linux/block/bio.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
   4 */
   5#include <linux/mm.h>
   6#include <linux/swap.h>
   7#include <linux/bio.h>
   8#include <linux/blkdev.h>
   9#include <linux/uio.h>
  10#include <linux/iocontext.h>
  11#include <linux/slab.h>
  12#include <linux/init.h>
  13#include <linux/kernel.h>
  14#include <linux/export.h>
  15#include <linux/mempool.h>
  16#include <linux/workqueue.h>
  17#include <linux/cgroup.h>
  18#include <linux/blk-cgroup.h>
  19#include <linux/highmem.h>
  20
  21#include <trace/events/block.h>
  22#include "blk.h"
  23#include "blk-rq-qos.h"
  24
  25/*
  26 * Test patch to inline a certain number of bi_io_vec's inside the bio
  27 * itself, to shrink a bio data allocation from two mempool calls to one
  28 */
  29#define BIO_INLINE_VECS         4
  30
  31/*
  32 * if you change this list, also change bvec_alloc or things will
  33 * break badly! cannot be bigger than what you can fit into an
  34 * unsigned short
  35 */
  36#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
  37static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
  38        BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
  39};
  40#undef BV
  41
  42/*
  43 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  44 * IO code that does not need private memory pools.
  45 */
  46struct bio_set fs_bio_set;
  47EXPORT_SYMBOL(fs_bio_set);
  48
  49/*
  50 * Our slab pool management
  51 */
  52struct bio_slab {
  53        struct kmem_cache *slab;
  54        unsigned int slab_ref;
  55        unsigned int slab_size;
  56        char name[8];
  57};
  58static DEFINE_MUTEX(bio_slab_lock);
  59static struct bio_slab *bio_slabs;
  60static unsigned int bio_slab_nr, bio_slab_max;
  61
  62static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
  63{
  64        unsigned int sz = sizeof(struct bio) + extra_size;
  65        struct kmem_cache *slab = NULL;
  66        struct bio_slab *bslab, *new_bio_slabs;
  67        unsigned int new_bio_slab_max;
  68        unsigned int i, entry = -1;
  69
  70        mutex_lock(&bio_slab_lock);
  71
  72        i = 0;
  73        while (i < bio_slab_nr) {
  74                bslab = &bio_slabs[i];
  75
  76                if (!bslab->slab && entry == -1)
  77                        entry = i;
  78                else if (bslab->slab_size == sz) {
  79                        slab = bslab->slab;
  80                        bslab->slab_ref++;
  81                        break;
  82                }
  83                i++;
  84        }
  85
  86        if (slab)
  87                goto out_unlock;
  88
  89        if (bio_slab_nr == bio_slab_max && entry == -1) {
  90                new_bio_slab_max = bio_slab_max << 1;
  91                new_bio_slabs = krealloc(bio_slabs,
  92                                         new_bio_slab_max * sizeof(struct bio_slab),
  93                                         GFP_KERNEL);
  94                if (!new_bio_slabs)
  95                        goto out_unlock;
  96                bio_slab_max = new_bio_slab_max;
  97                bio_slabs = new_bio_slabs;
  98        }
  99        if (entry == -1)
 100                entry = bio_slab_nr++;
 101
 102        bslab = &bio_slabs[entry];
 103
 104        snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
 105        slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
 106                                 SLAB_HWCACHE_ALIGN, NULL);
 107        if (!slab)
 108                goto out_unlock;
 109
 110        bslab->slab = slab;
 111        bslab->slab_ref = 1;
 112        bslab->slab_size = sz;
 113out_unlock:
 114        mutex_unlock(&bio_slab_lock);
 115        return slab;
 116}
 117
 118static void bio_put_slab(struct bio_set *bs)
 119{
 120        struct bio_slab *bslab = NULL;
 121        unsigned int i;
 122
 123        mutex_lock(&bio_slab_lock);
 124
 125        for (i = 0; i < bio_slab_nr; i++) {
 126                if (bs->bio_slab == bio_slabs[i].slab) {
 127                        bslab = &bio_slabs[i];
 128                        break;
 129                }
 130        }
 131
 132        if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
 133                goto out;
 134
 135        WARN_ON(!bslab->slab_ref);
 136
 137        if (--bslab->slab_ref)
 138                goto out;
 139
 140        kmem_cache_destroy(bslab->slab);
 141        bslab->slab = NULL;
 142
 143out:
 144        mutex_unlock(&bio_slab_lock);
 145}
 146
 147unsigned int bvec_nr_vecs(unsigned short idx)
 148{
 149        return bvec_slabs[--idx].nr_vecs;
 150}
 151
 152void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
 153{
 154        if (!idx)
 155                return;
 156        idx--;
 157
 158        BIO_BUG_ON(idx >= BVEC_POOL_NR);
 159
 160        if (idx == BVEC_POOL_MAX) {
 161                mempool_free(bv, pool);
 162        } else {
 163                struct biovec_slab *bvs = bvec_slabs + idx;
 164
 165                kmem_cache_free(bvs->slab, bv);
 166        }
 167}
 168
 169struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
 170                           mempool_t *pool)
 171{
 172        struct bio_vec *bvl;
 173
 174        /*
 175         * see comment near bvec_array define!
 176         */
 177        switch (nr) {
 178        case 1:
 179                *idx = 0;
 180                break;
 181        case 2 ... 4:
 182                *idx = 1;
 183                break;
 184        case 5 ... 16:
 185                *idx = 2;
 186                break;
 187        case 17 ... 64:
 188                *idx = 3;
 189                break;
 190        case 65 ... 128:
 191                *idx = 4;
 192                break;
 193        case 129 ... BIO_MAX_PAGES:
 194                *idx = 5;
 195                break;
 196        default:
 197                return NULL;
 198        }
 199
 200        /*
 201         * idx now points to the pool we want to allocate from. only the
 202         * 1-vec entry pool is mempool backed.
 203         */
 204        if (*idx == BVEC_POOL_MAX) {
 205fallback:
 206                bvl = mempool_alloc(pool, gfp_mask);
 207        } else {
 208                struct biovec_slab *bvs = bvec_slabs + *idx;
 209                gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
 210
 211                /*
 212                 * Make this allocation restricted and don't dump info on
 213                 * allocation failures, since we'll fallback to the mempool
 214                 * in case of failure.
 215                 */
 216                __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
 217
 218                /*
 219                 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
 220                 * is set, retry with the 1-entry mempool
 221                 */
 222                bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
 223                if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
 224                        *idx = BVEC_POOL_MAX;
 225                        goto fallback;
 226                }
 227        }
 228
 229        (*idx)++;
 230        return bvl;
 231}
 232
 233void bio_uninit(struct bio *bio)
 234{
 235        bio_disassociate_blkg(bio);
 236
 237        if (bio_integrity(bio))
 238                bio_integrity_free(bio);
 239}
 240EXPORT_SYMBOL(bio_uninit);
 241
 242static void bio_free(struct bio *bio)
 243{
 244        struct bio_set *bs = bio->bi_pool;
 245        void *p;
 246
 247        bio_uninit(bio);
 248
 249        if (bs) {
 250                bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
 251
 252                /*
 253                 * If we have front padding, adjust the bio pointer before freeing
 254                 */
 255                p = bio;
 256                p -= bs->front_pad;
 257
 258                mempool_free(p, &bs->bio_pool);
 259        } else {
 260                /* Bio was allocated by bio_kmalloc() */
 261                kfree(bio);
 262        }
 263}
 264
 265/*
 266 * Users of this function have their own bio allocation. Subsequently,
 267 * they must remember to pair any call to bio_init() with bio_uninit()
 268 * when IO has completed, or when the bio is released.
 269 */
 270void bio_init(struct bio *bio, struct bio_vec *table,
 271              unsigned short max_vecs)
 272{
 273        memset(bio, 0, sizeof(*bio));
 274        atomic_set(&bio->__bi_remaining, 1);
 275        atomic_set(&bio->__bi_cnt, 1);
 276
 277        bio->bi_io_vec = table;
 278        bio->bi_max_vecs = max_vecs;
 279}
 280EXPORT_SYMBOL(bio_init);
 281
 282/**
 283 * bio_reset - reinitialize a bio
 284 * @bio:        bio to reset
 285 *
 286 * Description:
 287 *   After calling bio_reset(), @bio will be in the same state as a freshly
 288 *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
 289 *   preserved are the ones that are initialized by bio_alloc_bioset(). See
 290 *   comment in struct bio.
 291 */
 292void bio_reset(struct bio *bio)
 293{
 294        unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
 295
 296        bio_uninit(bio);
 297
 298        memset(bio, 0, BIO_RESET_BYTES);
 299        bio->bi_flags = flags;
 300        atomic_set(&bio->__bi_remaining, 1);
 301}
 302EXPORT_SYMBOL(bio_reset);
 303
 304static struct bio *__bio_chain_endio(struct bio *bio)
 305{
 306        struct bio *parent = bio->bi_private;
 307
 308        if (!parent->bi_status)
 309                parent->bi_status = bio->bi_status;
 310        bio_put(bio);
 311        return parent;
 312}
 313
 314static void bio_chain_endio(struct bio *bio)
 315{
 316        bio_endio(__bio_chain_endio(bio));
 317}
 318
 319/**
 320 * bio_chain - chain bio completions
 321 * @bio: the target bio
 322 * @parent: the @bio's parent bio
 323 *
 324 * The caller won't have a bi_end_io called when @bio completes - instead,
 325 * @parent's bi_end_io won't be called until both @parent and @bio have
 326 * completed; the chained bio will also be freed when it completes.
 327 *
 328 * The caller must not set bi_private or bi_end_io in @bio.
 329 */
 330void bio_chain(struct bio *bio, struct bio *parent)
 331{
 332        BUG_ON(bio->bi_private || bio->bi_end_io);
 333
 334        bio->bi_private = parent;
 335        bio->bi_end_io  = bio_chain_endio;
 336        bio_inc_remaining(parent);
 337}
 338EXPORT_SYMBOL(bio_chain);
 339
 340static void bio_alloc_rescue(struct work_struct *work)
 341{
 342        struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
 343        struct bio *bio;
 344
 345        while (1) {
 346                spin_lock(&bs->rescue_lock);
 347                bio = bio_list_pop(&bs->rescue_list);
 348                spin_unlock(&bs->rescue_lock);
 349
 350                if (!bio)
 351                        break;
 352
 353                generic_make_request(bio);
 354        }
 355}
 356
 357static void punt_bios_to_rescuer(struct bio_set *bs)
 358{
 359        struct bio_list punt, nopunt;
 360        struct bio *bio;
 361
 362        if (WARN_ON_ONCE(!bs->rescue_workqueue))
 363                return;
 364        /*
 365         * In order to guarantee forward progress we must punt only bios that
 366         * were allocated from this bio_set; otherwise, if there was a bio on
 367         * there for a stacking driver higher up in the stack, processing it
 368         * could require allocating bios from this bio_set, and doing that from
 369         * our own rescuer would be bad.
 370         *
 371         * Since bio lists are singly linked, pop them all instead of trying to
 372         * remove from the middle of the list:
 373         */
 374
 375        bio_list_init(&punt);
 376        bio_list_init(&nopunt);
 377
 378        while ((bio = bio_list_pop(&current->bio_list[0])))
 379                bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
 380        current->bio_list[0] = nopunt;
 381
 382        bio_list_init(&nopunt);
 383        while ((bio = bio_list_pop(&current->bio_list[1])))
 384                bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
 385        current->bio_list[1] = nopunt;
 386
 387        spin_lock(&bs->rescue_lock);
 388        bio_list_merge(&bs->rescue_list, &punt);
 389        spin_unlock(&bs->rescue_lock);
 390
 391        queue_work(bs->rescue_workqueue, &bs->rescue_work);
 392}
 393
 394/**
 395 * bio_alloc_bioset - allocate a bio for I/O
 396 * @gfp_mask:   the GFP_* mask given to the slab allocator
 397 * @nr_iovecs:  number of iovecs to pre-allocate
 398 * @bs:         the bio_set to allocate from.
 399 *
 400 * Description:
 401 *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
 402 *   backed by the @bs's mempool.
 403 *
 404 *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
 405 *   always be able to allocate a bio. This is due to the mempool guarantees.
 406 *   To make this work, callers must never allocate more than 1 bio at a time
 407 *   from this pool. Callers that need to allocate more than 1 bio must always
 408 *   submit the previously allocated bio for IO before attempting to allocate
 409 *   a new one. Failure to do so can cause deadlocks under memory pressure.
 410 *
 411 *   Note that when running under generic_make_request() (i.e. any block
 412 *   driver), bios are not submitted until after you return - see the code in
 413 *   generic_make_request() that converts recursion into iteration, to prevent
 414 *   stack overflows.
 415 *
 416 *   This would normally mean allocating multiple bios under
 417 *   generic_make_request() would be susceptible to deadlocks, but we have
 418 *   deadlock avoidance code that resubmits any blocked bios from a rescuer
 419 *   thread.
 420 *
 421 *   However, we do not guarantee forward progress for allocations from other
 422 *   mempools. Doing multiple allocations from the same mempool under
 423 *   generic_make_request() should be avoided - instead, use bio_set's front_pad
 424 *   for per bio allocations.
 425 *
 426 *   RETURNS:
 427 *   Pointer to new bio on success, NULL on failure.
 428 */
 429struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
 430                             struct bio_set *bs)
 431{
 432        gfp_t saved_gfp = gfp_mask;
 433        unsigned front_pad;
 434        unsigned inline_vecs;
 435        struct bio_vec *bvl = NULL;
 436        struct bio *bio;
 437        void *p;
 438
 439        if (!bs) {
 440                if (nr_iovecs > UIO_MAXIOV)
 441                        return NULL;
 442
 443                p = kmalloc(sizeof(struct bio) +
 444                            nr_iovecs * sizeof(struct bio_vec),
 445                            gfp_mask);
 446                front_pad = 0;
 447                inline_vecs = nr_iovecs;
 448        } else {
 449                /* should not use nobvec bioset for nr_iovecs > 0 */
 450                if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
 451                                 nr_iovecs > 0))
 452                        return NULL;
 453                /*
 454                 * generic_make_request() converts recursion to iteration; this
 455                 * means if we're running beneath it, any bios we allocate and
 456                 * submit will not be submitted (and thus freed) until after we
 457                 * return.
 458                 *
 459                 * This exposes us to a potential deadlock if we allocate
 460                 * multiple bios from the same bio_set() while running
 461                 * underneath generic_make_request(). If we were to allocate
 462                 * multiple bios (say a stacking block driver that was splitting
 463                 * bios), we would deadlock if we exhausted the mempool's
 464                 * reserve.
 465                 *
 466                 * We solve this, and guarantee forward progress, with a rescuer
 467                 * workqueue per bio_set. If we go to allocate and there are
 468                 * bios on current->bio_list, we first try the allocation
 469                 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
 470                 * bios we would be blocking to the rescuer workqueue before
 471                 * we retry with the original gfp_flags.
 472                 */
 473
 474                if (current->bio_list &&
 475                    (!bio_list_empty(&current->bio_list[0]) ||
 476                     !bio_list_empty(&current->bio_list[1])) &&
 477                    bs->rescue_workqueue)
 478                        gfp_mask &= ~__GFP_DIRECT_RECLAIM;
 479
 480                p = mempool_alloc(&bs->bio_pool, gfp_mask);
 481                if (!p && gfp_mask != saved_gfp) {
 482                        punt_bios_to_rescuer(bs);
 483                        gfp_mask = saved_gfp;
 484                        p = mempool_alloc(&bs->bio_pool, gfp_mask);
 485                }
 486
 487                front_pad = bs->front_pad;
 488                inline_vecs = BIO_INLINE_VECS;
 489        }
 490
 491        if (unlikely(!p))
 492                return NULL;
 493
 494        bio = p + front_pad;
 495        bio_init(bio, NULL, 0);
 496
 497        if (nr_iovecs > inline_vecs) {
 498                unsigned long idx = 0;
 499
 500                bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
 501                if (!bvl && gfp_mask != saved_gfp) {
 502                        punt_bios_to_rescuer(bs);
 503                        gfp_mask = saved_gfp;
 504                        bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
 505                }
 506
 507                if (unlikely(!bvl))
 508                        goto err_free;
 509
 510                bio->bi_flags |= idx << BVEC_POOL_OFFSET;
 511        } else if (nr_iovecs) {
 512                bvl = bio->bi_inline_vecs;
 513        }
 514
 515        bio->bi_pool = bs;
 516        bio->bi_max_vecs = nr_iovecs;
 517        bio->bi_io_vec = bvl;
 518        return bio;
 519
 520err_free:
 521        mempool_free(p, &bs->bio_pool);
 522        return NULL;
 523}
 524EXPORT_SYMBOL(bio_alloc_bioset);
 525
 526void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
 527{
 528        unsigned long flags;
 529        struct bio_vec bv;
 530        struct bvec_iter iter;
 531
 532        __bio_for_each_segment(bv, bio, iter, start) {
 533                char *data = bvec_kmap_irq(&bv, &flags);
 534                memset(data, 0, bv.bv_len);
 535                flush_dcache_page(bv.bv_page);
 536                bvec_kunmap_irq(data, &flags);
 537        }
 538}
 539EXPORT_SYMBOL(zero_fill_bio_iter);
 540
 541/**
 542 * bio_truncate - truncate the bio to small size of @new_size
 543 * @bio:        the bio to be truncated
 544 * @new_size:   new size for truncating the bio
 545 *
 546 * Description:
 547 *   Truncate the bio to new size of @new_size. If bio_op(bio) is
 548 *   REQ_OP_READ, zero the truncated part. This function should only
 549 *   be used for handling corner cases, such as bio eod.
 550 */
 551void bio_truncate(struct bio *bio, unsigned new_size)
 552{
 553        struct bio_vec bv;
 554        struct bvec_iter iter;
 555        unsigned int done = 0;
 556        bool truncated = false;
 557
 558        if (new_size >= bio->bi_iter.bi_size)
 559                return;
 560
 561        if (bio_op(bio) != REQ_OP_READ)
 562                goto exit;
 563
 564        bio_for_each_segment(bv, bio, iter) {
 565                if (done + bv.bv_len > new_size) {
 566                        unsigned offset;
 567
 568                        if (!truncated)
 569                                offset = new_size - done;
 570                        else
 571                                offset = 0;
 572                        zero_user(bv.bv_page, offset, bv.bv_len - offset);
 573                        truncated = true;
 574                }
 575                done += bv.bv_len;
 576        }
 577
 578 exit:
 579        /*
 580         * Don't touch bvec table here and make it really immutable, since
 581         * fs bio user has to retrieve all pages via bio_for_each_segment_all
 582         * in its .end_bio() callback.
 583         *
 584         * It is enough to truncate bio by updating .bi_size since we can make
 585         * correct bvec with the updated .bi_size for drivers.
 586         */
 587        bio->bi_iter.bi_size = new_size;
 588}
 589
 590/**
 591 * bio_put - release a reference to a bio
 592 * @bio:   bio to release reference to
 593 *
 594 * Description:
 595 *   Put a reference to a &struct bio, either one you have gotten with
 596 *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
 597 **/
 598void bio_put(struct bio *bio)
 599{
 600        if (!bio_flagged(bio, BIO_REFFED))
 601                bio_free(bio);
 602        else {
 603                BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
 604
 605                /*
 606                 * last put frees it
 607                 */
 608                if (atomic_dec_and_test(&bio->__bi_cnt))
 609                        bio_free(bio);
 610        }
 611}
 612EXPORT_SYMBOL(bio_put);
 613
 614/**
 615 *      __bio_clone_fast - clone a bio that shares the original bio's biovec
 616 *      @bio: destination bio
 617 *      @bio_src: bio to clone
 618 *
 619 *      Clone a &bio. Caller will own the returned bio, but not
 620 *      the actual data it points to. Reference count of returned
 621 *      bio will be one.
 622 *
 623 *      Caller must ensure that @bio_src is not freed before @bio.
 624 */
 625void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
 626{
 627        BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
 628
 629        /*
 630         * most users will be overriding ->bi_disk with a new target,
 631         * so we don't set nor calculate new physical/hw segment counts here
 632         */
 633        bio->bi_disk = bio_src->bi_disk;
 634        bio->bi_partno = bio_src->bi_partno;
 635        bio_set_flag(bio, BIO_CLONED);
 636        if (bio_flagged(bio_src, BIO_THROTTLED))
 637                bio_set_flag(bio, BIO_THROTTLED);
 638        bio->bi_opf = bio_src->bi_opf;
 639        bio->bi_ioprio = bio_src->bi_ioprio;
 640        bio->bi_write_hint = bio_src->bi_write_hint;
 641        bio->bi_iter = bio_src->bi_iter;
 642        bio->bi_io_vec = bio_src->bi_io_vec;
 643
 644        bio_clone_blkg_association(bio, bio_src);
 645        blkcg_bio_issue_init(bio);
 646}
 647EXPORT_SYMBOL(__bio_clone_fast);
 648
 649/**
 650 *      bio_clone_fast - clone a bio that shares the original bio's biovec
 651 *      @bio: bio to clone
 652 *      @gfp_mask: allocation priority
 653 *      @bs: bio_set to allocate from
 654 *
 655 *      Like __bio_clone_fast, only also allocates the returned bio
 656 */
 657struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
 658{
 659        struct bio *b;
 660
 661        b = bio_alloc_bioset(gfp_mask, 0, bs);
 662        if (!b)
 663                return NULL;
 664
 665        __bio_clone_fast(b, bio);
 666
 667        if (bio_integrity(bio)) {
 668                int ret;
 669
 670                ret = bio_integrity_clone(b, bio, gfp_mask);
 671
 672                if (ret < 0) {
 673                        bio_put(b);
 674                        return NULL;
 675                }
 676        }
 677
 678        return b;
 679}
 680EXPORT_SYMBOL(bio_clone_fast);
 681
 682static inline bool page_is_mergeable(const struct bio_vec *bv,
 683                struct page *page, unsigned int len, unsigned int off,
 684                bool *same_page)
 685{
 686        phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
 687                bv->bv_offset + bv->bv_len - 1;
 688        phys_addr_t page_addr = page_to_phys(page);
 689
 690        if (vec_end_addr + 1 != page_addr + off)
 691                return false;
 692        if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
 693                return false;
 694
 695        *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
 696        if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
 697                return false;
 698        return true;
 699}
 700
 701static bool bio_try_merge_pc_page(struct request_queue *q, struct bio *bio,
 702                struct page *page, unsigned len, unsigned offset,
 703                bool *same_page)
 704{
 705        struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
 706        unsigned long mask = queue_segment_boundary(q);
 707        phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
 708        phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
 709
 710        if ((addr1 | mask) != (addr2 | mask))
 711                return false;
 712        if (bv->bv_len + len > queue_max_segment_size(q))
 713                return false;
 714        return __bio_try_merge_page(bio, page, len, offset, same_page);
 715}
 716
 717/**
 718 *      __bio_add_pc_page       - attempt to add page to passthrough bio
 719 *      @q: the target queue
 720 *      @bio: destination bio
 721 *      @page: page to add
 722 *      @len: vec entry length
 723 *      @offset: vec entry offset
 724 *      @same_page: return if the merge happen inside the same page
 725 *
 726 *      Attempt to add a page to the bio_vec maplist. This can fail for a
 727 *      number of reasons, such as the bio being full or target block device
 728 *      limitations. The target block device must allow bio's up to PAGE_SIZE,
 729 *      so it is always possible to add a single page to an empty bio.
 730 *
 731 *      This should only be used by passthrough bios.
 732 */
 733static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
 734                struct page *page, unsigned int len, unsigned int offset,
 735                bool *same_page)
 736{
 737        struct bio_vec *bvec;
 738
 739        /*
 740         * cloned bio must not modify vec list
 741         */
 742        if (unlikely(bio_flagged(bio, BIO_CLONED)))
 743                return 0;
 744
 745        if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
 746                return 0;
 747
 748        if (bio->bi_vcnt > 0) {
 749                if (bio_try_merge_pc_page(q, bio, page, len, offset, same_page))
 750                        return len;
 751
 752                /*
 753                 * If the queue doesn't support SG gaps and adding this segment
 754                 * would create a gap, disallow it.
 755                 */
 756                bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
 757                if (bvec_gap_to_prev(q, bvec, offset))
 758                        return 0;
 759        }
 760
 761        if (bio_full(bio, len))
 762                return 0;
 763
 764        if (bio->bi_vcnt >= queue_max_segments(q))
 765                return 0;
 766
 767        bvec = &bio->bi_io_vec[bio->bi_vcnt];
 768        bvec->bv_page = page;
 769        bvec->bv_len = len;
 770        bvec->bv_offset = offset;
 771        bio->bi_vcnt++;
 772        bio->bi_iter.bi_size += len;
 773        return len;
 774}
 775
 776int bio_add_pc_page(struct request_queue *q, struct bio *bio,
 777                struct page *page, unsigned int len, unsigned int offset)
 778{
 779        bool same_page = false;
 780        return __bio_add_pc_page(q, bio, page, len, offset, &same_page);
 781}
 782EXPORT_SYMBOL(bio_add_pc_page);
 783
 784/**
 785 * __bio_try_merge_page - try appending data to an existing bvec.
 786 * @bio: destination bio
 787 * @page: start page to add
 788 * @len: length of the data to add
 789 * @off: offset of the data relative to @page
 790 * @same_page: return if the segment has been merged inside the same page
 791 *
 792 * Try to add the data at @page + @off to the last bvec of @bio.  This is a
 793 * a useful optimisation for file systems with a block size smaller than the
 794 * page size.
 795 *
 796 * Warn if (@len, @off) crosses pages in case that @same_page is true.
 797 *
 798 * Return %true on success or %false on failure.
 799 */
 800bool __bio_try_merge_page(struct bio *bio, struct page *page,
 801                unsigned int len, unsigned int off, bool *same_page)
 802{
 803        if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
 804                return false;
 805
 806        if (bio->bi_vcnt > 0) {
 807                struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
 808
 809                if (page_is_mergeable(bv, page, len, off, same_page)) {
 810                        if (bio->bi_iter.bi_size > UINT_MAX - len)
 811                                return false;
 812                        bv->bv_len += len;
 813                        bio->bi_iter.bi_size += len;
 814                        return true;
 815                }
 816        }
 817        return false;
 818}
 819EXPORT_SYMBOL_GPL(__bio_try_merge_page);
 820
 821/**
 822 * __bio_add_page - add page(s) to a bio in a new segment
 823 * @bio: destination bio
 824 * @page: start page to add
 825 * @len: length of the data to add, may cross pages
 826 * @off: offset of the data relative to @page, may cross pages
 827 *
 828 * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
 829 * that @bio has space for another bvec.
 830 */
 831void __bio_add_page(struct bio *bio, struct page *page,
 832                unsigned int len, unsigned int off)
 833{
 834        struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
 835
 836        WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
 837        WARN_ON_ONCE(bio_full(bio, len));
 838
 839        bv->bv_page = page;
 840        bv->bv_offset = off;
 841        bv->bv_len = len;
 842
 843        bio->bi_iter.bi_size += len;
 844        bio->bi_vcnt++;
 845
 846        if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
 847                bio_set_flag(bio, BIO_WORKINGSET);
 848}
 849EXPORT_SYMBOL_GPL(__bio_add_page);
 850
 851/**
 852 *      bio_add_page    -       attempt to add page(s) to bio
 853 *      @bio: destination bio
 854 *      @page: start page to add
 855 *      @len: vec entry length, may cross pages
 856 *      @offset: vec entry offset relative to @page, may cross pages
 857 *
 858 *      Attempt to add page(s) to the bio_vec maplist. This will only fail
 859 *      if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
 860 */
 861int bio_add_page(struct bio *bio, struct page *page,
 862                 unsigned int len, unsigned int offset)
 863{
 864        bool same_page = false;
 865
 866        if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
 867                if (bio_full(bio, len))
 868                        return 0;
 869                __bio_add_page(bio, page, len, offset);
 870        }
 871        return len;
 872}
 873EXPORT_SYMBOL(bio_add_page);
 874
 875void bio_release_pages(struct bio *bio, bool mark_dirty)
 876{
 877        struct bvec_iter_all iter_all;
 878        struct bio_vec *bvec;
 879
 880        if (bio_flagged(bio, BIO_NO_PAGE_REF))
 881                return;
 882
 883        bio_for_each_segment_all(bvec, bio, iter_all) {
 884                if (mark_dirty && !PageCompound(bvec->bv_page))
 885                        set_page_dirty_lock(bvec->bv_page);
 886                put_page(bvec->bv_page);
 887        }
 888}
 889
 890static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
 891{
 892        const struct bio_vec *bv = iter->bvec;
 893        unsigned int len;
 894        size_t size;
 895
 896        if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
 897                return -EINVAL;
 898
 899        len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
 900        size = bio_add_page(bio, bv->bv_page, len,
 901                                bv->bv_offset + iter->iov_offset);
 902        if (unlikely(size != len))
 903                return -EINVAL;
 904        iov_iter_advance(iter, size);
 905        return 0;
 906}
 907
 908#define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
 909
 910/**
 911 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
 912 * @bio: bio to add pages to
 913 * @iter: iov iterator describing the region to be mapped
 914 *
 915 * Pins pages from *iter and appends them to @bio's bvec array. The
 916 * pages will have to be released using put_page() when done.
 917 * For multi-segment *iter, this function only adds pages from the
 918 * the next non-empty segment of the iov iterator.
 919 */
 920static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
 921{
 922        unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
 923        unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
 924        struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
 925        struct page **pages = (struct page **)bv;
 926        bool same_page = false;
 927        ssize_t size, left;
 928        unsigned len, i;
 929        size_t offset;
 930
 931        /*
 932         * Move page array up in the allocated memory for the bio vecs as far as
 933         * possible so that we can start filling biovecs from the beginning
 934         * without overwriting the temporary page array.
 935        */
 936        BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
 937        pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
 938
 939        size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
 940        if (unlikely(size <= 0))
 941                return size ? size : -EFAULT;
 942
 943        for (left = size, i = 0; left > 0; left -= len, i++) {
 944                struct page *page = pages[i];
 945
 946                len = min_t(size_t, PAGE_SIZE - offset, left);
 947
 948                if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
 949                        if (same_page)
 950                                put_page(page);
 951                } else {
 952                        if (WARN_ON_ONCE(bio_full(bio, len)))
 953                                return -EINVAL;
 954                        __bio_add_page(bio, page, len, offset);
 955                }
 956                offset = 0;
 957        }
 958
 959        iov_iter_advance(iter, size);
 960        return 0;
 961}
 962
 963/**
 964 * bio_iov_iter_get_pages - add user or kernel pages to a bio
 965 * @bio: bio to add pages to
 966 * @iter: iov iterator describing the region to be added
 967 *
 968 * This takes either an iterator pointing to user memory, or one pointing to
 969 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
 970 * map them into the kernel. On IO completion, the caller should put those
 971 * pages. If we're adding kernel pages, and the caller told us it's safe to
 972 * do so, we just have to add the pages to the bio directly. We don't grab an
 973 * extra reference to those pages (the user should already have that), and we
 974 * don't put the page on IO completion. The caller needs to check if the bio is
 975 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
 976 * released.
 977 *
 978 * The function tries, but does not guarantee, to pin as many pages as
 979 * fit into the bio, or are requested in *iter, whatever is smaller. If
 980 * MM encounters an error pinning the requested pages, it stops. Error
 981 * is returned only if 0 pages could be pinned.
 982 */
 983int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
 984{
 985        const bool is_bvec = iov_iter_is_bvec(iter);
 986        int ret;
 987
 988        if (WARN_ON_ONCE(bio->bi_vcnt))
 989                return -EINVAL;
 990
 991        do {
 992                if (is_bvec)
 993                        ret = __bio_iov_bvec_add_pages(bio, iter);
 994                else
 995                        ret = __bio_iov_iter_get_pages(bio, iter);
 996        } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
 997
 998        if (is_bvec)
 999                bio_set_flag(bio, BIO_NO_PAGE_REF);
1000        return bio->bi_vcnt ? 0 : ret;
1001}
1002
1003static void submit_bio_wait_endio(struct bio *bio)
1004{
1005        complete(bio->bi_private);
1006}
1007
1008/**
1009 * submit_bio_wait - submit a bio, and wait until it completes
1010 * @bio: The &struct bio which describes the I/O
1011 *
1012 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1013 * bio_endio() on failure.
1014 *
1015 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1016 * result in bio reference to be consumed. The caller must drop the reference
1017 * on his own.
1018 */
1019int submit_bio_wait(struct bio *bio)
1020{
1021        DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
1022
1023        bio->bi_private = &done;
1024        bio->bi_end_io = submit_bio_wait_endio;
1025        bio->bi_opf |= REQ_SYNC;
1026        submit_bio(bio);
1027        wait_for_completion_io(&done);
1028
1029        return blk_status_to_errno(bio->bi_status);
1030}
1031EXPORT_SYMBOL(submit_bio_wait);
1032
1033/**
1034 * bio_advance - increment/complete a bio by some number of bytes
1035 * @bio:        bio to advance
1036 * @bytes:      number of bytes to complete
1037 *
1038 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1039 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1040 * be updated on the last bvec as well.
1041 *
1042 * @bio will then represent the remaining, uncompleted portion of the io.
1043 */
1044void bio_advance(struct bio *bio, unsigned bytes)
1045{
1046        if (bio_integrity(bio))
1047                bio_integrity_advance(bio, bytes);
1048
1049        bio_advance_iter(bio, &bio->bi_iter, bytes);
1050}
1051EXPORT_SYMBOL(bio_advance);
1052
1053void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1054                        struct bio *src, struct bvec_iter *src_iter)
1055{
1056        struct bio_vec src_bv, dst_bv;
1057        void *src_p, *dst_p;
1058        unsigned bytes;
1059
1060        while (src_iter->bi_size && dst_iter->bi_size) {
1061                src_bv = bio_iter_iovec(src, *src_iter);
1062                dst_bv = bio_iter_iovec(dst, *dst_iter);
1063
1064                bytes = min(src_bv.bv_len, dst_bv.bv_len);
1065
1066                src_p = kmap_atomic(src_bv.bv_page);
1067                dst_p = kmap_atomic(dst_bv.bv_page);
1068
1069                memcpy(dst_p + dst_bv.bv_offset,
1070                       src_p + src_bv.bv_offset,
1071                       bytes);
1072
1073                kunmap_atomic(dst_p);
1074                kunmap_atomic(src_p);
1075
1076                flush_dcache_page(dst_bv.bv_page);
1077
1078                bio_advance_iter(src, src_iter, bytes);
1079                bio_advance_iter(dst, dst_iter, bytes);
1080        }
1081}
1082EXPORT_SYMBOL(bio_copy_data_iter);
1083
1084/**
1085 * bio_copy_data - copy contents of data buffers from one bio to another
1086 * @src: source bio
1087 * @dst: destination bio
1088 *
1089 * Stops when it reaches the end of either @src or @dst - that is, copies
1090 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1091 */
1092void bio_copy_data(struct bio *dst, struct bio *src)
1093{
1094        struct bvec_iter src_iter = src->bi_iter;
1095        struct bvec_iter dst_iter = dst->bi_iter;
1096
1097        bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1098}
1099EXPORT_SYMBOL(bio_copy_data);
1100
1101/**
1102 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1103 * another
1104 * @src: source bio list
1105 * @dst: destination bio list
1106 *
1107 * Stops when it reaches the end of either the @src list or @dst list - that is,
1108 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1109 * bios).
1110 */
1111void bio_list_copy_data(struct bio *dst, struct bio *src)
1112{
1113        struct bvec_iter src_iter = src->bi_iter;
1114        struct bvec_iter dst_iter = dst->bi_iter;
1115
1116        while (1) {
1117                if (!src_iter.bi_size) {
1118                        src = src->bi_next;
1119                        if (!src)
1120                                break;
1121
1122                        src_iter = src->bi_iter;
1123                }
1124
1125                if (!dst_iter.bi_size) {
1126                        dst = dst->bi_next;
1127                        if (!dst)
1128                                break;
1129
1130                        dst_iter = dst->bi_iter;
1131                }
1132
1133                bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1134        }
1135}
1136EXPORT_SYMBOL(bio_list_copy_data);
1137
1138struct bio_map_data {
1139        int is_our_pages;
1140        struct iov_iter iter;
1141        struct iovec iov[];
1142};
1143
1144static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1145                                               gfp_t gfp_mask)
1146{
1147        struct bio_map_data *bmd;
1148        if (data->nr_segs > UIO_MAXIOV)
1149                return NULL;
1150
1151        bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
1152        if (!bmd)
1153                return NULL;
1154        memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1155        bmd->iter = *data;
1156        bmd->iter.iov = bmd->iov;
1157        return bmd;
1158}
1159
1160/**
1161 * bio_copy_from_iter - copy all pages from iov_iter to bio
1162 * @bio: The &struct bio which describes the I/O as destination
1163 * @iter: iov_iter as source
1164 *
1165 * Copy all pages from iov_iter to bio.
1166 * Returns 0 on success, or error on failure.
1167 */
1168static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1169{
1170        struct bio_vec *bvec;
1171        struct bvec_iter_all iter_all;
1172
1173        bio_for_each_segment_all(bvec, bio, iter_all) {
1174                ssize_t ret;
1175
1176                ret = copy_page_from_iter(bvec->bv_page,
1177                                          bvec->bv_offset,
1178                                          bvec->bv_len,
1179                                          iter);
1180
1181                if (!iov_iter_count(iter))
1182                        break;
1183
1184                if (ret < bvec->bv_len)
1185                        return -EFAULT;
1186        }
1187
1188        return 0;
1189}
1190
1191/**
1192 * bio_copy_to_iter - copy all pages from bio to iov_iter
1193 * @bio: The &struct bio which describes the I/O as source
1194 * @iter: iov_iter as destination
1195 *
1196 * Copy all pages from bio to iov_iter.
1197 * Returns 0 on success, or error on failure.
1198 */
1199static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1200{
1201        struct bio_vec *bvec;
1202        struct bvec_iter_all iter_all;
1203
1204        bio_for_each_segment_all(bvec, bio, iter_all) {
1205                ssize_t ret;
1206
1207                ret = copy_page_to_iter(bvec->bv_page,
1208                                        bvec->bv_offset,
1209                                        bvec->bv_len,
1210                                        &iter);
1211
1212                if (!iov_iter_count(&iter))
1213                        break;
1214
1215                if (ret < bvec->bv_len)
1216                        return -EFAULT;
1217        }
1218
1219        return 0;
1220}
1221
1222void bio_free_pages(struct bio *bio)
1223{
1224        struct bio_vec *bvec;
1225        struct bvec_iter_all iter_all;
1226
1227        bio_for_each_segment_all(bvec, bio, iter_all)
1228                __free_page(bvec->bv_page);
1229}
1230EXPORT_SYMBOL(bio_free_pages);
1231
1232/**
1233 *      bio_uncopy_user -       finish previously mapped bio
1234 *      @bio: bio being terminated
1235 *
1236 *      Free pages allocated from bio_copy_user_iov() and write back data
1237 *      to user space in case of a read.
1238 */
1239int bio_uncopy_user(struct bio *bio)
1240{
1241        struct bio_map_data *bmd = bio->bi_private;
1242        int ret = 0;
1243
1244        if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1245                /*
1246                 * if we're in a workqueue, the request is orphaned, so
1247                 * don't copy into a random user address space, just free
1248                 * and return -EINTR so user space doesn't expect any data.
1249                 */
1250                if (!current->mm)
1251                        ret = -EINTR;
1252                else if (bio_data_dir(bio) == READ)
1253                        ret = bio_copy_to_iter(bio, bmd->iter);
1254                if (bmd->is_our_pages)
1255                        bio_free_pages(bio);
1256        }
1257        kfree(bmd);
1258        bio_put(bio);
1259        return ret;
1260}
1261
1262/**
1263 *      bio_copy_user_iov       -       copy user data to bio
1264 *      @q:             destination block queue
1265 *      @map_data:      pointer to the rq_map_data holding pages (if necessary)
1266 *      @iter:          iovec iterator
1267 *      @gfp_mask:      memory allocation flags
1268 *
1269 *      Prepares and returns a bio for indirect user io, bouncing data
1270 *      to/from kernel pages as necessary. Must be paired with
1271 *      call bio_uncopy_user() on io completion.
1272 */
1273struct bio *bio_copy_user_iov(struct request_queue *q,
1274                              struct rq_map_data *map_data,
1275                              struct iov_iter *iter,
1276                              gfp_t gfp_mask)
1277{
1278        struct bio_map_data *bmd;
1279        struct page *page;
1280        struct bio *bio;
1281        int i = 0, ret;
1282        int nr_pages;
1283        unsigned int len = iter->count;
1284        unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1285
1286        bmd = bio_alloc_map_data(iter, gfp_mask);
1287        if (!bmd)
1288                return ERR_PTR(-ENOMEM);
1289
1290        /*
1291         * We need to do a deep copy of the iov_iter including the iovecs.
1292         * The caller provided iov might point to an on-stack or otherwise
1293         * shortlived one.
1294         */
1295        bmd->is_our_pages = map_data ? 0 : 1;
1296
1297        nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1298        if (nr_pages > BIO_MAX_PAGES)
1299                nr_pages = BIO_MAX_PAGES;
1300
1301        ret = -ENOMEM;
1302        bio = bio_kmalloc(gfp_mask, nr_pages);
1303        if (!bio)
1304                goto out_bmd;
1305
1306        ret = 0;
1307
1308        if (map_data) {
1309                nr_pages = 1 << map_data->page_order;
1310                i = map_data->offset / PAGE_SIZE;
1311        }
1312        while (len) {
1313                unsigned int bytes = PAGE_SIZE;
1314
1315                bytes -= offset;
1316
1317                if (bytes > len)
1318                        bytes = len;
1319
1320                if (map_data) {
1321                        if (i == map_data->nr_entries * nr_pages) {
1322                                ret = -ENOMEM;
1323                                break;
1324                        }
1325
1326                        page = map_data->pages[i / nr_pages];
1327                        page += (i % nr_pages);
1328
1329                        i++;
1330                } else {
1331                        page = alloc_page(q->bounce_gfp | gfp_mask);
1332                        if (!page) {
1333                                ret = -ENOMEM;
1334                                break;
1335                        }
1336                }
1337
1338                if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1339                        if (!map_data)
1340                                __free_page(page);
1341                        break;
1342                }
1343
1344                len -= bytes;
1345                offset = 0;
1346        }
1347
1348        if (ret)
1349                goto cleanup;
1350
1351        if (map_data)
1352                map_data->offset += bio->bi_iter.bi_size;
1353
1354        /*
1355         * success
1356         */
1357        if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1358            (map_data && map_data->from_user)) {
1359                ret = bio_copy_from_iter(bio, iter);
1360                if (ret)
1361                        goto cleanup;
1362        } else {
1363                if (bmd->is_our_pages)
1364                        zero_fill_bio(bio);
1365                iov_iter_advance(iter, bio->bi_iter.bi_size);
1366        }
1367
1368        bio->bi_private = bmd;
1369        if (map_data && map_data->null_mapped)
1370                bio_set_flag(bio, BIO_NULL_MAPPED);
1371        return bio;
1372cleanup:
1373        if (!map_data)
1374                bio_free_pages(bio);
1375        bio_put(bio);
1376out_bmd:
1377        kfree(bmd);
1378        return ERR_PTR(ret);
1379}
1380
1381/**
1382 *      bio_map_user_iov - map user iovec into bio
1383 *      @q:             the struct request_queue for the bio
1384 *      @iter:          iovec iterator
1385 *      @gfp_mask:      memory allocation flags
1386 *
1387 *      Map the user space address into a bio suitable for io to a block
1388 *      device. Returns an error pointer in case of error.
1389 */
1390struct bio *bio_map_user_iov(struct request_queue *q,
1391                             struct iov_iter *iter,
1392                             gfp_t gfp_mask)
1393{
1394        int j;
1395        struct bio *bio;
1396        int ret;
1397
1398        if (!iov_iter_count(iter))
1399                return ERR_PTR(-EINVAL);
1400
1401        bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1402        if (!bio)
1403                return ERR_PTR(-ENOMEM);
1404
1405        while (iov_iter_count(iter)) {
1406                struct page **pages;
1407                ssize_t bytes;
1408                size_t offs, added = 0;
1409                int npages;
1410
1411                bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1412                if (unlikely(bytes <= 0)) {
1413                        ret = bytes ? bytes : -EFAULT;
1414                        goto out_unmap;
1415                }
1416
1417                npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1418
1419                if (unlikely(offs & queue_dma_alignment(q))) {
1420                        ret = -EINVAL;
1421                        j = 0;
1422                } else {
1423                        for (j = 0; j < npages; j++) {
1424                                struct page *page = pages[j];
1425                                unsigned int n = PAGE_SIZE - offs;
1426                                bool same_page = false;
1427
1428                                if (n > bytes)
1429                                        n = bytes;
1430
1431                                if (!__bio_add_pc_page(q, bio, page, n, offs,
1432                                                &same_page)) {
1433                                        if (same_page)
1434                                                put_page(page);
1435                                        break;
1436                                }
1437
1438                                added += n;
1439                                bytes -= n;
1440                                offs = 0;
1441                        }
1442                        iov_iter_advance(iter, added);
1443                }
1444                /*
1445                 * release the pages we didn't map into the bio, if any
1446                 */
1447                while (j < npages)
1448                        put_page(pages[j++]);
1449                kvfree(pages);
1450                /* couldn't stuff something into bio? */
1451                if (bytes)
1452                        break;
1453        }
1454
1455        bio_set_flag(bio, BIO_USER_MAPPED);
1456
1457        /*
1458         * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1459         * it would normally disappear when its bi_end_io is run.
1460         * however, we need it for the unmap, so grab an extra
1461         * reference to it
1462         */
1463        bio_get(bio);
1464        return bio;
1465
1466 out_unmap:
1467        bio_release_pages(bio, false);
1468        bio_put(bio);
1469        return ERR_PTR(ret);
1470}
1471
1472/**
1473 *      bio_unmap_user  -       unmap a bio
1474 *      @bio:           the bio being unmapped
1475 *
1476 *      Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1477 *      process context.
1478 *
1479 *      bio_unmap_user() may sleep.
1480 */
1481void bio_unmap_user(struct bio *bio)
1482{
1483        bio_release_pages(bio, bio_data_dir(bio) == READ);
1484        bio_put(bio);
1485        bio_put(bio);
1486}
1487
1488static void bio_invalidate_vmalloc_pages(struct bio *bio)
1489{
1490#ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
1491        if (bio->bi_private && !op_is_write(bio_op(bio))) {
1492                unsigned long i, len = 0;
1493
1494                for (i = 0; i < bio->bi_vcnt; i++)
1495                        len += bio->bi_io_vec[i].bv_len;
1496                invalidate_kernel_vmap_range(bio->bi_private, len);
1497        }
1498#endif
1499}
1500
1501static void bio_map_kern_endio(struct bio *bio)
1502{
1503        bio_invalidate_vmalloc_pages(bio);
1504        bio_put(bio);
1505}
1506
1507/**
1508 *      bio_map_kern    -       map kernel address into bio
1509 *      @q: the struct request_queue for the bio
1510 *      @data: pointer to buffer to map
1511 *      @len: length in bytes
1512 *      @gfp_mask: allocation flags for bio allocation
1513 *
1514 *      Map the kernel address into a bio suitable for io to a block
1515 *      device. Returns an error pointer in case of error.
1516 */
1517struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1518                         gfp_t gfp_mask)
1519{
1520        unsigned long kaddr = (unsigned long)data;
1521        unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1522        unsigned long start = kaddr >> PAGE_SHIFT;
1523        const int nr_pages = end - start;
1524        bool is_vmalloc = is_vmalloc_addr(data);
1525        struct page *page;
1526        int offset, i;
1527        struct bio *bio;
1528
1529        bio = bio_kmalloc(gfp_mask, nr_pages);
1530        if (!bio)
1531                return ERR_PTR(-ENOMEM);
1532
1533        if (is_vmalloc) {
1534                flush_kernel_vmap_range(data, len);
1535                bio->bi_private = data;
1536        }
1537
1538        offset = offset_in_page(kaddr);
1539        for (i = 0; i < nr_pages; i++) {
1540                unsigned int bytes = PAGE_SIZE - offset;
1541
1542                if (len <= 0)
1543                        break;
1544
1545                if (bytes > len)
1546                        bytes = len;
1547
1548                if (!is_vmalloc)
1549                        page = virt_to_page(data);
1550                else
1551                        page = vmalloc_to_page(data);
1552                if (bio_add_pc_page(q, bio, page, bytes,
1553                                    offset) < bytes) {
1554                        /* we don't support partial mappings */
1555                        bio_put(bio);
1556                        return ERR_PTR(-EINVAL);
1557                }
1558
1559                data += bytes;
1560                len -= bytes;
1561                offset = 0;
1562        }
1563
1564        bio->bi_end_io = bio_map_kern_endio;
1565        return bio;
1566}
1567
1568static void bio_copy_kern_endio(struct bio *bio)
1569{
1570        bio_free_pages(bio);
1571        bio_put(bio);
1572}
1573
1574static void bio_copy_kern_endio_read(struct bio *bio)
1575{
1576        char *p = bio->bi_private;
1577        struct bio_vec *bvec;
1578        struct bvec_iter_all iter_all;
1579
1580        bio_for_each_segment_all(bvec, bio, iter_all) {
1581                memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1582                p += bvec->bv_len;
1583        }
1584
1585        bio_copy_kern_endio(bio);
1586}
1587
1588/**
1589 *      bio_copy_kern   -       copy kernel address into bio
1590 *      @q: the struct request_queue for the bio
1591 *      @data: pointer to buffer to copy
1592 *      @len: length in bytes
1593 *      @gfp_mask: allocation flags for bio and page allocation
1594 *      @reading: data direction is READ
1595 *
1596 *      copy the kernel address into a bio suitable for io to a block
1597 *      device. Returns an error pointer in case of error.
1598 */
1599struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1600                          gfp_t gfp_mask, int reading)
1601{
1602        unsigned long kaddr = (unsigned long)data;
1603        unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1604        unsigned long start = kaddr >> PAGE_SHIFT;
1605        struct bio *bio;
1606        void *p = data;
1607        int nr_pages = 0;
1608
1609        /*
1610         * Overflow, abort
1611         */
1612        if (end < start)
1613                return ERR_PTR(-EINVAL);
1614
1615        nr_pages = end - start;
1616        bio = bio_kmalloc(gfp_mask, nr_pages);
1617        if (!bio)
1618                return ERR_PTR(-ENOMEM);
1619
1620        while (len) {
1621                struct page *page;
1622                unsigned int bytes = PAGE_SIZE;
1623
1624                if (bytes > len)
1625                        bytes = len;
1626
1627                page = alloc_page(q->bounce_gfp | gfp_mask);
1628                if (!page)
1629                        goto cleanup;
1630
1631                if (!reading)
1632                        memcpy(page_address(page), p, bytes);
1633
1634                if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1635                        break;
1636
1637                len -= bytes;
1638                p += bytes;
1639        }
1640
1641        if (reading) {
1642                bio->bi_end_io = bio_copy_kern_endio_read;
1643                bio->bi_private = data;
1644        } else {
1645                bio->bi_end_io = bio_copy_kern_endio;
1646        }
1647
1648        return bio;
1649
1650cleanup:
1651        bio_free_pages(bio);
1652        bio_put(bio);
1653        return ERR_PTR(-ENOMEM);
1654}
1655
1656/*
1657 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1658 * for performing direct-IO in BIOs.
1659 *
1660 * The problem is that we cannot run set_page_dirty() from interrupt context
1661 * because the required locks are not interrupt-safe.  So what we can do is to
1662 * mark the pages dirty _before_ performing IO.  And in interrupt context,
1663 * check that the pages are still dirty.   If so, fine.  If not, redirty them
1664 * in process context.
1665 *
1666 * We special-case compound pages here: normally this means reads into hugetlb
1667 * pages.  The logic in here doesn't really work right for compound pages
1668 * because the VM does not uniformly chase down the head page in all cases.
1669 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1670 * handle them at all.  So we skip compound pages here at an early stage.
1671 *
1672 * Note that this code is very hard to test under normal circumstances because
1673 * direct-io pins the pages with get_user_pages().  This makes
1674 * is_page_cache_freeable return false, and the VM will not clean the pages.
1675 * But other code (eg, flusher threads) could clean the pages if they are mapped
1676 * pagecache.
1677 *
1678 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1679 * deferred bio dirtying paths.
1680 */
1681
1682/*
1683 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1684 */
1685void bio_set_pages_dirty(struct bio *bio)
1686{
1687        struct bio_vec *bvec;
1688        struct bvec_iter_all iter_all;
1689
1690        bio_for_each_segment_all(bvec, bio, iter_all) {
1691                if (!PageCompound(bvec->bv_page))
1692                        set_page_dirty_lock(bvec->bv_page);
1693        }
1694}
1695
1696/*
1697 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1698 * If they are, then fine.  If, however, some pages are clean then they must
1699 * have been written out during the direct-IO read.  So we take another ref on
1700 * the BIO and re-dirty the pages in process context.
1701 *
1702 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1703 * here on.  It will run one put_page() against each page and will run one
1704 * bio_put() against the BIO.
1705 */
1706
1707static void bio_dirty_fn(struct work_struct *work);
1708
1709static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1710static DEFINE_SPINLOCK(bio_dirty_lock);
1711static struct bio *bio_dirty_list;
1712
1713/*
1714 * This runs in process context
1715 */
1716static void bio_dirty_fn(struct work_struct *work)
1717{
1718        struct bio *bio, *next;
1719
1720        spin_lock_irq(&bio_dirty_lock);
1721        next = bio_dirty_list;
1722        bio_dirty_list = NULL;
1723        spin_unlock_irq(&bio_dirty_lock);
1724
1725        while ((bio = next) != NULL) {
1726                next = bio->bi_private;
1727
1728                bio_release_pages(bio, true);
1729                bio_put(bio);
1730        }
1731}
1732
1733void bio_check_pages_dirty(struct bio *bio)
1734{
1735        struct bio_vec *bvec;
1736        unsigned long flags;
1737        struct bvec_iter_all iter_all;
1738
1739        bio_for_each_segment_all(bvec, bio, iter_all) {
1740                if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1741                        goto defer;
1742        }
1743
1744        bio_release_pages(bio, false);
1745        bio_put(bio);
1746        return;
1747defer:
1748        spin_lock_irqsave(&bio_dirty_lock, flags);
1749        bio->bi_private = bio_dirty_list;
1750        bio_dirty_list = bio;
1751        spin_unlock_irqrestore(&bio_dirty_lock, flags);
1752        schedule_work(&bio_dirty_work);
1753}
1754
1755void update_io_ticks(struct hd_struct *part, unsigned long now)
1756{
1757        unsigned long stamp;
1758again:
1759        stamp = READ_ONCE(part->stamp);
1760        if (unlikely(stamp != now)) {
1761                if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1762                        __part_stat_add(part, io_ticks, 1);
1763                }
1764        }
1765        if (part->partno) {
1766                part = &part_to_disk(part)->part0;
1767                goto again;
1768        }
1769}
1770
1771void generic_start_io_acct(struct request_queue *q, int op,
1772                           unsigned long sectors, struct hd_struct *part)
1773{
1774        const int sgrp = op_stat_group(op);
1775
1776        part_stat_lock();
1777
1778        update_io_ticks(part, jiffies);
1779        part_stat_inc(part, ios[sgrp]);
1780        part_stat_add(part, sectors[sgrp], sectors);
1781        part_inc_in_flight(q, part, op_is_write(op));
1782
1783        part_stat_unlock();
1784}
1785EXPORT_SYMBOL(generic_start_io_acct);
1786
1787void generic_end_io_acct(struct request_queue *q, int req_op,
1788                         struct hd_struct *part, unsigned long start_time)
1789{
1790        unsigned long now = jiffies;
1791        unsigned long duration = now - start_time;
1792        const int sgrp = op_stat_group(req_op);
1793
1794        part_stat_lock();
1795
1796        update_io_ticks(part, now);
1797        part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1798        part_stat_add(part, time_in_queue, duration);
1799        part_dec_in_flight(q, part, op_is_write(req_op));
1800
1801        part_stat_unlock();
1802}
1803EXPORT_SYMBOL(generic_end_io_acct);
1804
1805static inline bool bio_remaining_done(struct bio *bio)
1806{
1807        /*
1808         * If we're not chaining, then ->__bi_remaining is always 1 and
1809         * we always end io on the first invocation.
1810         */
1811        if (!bio_flagged(bio, BIO_CHAIN))
1812                return true;
1813
1814        BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1815
1816        if (atomic_dec_and_test(&bio->__bi_remaining)) {
1817                bio_clear_flag(bio, BIO_CHAIN);
1818                return true;
1819        }
1820
1821        return false;
1822}
1823
1824/**
1825 * bio_endio - end I/O on a bio
1826 * @bio:        bio
1827 *
1828 * Description:
1829 *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1830 *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1831 *   bio unless they own it and thus know that it has an end_io function.
1832 *
1833 *   bio_endio() can be called several times on a bio that has been chained
1834 *   using bio_chain().  The ->bi_end_io() function will only be called the
1835 *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1836 *   generated if BIO_TRACE_COMPLETION is set.
1837 **/
1838void bio_endio(struct bio *bio)
1839{
1840again:
1841        if (!bio_remaining_done(bio))
1842                return;
1843        if (!bio_integrity_endio(bio))
1844                return;
1845
1846        if (bio->bi_disk)
1847                rq_qos_done_bio(bio->bi_disk->queue, bio);
1848
1849        /*
1850         * Need to have a real endio function for chained bios, otherwise
1851         * various corner cases will break (like stacking block devices that
1852         * save/restore bi_end_io) - however, we want to avoid unbounded
1853         * recursion and blowing the stack. Tail call optimization would
1854         * handle this, but compiling with frame pointers also disables
1855         * gcc's sibling call optimization.
1856         */
1857        if (bio->bi_end_io == bio_chain_endio) {
1858                bio = __bio_chain_endio(bio);
1859                goto again;
1860        }
1861
1862        if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1863                trace_block_bio_complete(bio->bi_disk->queue, bio,
1864                                         blk_status_to_errno(bio->bi_status));
1865                bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1866        }
1867
1868        blk_throtl_bio_endio(bio);
1869        /* release cgroup info */
1870        bio_uninit(bio);
1871        if (bio->bi_end_io)
1872                bio->bi_end_io(bio);
1873}
1874EXPORT_SYMBOL(bio_endio);
1875
1876/**
1877 * bio_split - split a bio
1878 * @bio:        bio to split
1879 * @sectors:    number of sectors to split from the front of @bio
1880 * @gfp:        gfp mask
1881 * @bs:         bio set to allocate from
1882 *
1883 * Allocates and returns a new bio which represents @sectors from the start of
1884 * @bio, and updates @bio to represent the remaining sectors.
1885 *
1886 * Unless this is a discard request the newly allocated bio will point
1887 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1888 * neither @bio nor @bs are freed before the split bio.
1889 */
1890struct bio *bio_split(struct bio *bio, int sectors,
1891                      gfp_t gfp, struct bio_set *bs)
1892{
1893        struct bio *split;
1894
1895        BUG_ON(sectors <= 0);
1896        BUG_ON(sectors >= bio_sectors(bio));
1897
1898        split = bio_clone_fast(bio, gfp, bs);
1899        if (!split)
1900                return NULL;
1901
1902        split->bi_iter.bi_size = sectors << 9;
1903
1904        if (bio_integrity(split))
1905                bio_integrity_trim(split);
1906
1907        bio_advance(bio, split->bi_iter.bi_size);
1908
1909        if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1910                bio_set_flag(split, BIO_TRACE_COMPLETION);
1911
1912        return split;
1913}
1914EXPORT_SYMBOL(bio_split);
1915
1916/**
1917 * bio_trim - trim a bio
1918 * @bio:        bio to trim
1919 * @offset:     number of sectors to trim from the front of @bio
1920 * @size:       size we want to trim @bio to, in sectors
1921 */
1922void bio_trim(struct bio *bio, int offset, int size)
1923{
1924        /* 'bio' is a cloned bio which we need to trim to match
1925         * the given offset and size.
1926         */
1927
1928        size <<= 9;
1929        if (offset == 0 && size == bio->bi_iter.bi_size)
1930                return;
1931
1932        bio_advance(bio, offset << 9);
1933        bio->bi_iter.bi_size = size;
1934
1935        if (bio_integrity(bio))
1936                bio_integrity_trim(bio);
1937
1938}
1939EXPORT_SYMBOL_GPL(bio_trim);
1940
1941/*
1942 * create memory pools for biovec's in a bio_set.
1943 * use the global biovec slabs created for general use.
1944 */
1945int biovec_init_pool(mempool_t *pool, int pool_entries)
1946{
1947        struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1948
1949        return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1950}
1951
1952/*
1953 * bioset_exit - exit a bioset initialized with bioset_init()
1954 *
1955 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1956 * kzalloc()).
1957 */
1958void bioset_exit(struct bio_set *bs)
1959{
1960        if (bs->rescue_workqueue)
1961                destroy_workqueue(bs->rescue_workqueue);
1962        bs->rescue_workqueue = NULL;
1963
1964        mempool_exit(&bs->bio_pool);
1965        mempool_exit(&bs->bvec_pool);
1966
1967        bioset_integrity_free(bs);
1968        if (bs->bio_slab)
1969                bio_put_slab(bs);
1970        bs->bio_slab = NULL;
1971}
1972EXPORT_SYMBOL(bioset_exit);
1973
1974/**
1975 * bioset_init - Initialize a bio_set
1976 * @bs:         pool to initialize
1977 * @pool_size:  Number of bio and bio_vecs to cache in the mempool
1978 * @front_pad:  Number of bytes to allocate in front of the returned bio
1979 * @flags:      Flags to modify behavior, currently %BIOSET_NEED_BVECS
1980 *              and %BIOSET_NEED_RESCUER
1981 *
1982 * Description:
1983 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1984 *    to ask for a number of bytes to be allocated in front of the bio.
1985 *    Front pad allocation is useful for embedding the bio inside
1986 *    another structure, to avoid allocating extra data to go with the bio.
1987 *    Note that the bio must be embedded at the END of that structure always,
1988 *    or things will break badly.
1989 *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1990 *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1991 *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1992 *    dispatch queued requests when the mempool runs out of space.
1993 *
1994 */
1995int bioset_init(struct bio_set *bs,
1996                unsigned int pool_size,
1997                unsigned int front_pad,
1998                int flags)
1999{
2000        unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
2001
2002        bs->front_pad = front_pad;
2003
2004        spin_lock_init(&bs->rescue_lock);
2005        bio_list_init(&bs->rescue_list);
2006        INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
2007
2008        bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
2009        if (!bs->bio_slab)
2010                return -ENOMEM;
2011
2012        if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
2013                goto bad;
2014
2015        if ((flags & BIOSET_NEED_BVECS) &&
2016            biovec_init_pool(&bs->bvec_pool, pool_size))
2017                goto bad;
2018
2019        if (!(flags & BIOSET_NEED_RESCUER))
2020                return 0;
2021
2022        bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2023        if (!bs->rescue_workqueue)
2024                goto bad;
2025
2026        return 0;
2027bad:
2028        bioset_exit(bs);
2029        return -ENOMEM;
2030}
2031EXPORT_SYMBOL(bioset_init);
2032
2033/*
2034 * Initialize and setup a new bio_set, based on the settings from
2035 * another bio_set.
2036 */
2037int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2038{
2039        int flags;
2040
2041        flags = 0;
2042        if (src->bvec_pool.min_nr)
2043                flags |= BIOSET_NEED_BVECS;
2044        if (src->rescue_workqueue)
2045                flags |= BIOSET_NEED_RESCUER;
2046
2047        return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2048}
2049EXPORT_SYMBOL(bioset_init_from_src);
2050
2051#ifdef CONFIG_BLK_CGROUP
2052
2053/**
2054 * bio_disassociate_blkg - puts back the blkg reference if associated
2055 * @bio: target bio
2056 *
2057 * Helper to disassociate the blkg from @bio if a blkg is associated.
2058 */
2059void bio_disassociate_blkg(struct bio *bio)
2060{
2061        if (bio->bi_blkg) {
2062                blkg_put(bio->bi_blkg);
2063                bio->bi_blkg = NULL;
2064        }
2065}
2066EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
2067
2068/**
2069 * __bio_associate_blkg - associate a bio with the a blkg
2070 * @bio: target bio
2071 * @blkg: the blkg to associate
2072 *
2073 * This tries to associate @bio with the specified @blkg.  Association failure
2074 * is handled by walking up the blkg tree.  Therefore, the blkg associated can
2075 * be anything between @blkg and the root_blkg.  This situation only happens
2076 * when a cgroup is dying and then the remaining bios will spill to the closest
2077 * alive blkg.
2078 *
2079 * A reference will be taken on the @blkg and will be released when @bio is
2080 * freed.
2081 */
2082static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2083{
2084        bio_disassociate_blkg(bio);
2085
2086        bio->bi_blkg = blkg_tryget_closest(blkg);
2087}
2088
2089/**
2090 * bio_associate_blkg_from_css - associate a bio with a specified css
2091 * @bio: target bio
2092 * @css: target css
2093 *
2094 * Associate @bio with the blkg found by combining the css's blkg and the
2095 * request_queue of the @bio.  This falls back to the queue's root_blkg if
2096 * the association fails with the css.
2097 */
2098void bio_associate_blkg_from_css(struct bio *bio,
2099                                 struct cgroup_subsys_state *css)
2100{
2101        struct request_queue *q = bio->bi_disk->queue;
2102        struct blkcg_gq *blkg;
2103
2104        rcu_read_lock();
2105
2106        if (!css || !css->parent)
2107                blkg = q->root_blkg;
2108        else
2109                blkg = blkg_lookup_create(css_to_blkcg(css), q);
2110
2111        __bio_associate_blkg(bio, blkg);
2112
2113        rcu_read_unlock();
2114}
2115EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2116
2117#ifdef CONFIG_MEMCG
2118/**
2119 * bio_associate_blkg_from_page - associate a bio with the page's blkg
2120 * @bio: target bio
2121 * @page: the page to lookup the blkcg from
2122 *
2123 * Associate @bio with the blkg from @page's owning memcg and the respective
2124 * request_queue.  If cgroup_e_css returns %NULL, fall back to the queue's
2125 * root_blkg.
2126 */
2127void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2128{
2129        struct cgroup_subsys_state *css;
2130
2131        if (!page->mem_cgroup)
2132                return;
2133
2134        rcu_read_lock();
2135
2136        css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2137        bio_associate_blkg_from_css(bio, css);
2138
2139        rcu_read_unlock();
2140}
2141#endif /* CONFIG_MEMCG */
2142
2143/**
2144 * bio_associate_blkg - associate a bio with a blkg
2145 * @bio: target bio
2146 *
2147 * Associate @bio with the blkg found from the bio's css and request_queue.
2148 * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
2149 * already associated, the css is reused and association redone as the
2150 * request_queue may have changed.
2151 */
2152void bio_associate_blkg(struct bio *bio)
2153{
2154        struct cgroup_subsys_state *css;
2155
2156        rcu_read_lock();
2157
2158        if (bio->bi_blkg)
2159                css = &bio_blkcg(bio)->css;
2160        else
2161                css = blkcg_css();
2162
2163        bio_associate_blkg_from_css(bio, css);
2164
2165        rcu_read_unlock();
2166}
2167EXPORT_SYMBOL_GPL(bio_associate_blkg);
2168
2169/**
2170 * bio_clone_blkg_association - clone blkg association from src to dst bio
2171 * @dst: destination bio
2172 * @src: source bio
2173 */
2174void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2175{
2176        rcu_read_lock();
2177
2178        if (src->bi_blkg)
2179                __bio_associate_blkg(dst, src->bi_blkg);
2180
2181        rcu_read_unlock();
2182}
2183EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2184#endif /* CONFIG_BLK_CGROUP */
2185
2186static void __init biovec_init_slabs(void)
2187{
2188        int i;
2189
2190        for (i = 0; i < BVEC_POOL_NR; i++) {
2191                int size;
2192                struct biovec_slab *bvs = bvec_slabs + i;
2193
2194                if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2195                        bvs->slab = NULL;
2196                        continue;
2197                }
2198
2199                size = bvs->nr_vecs * sizeof(struct bio_vec);
2200                bvs->slab = kmem_cache_create(bvs->name, size, 0,
2201                                SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2202        }
2203}
2204
2205static int __init init_bio(void)
2206{
2207        bio_slab_max = 2;
2208        bio_slab_nr = 0;
2209        bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2210                            GFP_KERNEL);
2211
2212        BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2213
2214        if (!bio_slabs)
2215                panic("bio: can't allocate bios\n");
2216
2217        bio_integrity_init();
2218        biovec_init_slabs();
2219
2220        if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2221                panic("bio: can't allocate bios\n");
2222
2223        if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2224                panic("bio: can't create integrity pool\n");
2225
2226        return 0;
2227}
2228subsys_initcall(init_bio);
2229