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6681
6682                r = x86_decode_insn(ctxt, insn, insn_len);
6683
6684                trace_kvm_emulate_insn_start(vcpu);
6685                ++vcpu->stat.insn_emulation;
6686                if (r != EMULATION_OK)  {
6687                        if ((emulation_type & EMULTYPE_TRAP_UD) ||
6688                            (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6689                                kvm_queue_exception(vcpu, UD_VECTOR);
6690                                return 1;
6691                        }
6692                        if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6693                                                emulation_type))
6694                                return 1;
6695                        if (ctxt->have_exception) {
6696                                /*
6697                                 * #UD should result in just EMULATION_FAILED, and trap-like
6698                                 * exception should not be encountered during decode.
6699                                 */
6700                                WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6701                                             exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6702                                inject_emulated_exception(vcpu);
6703                                return 1;
6704                        }
6705                        return handle_emulation_failure(vcpu, emulation_type);
6706                }
6707        }
6708
6709        if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6710            !is_vmware_backdoor_opcode(ctxt)) {
6711                kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6712                return 1;
6713        }
6714
6715        /*
6716         * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6717         * for kvm_skip_emulated_instruction().  The caller is responsible for
6718         * updating interruptibility state and injecting single-step #DBs.
6719         */
6720        if (emulation_type & EMULTYPE_SKIP) {
6721                kvm_rip_write(vcpu, ctxt->_eip);
6722                if (ctxt->eflags & X86_EFLAGS_RF)
6723                        kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6724                return 1;
6725        }
6726
6727        if (retry_instruction(ctxt, cr2, emulation_type))
6728                return 1;
6729
6730        /* this is needed for vmware backdoor interface to work since it
6731           changes registers values  during IO operation */
6732        if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6733                vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6734                emulator_invalidate_register_cache(ctxt);
6735        }
6736
6737restart:
6738        /* Save the faulting GPA (cr2) in the address field */
6739        ctxt->exception.address = cr2;
6740
6741        r = x86_emulate_insn(ctxt);
6742
6743        if (r == EMULATION_INTERCEPTED)
6744                return 1;
6745
6746        if (r == EMULATION_FAILED) {
6747                if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6748                                        emulation_type))
6749                        return 1;
6750
6751                return handle_emulation_failure(vcpu, emulation_type);
6752        }
6753
6754        if (ctxt->have_exception) {
6755                r = 1;
6756                if (inject_emulated_exception(vcpu))
6757                        return r;
6758        } else if (vcpu->arch.pio.count) {
6759                if (!vcpu->arch.pio.in) {
6760                        /* FIXME: return into emulator if single-stepping.  */
6761                        vcpu->arch.pio.count = 0;
6762                } else {
6763                        writeback = false;
6764                        vcpu->arch.complete_userspace_io = complete_emulated_pio;
6765                }
6766                r = 0;
6767        } else if (vcpu->mmio_needed) {
6768                ++vcpu->stat.mmio_exits;
6769
6770                if (!vcpu->mmio_is_write)
6771                        writeback = false;
6772                r = 0;
6773                vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6774        } else if (r == EMULATION_RESTART)
6775                goto restart;
6776        else
6777                r = 1;
6778
6779        if (writeback) {
6780                unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6781                toggle_interruptibility(vcpu, ctxt->interruptibility);
6782                vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6783                if (!ctxt->have_exception ||
6784                    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
6785                        kvm_rip_write(vcpu, ctxt->eip);
6786                        if (r && ctxt->tf)
6787                                r = kvm_vcpu_do_singlestep(vcpu);
6788                        __kvm_set_rflags(vcpu, ctxt->eflags);
6789                }
6790
6791                /*
6792                 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6793                 * do nothing, and it will be requested again as soon as
6794                 * the shadow expires.  But we still need to check here,
6795                 * because POPF has no interrupt shadow.
6796                 */
6797                if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6798                        kvm_make_request(KVM_REQ_EVENT, vcpu);
6799        } else
6800                vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6801
6802        return r;
6803}
6804
6805int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6806{
6807        return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6808}
6809EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6810
6811int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6812                                        void *insn, int insn_len)
6813{
6814        return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6815}
6816EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6817
6818static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6819{
6820        vcpu->arch.pio.count = 0;
6821        return 1;
6822}
6823
6824static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6825{
6826        vcpu->arch.pio.count = 0;
6827
6828        if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6829                return 1;
6830
6831        return kvm_skip_emulated_instruction(vcpu);
6832}
6833
6834static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6835                            unsigned short port)
6836{
6837        unsigned long val = kvm_rax_read(vcpu);
6838        int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6839                                            size, port, &val, 1);
6840        if (ret)
6841                return ret;
6842
6843        /*
6844         * Workaround userspace that relies on old KVM behavior of %rip being
6845         * incremented prior to exiting to userspace to handle "OUT 0x7e".
6846         */
6847        if (port == 0x7e &&
6848            kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6849                vcpu->arch.complete_userspace_io =
6850                        complete_fast_pio_out_port_0x7e;
6851                kvm_skip_emulated_instruction(vcpu);
6852        } else {
6853                vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6854                vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6855        }
6856        return 0;
6857}
6858
6859static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6860{
6861        unsigned long val;
6862
6863        /* We should only ever be called with arch.pio.count equal to 1 */
6864        BUG_ON(vcpu->arch.pio.count != 1);
6865
6866        if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6867                vcpu->arch.pio.count = 0;
6868                return 1;
6869        }
6870
6871        /* For size less than 4 we merge, else we zero extend */
6872        val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6873
6874        /*
6875         * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6876         * the copy and tracing
6877         */
6878        emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6879                                 vcpu->arch.pio.port, &val, 1);
6880        kvm_rax_write(vcpu, val);
6881
6882        return kvm_skip_emulated_instruction(vcpu);
6883}
6884
6885static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6886                           unsigned short port)
6887{
6888        unsigned long val;
6889        int ret;
6890
6891        /* For size less than 4 we merge, else we zero extend */
6892        val = (size < 4) ? kvm_rax_read(vcpu) : 0;
6893
6894        ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6895                                       &val, 1);
6896        if (ret) {
6897                kvm_rax_write(vcpu, val);
6898                return ret;
6899        }
6900
6901        vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6902        vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6903
6904        return 0;
6905}
6906
6907int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6908{
6909        int ret;
6910
6911        if (in)
6912                ret = kvm_fast_pio_in(vcpu, size, port);
6913        else
6914                ret = kvm_fast_pio_out(vcpu, size, port);
6915        return ret && kvm_skip_emulated_instruction(vcpu);
6916}
6917EXPORT_SYMBOL_GPL(kvm_fast_pio);
6918
6919static int kvmclock_cpu_down_prep(unsigned int cpu)
6920{
6921        __this_cpu_write(cpu_tsc_khz, 0);
6922        return 0;
6923}
6924
6925static void tsc_khz_changed(void *data)
6926{
6927        struct cpufreq_freqs *freq = data;
6928        unsigned long khz = 0;
6929
6930        if (data)
6931                khz = freq->new;
6932        else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6933                khz = cpufreq_quick_get(raw_smp_processor_id());
6934        if (!khz)
6935                khz = tsc_khz;
6936        __this_cpu_write(cpu_tsc_khz, khz);
6937}
6938
6939#ifdef CONFIG_X86_64
6940static void kvm_hyperv_tsc_notifier(void)
6941{
6942        struct kvm *kvm;
6943        struct kvm_vcpu *vcpu;
6944        int cpu;
6945
6946        mutex_lock(&kvm_lock);
6947        list_for_each_entry(kvm, &vm_list, vm_list)
6948                kvm_make_mclock_inprogress_request(kvm);
6949
6950        hyperv_stop_tsc_emulation();
6951
6952        /* TSC frequency always matches when on Hyper-V */
6953        for_each_present_cpu(cpu)
6954                per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6955        kvm_max_guest_tsc_khz = tsc_khz;
6956
6957        list_for_each_entry(kvm, &vm_list, vm_list) {
6958                struct kvm_arch *ka = &kvm->arch;
6959
6960                spin_lock(&ka->pvclock_gtod_sync_lock);
6961
6962                pvclock_update_vm_gtod_copy(kvm);
6963
6964                kvm_for_each_vcpu(cpu, vcpu, kvm)
6965                        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6966
6967                kvm_for_each_vcpu(cpu, vcpu, kvm)
6968                        kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6969
6970                spin_unlock(&ka->pvclock_gtod_sync_lock);
6971        }
6972        mutex_unlock(&kvm_lock);
6973}
6974#endif
6975
6976static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
6977{
6978        struct kvm *kvm;
6979        struct kvm_vcpu *vcpu;
6980        int i, send_ipi = 0;
6981
6982        /*
6983         * We allow guests to temporarily run on slowing clocks,
6984         * provided we notify them after, or to run on accelerating
6985         * clocks, provided we notify them before.  Thus time never
6986         * goes backwards.
6987         *
6988         * However, we have a problem.  We can't atomically update
6989         * the frequency of a given CPU from this function; it is
6990         * merely a notifier, which can be called from any CPU.
6991         * Changing the TSC frequency at arbitrary points in time
6992         * requires a recomputation of local variables related to
6993         * the TSC for each VCPU.  We must flag these local variables
6994         * to be updated and be sure the update takes place with the
6995         * new frequency before any guests proceed.
6996         *
6997         * Unfortunately, the combination of hotplug CPU and frequency
6998         * change creates an intractable locking scenario; the order
6999         * of when these callouts happen is undefined with respect to
7000         * CPU hotplug, and they can race with each other.  As such,
7001         * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7002         * undefined; you can actually have a CPU frequency change take
7003         * place in between the computation of X and the setting of the
7004         * variable.  To protect against this problem, all updates of
7005         * the per_cpu tsc_khz variable are done in an interrupt
7006         * protected IPI, and all callers wishing to update the value
7007         * must wait for a synchronous IPI to complete (which is trivial
7008         * if the caller is on the CPU already).  This establishes the
7009         * necessary total order on variable updates.
7010         *
7011         * Note that because a guest time update may take place
7012         * anytime after the setting of the VCPU's request bit, the
7013         * correct TSC value must be set before the request.  However,
7014         * to ensure the update actually makes it to any guest which
7015         * starts running in hardware virtualization between the set
7016         * and the acquisition of the spinlock, we must also ping the
7017         * CPU after setting the request bit.
7018         *
7019         */
7020
7021        smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7022
7023        mutex_lock(&kvm_lock);
7024        list_for_each_entry(kvm, &vm_list, vm_list) {
7025                kvm_for_each_vcpu(i, vcpu, kvm) {
7026                        if (vcpu->cpu != cpu)
7027                                continue;
7028                        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7029                        if (vcpu->cpu != raw_smp_processor_id())
7030                                send_ipi = 1;
7031                }
7032        }
7033        mutex_unlock(&kvm_lock);
7034
7035        if (freq->old < freq->new && send_ipi) {
7036                /*
7037                 * We upscale the frequency.  Must make the guest
7038                 * doesn't see old kvmclock values while running with
7039                 * the new frequency, otherwise we risk the guest sees
7040                 * time go backwards.
7041                 *
7042                 * In case we update the frequency for another cpu
7043                 * (which might be in guest context) send an interrupt
7044                 * to kick the cpu out of guest context.  Next time
7045                 * guest context is entered kvmclock will be updated,
7046                 * so the guest will not see stale values.
7047                 */
7048                smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7049        }
7050}
7051
7052static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7053                                     void *data)
7054{
7055        struct cpufreq_freqs *freq = data;
7056        int cpu;
7057
7058        if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7059                return 0;
7060        if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7061                return 0;
7062
7063        for_each_cpu(cpu, freq->policy->cpus)
7064                __kvmclock_cpufreq_notifier(freq, cpu);
7065
7066        return 0;
7067}
7068
7069static struct notifier_block kvmclock_cpufreq_notifier_block = {
7070        .notifier_call  = kvmclock_cpufreq_notifier
7071};
7072
7073static int kvmclock_cpu_online(unsigned int cpu)
7074{
7075        tsc_khz_changed(NULL);
7076        return 0;
7077}
7078
7079static void kvm_timer_init(void)
7080{
7081        max_tsc_khz = tsc_khz;
7082
7083        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7084#ifdef CONFIG_CPU_FREQ
7085                struct cpufreq_policy policy;
7086                int cpu;
7087
7088                memset(&policy, 0, sizeof(policy));
7089                cpu = get_cpu();
7090                cpufreq_get_policy(&policy, cpu);
7091                if (policy.cpuinfo.max_freq)
7092                        max_tsc_khz = policy.cpuinfo.max_freq;
7093                put_cpu();
7094#endif
7095                cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7096                                          CPUFREQ_TRANSITION_NOTIFIER);
7097        }
7098
7099        cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7100                          kvmclock_cpu_online, kvmclock_cpu_down_prep);
7101}
7102
7103DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7104EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7105
7106int kvm_is_in_guest(void)
7107{
7108        return __this_cpu_read(current_vcpu) != NULL;
7109}
7110
7111static int kvm_is_user_mode(void)
7112{
7113        int user_mode = 3;
7114
7115        if (__this_cpu_read(current_vcpu))
7116                user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
7117
7118        return user_mode != 0;
7119}
7120
7121static unsigned long kvm_get_guest_ip(void)
7122{
7123        unsigned long ip = 0;
7124
7125        if (__this_cpu_read(current_vcpu))
7126                ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7127
7128        return ip;
7129}
7130
7131static void kvm_handle_intel_pt_intr(void)
7132{
7133        struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7134
7135        kvm_make_request(KVM_REQ_PMI, vcpu);
7136        __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7137                        (unsigned long *)&vcpu->arch.pmu.global_status);
7138}
7139
7140static struct perf_guest_info_callbacks kvm_guest_cbs = {
7141        .is_in_guest            = kvm_is_in_guest,
7142        .is_user_mode           = kvm_is_user_mode,
7143        .get_guest_ip           = kvm_get_guest_ip,
7144        .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
7145};
7146
7147#ifdef CONFIG_X86_64
7148static void pvclock_gtod_update_fn(struct work_struct *work)
7149{
7150        struct kvm *kvm;
7151
7152        struct kvm_vcpu *vcpu;
7153        int i;
7154
7155        mutex_lock(&kvm_lock);
7156        list_for_each_entry(kvm, &vm_list, vm_list)
7157                kvm_for_each_vcpu(i, vcpu, kvm)
7158                        kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7159        atomic_set(&kvm_guest_has_master_clock, 0);
7160        mutex_unlock(&kvm_lock);
7161}
7162
7163static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7164
7165/*
7166 * Notification about pvclock gtod data update.
7167 */
7168static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7169                               void *priv)
7170{
7171        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7172        struct timekeeper *tk = priv;
7173
7174        update_pvclock_gtod(tk);
7175
7176        /* disable master clock if host does not trust, or does not
7177         * use, TSC based clocksource.
7178         */
7179        if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7180            atomic_read(&kvm_guest_has_master_clock) != 0)
7181                queue_work(system_long_wq, &pvclock_gtod_work);
7182
7183        return 0;
7184}
7185
7186static struct notifier_block pvclock_gtod_notifier = {
7187        .notifier_call = pvclock_gtod_notify,
7188};
7189#endif
7190
7191int kvm_arch_init(void *opaque)
7192{
7193        int r;
7194        struct kvm_x86_ops *ops = opaque;
7195
7196        if (kvm_x86_ops) {
7197                printk(KERN_ERR "kvm: already loaded the other module\n");
7198                r = -EEXIST;
7199                goto out;
7200        }
7201
7202        if (!ops->cpu_has_kvm_support()) {
7203                printk(KERN_ERR "kvm: no hardware support\n");
7204                r = -EOPNOTSUPP;
7205                goto out;
7206        }
7207        if (ops->disabled_by_bios()) {
7208                printk(KERN_ERR "kvm: disabled by bios\n");
7209                r = -EOPNOTSUPP;
7210                goto out;
7211        }
7212
7213        /*
7214         * KVM explicitly assumes that the guest has an FPU and
7215         * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7216         * vCPU's FPU state as a fxregs_state struct.
7217         */
7218        if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7219                printk(KERN_ERR "kvm: inadequate fpu\n");
7220                r = -EOPNOTSUPP;
7221                goto out;
7222        }
7223
7224        r = -ENOMEM;
7225        x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7226                                          __alignof__(struct fpu), SLAB_ACCOUNT,
7227                                          NULL);
7228        if (!x86_fpu_cache) {
7229                printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7230                goto out;
7231        }
7232
7233        shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7234        if (!shared_msrs) {
7235                printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7236                goto out_free_x86_fpu_cache;
7237        }
7238
7239        r = kvm_mmu_module_init();
7240        if (r)
7241                goto out_free_percpu;
7242
7243        kvm_x86_ops = ops;
7244
7245        kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7246                        PT_DIRTY_MASK, PT64_NX_MASK, 0,
7247                        PT_PRESENT_MASK, 0, sme_me_mask);
7248        kvm_timer_init();
7249
7250        perf_register_guest_info_callbacks(&kvm_guest_cbs);
7251
7252        if (boot_cpu_has(X86_FEATURE_XSAVE))
7253                host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7254
7255        kvm_lapic_init();
7256        if (pi_inject_timer == -1)
7257                pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7258#ifdef CONFIG_X86_64
7259        pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7260
7261        if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7262                set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7263#endif
7264
7265        return 0;
7266
7267out_free_percpu:
7268        free_percpu(shared_msrs);
7269out_free_x86_fpu_cache:
7270        kmem_cache_destroy(x86_fpu_cache);
7271out:
7272        return r;
7273}
7274
7275void kvm_arch_exit(void)
7276{
7277#ifdef CONFIG_X86_64
7278        if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7279                clear_hv_tscchange_cb();
7280#endif
7281        kvm_lapic_exit();
7282        perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7283
7284        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7285                cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7286                                            CPUFREQ_TRANSITION_NOTIFIER);
7287        cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7288#ifdef CONFIG_X86_64
7289        pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7290#endif
7291        kvm_x86_ops = NULL;
7292        kvm_mmu_module_exit();
7293        free_percpu(shared_msrs);
7294        kmem_cache_destroy(x86_fpu_cache);
7295}
7296
7297int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7298{
7299        ++vcpu->stat.halt_exits;
7300        if (lapic_in_kernel(vcpu)) {
7301                vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7302                return 1;
7303        } else {
7304                vcpu->run->exit_reason = KVM_EXIT_HLT;
7305                return 0;
7306        }
7307}
7308EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7309
7310int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7311{
7312        int ret = kvm_skip_emulated_instruction(vcpu);
7313        /*
7314         * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7315         * KVM_EXIT_DEBUG here.
7316         */
7317        return kvm_vcpu_halt(vcpu) && ret;
7318}
7319EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7320
7321#ifdef CONFIG_X86_64
7322static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7323                                unsigned long clock_type)
7324{
7325        struct kvm_clock_pairing clock_pairing;
7326        struct timespec64 ts;
7327        u64 cycle;
7328        int ret;
7329
7330        if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7331                return -KVM_EOPNOTSUPP;
7332
7333        if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7334                return -KVM_EOPNOTSUPP;
7335
7336        clock_pairing.sec = ts.tv_sec;
7337        clock_pairing.nsec = ts.tv_nsec;
7338        clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7339        clock_pairing.flags = 0;
7340        memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7341
7342        ret = 0;
7343        if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7344                            sizeof(struct kvm_clock_pairing)))
7345                ret = -KVM_EFAULT;
7346
7347        return ret;
7348}
7349#endif
7350
7351/*
7352 * kvm_pv_kick_cpu_op:  Kick a vcpu.
7353 *
7354 * @apicid - apicid of vcpu to be kicked.
7355 */
7356static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7357{
7358        struct kvm_lapic_irq lapic_irq;
7359
7360        lapic_irq.shorthand = 0;
7361        lapic_irq.dest_mode = 0;
7362        lapic_irq.level = 0;
7363        lapic_irq.dest_id = apicid;
7364        lapic_irq.msi_redir_hint = false;
7365
7366        lapic_irq.delivery_mode = APIC_DM_REMRD;
7367        kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7368}
7369
7370void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7371{
7372        if (!lapic_in_kernel(vcpu)) {
7373                WARN_ON_ONCE(vcpu->arch.apicv_active);
7374                return;
7375        }
7376        if (!vcpu->arch.apicv_active)
7377                return;
7378
7379        vcpu->arch.apicv_active = false;
7380        kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7381}
7382
7383static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7384{
7385        struct kvm_vcpu *target = NULL;
7386        struct kvm_apic_map *map;
7387
7388        rcu_read_lock();
7389        map = rcu_dereference(kvm->arch.apic_map);
7390
7391        if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7392                target = map->phys_map[dest_id]->vcpu;
7393
7394        rcu_read_unlock();
7395
7396        if (target && READ_ONCE(target->ready))
7397                kvm_vcpu_yield_to(target);
7398}
7399
7400int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7401{
7402        unsigned long nr, a0, a1, a2, a3, ret;
7403        int op_64_bit;
7404
7405        if (kvm_hv_hypercall_enabled(vcpu->kvm))
7406                return kvm_hv_hypercall(vcpu);
7407
7408        nr = kvm_rax_read(vcpu);
7409        a0 = kvm_rbx_read(vcpu);
7410        a1 = kvm_rcx_read(vcpu);
7411        a2 = kvm_rdx_read(vcpu);
7412        a3 = kvm_rsi_read(vcpu);
7413
7414        trace_kvm_hypercall(nr, a0, a1, a2, a3);
7415
7416        op_64_bit = is_64_bit_mode(vcpu);
7417        if (!op_64_bit) {
7418                nr &= 0xFFFFFFFF;
7419                a0 &= 0xFFFFFFFF;
7420                a1 &= 0xFFFFFFFF;
7421                a2 &= 0xFFFFFFFF;
7422                a3 &= 0xFFFFFFFF;
7423        }
7424
7425        if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7426                ret = -KVM_EPERM;
7427                goto out;
7428        }
7429
7430        switch (nr) {
7431        case KVM_HC_VAPIC_POLL_IRQ:
7432                ret = 0;
7433                break;
7434        case KVM_HC_KICK_CPU:
7435                kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7436                kvm_sched_yield(vcpu->kvm, a1);
7437                ret = 0;
7438                break;
7439#ifdef CONFIG_X86_64
7440        case KVM_HC_CLOCK_PAIRING:
7441                ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7442                break;
7443#endif
7444        case KVM_HC_SEND_IPI:
7445                ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7446                break;
7447        case KVM_HC_SCHED_YIELD:
7448                kvm_sched_yield(vcpu->kvm, a0);
7449                ret = 0;
7450                break;
7451        default:
7452                ret = -KVM_ENOSYS;
7453                break;
7454        }
7455out:
7456        if (!op_64_bit)
7457                ret = (u32)ret;
7458        kvm_rax_write(vcpu, ret);
7459
7460        ++vcpu->stat.hypercalls;
7461        return kvm_skip_emulated_instruction(vcpu);
7462}
7463EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7464
7465static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7466{
7467        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7468        char instruction[3];
7469        unsigned long rip = kvm_rip_read(vcpu);
7470
7471        kvm_x86_ops->patch_hypercall(vcpu, instruction);
7472
7473        return emulator_write_emulated(ctxt, rip, instruction, 3,
7474                &ctxt->exception);
7475}
7476
7477static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7478{
7479        return vcpu->run->request_interrupt_window &&
7480                likely(!pic_in_kernel(vcpu->kvm));
7481}
7482
7483static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7484{
7485        struct kvm_run *kvm_run = vcpu->run;
7486
7487        kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7488        kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7489        kvm_run->cr8 = kvm_get_cr8(vcpu);
7490        kvm_run->apic_base = kvm_get_apic_base(vcpu);
7491        kvm_run->ready_for_interrupt_injection =
7492                pic_in_kernel(vcpu->kvm) ||
7493                kvm_vcpu_ready_for_interrupt_injection(vcpu);
7494}
7495
7496static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7497{
7498        int max_irr, tpr;
7499
7500        if (!kvm_x86_ops->update_cr8_intercept)
7501                return;
7502
7503        if (!lapic_in_kernel(vcpu))
7504                return;
7505
7506        if (vcpu->arch.apicv_active)
7507                return;
7508
7509        if (!vcpu->arch.apic->vapic_addr)
7510                max_irr = kvm_lapic_find_highest_irr(vcpu);
7511        else
7512                max_irr = -1;
7513
7514        if (max_irr != -1)
7515                max_irr >>= 4;
7516
7517        tpr = kvm_lapic_get_cr8(vcpu);
7518
7519        kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7520}
7521
7522static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7523{
7524        int r;
7525
7526        /* try to reinject previous events if any */
7527
7528        if (vcpu->arch.exception.injected)
7529                kvm_x86_ops->queue_exception(vcpu);
7530        /*
7531         * Do not inject an NMI or interrupt if there is a pending
7532         * exception.  Exceptions and interrupts are recognized at
7533         * instruction boundaries, i.e. the start of an instruction.
7534         * Trap-like exceptions, e.g. #DB, have higher priority than
7535         * NMIs and interrupts, i.e. traps are recognized before an
7536         * NMI/interrupt that's pending on the same instruction.
7537         * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7538         * priority, but are only generated (pended) during instruction
7539         * execution, i.e. a pending fault-like exception means the
7540         * fault occurred on the *previous* instruction and must be
7541         * serviced prior to recognizing any new events in order to
7542         * fully complete the previous instruction.
7543         */
7544        else if (!vcpu->arch.exception.pending) {
7545                if (vcpu->arch.nmi_injected)
7546                        kvm_x86_ops->set_nmi(vcpu);
7547                else if (vcpu->arch.interrupt.injected)
7548                        kvm_x86_ops->set_irq(vcpu);
7549        }
7550
7551        /*
7552         * Call check_nested_events() even if we reinjected a previous event
7553         * in order for caller to determine if it should require immediate-exit
7554         * from L2 to L1 due to pending L1 events which require exit
7555         * from L2 to L1.
7556         */
7557        if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7558                r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7559                if (r != 0)
7560                        return r;
7561        }
7562
7563        /* try to inject new event if pending */
7564        if (vcpu->arch.exception.pending) {
7565                trace_kvm_inj_exception(vcpu->arch.exception.nr,
7566                                        vcpu->arch.exception.has_error_code,
7567                                        vcpu->arch.exception.error_code);
7568
7569                WARN_ON_ONCE(vcpu->arch.exception.injected);
7570                vcpu->arch.exception.pending = false;
7571                vcpu->arch.exception.injected = true;
7572
7573                if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7574                        __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7575                                             X86_EFLAGS_RF);
7576
7577                if (vcpu->arch.exception.nr == DB_VECTOR) {
7578                        /*
7579                         * This code assumes that nSVM doesn't use
7580                         * check_nested_events(). If it does, the
7581                         * DR6/DR7 changes should happen before L1
7582                         * gets a #VMEXIT for an intercepted #DB in
7583                         * L2.  (Under VMX, on the other hand, the
7584                         * DR6/DR7 changes should not happen in the
7585                         * event of a VM-exit to L1 for an intercepted
7586                         * #DB in L2.)
7587                         */
7588                        kvm_deliver_exception_payload(vcpu);
7589                        if (vcpu->arch.dr7 & DR7_GD) {
7590                                vcpu->arch.dr7 &= ~DR7_GD;
7591                                kvm_update_dr7(vcpu);
7592                        }
7593                }
7594
7595                kvm_x86_ops->queue_exception(vcpu);
7596        }
7597
7598        /* Don't consider new event if we re-injected an event */
7599        if (kvm_event_needs_reinjection(vcpu))
7600                return 0;
7601
7602        if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7603            kvm_x86_ops->smi_allowed(vcpu)) {
7604                vcpu->arch.smi_pending = false;
7605                ++vcpu->arch.smi_count;
7606                enter_smm(vcpu);
7607        } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7608                --vcpu->arch.nmi_pending;
7609                vcpu->arch.nmi_injected = true;
7610                kvm_x86_ops->set_nmi(vcpu);
7611        } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7612                /*
7613                 * Because interrupts can be injected asynchronously, we are
7614                 * calling check_nested_events again here to avoid a race condition.
7615                 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7616                 * proposal and current concerns.  Perhaps we should be setting
7617                 * KVM_REQ_EVENT only on certain events and not unconditionally?
7618                 */
7619                if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7620                        r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7621                        if (r != 0)
7622                                return r;
7623                }
7624                if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7625                        kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7626                                            false);
7627                        kvm_x86_ops->set_irq(vcpu);
7628                }
7629        }
7630
7631        return 0;
7632}
7633
7634static void process_nmi(struct kvm_vcpu *vcpu)
7635{
7636        unsigned limit = 2;
7637
7638        /*
7639         * x86 is limited to one NMI running, and one NMI pending after it.
7640         * If an NMI is already in progress, limit further NMIs to just one.
7641         * Otherwise, allow two (and we'll inject the first one immediately).
7642         */
7643        if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7644                limit = 1;
7645
7646        vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7647        vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7648        kvm_make_request(KVM_REQ_EVENT, vcpu);
7649}
7650
7651static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7652{
7653        u32 flags = 0;
7654        flags |= seg->g       << 23;
7655        flags |= seg->db      << 22;
7656        flags |= seg->l       << 21;
7657        flags |= seg->avl     << 20;
7658        flags |= seg->present << 15;
7659        flags |= seg->dpl     << 13;
7660        flags |= seg->s       << 12;
7661        flags |= seg->type    << 8;
7662        return flags;
7663}
7664
7665static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7666{
7667        struct kvm_segment seg;
7668        int offset;
7669
7670        kvm_get_segment(vcpu, &seg, n);
7671        put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7672
7673        if (n < 3)
7674                offset = 0x7f84 + n * 12;
7675        else
7676                offset = 0x7f2c + (n - 3) * 12;
7677
7678        put_smstate(u32, buf, offset + 8, seg.base);
7679        put_smstate(u32, buf, offset + 4, seg.limit);
7680        put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7681}
7682
7683#ifdef CONFIG_X86_64
7684static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7685{
7686        struct kvm_segment seg;
7687        int offset;
7688        u16 flags;
7689
7690        kvm_get_segment(vcpu, &seg, n);
7691        offset = 0x7e00 + n * 16;
7692
7693        flags = enter_smm_get_segment_flags(&seg) >> 8;
7694        put_smstate(u16, buf, offset, seg.selector);
7695        put_smstate(u16, buf, offset + 2, flags);
7696        put_smstate(u32, buf, offset + 4, seg.limit);
7697        put_smstate(u64, buf, offset + 8, seg.base);
7698}
7699#endif
7700
7701static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7702{
7703        struct desc_ptr dt;
7704        struct kvm_segment seg;
7705        unsigned long val;
7706        int i;
7707
7708        put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7709        put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7710        put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7711        put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7712
7713        for (i = 0; i < 8; i++)
7714                put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7715
7716        kvm_get_dr(vcpu, 6, &val);
7717        put_smstate(u32, buf, 0x7fcc, (u32)val);
7718        kvm_get_dr(vcpu, 7, &val);
7719        put_smstate(u32, buf, 0x7fc8, (u32)val);
7720
7721        kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7722        put_smstate(u32, buf, 0x7fc4, seg.selector);
7723        put_smstate(u32, buf, 0x7f64, seg.base);
7724        put_smstate(u32, buf, 0x7f60, seg.limit);
7725        put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7726
7727        kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7728        put_smstate(u32, buf, 0x7fc0, seg.selector);
7729        put_smstate(u32, buf, 0x7f80, seg.base);
7730        put_smstate(u32, buf, 0x7f7c, seg.limit);
7731        put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7732
7733        kvm_x86_ops->get_gdt(vcpu, &dt);
7734        put_smstate(u32, buf, 0x7f74, dt.address);
7735        put_smstate(u32, buf, 0x7f70, dt.size);
7736
7737        kvm_x86_ops->get_idt(vcpu, &dt);
7738        put_smstate(u32, buf, 0x7f58, dt.address);
7739        put_smstate(u32, buf, 0x7f54, dt.size);
7740
7741        for (i = 0; i < 6; i++)
7742                enter_smm_save_seg_32(vcpu, buf, i);
7743
7744        put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7745
7746        /* revision id */
7747        put_smstate(u32, buf, 0x7efc, 0x00020000);
7748        put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7749}
7750
7751#ifdef CONFIG_X86_64
7752static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7753{
7754        struct desc_ptr dt;
7755        struct kvm_segment seg;
7756        unsigned long val;
7757        int i;
7758
7759        for (i = 0; i < 16; i++)
7760                put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7761
7762        put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7763        put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7764
7765        kvm_get_dr(vcpu, 6, &val);
7766        put_smstate(u64, buf, 0x7f68, val);
7767        kvm_get_dr(vcpu, 7, &val);
7768        put_smstate(u64, buf, 0x7f60, val);
7769
7770        put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7771        put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7772        put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7773
7774        put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7775
7776        /* revision id */
7777        put_smstate(u32, buf, 0x7efc, 0x00020064);
7778
7779        put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7780
7781        kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7782        put_smstate(u16, buf, 0x7e90, seg.selector);
7783        put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7784        put_smstate(u32, buf, 0x7e94, seg.limit);
7785        put_smstate(u64, buf, 0x7e98, seg.base);
7786
7787        kvm_x86_ops->get_idt(vcpu, &dt);
7788        put_smstate(u32, buf, 0x7e84, dt.size);
7789        put_smstate(u64, buf, 0x7e88, dt.address);
7790
7791        kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7792        put_smstate(u16, buf, 0x7e70, seg.selector);
7793        put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7794        put_smstate(u32, buf, 0x7e74, seg.limit);
7795        put_smstate(u64, buf, 0x7e78, seg.base);
7796
7797        kvm_x86_ops->get_gdt(vcpu, &dt);
7798        put_smstate(u32, buf, 0x7e64, dt.size);
7799        put_smstate(u64, buf, 0x7e68, dt.address);
7800
7801        for (i = 0; i < 6; i++)
7802                enter_smm_save_seg_64(vcpu, buf, i);
7803}
7804#endif
7805
7806static void enter_smm(struct kvm_vcpu *vcpu)
7807{
7808        struct kvm_segment cs, ds;
7809        struct desc_ptr dt;
7810        char buf[512];
7811        u32 cr0;
7812
7813        trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7814        memset(buf, 0, 512);
7815#ifdef CONFIG_X86_64
7816        if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7817                enter_smm_save_state_64(vcpu, buf);
7818        else
7819#endif
7820                enter_smm_save_state_32(vcpu, buf);
7821
7822        /*
7823         * Give pre_enter_smm() a chance to make ISA-specific changes to the
7824         * vCPU state (e.g. leave guest mode) after we've saved the state into
7825         * the SMM state-save area.
7826         */
7827        kvm_x86_ops->pre_enter_smm(vcpu, buf);
7828
7829        vcpu->arch.hflags |= HF_SMM_MASK;
7830        kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7831
7832        if (kvm_x86_ops->get_nmi_mask(vcpu))
7833                vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7834        else
7835                kvm_x86_ops->set_nmi_mask(vcpu, true);
7836
7837        kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7838        kvm_rip_write(vcpu, 0x8000);
7839
7840        cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7841        kvm_x86_ops->set_cr0(vcpu, cr0);
7842        vcpu->arch.cr0 = cr0;
7843
7844        kvm_x86_ops->set_cr4(vcpu, 0);
7845
7846        /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7847        dt.address = dt.size = 0;
7848        kvm_x86_ops->set_idt(vcpu, &dt);
7849
7850        __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7851
7852        cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7853        cs.base = vcpu->arch.smbase;
7854
7855        ds.selector = 0;
7856        ds.base = 0;
7857
7858        cs.limit    = ds.limit = 0xffffffff;
7859        cs.type     = ds.type = 0x3;
7860        cs.dpl      = ds.dpl = 0;
7861        cs.db       = ds.db = 0;
7862        cs.s        = ds.s = 1;
7863        cs.l        = ds.l = 0;
7864        cs.g        = ds.g = 1;
7865        cs.avl      = ds.avl = 0;
7866        cs.present  = ds.present = 1;
7867        cs.unusable = ds.unusable = 0;
7868        cs.padding  = ds.padding = 0;
7869
7870        kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7871        kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7872        kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7873        kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7874        kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7875        kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7876
7877#ifdef CONFIG_X86_64
7878        if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7879                kvm_x86_ops->set_efer(vcpu, 0);
7880#endif
7881
7882        kvm_update_cpuid(vcpu);
7883        kvm_mmu_reset_context(vcpu);
7884}
7885
7886static void process_smi(struct kvm_vcpu *vcpu)
7887{
7888        vcpu->arch.smi_pending = true;
7889        kvm_make_request(KVM_REQ_EVENT, vcpu);
7890}
7891
7892void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
7893                                       unsigned long *vcpu_bitmap)
7894{
7895        cpumask_var_t cpus;
7896
7897        zalloc_cpumask_var(&cpus, GFP_ATOMIC);
7898
7899        kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
7900                                    vcpu_bitmap, cpus);
7901
7902        free_cpumask_var(cpus);
7903}
7904
7905void kvm_make_scan_ioapic_request(struct kvm *kvm)
7906{
7907        kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7908}
7909
7910static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7911{
7912        if (!kvm_apic_present(vcpu))
7913                return;
7914
7915        bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7916
7917        if (irqchip_split(vcpu->kvm))
7918                kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7919        else {
7920                if (vcpu->arch.apicv_active)
7921                        kvm_x86_ops->sync_pir_to_irr(vcpu);
7922                if (ioapic_in_kernel(vcpu->kvm))
7923                        kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7924        }
7925
7926        if (is_guest_mode(vcpu))
7927                vcpu->arch.load_eoi_exitmap_pending = true;
7928        else
7929                kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7930}
7931
7932static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7933{
7934        u64 eoi_exit_bitmap[4];
7935
7936        if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7937                return;
7938
7939        bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7940                  vcpu_to_synic(vcpu)->vec_bitmap, 256);
7941        kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7942}
7943
7944int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7945                unsigned long start, unsigned long end,
7946                bool blockable)
7947{
7948        unsigned long apic_address;
7949
7950        /*
7951         * The physical address of apic access page is stored in the VMCS.
7952         * Update it when it becomes invalid.
7953         */
7954        apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7955        if (start <= apic_address && apic_address < end)
7956                kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7957
7958        return 0;
7959}
7960
7961void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7962{
7963        struct page *page = NULL;
7964
7965        if (!lapic_in_kernel(vcpu))
7966                return;
7967
7968        if (!kvm_x86_ops->set_apic_access_page_addr)
7969                return;
7970
7971        page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7972        if (is_error_page(page))
7973                return;
7974        kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7975
7976        /*
7977         * Do not pin apic access page in memory, the MMU notifier
7978         * will call us again if it is migrated or swapped out.
7979         */
7980        put_page(page);
7981}
7982
7983void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7984{
7985        smp_send_reschedule(vcpu->cpu);
7986}
7987EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7988
7989/*
7990 * Returns 1 to let vcpu_run() continue the guest execution loop without
7991 * exiting to the userspace.  Otherwise, the value will be returned to the
7992 * userspace.
7993 */
7994static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7995{
7996        int r;
7997        bool req_int_win =
7998                dm_request_for_irq_injection(vcpu) &&
7999                kvm_cpu_accept_dm_intr(vcpu);
8000
8001        bool req_immediate_exit = false;
8002
8003        if (kvm_request_pending(vcpu)) {
8004                if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) {
8005                        if (unlikely(!kvm_x86_ops->get_vmcs12_pages(vcpu))) {
8006                                r = 0;
8007                                goto out;
8008                        }
8009                }
8010                if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8011                        kvm_mmu_unload(vcpu);
8012                if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8013                        __kvm_migrate_timers(vcpu);
8014                if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8015                        kvm_gen_update_masterclock(vcpu->kvm);
8016                if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8017                        kvm_gen_kvmclock_update(vcpu);
8018                if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8019                        r = kvm_guest_time_update(vcpu);
8020                        if (unlikely(r))
8021                                goto out;
8022                }
8023                if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8024                        kvm_mmu_sync_roots(vcpu);
8025                if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
8026                        kvm_mmu_load_cr3(vcpu);
8027                if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
8028                        kvm_vcpu_flush_tlb(vcpu, true);
8029                if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8030                        vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8031                        r = 0;
8032                        goto out;
8033                }
8034                if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8035                        vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8036                        vcpu->mmio_needed = 0;
8037                        r = 0;
8038                        goto out;
8039                }
8040                if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8041                        /* Page is swapped out. Do synthetic halt */
8042                        vcpu->arch.apf.halted = true;
8043                        r = 1;
8044                        goto out;
8045                }
8046                if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8047                        record_steal_time(vcpu);
8048                if (kvm_check_request(KVM_REQ_SMI, vcpu))
8049                        process_smi(vcpu);
8050                if (kvm_check_request(KVM_REQ_NMI, vcpu))
8051                        process_nmi(vcpu);
8052                if (kvm_check_request(KVM_REQ_PMU, vcpu))
8053                        kvm_pmu_handle_event(vcpu);
8054                if (kvm_check_request(KVM_REQ_PMI, vcpu))
8055                        kvm_pmu_deliver_pmi(vcpu);
8056                if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8057                        BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8058                        if (test_bit(vcpu->arch.pending_ioapic_eoi,
8059                                     vcpu->arch.ioapic_handled_vectors)) {
8060                                vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8061                                vcpu->run->eoi.vector =
8062                                                vcpu->arch.pending_ioapic_eoi;
8063                                r = 0;
8064                                goto out;
8065                        }
8066                }
8067                if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8068                        vcpu_scan_ioapic(vcpu);
8069                if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8070                        vcpu_load_eoi_exitmap(vcpu);
8071                if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8072                        kvm_vcpu_reload_apic_access_page(vcpu);
8073                if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8074                        vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8075                        vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8076                        r = 0;
8077                        goto out;
8078                }
8079                if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8080                        vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8081                        vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8082                        r = 0;
8083                        goto out;
8084                }
8085                if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8086                        vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8087                        vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8088                        r = 0;
8089                        goto out;
8090                }
8091
8092                /*
8093                 * KVM_REQ_HV_STIMER has to be processed after
8094                 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8095                 * depend on the guest clock being up-to-date
8096                 */
8097                if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8098                        kvm_hv_process_stimers(vcpu);
8099        }
8100
8101        if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8102                ++vcpu->stat.req_event;
8103                kvm_apic_accept_events(vcpu);
8104                if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8105                        r = 1;
8106                        goto out;
8107                }
8108
8109                if (inject_pending_event(vcpu, req_int_win) != 0)
8110                        req_immediate_exit = true;
8111                else {
8112                        /* Enable SMI/NMI/IRQ window open exits if needed.
8113                         *
8114                         * SMIs have three cases:
8115                         * 1) They can be nested, and then there is nothing to
8116                         *    do here because RSM will cause a vmexit anyway.
8117                         * 2) There is an ISA-specific reason why SMI cannot be
8118                         *    injected, and the moment when this changes can be
8119                         *    intercepted.
8120                         * 3) Or the SMI can be pending because
8121                         *    inject_pending_event has completed the injection
8122                         *    of an IRQ or NMI from the previous vmexit, and
8123                         *    then we request an immediate exit to inject the
8124                         *    SMI.
8125                         */
8126                        if (vcpu->arch.smi_pending && !is_smm(vcpu))
8127                                if (!kvm_x86_ops->enable_smi_window(vcpu))
8128                                        req_immediate_exit = true;
8129                        if (vcpu->arch.nmi_pending)
8130                                kvm_x86_ops->enable_nmi_window(vcpu);
8131                        if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
8132                                kvm_x86_ops->enable_irq_window(vcpu);
8133                        WARN_ON(vcpu->arch.exception.pending);
8134                }
8135
8136                if (kvm_lapic_enabled(vcpu)) {
8137                        update_cr8_intercept(vcpu);
8138                        kvm_lapic_sync_to_vapic(vcpu);
8139                }
8140        }
8141
8142        r = kvm_mmu_reload(vcpu);
8143        if (unlikely(r)) {
8144                goto cancel_injection;
8145        }
8146
8147        preempt_disable();
8148
8149        kvm_x86_ops->prepare_guest_switch(vcpu);
8150
8151        /*
8152         * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8153         * IPI are then delayed after guest entry, which ensures that they
8154         * result in virtual interrupt delivery.
8155         */
8156        local_irq_disable();
8157        vcpu->mode = IN_GUEST_MODE;
8158
8159        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8160
8161        /*
8162         * 1) We should set ->mode before checking ->requests.  Please see
8163         * the comment in kvm_vcpu_exiting_guest_mode().
8164         *
8165         * 2) For APICv, we should set ->mode before checking PID.ON. This
8166         * pairs with the memory barrier implicit in pi_test_and_set_on
8167         * (see vmx_deliver_posted_interrupt).
8168         *
8169         * 3) This also orders the write to mode from any reads to the page
8170         * tables done while the VCPU is running.  Please see the comment
8171         * in kvm_flush_remote_tlbs.
8172         */
8173        smp_mb__after_srcu_read_unlock();
8174
8175        /*
8176         * This handles the case where a posted interrupt was
8177         * notified with kvm_vcpu_kick.
8178         */
8179        if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8180                kvm_x86_ops->sync_pir_to_irr(vcpu);
8181
8182        if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
8183            || need_resched() || signal_pending(current)) {
8184                vcpu->mode = OUTSIDE_GUEST_MODE;
8185                smp_wmb();
8186                local_irq_enable();
8187                preempt_enable();
8188                vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8189                r = 1;
8190                goto cancel_injection;
8191        }
8192
8193        if (req_immediate_exit) {
8194                kvm_make_request(KVM_REQ_EVENT, vcpu);
8195                kvm_x86_ops->request_immediate_exit(vcpu);
8196        }
8197
8198        trace_kvm_entry(vcpu->vcpu_id);
8199        guest_enter_irqoff();
8200
8201        /* The preempt notifier should have taken care of the FPU already.  */
8202        WARN_ON_ONCE(test_thread_flag(TIF_NEED_FPU_LOAD));
8203
8204        if (unlikely(vcpu->arch.switch_db_regs)) {
8205                set_debugreg(0, 7);
8206                set_debugreg(vcpu->arch.eff_db[0], 0);
8207                set_debugreg(vcpu->arch.eff_db[1], 1);
8208                set_debugreg(vcpu->arch.eff_db[2], 2);
8209                set_debugreg(vcpu->arch.eff_db[3], 3);
8210                set_debugreg(vcpu->arch.dr6, 6);
8211                vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8212        }
8213
8214        kvm_x86_ops->run(vcpu);
8215
8216        /*
8217         * Do this here before restoring debug registers on the host.  And
8218         * since we do this before handling the vmexit, a DR access vmexit
8219         * can (a) read the correct value of the debug registers, (b) set
8220         * KVM_DEBUGREG_WONT_EXIT again.
8221         */
8222        if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8223                WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8224                kvm_x86_ops->sync_dirty_debug_regs(vcpu);
8225                kvm_update_dr0123(vcpu);
8226                kvm_update_dr6(vcpu);
8227                kvm_update_dr7(vcpu);
8228                vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8229        }
8230
8231        /*
8232         * If the guest has used debug registers, at least dr7
8233         * will be disabled while returning to the host.
8234         * If we don't have active breakpoints in the host, we don't
8235         * care about the messed up debug address registers. But if
8236         * we have some of them active, restore the old state.
8237         */
8238        if (hw_breakpoint_active())
8239                hw_breakpoint_restore();
8240
8241        vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8242
8243        vcpu->mode = OUTSIDE_GUEST_MODE;
8244        smp_wmb();
8245
8246        kvm_x86_ops->handle_exit_irqoff(vcpu);
8247
8248        /*
8249         * Consume any pending interrupts, including the possible source of
8250         * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8251         * An instruction is required after local_irq_enable() to fully unblock
8252         * interrupts on processors that implement an interrupt shadow, the
8253         * stat.exits increment will do nicely.
8254         */
8255        kvm_before_interrupt(vcpu);
8256        local_irq_enable();
8257        ++vcpu->stat.exits;
8258        local_irq_disable();
8259        kvm_after_interrupt(vcpu);
8260
8261        guest_exit_irqoff();
8262        if (lapic_in_kernel(vcpu)) {
8263                s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8264                if (delta != S64_MIN) {
8265                        trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8266                        vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8267                }
8268        }
8269
8270        local_irq_enable();
8271        preempt_enable();
8272
8273        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8274
8275        /*
8276         * Profile KVM exit RIPs:
8277         */
8278        if (unlikely(prof_on == KVM_PROFILING)) {
8279                unsigned long rip = kvm_rip_read(vcpu);
8280                profile_hit(KVM_PROFILING, (void *)rip);
8281        }
8282
8283        if (unlikely(vcpu->arch.tsc_always_catchup))
8284                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8285
8286        if (vcpu->arch.apic_attention)
8287                kvm_lapic_sync_from_vapic(vcpu);
8288
8289        vcpu->arch.gpa_available = false;
8290        r = kvm_x86_ops->handle_exit(vcpu);
8291        return r;
8292
8293cancel_injection:
8294        kvm_x86_ops->cancel_injection(vcpu);
8295        if (unlikely(vcpu->arch.apic_attention))
8296                kvm_lapic_sync_from_vapic(vcpu);
8297out:
8298        return r;
8299}
8300
8301static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8302{
8303        if (!kvm_arch_vcpu_runnable(vcpu) &&
8304            (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8305                srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8306                kvm_vcpu_block(vcpu);
8307                vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8308
8309                if (kvm_x86_ops->post_block)
8310                        kvm_x86_ops->post_block(vcpu);
8311
8312                if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8313                        return 1;
8314        }
8315
8316        kvm_apic_accept_events(vcpu);
8317        switch(vcpu->arch.mp_state) {
8318        case KVM_MP_STATE_HALTED:
8319                vcpu->arch.pv.pv_unhalted = false;
8320                vcpu->arch.mp_state =
8321                        KVM_MP_STATE_RUNNABLE;
8322                /* fall through */
8323        case KVM_MP_STATE_RUNNABLE:
8324                vcpu->arch.apf.halted = false;
8325                break;
8326        case KVM_MP_STATE_INIT_RECEIVED:
8327                break;
8328        default:
8329                return -EINTR;
8330                break;
8331        }
8332        return 1;
8333}
8334
8335static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8336{
8337        if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8338                kvm_x86_ops->check_nested_events(vcpu, false);
8339
8340        return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8341                !vcpu->arch.apf.halted);
8342}
8343
8344static int vcpu_run(struct kvm_vcpu *vcpu)
8345{
8346        int r;
8347        struct kvm *kvm = vcpu->kvm;
8348
8349        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8350        vcpu->arch.l1tf_flush_l1d = true;
8351
8352        for (;;) {
8353                if (kvm_vcpu_running(vcpu)) {
8354                        r = vcpu_enter_guest(vcpu);
8355                } else {
8356                        r = vcpu_block(kvm, vcpu);
8357                }
8358
8359                if (r <= 0)
8360                        break;
8361
8362                kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8363                if (kvm_cpu_has_pending_timer(vcpu))
8364                        kvm_inject_pending_timer_irqs(vcpu);
8365
8366                if (dm_request_for_irq_injection(vcpu) &&
8367                        kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8368                        r = 0;
8369                        vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8370                        ++vcpu->stat.request_irq_exits;
8371                        break;
8372                }
8373
8374                kvm_check_async_pf_completion(vcpu);
8375
8376                if (signal_pending(current)) {
8377                        r = -EINTR;
8378                        vcpu->run->exit_reason = KVM_EXIT_INTR;
8379                        ++vcpu->stat.signal_exits;
8380                        break;
8381                }
8382                if (need_resched()) {
8383                        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8384                        cond_resched();
8385                        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8386                }
8387        }
8388
8389        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8390
8391        return r;
8392}
8393
8394static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8395{
8396        int r;
8397
8398        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8399        r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8400        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8401        return r;
8402}
8403
8404static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8405{
8406        BUG_ON(!vcpu->arch.pio.count);
8407
8408        return complete_emulated_io(vcpu);
8409}
8410
8411/*
8412 * Implements the following, as a state machine:
8413 *
8414 * read:
8415 *   for each fragment
8416 *     for each mmio piece in the fragment
8417 *       write gpa, len
8418 *       exit
8419 *       copy data
8420 *   execute insn
8421 *
8422 * write:
8423 *   for each fragment
8424 *     for each mmio piece in the fragment
8425 *       write gpa, len
8426 *       copy data
8427 *       exit
8428 */
8429static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8430{
8431        struct kvm_run *run = vcpu->run;
8432        struct kvm_mmio_fragment *frag;
8433        unsigned len;
8434
8435        BUG_ON(!vcpu->mmio_needed);
8436
8437        /* Complete previous fragment */
8438        frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8439        len = min(8u, frag->len);
8440        if (!vcpu->mmio_is_write)
8441                memcpy(frag->data, run->mmio.data, len);
8442
8443        if (frag->len <= 8) {
8444                /* Switch to the next fragment. */
8445                frag++;
8446                vcpu->mmio_cur_fragment++;
8447        } else {
8448                /* Go forward to the next mmio piece. */
8449                frag->data += len;
8450                frag->gpa += len;
8451                frag->len -= len;
8452        }
8453
8454        if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8455                vcpu->mmio_needed = 0;
8456
8457                /* FIXME: return into emulator if single-stepping.  */
8458                if (vcpu->mmio_is_write)
8459                        return 1;
8460                vcpu->mmio_read_completed = 1;
8461                return complete_emulated_io(vcpu);
8462        }
8463
8464        run->exit_reason = KVM_EXIT_MMIO;
8465        run->mmio.phys_addr = frag->gpa;
8466        if (vcpu->mmio_is_write)
8467                memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8468        run->mmio.len = min(8u, frag->len);
8469        run->mmio.is_write = vcpu->mmio_is_write;
8470        vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8471        return 0;
8472}
8473
8474/* Swap (qemu) user FPU context for the guest FPU context. */
8475static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8476{
8477        fpregs_lock();
8478
8479        copy_fpregs_to_fpstate(vcpu->arch.user_fpu);
8480        /* PKRU is separately restored in kvm_x86_ops->run.  */
8481        __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8482                                ~XFEATURE_MASK_PKRU);
8483
8484        fpregs_mark_activate();
8485        fpregs_unlock();
8486
8487        trace_kvm_fpu(1);
8488}
8489
8490/* When vcpu_run ends, restore user space FPU context. */
8491static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8492{
8493        fpregs_lock();
8494
8495        copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8496        copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8497
8498        fpregs_mark_activate();
8499        fpregs_unlock();
8500
8501        ++vcpu->stat.fpu_reload;
8502        trace_kvm_fpu(0);
8503}
8504
8505int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8506{
8507        int r;
8508
8509        vcpu_load(vcpu);
8510        kvm_sigset_activate(vcpu);
8511        kvm_load_guest_fpu(vcpu);
8512
8513        if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8514                if (kvm_run->immediate_exit) {
8515                        r = -EINTR;
8516                        goto out;
8517                }
8518                kvm_vcpu_block(vcpu);
8519                kvm_apic_accept_events(vcpu);
8520                kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8521                r = -EAGAIN;
8522                if (signal_pending(current)) {
8523                        r = -EINTR;
8524                        vcpu->run->exit_reason = KVM_EXIT_INTR;
8525                        ++vcpu->stat.signal_exits;
8526                }
8527                goto out;
8528        }
8529
8530        if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8531                r = -EINVAL;
8532                goto out;
8533        }
8534
8535        if (vcpu->run->kvm_dirty_regs) {
8536                r = sync_regs(vcpu);
8537                if (r != 0)
8538                        goto out;
8539        }
8540
8541        /* re-sync apic's tpr */
8542        if (!lapic_in_kernel(vcpu)) {
8543                if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8544                        r = -EINVAL;
8545                        goto out;
8546                }
8547        }
8548
8549        if (unlikely(vcpu->arch.complete_userspace_io)) {
8550                int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8551                vcpu->arch.complete_userspace_io = NULL;
8552                r = cui(vcpu);
8553                if (r <= 0)
8554                        goto out;
8555        } else
8556                WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8557
8558        if (kvm_run->immediate_exit)
8559                r = -EINTR;
8560        else
8561                r = vcpu_run(vcpu);
8562
8563out:
8564        kvm_put_guest_fpu(vcpu);
8565        if (vcpu->run->kvm_valid_regs)
8566                store_regs(vcpu);
8567        post_kvm_run_save(vcpu);
8568        kvm_sigset_deactivate(vcpu);
8569
8570        vcpu_put(vcpu);
8571        return r;
8572}
8573
8574static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8575{
8576        if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8577                /*
8578                 * We are here if userspace calls get_regs() in the middle of
8579                 * instruction emulation. Registers state needs to be copied
8580                 * back from emulation context to vcpu. Userspace shouldn't do
8581                 * that usually, but some bad designed PV devices (vmware
8582                 * backdoor interface) need this to work
8583                 */
8584                emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8585                vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8586        }
8587        regs->rax = kvm_rax_read(vcpu);
8588        regs->rbx = kvm_rbx_read(vcpu);
8589        regs->rcx = kvm_rcx_read(vcpu);
8590        regs->rdx = kvm_rdx_read(vcpu);
8591        regs->rsi = kvm_rsi_read(vcpu);
8592        regs->rdi = kvm_rdi_read(vcpu);
8593        regs->rsp = kvm_rsp_read(vcpu);
8594        regs->rbp = kvm_rbp_read(vcpu);
8595#ifdef CONFIG_X86_64
8596        regs->r8 = kvm_r8_read(vcpu);
8597        regs->r9 = kvm_r9_read(vcpu);
8598        regs->r10 = kvm_r10_read(vcpu);
8599        regs->r11 = kvm_r11_read(vcpu);
8600        regs->r12 = kvm_r12_read(vcpu);
8601        regs->r13 = kvm_r13_read(vcpu);
8602        regs->r14 = kvm_r14_read(vcpu);
8603        regs->r15 = kvm_r15_read(vcpu);
8604#endif
8605
8606        regs->rip = kvm_rip_read(vcpu);
8607        regs->rflags = kvm_get_rflags(vcpu);
8608}
8609
8610int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8611{
8612        vcpu_load(vcpu);
8613        __get_regs(vcpu, regs);
8614        vcpu_put(vcpu);
8615        return 0;
8616}
8617
8618static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8619{
8620        vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8621        vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8622
8623        kvm_rax_write(vcpu, regs->rax);
8624        kvm_rbx_write(vcpu, regs->rbx);
8625        kvm_rcx_write(vcpu, regs->rcx);
8626        kvm_rdx_write(vcpu, regs->rdx);
8627        kvm_rsi_write(vcpu, regs->rsi);
8628        kvm_rdi_write(vcpu, regs->rdi);
8629        kvm_rsp_write(vcpu, regs->rsp);
8630        kvm_rbp_write(vcpu, regs->rbp);
8631#ifdef CONFIG_X86_64
8632        kvm_r8_write(vcpu, regs->r8);
8633        kvm_r9_write(vcpu, regs->r9);
8634        kvm_r10_write(vcpu, regs->r10);
8635        kvm_r11_write(vcpu, regs->r11);
8636        kvm_r12_write(vcpu, regs->r12);
8637        kvm_r13_write(vcpu, regs->r13);
8638        kvm_r14_write(vcpu, regs->r14);
8639        kvm_r15_write(vcpu, regs->r15);
8640#endif
8641
8642        kvm_rip_write(vcpu, regs->rip);
8643        kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8644
8645        vcpu->arch.exception.pending = false;
8646
8647        kvm_make_request(KVM_REQ_EVENT, vcpu);
8648}
8649
8650int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8651{
8652        vcpu_load(vcpu);
8653        __set_regs(vcpu, regs);
8654        vcpu_put(vcpu);
8655        return 0;
8656}
8657
8658void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8659{
8660        struct kvm_segment cs;
8661
8662        kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8663        *db = cs.db;
8664        *l = cs.l;
8665}
8666EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8667
8668static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8669{
8670        struct desc_ptr dt;
8671
8672        kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8673        kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8674        kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8675        kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8676        kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8677        kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8678
8679        kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8680        kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8681
8682        kvm_x86_ops->get_idt(vcpu, &dt);
8683        sregs->idt.limit = dt.size;
8684        sregs->idt.base = dt.address;
8685        kvm_x86_ops->get_gdt(vcpu, &dt);
8686        sregs->gdt.limit = dt.size;
8687        sregs->gdt.base = dt.address;
8688
8689        sregs->cr0 = kvm_read_cr0(vcpu);
8690        sregs->cr2 = vcpu->arch.cr2;
8691        sregs->cr3 = kvm_read_cr3(vcpu);
8692        sregs->cr4 = kvm_read_cr4(vcpu);
8693        sregs->cr8 = kvm_get_cr8(vcpu);
8694        sregs->efer = vcpu->arch.efer;
8695        sregs->apic_base = kvm_get_apic_base(vcpu);
8696
8697        memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8698
8699        if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8700                set_bit(vcpu->arch.interrupt.nr,
8701                        (unsigned long *)sregs->interrupt_bitmap);
8702}
8703
8704int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8705                                  struct kvm_sregs *sregs)
8706{
8707        vcpu_load(vcpu);
8708        __get_sregs(vcpu, sregs);
8709        vcpu_put(vcpu);
8710        return 0;
8711}
8712
8713int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8714                                    struct kvm_mp_state *mp_state)
8715{
8716        vcpu_load(vcpu);
8717
8718        kvm_apic_accept_events(vcpu);
8719        if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8720                                        vcpu->arch.pv.pv_unhalted)
8721                mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8722        else
8723                mp_state->mp_state = vcpu->arch.mp_state;
8724
8725        vcpu_put(vcpu);
8726        return 0;
8727}
8728
8729int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8730                                    struct kvm_mp_state *mp_state)
8731{
8732        int ret = -EINVAL;
8733
8734        vcpu_load(vcpu);
8735
8736        if (!lapic_in_kernel(vcpu) &&
8737            mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8738                goto out;
8739
8740        /*
8741         * KVM_MP_STATE_INIT_RECEIVED means the processor is in
8742         * INIT state; latched init should be reported using
8743         * KVM_SET_VCPU_EVENTS, so reject it here.
8744         */
8745        if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
8746            (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8747             mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8748                goto out;
8749
8750        if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8751                vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8752                set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8753        } else
8754                vcpu->arch.mp_state = mp_state->mp_state;
8755        kvm_make_request(KVM_REQ_EVENT, vcpu);
8756
8757        ret = 0;
8758out:
8759        vcpu_put(vcpu);
8760        return ret;
8761}
8762
8763int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8764                    int reason, bool has_error_code, u32 error_code)
8765{
8766        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8767        int ret;
8768
8769        init_emulate_ctxt(vcpu);
8770
8771        ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8772                                   has_error_code, error_code);
8773        if (ret) {
8774                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8775                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
8776                vcpu->run->internal.ndata = 0;
8777                return 0;
8778        }
8779
8780        kvm_rip_write(vcpu, ctxt->eip);
8781        kvm_set_rflags(vcpu, ctxt->eflags);
8782        kvm_make_request(KVM_REQ_EVENT, vcpu);
8783        return 1;
8784}
8785EXPORT_SYMBOL_GPL(kvm_task_switch);
8786
8787static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8788{
8789        if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8790                /*
8791                 * When EFER.LME and CR0.PG are set, the processor is in
8792                 * 64-bit mode (though maybe in a 32-bit code segment).
8793                 * CR4.PAE and EFER.LMA must be set.
8794                 */
8795                if (!(sregs->cr4 & X86_CR4_PAE)
8796                    || !(sregs->efer & EFER_LMA))
8797                        return -EINVAL;
8798        } else {
8799                /*
8800                 * Not in 64-bit mode: EFER.LMA is clear and the code
8801                 * segment cannot be 64-bit.
8802                 */
8803                if (sregs->efer & EFER_LMA || sregs->cs.l)
8804                        return -EINVAL;
8805        }
8806
8807        return kvm_valid_cr4(vcpu, sregs->cr4);
8808}
8809
8810static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8811{
8812        struct msr_data apic_base_msr;
8813        int mmu_reset_needed = 0;
8814        int cpuid_update_needed = 0;
8815        int pending_vec, max_bits, idx;
8816        struct desc_ptr dt;
8817        int ret = -EINVAL;
8818
8819        if (kvm_valid_sregs(vcpu, sregs))
8820                goto out;
8821
8822        apic_base_msr.data = sregs->apic_base;
8823        apic_base_msr.host_initiated = true;
8824        if (kvm_set_apic_base(vcpu, &apic_base_msr))
8825                goto out;
8826
8827        dt.size = sregs->idt.limit;
8828        dt.address = sregs->idt.base;
8829        kvm_x86_ops->set_idt(vcpu, &dt);
8830        dt.size = sregs->gdt.limit;
8831        dt.address = sregs->gdt.base;
8832        kvm_x86_ops->set_gdt(vcpu, &dt);
8833
8834        vcpu->arch.cr2 = sregs->cr2;
8835        mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8836        vcpu->arch.cr3 = sregs->cr3;
8837        kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
8838
8839        kvm_set_cr8(vcpu, sregs->cr8);
8840
8841        mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8842        kvm_x86_ops->set_efer(vcpu, sregs->efer);
8843
8844        mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8845        kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8846        vcpu->arch.cr0 = sregs->cr0;
8847
8848        mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8849        cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8850                                (X86_CR4_OSXSAVE | X86_CR4_PKE));
8851        kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8852        if (cpuid_update_needed)
8853                kvm_update_cpuid(vcpu);
8854
8855        idx = srcu_read_lock(&vcpu->kvm->srcu);
8856        if (is_pae_paging(vcpu)) {
8857                load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8858                mmu_reset_needed = 1;
8859        }
8860        srcu_read_unlock(&vcpu->kvm->srcu, idx);
8861
8862        if (mmu_reset_needed)
8863                kvm_mmu_reset_context(vcpu);
8864
8865        max_bits = KVM_NR_INTERRUPTS;
8866        pending_vec = find_first_bit(
8867                (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8868        if (pending_vec < max_bits) {
8869                kvm_queue_interrupt(vcpu, pending_vec, false);
8870                pr_debug("Set back pending irq %d\n", pending_vec);
8871        }
8872
8873        kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8874        kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8875        kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8876        kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8877        kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8878        kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8879
8880        kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8881        kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8882
8883        update_cr8_intercept(vcpu);
8884
8885        /* Older userspace won't unhalt the vcpu on reset. */
8886        if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8887            sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8888            !is_protmode(vcpu))
8889                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8890
8891        kvm_make_request(KVM_REQ_EVENT, vcpu);
8892
8893        ret = 0;
8894out:
8895        return ret;
8896}
8897
8898int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8899                                  struct kvm_sregs *sregs)
8900{
8901        int ret;
8902
8903        vcpu_load(vcpu);
8904        ret = __set_sregs(vcpu, sregs);
8905        vcpu_put(vcpu);
8906        return ret;
8907}
8908
8909int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8910                                        struct kvm_guest_debug *dbg)
8911{
8912        unsigned long rflags;
8913        int i, r;
8914
8915        vcpu_load(vcpu);
8916
8917        if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8918                r = -EBUSY;
8919                if (vcpu->arch.exception.pending)
8920                        goto out;
8921                if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8922                        kvm_queue_exception(vcpu, DB_VECTOR);
8923                else
8924                        kvm_queue_exception(vcpu, BP_VECTOR);
8925        }
8926
8927        /*
8928         * Read rflags as long as potentially injected trace flags are still
8929         * filtered out.
8930         */
8931        rflags = kvm_get_rflags(vcpu);
8932
8933        vcpu->guest_debug = dbg->control;
8934        if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8935                vcpu->guest_debug = 0;
8936
8937        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8938                for (i = 0; i < KVM_NR_DB_REGS; ++i)
8939                        vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8940                vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8941        } else {
8942                for (i = 0; i < KVM_NR_DB_REGS; i++)
8943                        vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8944        }
8945        kvm_update_dr7(vcpu);
8946
8947        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8948                vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8949                        get_segment_base(vcpu, VCPU_SREG_CS);
8950
8951        /*
8952         * Trigger an rflags update that will inject or remove the trace
8953         * flags.
8954         */
8955        kvm_set_rflags(vcpu, rflags);
8956
8957        kvm_x86_ops->update_bp_intercept(vcpu);
8958
8959        r = 0;
8960
8961out:
8962        vcpu_put(vcpu);
8963        return r;
8964}
8965
8966/*
8967 * Translate a guest virtual address to a guest physical address.
8968 */
8969int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8970                                    struct kvm_translation *tr)
8971{
8972        unsigned long vaddr = tr->linear_address;
8973        gpa_t gpa;
8974        int idx;
8975
8976        vcpu_load(vcpu);
8977
8978        idx = srcu_read_lock(&vcpu->kvm->srcu);
8979        gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8980        srcu_read_unlock(&vcpu->kvm->srcu, idx);
8981        tr->physical_address = gpa;
8982        tr->valid = gpa != UNMAPPED_GVA;
8983        tr->writeable = 1;
8984        tr->usermode = 0;
8985
8986        vcpu_put(vcpu);
8987        return 0;
8988}
8989
8990int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8991{
8992        struct fxregs_state *fxsave;
8993
8994        vcpu_load(vcpu);
8995
8996        fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8997        memcpy(fpu->fpr, fxsave->st_space, 128);
8998        fpu->fcw = fxsave->cwd;
8999        fpu->fsw = fxsave->swd;
9000        fpu->ftwx = fxsave->twd;
9001        fpu->last_opcode = fxsave->fop;
9002        fpu->last_ip = fxsave->rip;
9003        fpu->last_dp = fxsave->rdp;
9004        memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9005
9006        vcpu_put(vcpu);
9007        return 0;
9008}
9009
9010int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9011{
9012        struct fxregs_state *fxsave;
9013
9014        vcpu_load(vcpu);
9015
9016        fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9017
9018        memcpy(fxsave->st_space, fpu->fpr, 128);
9019        fxsave->cwd = fpu->fcw;
9020        fxsave->swd = fpu->fsw;
9021        fxsave->twd = fpu->ftwx;
9022        fxsave->fop = fpu->last_opcode;
9023        fxsave->rip = fpu->last_ip;
9024        fxsave->rdp = fpu->last_dp;
9025        memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9026
9027        vcpu_put(vcpu);
9028        return 0;
9029}
9030
9031static void store_regs(struct kvm_vcpu *vcpu)
9032{
9033        BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9034
9035        if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9036                __get_regs(vcpu, &vcpu->run->s.regs.regs);
9037
9038        if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9039                __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9040
9041        if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9042                kvm_vcpu_ioctl_x86_get_vcpu_events(
9043                                vcpu, &vcpu->run->s.regs.events);
9044}
9045
9046static int sync_regs(struct kvm_vcpu *vcpu)
9047{
9048        if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9049                return -EINVAL;
9050
9051        if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9052                __set_regs(vcpu, &vcpu->run->s.regs.regs);
9053                vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9054        }
9055        if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9056                if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9057                        return -EINVAL;
9058                vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9059        }
9060        if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9061                if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9062                                vcpu, &vcpu->run->s.regs.events))
9063                        return -EINVAL;
9064                vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9065        }
9066
9067        return 0;
9068}
9069
9070static void fx_init(struct kvm_vcpu *vcpu)
9071{
9072        fpstate_init(&vcpu->arch.guest_fpu->state);
9073        if (boot_cpu_has(X86_FEATURE_XSAVES))
9074                vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9075                        host_xcr0 | XSTATE_COMPACTION_ENABLED;
9076
9077        /*
9078         * Ensure guest xcr0 is valid for loading
9079         */
9080        vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9081
9082        vcpu->arch.cr0 |= X86_CR0_ET;
9083}
9084
9085void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
9086{
9087        void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
9088
9089        kvmclock_reset(vcpu);
9090
9091        kvm_x86_ops->vcpu_free(vcpu);
9092        free_cpumask_var(wbinvd_dirty_mask);
9093}
9094
9095struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
9096                                                unsigned int id)
9097{
9098        struct kvm_vcpu *vcpu;
9099
9100        if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9101                printk_once(KERN_WARNING
9102                "kvm: SMP vm created on host with unstable TSC; "
9103                "guest TSC will not be reliable\n");
9104
9105        vcpu = kvm_x86_ops->vcpu_create(kvm, id);
9106
9107        return vcpu;
9108}
9109
9110int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
9111{
9112        vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9113        vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9114        kvm_vcpu_mtrr_init(vcpu);
9115        vcpu_load(vcpu);
9116        kvm_vcpu_reset(vcpu, false);
9117        kvm_init_mmu(vcpu, false);
9118        vcpu_put(vcpu);
9119        return 0;
9120}
9121
9122void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9123{
9124        struct msr_data msr;
9125        struct kvm *kvm = vcpu->kvm;
9126
9127        kvm_hv_vcpu_postcreate(vcpu);
9128
9129        if (mutex_lock_killable(&vcpu->mutex))
9130                return;
9131        vcpu_load(vcpu);
9132        msr.data = 0x0;
9133        msr.index = MSR_IA32_TSC;
9134        msr.host_initiated = true;
9135        kvm_write_tsc(vcpu, &msr);
9136        vcpu_put(vcpu);
9137
9138        /* poll control enabled by default */
9139        vcpu->arch.msr_kvm_poll_control = 1;
9140
9141        mutex_unlock(&vcpu->mutex);
9142
9143        if (!kvmclock_periodic_sync)
9144                return;
9145
9146        schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9147                                        KVMCLOCK_SYNC_PERIOD);
9148}
9149
9150void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9151{
9152        vcpu->arch.apf.msr_val = 0;
9153
9154        vcpu_load(vcpu);
9155        kvm_mmu_unload(vcpu);
9156        vcpu_put(vcpu);
9157
9158        kvm_x86_ops->vcpu_free(vcpu);
9159}
9160
9161void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9162{
9163        kvm_lapic_reset(vcpu, init_event);
9164
9165        vcpu->arch.hflags = 0;
9166
9167        vcpu->arch.smi_pending = 0;
9168        vcpu->arch.smi_count = 0;
9169        atomic_set(&vcpu->arch.nmi_queued, 0);
9170        vcpu->arch.nmi_pending = 0;
9171        vcpu->arch.nmi_injected = false;
9172        kvm_clear_interrupt_queue(vcpu);
9173        kvm_clear_exception_queue(vcpu);
9174        vcpu->arch.exception.pending = false;
9175
9176        memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9177        kvm_update_dr0123(vcpu);
9178        vcpu->arch.dr6 = DR6_INIT;
9179        kvm_update_dr6(vcpu);
9180        vcpu->arch.dr7 = DR7_FIXED_1;
9181        kvm_update_dr7(vcpu);
9182
9183        vcpu->arch.cr2 = 0;
9184
9185        kvm_make_request(KVM_REQ_EVENT, vcpu);
9186        vcpu->arch.apf.msr_val = 0;
9187        vcpu->arch.st.msr_val = 0;
9188
9189        kvmclock_reset(vcpu);
9190
9191        kvm_clear_async_pf_completion_queue(vcpu);
9192        kvm_async_pf_hash_reset(vcpu);
9193        vcpu->arch.apf.halted = false;
9194
9195        if (kvm_mpx_supported()) {
9196                void *mpx_state_buffer;
9197
9198                /*
9199                 * To avoid have the INIT path from kvm_apic_has_events() that be
9200                 * called with loaded FPU and does not let userspace fix the state.
9201                 */
9202                if (init_event)
9203                        kvm_put_guest_fpu(vcpu);
9204                mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9205                                        XFEATURE_BNDREGS);
9206                if (mpx_state_buffer)
9207                        memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9208                mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9209                                        XFEATURE_BNDCSR);
9210                if (mpx_state_buffer)
9211                        memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9212                if (init_event)
9213                        kvm_load_guest_fpu(vcpu);
9214        }
9215
9216        if (!init_event) {
9217                kvm_pmu_reset(vcpu);
9218                vcpu->arch.smbase = 0x30000;
9219
9220                vcpu->arch.msr_misc_features_enables = 0;
9221
9222                vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9223        }
9224
9225        memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9226        vcpu->arch.regs_avail = ~0;
9227        vcpu->arch.regs_dirty = ~0;
9228
9229        vcpu->arch.ia32_xss = 0;
9230
9231        kvm_x86_ops->vcpu_reset(vcpu, init_event);
9232}
9233
9234void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9235{
9236        struct kvm_segment cs;
9237
9238        kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9239        cs.selector = vector << 8;
9240        cs.base = vector << 12;
9241        kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9242        kvm_rip_write(vcpu, 0);
9243}
9244
9245int kvm_arch_hardware_enable(void)
9246{
9247        struct kvm *kvm;
9248        struct kvm_vcpu *vcpu;
9249        int i;
9250        int ret;
9251        u64 local_tsc;
9252        u64 max_tsc = 0;
9253        bool stable, backwards_tsc = false;
9254
9255        kvm_shared_msr_cpu_online();
9256        ret = kvm_x86_ops->hardware_enable();
9257        if (ret != 0)
9258                return ret;
9259
9260        local_tsc = rdtsc();
9261        stable = !kvm_check_tsc_unstable();
9262        list_for_each_entry(kvm, &vm_list, vm_list) {
9263                kvm_for_each_vcpu(i, vcpu, kvm) {
9264                        if (!stable && vcpu->cpu == smp_processor_id())
9265                                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9266                        if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9267                                backwards_tsc = true;
9268                                if (vcpu->arch.last_host_tsc > max_tsc)
9269                                        max_tsc = vcpu->arch.last_host_tsc;
9270                        }
9271                }
9272        }
9273
9274        /*
9275         * Sometimes, even reliable TSCs go backwards.  This happens on
9276         * platforms that reset TSC during suspend or hibernate actions, but
9277         * maintain synchronization.  We must compensate.  Fortunately, we can
9278         * detect that condition here, which happens early in CPU bringup,
9279         * before any KVM threads can be running.  Unfortunately, we can't
9280         * bring the TSCs fully up to date with real time, as we aren't yet far
9281         * enough into CPU bringup that we know how much real time has actually
9282         * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9283         * variables that haven't been updated yet.
9284         *
9285         * So we simply find the maximum observed TSC above, then record the
9286         * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9287         * the adjustment will be applied.  Note that we accumulate
9288         * adjustments, in case multiple suspend cycles happen before some VCPU
9289         * gets a chance to run again.  In the event that no KVM threads get a
9290         * chance to run, we will miss the entire elapsed period, as we'll have
9291         * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9292         * loose cycle time.  This isn't too big a deal, since the loss will be
9293         * uniform across all VCPUs (not to mention the scenario is extremely
9294         * unlikely). It is possible that a second hibernate recovery happens
9295         * much faster than a first, causing the observed TSC here to be
9296         * smaller; this would require additional padding adjustment, which is
9297         * why we set last_host_tsc to the local tsc observed here.
9298         *
9299         * N.B. - this code below runs only on platforms with reliable TSC,
9300         * as that is the only way backwards_tsc is set above.  Also note
9301         * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9302         * have the same delta_cyc adjustment applied if backwards_tsc
9303         * is detected.  Note further, this adjustment is only done once,
9304         * as we reset last_host_tsc on all VCPUs to stop this from being
9305         * called multiple times (one for each physical CPU bringup).
9306         *
9307         * Platforms with unreliable TSCs don't have to deal with this, they
9308         * will be compensated by the logic in vcpu_load, which sets the TSC to
9309         * catchup mode.  This will catchup all VCPUs to real time, but cannot
9310         * guarantee that they stay in perfect synchronization.
9311         */
9312        if (backwards_tsc) {
9313                u64 delta_cyc = max_tsc - local_tsc;
9314                list_for_each_entry(kvm, &vm_list, vm_list) {
9315                        kvm->arch.backwards_tsc_observed = true;
9316                        kvm_for_each_vcpu(i, vcpu, kvm) {
9317                                vcpu->arch.tsc_offset_adjustment += delta_cyc;
9318                                vcpu->arch.last_host_tsc = local_tsc;
9319                                kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9320                        }
9321
9322                        /*
9323                         * We have to disable TSC offset matching.. if you were
9324                         * booting a VM while issuing an S4 host suspend....
9325                         * you may have some problem.  Solving this issue is
9326                         * left as an exercise to the reader.
9327                         */
9328                        kvm->arch.last_tsc_nsec = 0;
9329                        kvm->arch.last_tsc_write = 0;
9330                }
9331
9332        }
9333        return 0;
9334}
9335
9336void kvm_arch_hardware_disable(void)
9337{
9338        kvm_x86_ops->hardware_disable();
9339        drop_user_return_notifiers();
9340}
9341
9342int kvm_arch_hardware_setup(void)
9343{
9344        int r;
9345
9346        r = kvm_x86_ops->hardware_setup();
9347        if (r != 0)
9348                return r;
9349
9350        if (kvm_has_tsc_control) {
9351                /*
9352                 * Make sure the user can only configure tsc_khz values that
9353                 * fit into a signed integer.
9354                 * A min value is not calculated because it will always
9355                 * be 1 on all machines.
9356                 */
9357                u64 max = min(0x7fffffffULL,
9358                              __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9359                kvm_max_guest_tsc_khz = max;
9360
9361                kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9362        }
9363
9364        if (boot_cpu_has(X86_FEATURE_XSAVES))
9365                rdmsrl(MSR_IA32_XSS, host_xss);
9366
9367        kvm_init_msr_list();
9368        return 0;
9369}
9370
9371void kvm_arch_hardware_unsetup(void)
9372{
9373        kvm_x86_ops->hardware_unsetup();
9374}
9375
9376int kvm_arch_check_processor_compat(void)
9377{
9378        return kvm_x86_ops->check_processor_compatibility();
9379}
9380
9381bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9382{
9383        return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9384}
9385EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9386
9387bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9388{
9389        return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9390}
9391
9392struct static_key kvm_no_apic_vcpu __read_mostly;
9393EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9394
9395int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
9396{
9397        struct page *page;
9398        int r;
9399
9400        vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9401        if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9402                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9403        else
9404                vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9405
9406        page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9407        if (!page) {
9408                r = -ENOMEM;
9409                goto fail;
9410        }
9411        vcpu->arch.pio_data = page_address(page);
9412
9413        kvm_set_tsc_khz(vcpu, max_tsc_khz);
9414
9415        r = kvm_mmu_create(vcpu);
9416        if (r < 0)
9417                goto fail_free_pio_data;
9418
9419        if (irqchip_in_kernel(vcpu->kvm)) {
9420                vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu->kvm);
9421                r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9422                if (r < 0)
9423                        goto fail_mmu_destroy;
9424        } else
9425                static_key_slow_inc(&kvm_no_apic_vcpu);
9426
9427        vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9428                                       GFP_KERNEL_ACCOUNT);
9429        if (!vcpu->arch.mce_banks) {
9430                r = -ENOMEM;
9431                goto fail_free_lapic;
9432        }
9433        vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9434
9435        if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9436                                GFP_KERNEL_ACCOUNT)) {
9437                r = -ENOMEM;
9438                goto fail_free_mce_banks;
9439        }
9440
9441        fx_init(vcpu);
9442
9443        vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9444
9445        vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9446
9447        vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9448
9449        kvm_async_pf_hash_reset(vcpu);
9450        kvm_pmu_init(vcpu);
9451
9452        vcpu->arch.pending_external_vector = -1;
9453        vcpu->arch.preempted_in_kernel = false;
9454
9455        kvm_hv_vcpu_init(vcpu);
9456
9457        return 0;
9458
9459fail_free_mce_banks:
9460        kfree(vcpu->arch.mce_banks);
9461fail_free_lapic:
9462        kvm_free_lapic(vcpu);
9463fail_mmu_destroy:
9464        kvm_mmu_destroy(vcpu);
9465fail_free_pio_data:
9466        free_page((unsigned long)vcpu->arch.pio_data);
9467fail:
9468        return r;
9469}
9470
9471void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9472{
9473        int idx;
9474
9475        kvm_hv_vcpu_uninit(vcpu);
9476        kvm_pmu_destroy(vcpu);
9477        kfree(vcpu->arch.mce_banks);
9478        kvm_free_lapic(vcpu);
9479        idx = srcu_read_lock(&vcpu->kvm->srcu);
9480        kvm_mmu_destroy(vcpu);
9481        srcu_read_unlock(&vcpu->kvm->srcu, idx);
9482        free_page((unsigned long)vcpu->arch.pio_data);
9483        if (!lapic_in_kernel(vcpu))
9484                static_key_slow_dec(&kvm_no_apic_vcpu);
9485}
9486
9487void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9488{
9489        struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
9490
9491        vcpu->arch.l1tf_flush_l1d = true;
9492        if (pmu->version && unlikely(pmu->event_count)) {
9493                pmu->need_cleanup = true;
9494                kvm_make_request(KVM_REQ_PMU, vcpu);
9495        }
9496        kvm_x86_ops->sched_in(vcpu, cpu);
9497}
9498
9499int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9500{
9501        if (type)
9502                return -EINVAL;
9503
9504        INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9505        INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9506        INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9507        INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
9508        INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9509        atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9510
9511        /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9512        set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9513        /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9514        set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9515                &kvm->arch.irq_sources_bitmap);
9516
9517        raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9518        mutex_init(&kvm->arch.apic_map_lock);
9519        spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9520
9521        kvm->arch.kvmclock_offset = -ktime_get_boottime_ns();
9522        pvclock_update_vm_gtod_copy(kvm);
9523
9524        kvm->arch.guest_can_read_msr_platform_info = true;
9525
9526        INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9527        INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9528
9529        kvm_hv_init_vm(kvm);
9530        kvm_page_track_init(kvm);
9531        kvm_mmu_init_vm(kvm);
9532
9533        return kvm_x86_ops->vm_init(kvm);
9534}
9535
9536int kvm_arch_post_init_vm(struct kvm *kvm)
9537{
9538        return kvm_mmu_post_init_vm(kvm);
9539}
9540
9541static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9542{
9543        vcpu_load(vcpu);
9544        kvm_mmu_unload(vcpu);
9545        vcpu_put(vcpu);
9546}
9547
9548static void kvm_free_vcpus(struct kvm *kvm)
9549{
9550        unsigned int i;
9551        struct kvm_vcpu *vcpu;
9552
9553        /*
9554         * Unpin any mmu pages first.
9555         */
9556        kvm_for_each_vcpu(i, vcpu, kvm) {
9557                kvm_clear_async_pf_completion_queue(vcpu);
9558                kvm_unload_vcpu_mmu(vcpu);
9559        }
9560        kvm_for_each_vcpu(i, vcpu, kvm)
9561                kvm_arch_vcpu_free(vcpu);
9562
9563        mutex_lock(&kvm->lock);
9564        for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9565                kvm->vcpus[i] = NULL;
9566
9567        atomic_set(&kvm->online_vcpus, 0);
9568        mutex_unlock(&kvm->lock);
9569}
9570
9571void kvm_arch_sync_events(struct kvm *kvm)
9572{
9573        cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9574        cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9575        kvm_free_pit(kvm);
9576}
9577
9578int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9579{
9580        int i, r;
9581        unsigned long hva;
9582        struct kvm_memslots *slots = kvm_memslots(kvm);
9583        struct kvm_memory_slot *slot, old;
9584
9585        /* Called with kvm->slots_lock held.  */
9586        if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9587                return -EINVAL;
9588
9589        slot = id_to_memslot(slots, id);
9590        if (size) {
9591                if (slot->npages)
9592                        return -EEXIST;
9593
9594                /*
9595                 * MAP_SHARED to prevent internal slot pages from being moved
9596                 * by fork()/COW.
9597                 */
9598                hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9599                              MAP_SHARED | MAP_ANONYMOUS, 0);
9600                if (IS_ERR((void *)hva))
9601                        return PTR_ERR((void *)hva);
9602        } else {
9603                if (!slot->npages)
9604                        return 0;
9605
9606                hva = 0;
9607        }
9608
9609        old = *slot;
9610        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9611                struct kvm_userspace_memory_region m;
9612
9613                m.slot = id | (i << 16);
9614                m.flags = 0;
9615                m.guest_phys_addr = gpa;
9616                m.userspace_addr = hva;
9617                m.memory_size = size;
9618                r = __kvm_set_memory_region(kvm, &m);
9619                if (r < 0)
9620                        return r;
9621        }
9622
9623        if (!size)
9624                vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9625
9626        return 0;
9627}
9628EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9629
9630int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9631{
9632        int r;
9633
9634        mutex_lock(&kvm->slots_lock);
9635        r = __x86_set_memory_region(kvm, id, gpa, size);
9636        mutex_unlock(&kvm->slots_lock);
9637
9638        return r;
9639}
9640EXPORT_SYMBOL_GPL(x86_set_memory_region);
9641
9642void kvm_arch_pre_destroy_vm(struct kvm *kvm)
9643{
9644        kvm_mmu_pre_destroy_vm(kvm);
9645}
9646
9647void kvm_arch_destroy_vm(struct kvm *kvm)
9648{
9649        if (current->mm == kvm->mm) {
9650                /*
9651                 * Free memory regions allocated on behalf of userspace,
9652                 * unless the the memory map has changed due to process exit
9653                 * or fd copying.
9654                 */
9655                x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9656                x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9657                x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9658        }
9659        if (kvm_x86_ops->vm_destroy)
9660                kvm_x86_ops->vm_destroy(kvm);
9661        kvm_pic_destroy(kvm);
9662        kvm_ioapic_destroy(kvm);
9663        kvm_free_vcpus(kvm);
9664        kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9665        kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
9666        kvm_mmu_uninit_vm(kvm);
9667        kvm_page_track_cleanup(kvm);
9668        kvm_hv_destroy_vm(kvm);
9669}
9670
9671void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9672                           struct kvm_memory_slot *dont)
9673{
9674        int i;
9675
9676        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9677                if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9678                        kvfree(free->arch.rmap[i]);
9679                        free->arch.rmap[i] = NULL;
9680                }
9681                if (i == 0)
9682                        continue;
9683
9684                if (!dont || free->arch.lpage_info[i - 1] !=
9685                             dont->arch.lpage_info[i - 1]) {
9686                        kvfree(free->arch.lpage_info[i - 1]);
9687                        free->arch.lpage_info[i - 1] = NULL;
9688                }
9689        }
9690
9691        kvm_page_track_free_memslot(free, dont);
9692}
9693
9694int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9695                            unsigned long npages)
9696{
9697        int i;
9698
9699        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9700                struct kvm_lpage_info *linfo;
9701                unsigned long ugfn;
9702                int lpages;
9703                int level = i + 1;
9704
9705                lpages = gfn_to_index(slot->base_gfn + npages - 1,
9706                                      slot->base_gfn, level) + 1;
9707
9708                slot->arch.rmap[i] =
9709                        kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9710                                 GFP_KERNEL_ACCOUNT);
9711                if (!slot->arch.rmap[i])
9712                        goto out_free;
9713                if (i == 0)
9714                        continue;
9715
9716                linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9717                if (!linfo)
9718                        goto out_free;
9719
9720                slot->arch.lpage_info[i - 1] = linfo;
9721
9722                if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9723                        linfo[0].disallow_lpage = 1;
9724                if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9725                        linfo[lpages - 1].disallow_lpage = 1;
9726                ugfn = slot->userspace_addr >> PAGE_SHIFT;
9727                /*
9728                 * If the gfn and userspace address are not aligned wrt each
9729                 * other, or if explicitly asked to, disable large page
9730                 * support for this slot
9731                 */
9732                if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9733                    !kvm_largepages_enabled()) {
9734                        unsigned long j;
9735
9736                        for (j = 0; j < lpages; ++j)
9737                                linfo[j].disallow_lpage = 1;
9738                }
9739        }
9740
9741        if (kvm_page_track_create_memslot(slot, npages))
9742                goto out_free;
9743
9744        return 0;
9745
9746out_free:
9747        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9748                kvfree(slot->arch.rmap[i]);
9749                slot->arch.rmap[i] = NULL;
9750                if (i == 0)
9751                        continue;
9752
9753                kvfree(slot->arch.lpage_info[i - 1]);
9754                slot->arch.lpage_info[i - 1] = NULL;
9755        }
9756        return -ENOMEM;
9757}
9758
9759void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9760{
9761        /*
9762         * memslots->generation has been incremented.
9763         * mmio generation may have reached its maximum value.
9764         */
9765        kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9766}
9767
9768int kvm_arch_prepare_memory_region(struct kvm *kvm,
9769                                struct kvm_memory_slot *memslot,
9770                                const struct kvm_userspace_memory_region *mem,
9771                                enum kvm_mr_change change)
9772{
9773        return 0;
9774}
9775
9776static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9777                                     struct kvm_memory_slot *new)
9778{
9779        /* Still write protect RO slot */
9780        if (new->flags & KVM_MEM_READONLY) {
9781                kvm_mmu_slot_remove_write_access(kvm, new);
9782                return;
9783        }
9784
9785        /*
9786         * Call kvm_x86_ops dirty logging hooks when they are valid.
9787         *
9788         * kvm_x86_ops->slot_disable_log_dirty is called when:
9789         *
9790         *  - KVM_MR_CREATE with dirty logging is disabled
9791         *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9792         *
9793         * The reason is, in case of PML, we need to set D-bit for any slots
9794         * with dirty logging disabled in order to eliminate unnecessary GPA
9795         * logging in PML buffer (and potential PML buffer full VMEXT). This
9796         * guarantees leaving PML enabled during guest's lifetime won't have
9797         * any additional overhead from PML when guest is running with dirty
9798         * logging disabled for memory slots.
9799         *
9800         * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9801         * to dirty logging mode.
9802         *
9803         * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9804         *
9805         * In case of write protect:
9806         *
9807         * Write protect all pages for dirty logging.
9808         *
9809         * All the sptes including the large sptes which point to this
9810         * slot are set to readonly. We can not create any new large
9811         * spte on this slot until the end of the logging.
9812         *
9813         * See the comments in fast_page_fault().
9814         */
9815        if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9816                if (kvm_x86_ops->slot_enable_log_dirty)
9817                        kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9818                else
9819                        kvm_mmu_slot_remove_write_access(kvm, new);
9820        } else {
9821                if (kvm_x86_ops->slot_disable_log_dirty)
9822                        kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9823        }
9824}
9825
9826void kvm_arch_commit_memory_region(struct kvm *kvm,
9827                                const struct kvm_userspace_memory_region *mem,
9828                                const struct kvm_memory_slot *old,
9829                                const struct kvm_memory_slot *new,
9830                                enum kvm_mr_change change)
9831{
9832        if (!kvm->arch.n_requested_mmu_pages)
9833                kvm_mmu_change_mmu_pages(kvm,
9834                                kvm_mmu_calculate_default_mmu_pages(kvm));
9835
9836        /*
9837         * Dirty logging tracks sptes in 4k granularity, meaning that large
9838         * sptes have to be split.  If live migration is successful, the guest
9839         * in the source machine will be destroyed and large sptes will be
9840         * created in the destination. However, if the guest continues to run
9841         * in the source machine (for example if live migration fails), small
9842         * sptes will remain around and cause bad performance.
9843         *
9844         * Scan sptes if dirty logging has been stopped, dropping those
9845         * which can be collapsed into a single large-page spte.  Later
9846         * page faults will create the large-page sptes.
9847         *
9848         * There is no need to do this in any of the following cases:
9849         * CREATE:      No dirty mappings will already exist.
9850         * MOVE/DELETE: The old mappings will already have been cleaned up by
9851         *              kvm_arch_flush_shadow_memslot()
9852         */
9853        if (change == KVM_MR_FLAGS_ONLY &&
9854                (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9855                !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9856                kvm_mmu_zap_collapsible_sptes(kvm, new);
9857
9858        /*
9859         * Set up write protection and/or dirty logging for the new slot.
9860         *
9861         * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9862         * been zapped so no dirty logging staff is needed for old slot. For
9863         * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9864         * new and it's also covered when dealing with the new slot.
9865         *
9866         * FIXME: const-ify all uses of struct kvm_memory_slot.
9867         */
9868        if (change != KVM_MR_DELETE)
9869                kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9870}
9871
9872void kvm_arch_flush_shadow_all(struct kvm *kvm)
9873{
9874        kvm_mmu_zap_all(kvm);
9875}
9876
9877void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9878                                   struct kvm_memory_slot *slot)
9879{
9880        kvm_page_track_flush_slot(kvm, slot);
9881}
9882
9883static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9884{
9885        return (is_guest_mode(vcpu) &&
9886                        kvm_x86_ops->guest_apic_has_interrupt &&
9887                        kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9888}
9889
9890static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9891{
9892        if (!list_empty_careful(&vcpu->async_pf.done))
9893                return true;
9894
9895        if (kvm_apic_has_events(vcpu))
9896                return true;
9897
9898        if (vcpu->arch.pv.pv_unhalted)
9899                return true;
9900
9901        if (vcpu->arch.exception.pending)
9902                return true;
9903
9904        if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9905            (vcpu->arch.nmi_pending &&
9906             kvm_x86_ops->nmi_allowed(vcpu)))
9907                return true;
9908
9909        if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9910            (vcpu->arch.smi_pending && !is_smm(vcpu)))
9911                return true;
9912
9913        if (kvm_arch_interrupt_allowed(vcpu) &&
9914            (kvm_cpu_has_interrupt(vcpu) ||
9915            kvm_guest_apic_has_interrupt(vcpu)))
9916                return true;
9917
9918        if (kvm_hv_has_stimer_pending(vcpu))
9919                return true;
9920
9921        return false;
9922}
9923
9924int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9925{
9926        return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9927}
9928
9929bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
9930{
9931        if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
9932                return true;
9933
9934        if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9935                kvm_test_request(KVM_REQ_SMI, vcpu) ||
9936                 kvm_test_request(KVM_REQ_EVENT, vcpu))
9937                return true;
9938
9939        if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu))
9940                return true;
9941
9942        return false;
9943}
9944
9945bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9946{
9947        return vcpu->arch.preempted_in_kernel;
9948}
9949
9950int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9951{
9952        return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9953}
9954
9955int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9956{
9957        return kvm_x86_ops->interrupt_allowed(vcpu);
9958}
9959
9960unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9961{
9962        if (is_64_bit_mode(vcpu))
9963                return kvm_rip_read(vcpu);
9964        return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9965                     kvm_rip_read(vcpu));
9966}
9967EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9968
9969bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9970{
9971        return kvm_get_linear_rip(vcpu) == linear_rip;
9972}
9973EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9974
9975unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9976{
9977        unsigned long rflags;
9978
9979        rflags = kvm_x86_ops->get_rflags(vcpu);
9980        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9981                rflags &= ~X86_EFLAGS_TF;
9982        return rflags;
9983}
9984EXPORT_SYMBOL_GPL(kvm_get_rflags);
9985
9986static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9987{
9988        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9989            kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9990                rflags |= X86_EFLAGS_TF;
9991        kvm_x86_ops->set_rflags(vcpu, rflags);
9992}
9993
9994void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9995{
9996        __kvm_set_rflags(vcpu, rflags);
9997        kvm_make_request(KVM_REQ_EVENT, vcpu);
9998}
9999EXPORT_SYMBOL_GPL(kvm_set_rflags);
10000
10001void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10002{
10003        int r;
10004
10005        if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10006              work->wakeup_all)
10007                return;
10008
10009        r = kvm_mmu_reload(vcpu);
10010        if (unlikely(r))
10011                return;
10012
10013        if (!vcpu->arch.mmu->direct_map &&
10014              work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
10015                return;
10016
10017        vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
10018}
10019
10020static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10021{
10022        return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10023}
10024
10025static inline u32 kvm_async_pf_next_probe(u32 key)
10026{
10027        return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
10028}
10029
10030static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10031{
10032        u32 key = kvm_async_pf_hash_fn(gfn);
10033
10034        while (vcpu->arch.apf.gfns[key] != ~0)
10035                key = kvm_async_pf_next_probe(key);
10036
10037        vcpu->arch.apf.gfns[key] = gfn;
10038}
10039
10040static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10041{
10042        int i;
10043        u32 key = kvm_async_pf_hash_fn(gfn);
10044
10045        for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
10046                     (vcpu->arch.apf.gfns[key] != gfn &&
10047                      vcpu->arch.apf.gfns[key] != ~0); i++)
10048                key = kvm_async_pf_next_probe(key);
10049
10050        return key;
10051}
10052
10053bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10054{
10055        return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10056}
10057
10058static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10059{
10060        u32 i, j, k;
10061
10062        i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10063        while (true) {
10064                vcpu->arch.apf.gfns[i] = ~0;
10065                do {
10066                        j = kvm_async_pf_next_probe(j);
10067                        if (vcpu->arch.apf.gfns[j] == ~0)
10068                                return;
10069                        k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10070                        /*
10071                         * k lies cyclically in ]i,j]
10072                         * |    i.k.j |
10073                         * |....j i.k.| or  |.k..j i...|
10074                         */
10075                } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10076                vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10077                i = j;
10078        }
10079}
10080
10081static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
10082{
10083
10084        return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
10085                                      sizeof(val));
10086}
10087
10088static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
10089{
10090
10091        return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
10092                                      sizeof(u32));
10093}
10094
10095static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10096{
10097        if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10098                return false;
10099
10100        if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
10101            (vcpu->arch.apf.send_user_only &&
10102             kvm_x86_ops->get_cpl(vcpu) == 0))
10103                return false;
10104
10105        return true;
10106}
10107
10108bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10109{
10110        if (unlikely(!lapic_in_kernel(vcpu) ||
10111                     kvm_event_needs_reinjection(vcpu) ||
10112                     vcpu->arch.exception.pending))
10113                return false;
10114
10115        if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10116                return false;
10117
10118        /*
10119         * If interrupts are off we cannot even use an artificial
10120         * halt state.
10121         */
10122        return kvm_x86_ops->interrupt_allowed(vcpu);
10123}
10124
10125void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10126                                     struct kvm_async_pf *work)
10127{
10128        struct x86_exception fault;
10129
10130        trace_kvm_async_pf_not_present(work->arch.token, work->gva);
10131        kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10132
10133        if (kvm_can_deliver_async_pf(vcpu) &&
10134            !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
10135                fault.vector = PF_VECTOR;
10136                fault.error_code_valid = true;
10137                fault.error_code = 0;
10138                fault.nested_page_fault = false;
10139                fault.address = work->arch.token;
10140                fault.async_page_fault = true;
10141                kvm_inject_page_fault(vcpu, &fault);
10142        } else {
10143                /*
10144                 * It is not possible to deliver a paravirtualized asynchronous
10145                 * page fault, but putting the guest in an artificial halt state
10146                 * can be beneficial nevertheless: if an interrupt arrives, we
10147                 * can deliver it timely and perhaps the guest will schedule
10148                 * another process.  When the instruction that triggered a page
10149                 * fault is retried, hopefully the page will be ready in the host.
10150                 */
10151                kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10152        }
10153}
10154
10155void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10156                                 struct kvm_async_pf *work)
10157{
10158        struct x86_exception fault;
10159        u32 val;
10160
10161        if (work->wakeup_all)
10162                work->arch.token = ~0; /* broadcast wakeup */
10163        else
10164                kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10165        trace_kvm_async_pf_ready(work->arch.token, work->gva);
10166
10167        if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
10168            !apf_get_user(vcpu, &val)) {
10169                if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
10170                    vcpu->arch.exception.pending &&
10171                    vcpu->arch.exception.nr == PF_VECTOR &&
10172                    !apf_put_user(vcpu, 0)) {
10173                        vcpu->arch.exception.injected = false;
10174                        vcpu->arch.exception.pending = false;
10175                        vcpu->arch.exception.nr = 0;
10176                        vcpu->arch.exception.has_error_code = false;
10177                        vcpu->arch.exception.error_code = 0;
10178                        vcpu->arch.exception.has_payload = false;
10179                        vcpu->arch.exception.payload = 0;
10180                } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
10181                        fault.vector = PF_VECTOR;
10182                        fault.error_code_valid = true;
10183                        fault.error_code = 0;
10184                        fault.nested_page_fault = false;
10185                        fault.address = work->arch.token;
10186                        fault.async_page_fault = true;
10187                        kvm_inject_page_fault(vcpu, &fault);
10188                }
10189        }
10190        vcpu->arch.apf.halted = false;
10191        vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10192}
10193
10194bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
10195{
10196        if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
10197                return true;
10198        else
10199                return kvm_can_do_async_pf(vcpu);
10200}
10201
10202void kvm_arch_start_assignment(struct kvm *kvm)
10203{
10204        atomic_inc(&kvm->arch.assigned_device_count);
10205}
10206EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10207
10208void kvm_arch_end_assignment(struct kvm *kvm)
10209{
10210        atomic_dec(&kvm->arch.assigned_device_count);
10211}
10212EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10213
10214bool kvm_arch_has_assigned_device(struct kvm *kvm)
10215{
10216        return atomic_read(&kvm->arch.assigned_device_count);
10217}
10218EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10219
10220void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10221{
10222        atomic_inc(&kvm->arch.noncoherent_dma_count);
10223}
10224EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10225
10226void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10227{
10228        atomic_dec(&kvm->arch.noncoherent_dma_count);
10229}
10230EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10231
10232bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10233{
10234        return atomic_read(&kvm->arch.noncoherent_dma_count);
10235}
10236EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10237
10238bool kvm_arch_has_irq_bypass(void)
10239{
10240        return true;
10241}
10242
10243int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10244                                      struct irq_bypass_producer *prod)
10245{
10246        struct kvm_kernel_irqfd *irqfd =
10247                container_of(cons, struct kvm_kernel_irqfd, consumer);
10248
10249        irqfd->producer = prod;
10250
10251        return kvm_x86_ops->update_pi_irte(irqfd->kvm,
10252                                           prod->irq, irqfd->gsi, 1);
10253}
10254
10255void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10256                                      struct irq_bypass_producer *prod)
10257{
10258        int ret;
10259        struct kvm_kernel_irqfd *irqfd =
10260                container_of(cons, struct kvm_kernel_irqfd, consumer);
10261
10262        WARN_ON(irqfd->producer != prod);
10263        irqfd->producer = NULL;
10264
10265        /*
10266         * When producer of consumer is unregistered, we change back to
10267         * remapped mode, so we can re-use the current implementation
10268         * when the irq is masked/disabled or the consumer side (KVM
10269         * int this case doesn't want to receive the interrupts.
10270        */
10271        ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10272        if (ret)
10273                printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10274                       " fails: %d\n", irqfd->consumer.token, ret);
10275}
10276
10277int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10278                                   uint32_t guest_irq, bool set)
10279{
10280        return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
10281}
10282
10283bool kvm_vector_hashing_enabled(void)
10284{
10285        return vector_hashing;
10286}
10287EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
10288
10289bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10290{
10291        return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10292}
10293EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10294
10295
10296EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10297EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10298EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10299EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10300EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10301EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10302EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10303EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10304EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10305EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10306EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10307EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10308EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10309EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10310EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10311EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10312EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10313EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10314EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10315EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
10316