linux/drivers/acpi/osl.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
   4 *
   5 *  Copyright (C) 2000       Andrew Henroid
   6 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   7 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   8 *  Copyright (c) 2008 Intel Corporation
   9 *   Author: Matthew Wilcox <willy@linux.intel.com>
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/slab.h>
  15#include <linux/mm.h>
  16#include <linux/highmem.h>
  17#include <linux/lockdep.h>
  18#include <linux/pci.h>
  19#include <linux/interrupt.h>
  20#include <linux/kmod.h>
  21#include <linux/delay.h>
  22#include <linux/workqueue.h>
  23#include <linux/nmi.h>
  24#include <linux/acpi.h>
  25#include <linux/efi.h>
  26#include <linux/ioport.h>
  27#include <linux/list.h>
  28#include <linux/jiffies.h>
  29#include <linux/semaphore.h>
  30#include <linux/security.h>
  31
  32#include <asm/io.h>
  33#include <linux/uaccess.h>
  34#include <linux/io-64-nonatomic-lo-hi.h>
  35
  36#include "acpica/accommon.h"
  37#include "acpica/acnamesp.h"
  38#include "internal.h"
  39
  40#define _COMPONENT              ACPI_OS_SERVICES
  41ACPI_MODULE_NAME("osl");
  42
  43struct acpi_os_dpc {
  44        acpi_osd_exec_callback function;
  45        void *context;
  46        struct work_struct work;
  47};
  48
  49#ifdef ENABLE_DEBUGGER
  50#include <linux/kdb.h>
  51
  52/* stuff for debugger support */
  53int acpi_in_debugger;
  54EXPORT_SYMBOL(acpi_in_debugger);
  55#endif                          /*ENABLE_DEBUGGER */
  56
  57static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
  58                                      u32 pm1b_ctrl);
  59static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
  60                                      u32 val_b);
  61
  62static acpi_osd_handler acpi_irq_handler;
  63static void *acpi_irq_context;
  64static struct workqueue_struct *kacpid_wq;
  65static struct workqueue_struct *kacpi_notify_wq;
  66static struct workqueue_struct *kacpi_hotplug_wq;
  67static bool acpi_os_initialized;
  68unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
  69bool acpi_permanent_mmap = false;
  70
  71/*
  72 * This list of permanent mappings is for memory that may be accessed from
  73 * interrupt context, where we can't do the ioremap().
  74 */
  75struct acpi_ioremap {
  76        struct list_head list;
  77        void __iomem *virt;
  78        acpi_physical_address phys;
  79        acpi_size size;
  80        unsigned long refcount;
  81};
  82
  83static LIST_HEAD(acpi_ioremaps);
  84static DEFINE_MUTEX(acpi_ioremap_lock);
  85#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
  86
  87static void __init acpi_request_region (struct acpi_generic_address *gas,
  88        unsigned int length, char *desc)
  89{
  90        u64 addr;
  91
  92        /* Handle possible alignment issues */
  93        memcpy(&addr, &gas->address, sizeof(addr));
  94        if (!addr || !length)
  95                return;
  96
  97        /* Resources are never freed */
  98        if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
  99                request_region(addr, length, desc);
 100        else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 101                request_mem_region(addr, length, desc);
 102}
 103
 104static int __init acpi_reserve_resources(void)
 105{
 106        acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
 107                "ACPI PM1a_EVT_BLK");
 108
 109        acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
 110                "ACPI PM1b_EVT_BLK");
 111
 112        acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
 113                "ACPI PM1a_CNT_BLK");
 114
 115        acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
 116                "ACPI PM1b_CNT_BLK");
 117
 118        if (acpi_gbl_FADT.pm_timer_length == 4)
 119                acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
 120
 121        acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
 122                "ACPI PM2_CNT_BLK");
 123
 124        /* Length of GPE blocks must be a non-negative multiple of 2 */
 125
 126        if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
 127                acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
 128                               acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
 129
 130        if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
 131                acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
 132                               acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
 133
 134        return 0;
 135}
 136fs_initcall_sync(acpi_reserve_resources);
 137
 138void acpi_os_printf(const char *fmt, ...)
 139{
 140        va_list args;
 141        va_start(args, fmt);
 142        acpi_os_vprintf(fmt, args);
 143        va_end(args);
 144}
 145EXPORT_SYMBOL(acpi_os_printf);
 146
 147void acpi_os_vprintf(const char *fmt, va_list args)
 148{
 149        static char buffer[512];
 150
 151        vsprintf(buffer, fmt, args);
 152
 153#ifdef ENABLE_DEBUGGER
 154        if (acpi_in_debugger) {
 155                kdb_printf("%s", buffer);
 156        } else {
 157                if (printk_get_level(buffer))
 158                        printk("%s", buffer);
 159                else
 160                        printk(KERN_CONT "%s", buffer);
 161        }
 162#else
 163        if (acpi_debugger_write_log(buffer) < 0) {
 164                if (printk_get_level(buffer))
 165                        printk("%s", buffer);
 166                else
 167                        printk(KERN_CONT "%s", buffer);
 168        }
 169#endif
 170}
 171
 172#ifdef CONFIG_KEXEC
 173static unsigned long acpi_rsdp;
 174static int __init setup_acpi_rsdp(char *arg)
 175{
 176        return kstrtoul(arg, 16, &acpi_rsdp);
 177}
 178early_param("acpi_rsdp", setup_acpi_rsdp);
 179#endif
 180
 181acpi_physical_address __init acpi_os_get_root_pointer(void)
 182{
 183        acpi_physical_address pa;
 184
 185#ifdef CONFIG_KEXEC
 186        /*
 187         * We may have been provided with an RSDP on the command line,
 188         * but if a malicious user has done so they may be pointing us
 189         * at modified ACPI tables that could alter kernel behaviour -
 190         * so, we check the lockdown status before making use of
 191         * it. If we trust it then also stash it in an architecture
 192         * specific location (if appropriate) so it can be carried
 193         * over further kexec()s.
 194         */
 195        if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
 196                acpi_arch_set_root_pointer(acpi_rsdp);
 197                return acpi_rsdp;
 198        }
 199#endif
 200        pa = acpi_arch_get_root_pointer();
 201        if (pa)
 202                return pa;
 203
 204        if (efi_enabled(EFI_CONFIG_TABLES)) {
 205                if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 206                        return efi.acpi20;
 207                if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 208                        return efi.acpi;
 209                pr_err(PREFIX "System description tables not found\n");
 210        } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
 211                acpi_find_root_pointer(&pa);
 212        }
 213
 214        return pa;
 215}
 216
 217/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 218static struct acpi_ioremap *
 219acpi_map_lookup(acpi_physical_address phys, acpi_size size)
 220{
 221        struct acpi_ioremap *map;
 222
 223        list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
 224                if (map->phys <= phys &&
 225                    phys + size <= map->phys + map->size)
 226                        return map;
 227
 228        return NULL;
 229}
 230
 231/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 232static void __iomem *
 233acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
 234{
 235        struct acpi_ioremap *map;
 236
 237        map = acpi_map_lookup(phys, size);
 238        if (map)
 239                return map->virt + (phys - map->phys);
 240
 241        return NULL;
 242}
 243
 244void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
 245{
 246        struct acpi_ioremap *map;
 247        void __iomem *virt = NULL;
 248
 249        mutex_lock(&acpi_ioremap_lock);
 250        map = acpi_map_lookup(phys, size);
 251        if (map) {
 252                virt = map->virt + (phys - map->phys);
 253                map->refcount++;
 254        }
 255        mutex_unlock(&acpi_ioremap_lock);
 256        return virt;
 257}
 258EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
 259
 260/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 261static struct acpi_ioremap *
 262acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
 263{
 264        struct acpi_ioremap *map;
 265
 266        list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
 267                if (map->virt <= virt &&
 268                    virt + size <= map->virt + map->size)
 269                        return map;
 270
 271        return NULL;
 272}
 273
 274#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
 275/* ioremap will take care of cache attributes */
 276#define should_use_kmap(pfn)   0
 277#else
 278#define should_use_kmap(pfn)   page_is_ram(pfn)
 279#endif
 280
 281static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
 282{
 283        unsigned long pfn;
 284
 285        pfn = pg_off >> PAGE_SHIFT;
 286        if (should_use_kmap(pfn)) {
 287                if (pg_sz > PAGE_SIZE)
 288                        return NULL;
 289                return (void __iomem __force *)kmap(pfn_to_page(pfn));
 290        } else
 291                return acpi_os_ioremap(pg_off, pg_sz);
 292}
 293
 294static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
 295{
 296        unsigned long pfn;
 297
 298        pfn = pg_off >> PAGE_SHIFT;
 299        if (should_use_kmap(pfn))
 300                kunmap(pfn_to_page(pfn));
 301        else
 302                iounmap(vaddr);
 303}
 304
 305/**
 306 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
 307 * @phys: Start of the physical address range to map.
 308 * @size: Size of the physical address range to map.
 309 *
 310 * Look up the given physical address range in the list of existing ACPI memory
 311 * mappings.  If found, get a reference to it and return a pointer to it (its
 312 * virtual address).  If not found, map it, add it to that list and return a
 313 * pointer to it.
 314 *
 315 * During early init (when acpi_permanent_mmap has not been set yet) this
 316 * routine simply calls __acpi_map_table() to get the job done.
 317 */
 318void __iomem __ref
 319*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
 320{
 321        struct acpi_ioremap *map;
 322        void __iomem *virt;
 323        acpi_physical_address pg_off;
 324        acpi_size pg_sz;
 325
 326        if (phys > ULONG_MAX) {
 327                printk(KERN_ERR PREFIX "Cannot map memory that high\n");
 328                return NULL;
 329        }
 330
 331        if (!acpi_permanent_mmap)
 332                return __acpi_map_table((unsigned long)phys, size);
 333
 334        mutex_lock(&acpi_ioremap_lock);
 335        /* Check if there's a suitable mapping already. */
 336        map = acpi_map_lookup(phys, size);
 337        if (map) {
 338                map->refcount++;
 339                goto out;
 340        }
 341
 342        map = kzalloc(sizeof(*map), GFP_KERNEL);
 343        if (!map) {
 344                mutex_unlock(&acpi_ioremap_lock);
 345                return NULL;
 346        }
 347
 348        pg_off = round_down(phys, PAGE_SIZE);
 349        pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
 350        virt = acpi_map(pg_off, pg_sz);
 351        if (!virt) {
 352                mutex_unlock(&acpi_ioremap_lock);
 353                kfree(map);
 354                return NULL;
 355        }
 356
 357        INIT_LIST_HEAD(&map->list);
 358        map->virt = virt;
 359        map->phys = pg_off;
 360        map->size = pg_sz;
 361        map->refcount = 1;
 362
 363        list_add_tail_rcu(&map->list, &acpi_ioremaps);
 364
 365out:
 366        mutex_unlock(&acpi_ioremap_lock);
 367        return map->virt + (phys - map->phys);
 368}
 369EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
 370
 371void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
 372{
 373        return (void *)acpi_os_map_iomem(phys, size);
 374}
 375EXPORT_SYMBOL_GPL(acpi_os_map_memory);
 376
 377/* Must be called with mutex_lock(&acpi_ioremap_lock) */
 378static unsigned long acpi_os_drop_map_ref(struct acpi_ioremap *map)
 379{
 380        unsigned long refcount = --map->refcount;
 381
 382        if (!refcount)
 383                list_del_rcu(&map->list);
 384        return refcount;
 385}
 386
 387static void acpi_os_map_cleanup(struct acpi_ioremap *map)
 388{
 389        synchronize_rcu_expedited();
 390        acpi_unmap(map->phys, map->virt);
 391        kfree(map);
 392}
 393
 394/**
 395 * acpi_os_unmap_iomem - Drop a memory mapping reference.
 396 * @virt: Start of the address range to drop a reference to.
 397 * @size: Size of the address range to drop a reference to.
 398 *
 399 * Look up the given virtual address range in the list of existing ACPI memory
 400 * mappings, drop a reference to it and unmap it if there are no more active
 401 * references to it.
 402 *
 403 * During early init (when acpi_permanent_mmap has not been set yet) this
 404 * routine simply calls __acpi_unmap_table() to get the job done.  Since
 405 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
 406 * here.
 407 */
 408void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
 409{
 410        struct acpi_ioremap *map;
 411        unsigned long refcount;
 412
 413        if (!acpi_permanent_mmap) {
 414                __acpi_unmap_table(virt, size);
 415                return;
 416        }
 417
 418        mutex_lock(&acpi_ioremap_lock);
 419        map = acpi_map_lookup_virt(virt, size);
 420        if (!map) {
 421                mutex_unlock(&acpi_ioremap_lock);
 422                WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
 423                return;
 424        }
 425        refcount = acpi_os_drop_map_ref(map);
 426        mutex_unlock(&acpi_ioremap_lock);
 427
 428        if (!refcount)
 429                acpi_os_map_cleanup(map);
 430}
 431EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
 432
 433void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
 434{
 435        return acpi_os_unmap_iomem((void __iomem *)virt, size);
 436}
 437EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
 438
 439int acpi_os_map_generic_address(struct acpi_generic_address *gas)
 440{
 441        u64 addr;
 442        void __iomem *virt;
 443
 444        if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 445                return 0;
 446
 447        /* Handle possible alignment issues */
 448        memcpy(&addr, &gas->address, sizeof(addr));
 449        if (!addr || !gas->bit_width)
 450                return -EINVAL;
 451
 452        virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
 453        if (!virt)
 454                return -EIO;
 455
 456        return 0;
 457}
 458EXPORT_SYMBOL(acpi_os_map_generic_address);
 459
 460void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
 461{
 462        u64 addr;
 463        struct acpi_ioremap *map;
 464        unsigned long refcount;
 465
 466        if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 467                return;
 468
 469        /* Handle possible alignment issues */
 470        memcpy(&addr, &gas->address, sizeof(addr));
 471        if (!addr || !gas->bit_width)
 472                return;
 473
 474        mutex_lock(&acpi_ioremap_lock);
 475        map = acpi_map_lookup(addr, gas->bit_width / 8);
 476        if (!map) {
 477                mutex_unlock(&acpi_ioremap_lock);
 478                return;
 479        }
 480        refcount = acpi_os_drop_map_ref(map);
 481        mutex_unlock(&acpi_ioremap_lock);
 482
 483        if (!refcount)
 484                acpi_os_map_cleanup(map);
 485}
 486EXPORT_SYMBOL(acpi_os_unmap_generic_address);
 487
 488#ifdef ACPI_FUTURE_USAGE
 489acpi_status
 490acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
 491{
 492        if (!phys || !virt)
 493                return AE_BAD_PARAMETER;
 494
 495        *phys = virt_to_phys(virt);
 496
 497        return AE_OK;
 498}
 499#endif
 500
 501#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
 502static bool acpi_rev_override;
 503
 504int __init acpi_rev_override_setup(char *str)
 505{
 506        acpi_rev_override = true;
 507        return 1;
 508}
 509__setup("acpi_rev_override", acpi_rev_override_setup);
 510#else
 511#define acpi_rev_override       false
 512#endif
 513
 514#define ACPI_MAX_OVERRIDE_LEN 100
 515
 516static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
 517
 518acpi_status
 519acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
 520                            acpi_string *new_val)
 521{
 522        if (!init_val || !new_val)
 523                return AE_BAD_PARAMETER;
 524
 525        *new_val = NULL;
 526        if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
 527                printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
 528                       acpi_os_name);
 529                *new_val = acpi_os_name;
 530        }
 531
 532        if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
 533                printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
 534                *new_val = (char *)5;
 535        }
 536
 537        return AE_OK;
 538}
 539
 540static irqreturn_t acpi_irq(int irq, void *dev_id)
 541{
 542        u32 handled;
 543
 544        handled = (*acpi_irq_handler) (acpi_irq_context);
 545
 546        if (handled) {
 547                acpi_irq_handled++;
 548                return IRQ_HANDLED;
 549        } else {
 550                acpi_irq_not_handled++;
 551                return IRQ_NONE;
 552        }
 553}
 554
 555acpi_status
 556acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
 557                                  void *context)
 558{
 559        unsigned int irq;
 560
 561        acpi_irq_stats_init();
 562
 563        /*
 564         * ACPI interrupts different from the SCI in our copy of the FADT are
 565         * not supported.
 566         */
 567        if (gsi != acpi_gbl_FADT.sci_interrupt)
 568                return AE_BAD_PARAMETER;
 569
 570        if (acpi_irq_handler)
 571                return AE_ALREADY_ACQUIRED;
 572
 573        if (acpi_gsi_to_irq(gsi, &irq) < 0) {
 574                printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
 575                       gsi);
 576                return AE_OK;
 577        }
 578
 579        acpi_irq_handler = handler;
 580        acpi_irq_context = context;
 581        if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
 582                printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
 583                acpi_irq_handler = NULL;
 584                return AE_NOT_ACQUIRED;
 585        }
 586        acpi_sci_irq = irq;
 587
 588        return AE_OK;
 589}
 590
 591acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
 592{
 593        if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
 594                return AE_BAD_PARAMETER;
 595
 596        free_irq(acpi_sci_irq, acpi_irq);
 597        acpi_irq_handler = NULL;
 598        acpi_sci_irq = INVALID_ACPI_IRQ;
 599
 600        return AE_OK;
 601}
 602
 603/*
 604 * Running in interpreter thread context, safe to sleep
 605 */
 606
 607void acpi_os_sleep(u64 ms)
 608{
 609        msleep(ms);
 610}
 611
 612void acpi_os_stall(u32 us)
 613{
 614        while (us) {
 615                u32 delay = 1000;
 616
 617                if (delay > us)
 618                        delay = us;
 619                udelay(delay);
 620                touch_nmi_watchdog();
 621                us -= delay;
 622        }
 623}
 624
 625/*
 626 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
 627 * monotonically increasing timer with 100ns granularity. Do not use
 628 * ktime_get() to implement this function because this function may get
 629 * called after timekeeping has been suspended. Note: calling this function
 630 * after timekeeping has been suspended may lead to unexpected results
 631 * because when timekeeping is suspended the jiffies counter is not
 632 * incremented. See also timekeeping_suspend().
 633 */
 634u64 acpi_os_get_timer(void)
 635{
 636        return (get_jiffies_64() - INITIAL_JIFFIES) *
 637                (ACPI_100NSEC_PER_SEC / HZ);
 638}
 639
 640acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
 641{
 642        u32 dummy;
 643
 644        if (!value)
 645                value = &dummy;
 646
 647        *value = 0;
 648        if (width <= 8) {
 649                *(u8 *) value = inb(port);
 650        } else if (width <= 16) {
 651                *(u16 *) value = inw(port);
 652        } else if (width <= 32) {
 653                *(u32 *) value = inl(port);
 654        } else {
 655                BUG();
 656        }
 657
 658        return AE_OK;
 659}
 660
 661EXPORT_SYMBOL(acpi_os_read_port);
 662
 663acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
 664{
 665        if (width <= 8) {
 666                outb(value, port);
 667        } else if (width <= 16) {
 668                outw(value, port);
 669        } else if (width <= 32) {
 670                outl(value, port);
 671        } else {
 672                BUG();
 673        }
 674
 675        return AE_OK;
 676}
 677
 678EXPORT_SYMBOL(acpi_os_write_port);
 679
 680int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
 681{
 682
 683        switch (width) {
 684        case 8:
 685                *(u8 *) value = readb(virt_addr);
 686                break;
 687        case 16:
 688                *(u16 *) value = readw(virt_addr);
 689                break;
 690        case 32:
 691                *(u32 *) value = readl(virt_addr);
 692                break;
 693        case 64:
 694                *(u64 *) value = readq(virt_addr);
 695                break;
 696        default:
 697                return -EINVAL;
 698        }
 699
 700        return 0;
 701}
 702
 703acpi_status
 704acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
 705{
 706        void __iomem *virt_addr;
 707        unsigned int size = width / 8;
 708        bool unmap = false;
 709        u64 dummy;
 710        int error;
 711
 712        rcu_read_lock();
 713        virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 714        if (!virt_addr) {
 715                rcu_read_unlock();
 716                virt_addr = acpi_os_ioremap(phys_addr, size);
 717                if (!virt_addr)
 718                        return AE_BAD_ADDRESS;
 719                unmap = true;
 720        }
 721
 722        if (!value)
 723                value = &dummy;
 724
 725        error = acpi_os_read_iomem(virt_addr, value, width);
 726        BUG_ON(error);
 727
 728        if (unmap)
 729                iounmap(virt_addr);
 730        else
 731                rcu_read_unlock();
 732
 733        return AE_OK;
 734}
 735
 736acpi_status
 737acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
 738{
 739        void __iomem *virt_addr;
 740        unsigned int size = width / 8;
 741        bool unmap = false;
 742
 743        rcu_read_lock();
 744        virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 745        if (!virt_addr) {
 746                rcu_read_unlock();
 747                virt_addr = acpi_os_ioremap(phys_addr, size);
 748                if (!virt_addr)
 749                        return AE_BAD_ADDRESS;
 750                unmap = true;
 751        }
 752
 753        switch (width) {
 754        case 8:
 755                writeb(value, virt_addr);
 756                break;
 757        case 16:
 758                writew(value, virt_addr);
 759                break;
 760        case 32:
 761                writel(value, virt_addr);
 762                break;
 763        case 64:
 764                writeq(value, virt_addr);
 765                break;
 766        default:
 767                BUG();
 768        }
 769
 770        if (unmap)
 771                iounmap(virt_addr);
 772        else
 773                rcu_read_unlock();
 774
 775        return AE_OK;
 776}
 777
 778#ifdef CONFIG_PCI
 779acpi_status
 780acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 781                               u64 *value, u32 width)
 782{
 783        int result, size;
 784        u32 value32;
 785
 786        if (!value)
 787                return AE_BAD_PARAMETER;
 788
 789        switch (width) {
 790        case 8:
 791                size = 1;
 792                break;
 793        case 16:
 794                size = 2;
 795                break;
 796        case 32:
 797                size = 4;
 798                break;
 799        default:
 800                return AE_ERROR;
 801        }
 802
 803        result = raw_pci_read(pci_id->segment, pci_id->bus,
 804                                PCI_DEVFN(pci_id->device, pci_id->function),
 805                                reg, size, &value32);
 806        *value = value32;
 807
 808        return (result ? AE_ERROR : AE_OK);
 809}
 810
 811acpi_status
 812acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 813                                u64 value, u32 width)
 814{
 815        int result, size;
 816
 817        switch (width) {
 818        case 8:
 819                size = 1;
 820                break;
 821        case 16:
 822                size = 2;
 823                break;
 824        case 32:
 825                size = 4;
 826                break;
 827        default:
 828                return AE_ERROR;
 829        }
 830
 831        result = raw_pci_write(pci_id->segment, pci_id->bus,
 832                                PCI_DEVFN(pci_id->device, pci_id->function),
 833                                reg, size, value);
 834
 835        return (result ? AE_ERROR : AE_OK);
 836}
 837#endif
 838
 839static void acpi_os_execute_deferred(struct work_struct *work)
 840{
 841        struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
 842
 843        dpc->function(dpc->context);
 844        kfree(dpc);
 845}
 846
 847#ifdef CONFIG_ACPI_DEBUGGER
 848static struct acpi_debugger acpi_debugger;
 849static bool acpi_debugger_initialized;
 850
 851int acpi_register_debugger(struct module *owner,
 852                           const struct acpi_debugger_ops *ops)
 853{
 854        int ret = 0;
 855
 856        mutex_lock(&acpi_debugger.lock);
 857        if (acpi_debugger.ops) {
 858                ret = -EBUSY;
 859                goto err_lock;
 860        }
 861
 862        acpi_debugger.owner = owner;
 863        acpi_debugger.ops = ops;
 864
 865err_lock:
 866        mutex_unlock(&acpi_debugger.lock);
 867        return ret;
 868}
 869EXPORT_SYMBOL(acpi_register_debugger);
 870
 871void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
 872{
 873        mutex_lock(&acpi_debugger.lock);
 874        if (ops == acpi_debugger.ops) {
 875                acpi_debugger.ops = NULL;
 876                acpi_debugger.owner = NULL;
 877        }
 878        mutex_unlock(&acpi_debugger.lock);
 879}
 880EXPORT_SYMBOL(acpi_unregister_debugger);
 881
 882int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
 883{
 884        int ret;
 885        int (*func)(acpi_osd_exec_callback, void *);
 886        struct module *owner;
 887
 888        if (!acpi_debugger_initialized)
 889                return -ENODEV;
 890        mutex_lock(&acpi_debugger.lock);
 891        if (!acpi_debugger.ops) {
 892                ret = -ENODEV;
 893                goto err_lock;
 894        }
 895        if (!try_module_get(acpi_debugger.owner)) {
 896                ret = -ENODEV;
 897                goto err_lock;
 898        }
 899        func = acpi_debugger.ops->create_thread;
 900        owner = acpi_debugger.owner;
 901        mutex_unlock(&acpi_debugger.lock);
 902
 903        ret = func(function, context);
 904
 905        mutex_lock(&acpi_debugger.lock);
 906        module_put(owner);
 907err_lock:
 908        mutex_unlock(&acpi_debugger.lock);
 909        return ret;
 910}
 911
 912ssize_t acpi_debugger_write_log(const char *msg)
 913{
 914        ssize_t ret;
 915        ssize_t (*func)(const char *);
 916        struct module *owner;
 917
 918        if (!acpi_debugger_initialized)
 919                return -ENODEV;
 920        mutex_lock(&acpi_debugger.lock);
 921        if (!acpi_debugger.ops) {
 922                ret = -ENODEV;
 923                goto err_lock;
 924        }
 925        if (!try_module_get(acpi_debugger.owner)) {
 926                ret = -ENODEV;
 927                goto err_lock;
 928        }
 929        func = acpi_debugger.ops->write_log;
 930        owner = acpi_debugger.owner;
 931        mutex_unlock(&acpi_debugger.lock);
 932
 933        ret = func(msg);
 934
 935        mutex_lock(&acpi_debugger.lock);
 936        module_put(owner);
 937err_lock:
 938        mutex_unlock(&acpi_debugger.lock);
 939        return ret;
 940}
 941
 942ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
 943{
 944        ssize_t ret;
 945        ssize_t (*func)(char *, size_t);
 946        struct module *owner;
 947
 948        if (!acpi_debugger_initialized)
 949                return -ENODEV;
 950        mutex_lock(&acpi_debugger.lock);
 951        if (!acpi_debugger.ops) {
 952                ret = -ENODEV;
 953                goto err_lock;
 954        }
 955        if (!try_module_get(acpi_debugger.owner)) {
 956                ret = -ENODEV;
 957                goto err_lock;
 958        }
 959        func = acpi_debugger.ops->read_cmd;
 960        owner = acpi_debugger.owner;
 961        mutex_unlock(&acpi_debugger.lock);
 962
 963        ret = func(buffer, buffer_length);
 964
 965        mutex_lock(&acpi_debugger.lock);
 966        module_put(owner);
 967err_lock:
 968        mutex_unlock(&acpi_debugger.lock);
 969        return ret;
 970}
 971
 972int acpi_debugger_wait_command_ready(void)
 973{
 974        int ret;
 975        int (*func)(bool, char *, size_t);
 976        struct module *owner;
 977
 978        if (!acpi_debugger_initialized)
 979                return -ENODEV;
 980        mutex_lock(&acpi_debugger.lock);
 981        if (!acpi_debugger.ops) {
 982                ret = -ENODEV;
 983                goto err_lock;
 984        }
 985        if (!try_module_get(acpi_debugger.owner)) {
 986                ret = -ENODEV;
 987                goto err_lock;
 988        }
 989        func = acpi_debugger.ops->wait_command_ready;
 990        owner = acpi_debugger.owner;
 991        mutex_unlock(&acpi_debugger.lock);
 992
 993        ret = func(acpi_gbl_method_executing,
 994                   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
 995
 996        mutex_lock(&acpi_debugger.lock);
 997        module_put(owner);
 998err_lock:
 999        mutex_unlock(&acpi_debugger.lock);
1000        return ret;
1001}
1002
1003int acpi_debugger_notify_command_complete(void)
1004{
1005        int ret;
1006        int (*func)(void);
1007        struct module *owner;
1008
1009        if (!acpi_debugger_initialized)
1010                return -ENODEV;
1011        mutex_lock(&acpi_debugger.lock);
1012        if (!acpi_debugger.ops) {
1013                ret = -ENODEV;
1014                goto err_lock;
1015        }
1016        if (!try_module_get(acpi_debugger.owner)) {
1017                ret = -ENODEV;
1018                goto err_lock;
1019        }
1020        func = acpi_debugger.ops->notify_command_complete;
1021        owner = acpi_debugger.owner;
1022        mutex_unlock(&acpi_debugger.lock);
1023
1024        ret = func();
1025
1026        mutex_lock(&acpi_debugger.lock);
1027        module_put(owner);
1028err_lock:
1029        mutex_unlock(&acpi_debugger.lock);
1030        return ret;
1031}
1032
1033int __init acpi_debugger_init(void)
1034{
1035        mutex_init(&acpi_debugger.lock);
1036        acpi_debugger_initialized = true;
1037        return 0;
1038}
1039#endif
1040
1041/*******************************************************************************
1042 *
1043 * FUNCTION:    acpi_os_execute
1044 *
1045 * PARAMETERS:  Type               - Type of the callback
1046 *              Function           - Function to be executed
1047 *              Context            - Function parameters
1048 *
1049 * RETURN:      Status
1050 *
1051 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1052 *              immediately executes function on a separate thread.
1053 *
1054 ******************************************************************************/
1055
1056acpi_status acpi_os_execute(acpi_execute_type type,
1057                            acpi_osd_exec_callback function, void *context)
1058{
1059        acpi_status status = AE_OK;
1060        struct acpi_os_dpc *dpc;
1061        struct workqueue_struct *queue;
1062        int ret;
1063        ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1064                          "Scheduling function [%p(%p)] for deferred execution.\n",
1065                          function, context));
1066
1067        if (type == OSL_DEBUGGER_MAIN_THREAD) {
1068                ret = acpi_debugger_create_thread(function, context);
1069                if (ret) {
1070                        pr_err("Call to kthread_create() failed.\n");
1071                        status = AE_ERROR;
1072                }
1073                goto out_thread;
1074        }
1075
1076        /*
1077         * Allocate/initialize DPC structure.  Note that this memory will be
1078         * freed by the callee.  The kernel handles the work_struct list  in a
1079         * way that allows us to also free its memory inside the callee.
1080         * Because we may want to schedule several tasks with different
1081         * parameters we can't use the approach some kernel code uses of
1082         * having a static work_struct.
1083         */
1084
1085        dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1086        if (!dpc)
1087                return AE_NO_MEMORY;
1088
1089        dpc->function = function;
1090        dpc->context = context;
1091
1092        /*
1093         * To prevent lockdep from complaining unnecessarily, make sure that
1094         * there is a different static lockdep key for each workqueue by using
1095         * INIT_WORK() for each of them separately.
1096         */
1097        if (type == OSL_NOTIFY_HANDLER) {
1098                queue = kacpi_notify_wq;
1099                INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1100        } else if (type == OSL_GPE_HANDLER) {
1101                queue = kacpid_wq;
1102                INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1103        } else {
1104                pr_err("Unsupported os_execute type %d.\n", type);
1105                status = AE_ERROR;
1106        }
1107
1108        if (ACPI_FAILURE(status))
1109                goto err_workqueue;
1110
1111        /*
1112         * On some machines, a software-initiated SMI causes corruption unless
1113         * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1114         * typically it's done in GPE-related methods that are run via
1115         * workqueues, so we can avoid the known corruption cases by always
1116         * queueing on CPU 0.
1117         */
1118        ret = queue_work_on(0, queue, &dpc->work);
1119        if (!ret) {
1120                printk(KERN_ERR PREFIX
1121                          "Call to queue_work() failed.\n");
1122                status = AE_ERROR;
1123        }
1124err_workqueue:
1125        if (ACPI_FAILURE(status))
1126                kfree(dpc);
1127out_thread:
1128        return status;
1129}
1130EXPORT_SYMBOL(acpi_os_execute);
1131
1132void acpi_os_wait_events_complete(void)
1133{
1134        /*
1135         * Make sure the GPE handler or the fixed event handler is not used
1136         * on another CPU after removal.
1137         */
1138        if (acpi_sci_irq_valid())
1139                synchronize_hardirq(acpi_sci_irq);
1140        flush_workqueue(kacpid_wq);
1141        flush_workqueue(kacpi_notify_wq);
1142}
1143EXPORT_SYMBOL(acpi_os_wait_events_complete);
1144
1145struct acpi_hp_work {
1146        struct work_struct work;
1147        struct acpi_device *adev;
1148        u32 src;
1149};
1150
1151static void acpi_hotplug_work_fn(struct work_struct *work)
1152{
1153        struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1154
1155        acpi_os_wait_events_complete();
1156        acpi_device_hotplug(hpw->adev, hpw->src);
1157        kfree(hpw);
1158}
1159
1160acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1161{
1162        struct acpi_hp_work *hpw;
1163
1164        ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1165                  "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1166                  adev, src));
1167
1168        hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1169        if (!hpw)
1170                return AE_NO_MEMORY;
1171
1172        INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1173        hpw->adev = adev;
1174        hpw->src = src;
1175        /*
1176         * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1177         * the hotplug code may call driver .remove() functions, which may
1178         * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1179         * these workqueues.
1180         */
1181        if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1182                kfree(hpw);
1183                return AE_ERROR;
1184        }
1185        return AE_OK;
1186}
1187
1188bool acpi_queue_hotplug_work(struct work_struct *work)
1189{
1190        return queue_work(kacpi_hotplug_wq, work);
1191}
1192
1193acpi_status
1194acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1195{
1196        struct semaphore *sem = NULL;
1197
1198        sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1199        if (!sem)
1200                return AE_NO_MEMORY;
1201
1202        sema_init(sem, initial_units);
1203
1204        *handle = (acpi_handle *) sem;
1205
1206        ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1207                          *handle, initial_units));
1208
1209        return AE_OK;
1210}
1211
1212/*
1213 * TODO: A better way to delete semaphores?  Linux doesn't have a
1214 * 'delete_semaphore()' function -- may result in an invalid
1215 * pointer dereference for non-synchronized consumers.  Should
1216 * we at least check for blocked threads and signal/cancel them?
1217 */
1218
1219acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1220{
1221        struct semaphore *sem = (struct semaphore *)handle;
1222
1223        if (!sem)
1224                return AE_BAD_PARAMETER;
1225
1226        ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1227
1228        BUG_ON(!list_empty(&sem->wait_list));
1229        kfree(sem);
1230        sem = NULL;
1231
1232        return AE_OK;
1233}
1234
1235/*
1236 * TODO: Support for units > 1?
1237 */
1238acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1239{
1240        acpi_status status = AE_OK;
1241        struct semaphore *sem = (struct semaphore *)handle;
1242        long jiffies;
1243        int ret = 0;
1244
1245        if (!acpi_os_initialized)
1246                return AE_OK;
1247
1248        if (!sem || (units < 1))
1249                return AE_BAD_PARAMETER;
1250
1251        if (units > 1)
1252                return AE_SUPPORT;
1253
1254        ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1255                          handle, units, timeout));
1256
1257        if (timeout == ACPI_WAIT_FOREVER)
1258                jiffies = MAX_SCHEDULE_TIMEOUT;
1259        else
1260                jiffies = msecs_to_jiffies(timeout);
1261
1262        ret = down_timeout(sem, jiffies);
1263        if (ret)
1264                status = AE_TIME;
1265
1266        if (ACPI_FAILURE(status)) {
1267                ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1268                                  "Failed to acquire semaphore[%p|%d|%d], %s",
1269                                  handle, units, timeout,
1270                                  acpi_format_exception(status)));
1271        } else {
1272                ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1273                                  "Acquired semaphore[%p|%d|%d]", handle,
1274                                  units, timeout));
1275        }
1276
1277        return status;
1278}
1279
1280/*
1281 * TODO: Support for units > 1?
1282 */
1283acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1284{
1285        struct semaphore *sem = (struct semaphore *)handle;
1286
1287        if (!acpi_os_initialized)
1288                return AE_OK;
1289
1290        if (!sem || (units < 1))
1291                return AE_BAD_PARAMETER;
1292
1293        if (units > 1)
1294                return AE_SUPPORT;
1295
1296        ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1297                          units));
1298
1299        up(sem);
1300
1301        return AE_OK;
1302}
1303
1304acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1305{
1306#ifdef ENABLE_DEBUGGER
1307        if (acpi_in_debugger) {
1308                u32 chars;
1309
1310                kdb_read(buffer, buffer_length);
1311
1312                /* remove the CR kdb includes */
1313                chars = strlen(buffer) - 1;
1314                buffer[chars] = '\0';
1315        }
1316#else
1317        int ret;
1318
1319        ret = acpi_debugger_read_cmd(buffer, buffer_length);
1320        if (ret < 0)
1321                return AE_ERROR;
1322        if (bytes_read)
1323                *bytes_read = ret;
1324#endif
1325
1326        return AE_OK;
1327}
1328EXPORT_SYMBOL(acpi_os_get_line);
1329
1330acpi_status acpi_os_wait_command_ready(void)
1331{
1332        int ret;
1333
1334        ret = acpi_debugger_wait_command_ready();
1335        if (ret < 0)
1336                return AE_ERROR;
1337        return AE_OK;
1338}
1339
1340acpi_status acpi_os_notify_command_complete(void)
1341{
1342        int ret;
1343
1344        ret = acpi_debugger_notify_command_complete();
1345        if (ret < 0)
1346                return AE_ERROR;
1347        return AE_OK;
1348}
1349
1350acpi_status acpi_os_signal(u32 function, void *info)
1351{
1352        switch (function) {
1353        case ACPI_SIGNAL_FATAL:
1354                printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1355                break;
1356        case ACPI_SIGNAL_BREAKPOINT:
1357                /*
1358                 * AML Breakpoint
1359                 * ACPI spec. says to treat it as a NOP unless
1360                 * you are debugging.  So if/when we integrate
1361                 * AML debugger into the kernel debugger its
1362                 * hook will go here.  But until then it is
1363                 * not useful to print anything on breakpoints.
1364                 */
1365                break;
1366        default:
1367                break;
1368        }
1369
1370        return AE_OK;
1371}
1372
1373static int __init acpi_os_name_setup(char *str)
1374{
1375        char *p = acpi_os_name;
1376        int count = ACPI_MAX_OVERRIDE_LEN - 1;
1377
1378        if (!str || !*str)
1379                return 0;
1380
1381        for (; count-- && *str; str++) {
1382                if (isalnum(*str) || *str == ' ' || *str == ':')
1383                        *p++ = *str;
1384                else if (*str == '\'' || *str == '"')
1385                        continue;
1386                else
1387                        break;
1388        }
1389        *p = 0;
1390
1391        return 1;
1392
1393}
1394
1395__setup("acpi_os_name=", acpi_os_name_setup);
1396
1397/*
1398 * Disable the auto-serialization of named objects creation methods.
1399 *
1400 * This feature is enabled by default.  It marks the AML control methods
1401 * that contain the opcodes to create named objects as "Serialized".
1402 */
1403static int __init acpi_no_auto_serialize_setup(char *str)
1404{
1405        acpi_gbl_auto_serialize_methods = FALSE;
1406        pr_info("ACPI: auto-serialization disabled\n");
1407
1408        return 1;
1409}
1410
1411__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1412
1413/* Check of resource interference between native drivers and ACPI
1414 * OperationRegions (SystemIO and System Memory only).
1415 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1416 * in arbitrary AML code and can interfere with legacy drivers.
1417 * acpi_enforce_resources= can be set to:
1418 *
1419 *   - strict (default) (2)
1420 *     -> further driver trying to access the resources will not load
1421 *   - lax              (1)
1422 *     -> further driver trying to access the resources will load, but you
1423 *     get a system message that something might go wrong...
1424 *
1425 *   - no               (0)
1426 *     -> ACPI Operation Region resources will not be registered
1427 *
1428 */
1429#define ENFORCE_RESOURCES_STRICT 2
1430#define ENFORCE_RESOURCES_LAX    1
1431#define ENFORCE_RESOURCES_NO     0
1432
1433static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1434
1435static int __init acpi_enforce_resources_setup(char *str)
1436{
1437        if (str == NULL || *str == '\0')
1438                return 0;
1439
1440        if (!strcmp("strict", str))
1441                acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1442        else if (!strcmp("lax", str))
1443                acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1444        else if (!strcmp("no", str))
1445                acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1446
1447        return 1;
1448}
1449
1450__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1451
1452/* Check for resource conflicts between ACPI OperationRegions and native
1453 * drivers */
1454int acpi_check_resource_conflict(const struct resource *res)
1455{
1456        acpi_adr_space_type space_id;
1457        acpi_size length;
1458        u8 warn = 0;
1459        int clash = 0;
1460
1461        if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1462                return 0;
1463        if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1464                return 0;
1465
1466        if (res->flags & IORESOURCE_IO)
1467                space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1468        else
1469                space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1470
1471        length = resource_size(res);
1472        if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1473                warn = 1;
1474        clash = acpi_check_address_range(space_id, res->start, length, warn);
1475
1476        if (clash) {
1477                if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1478                        if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1479                                printk(KERN_NOTICE "ACPI: This conflict may"
1480                                       " cause random problems and system"
1481                                       " instability\n");
1482                        printk(KERN_INFO "ACPI: If an ACPI driver is available"
1483                               " for this device, you should use it instead of"
1484                               " the native driver\n");
1485                }
1486                if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1487                        return -EBUSY;
1488        }
1489        return 0;
1490}
1491EXPORT_SYMBOL(acpi_check_resource_conflict);
1492
1493int acpi_check_region(resource_size_t start, resource_size_t n,
1494                      const char *name)
1495{
1496        struct resource res = {
1497                .start = start,
1498                .end   = start + n - 1,
1499                .name  = name,
1500                .flags = IORESOURCE_IO,
1501        };
1502
1503        return acpi_check_resource_conflict(&res);
1504}
1505EXPORT_SYMBOL(acpi_check_region);
1506
1507static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1508                                              void *_res, void **return_value)
1509{
1510        struct acpi_mem_space_context **mem_ctx;
1511        union acpi_operand_object *handler_obj;
1512        union acpi_operand_object *region_obj2;
1513        union acpi_operand_object *region_obj;
1514        struct resource *res = _res;
1515        acpi_status status;
1516
1517        region_obj = acpi_ns_get_attached_object(handle);
1518        if (!region_obj)
1519                return AE_OK;
1520
1521        handler_obj = region_obj->region.handler;
1522        if (!handler_obj)
1523                return AE_OK;
1524
1525        if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1526                return AE_OK;
1527
1528        if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1529                return AE_OK;
1530
1531        region_obj2 = acpi_ns_get_secondary_object(region_obj);
1532        if (!region_obj2)
1533                return AE_OK;
1534
1535        mem_ctx = (void *)&region_obj2->extra.region_context;
1536
1537        if (!(mem_ctx[0]->address >= res->start &&
1538              mem_ctx[0]->address < res->end))
1539                return AE_OK;
1540
1541        status = handler_obj->address_space.setup(region_obj,
1542                                                  ACPI_REGION_DEACTIVATE,
1543                                                  NULL, (void **)mem_ctx);
1544        if (ACPI_SUCCESS(status))
1545                region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1546
1547        return status;
1548}
1549
1550/**
1551 * acpi_release_memory - Release any mappings done to a memory region
1552 * @handle: Handle to namespace node
1553 * @res: Memory resource
1554 * @level: A level that terminates the search
1555 *
1556 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1557 * overlap with @res and that have already been activated (mapped).
1558 *
1559 * This is a helper that allows drivers to place special requirements on memory
1560 * region that may overlap with operation regions, primarily allowing them to
1561 * safely map the region as non-cached memory.
1562 *
1563 * The unmapped Operation Regions will be automatically remapped next time they
1564 * are called, so the drivers do not need to do anything else.
1565 */
1566acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1567                                u32 level)
1568{
1569        if (!(res->flags & IORESOURCE_MEM))
1570                return AE_TYPE;
1571
1572        return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1573                                   acpi_deactivate_mem_region, NULL, res, NULL);
1574}
1575EXPORT_SYMBOL_GPL(acpi_release_memory);
1576
1577/*
1578 * Let drivers know whether the resource checks are effective
1579 */
1580int acpi_resources_are_enforced(void)
1581{
1582        return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1583}
1584EXPORT_SYMBOL(acpi_resources_are_enforced);
1585
1586/*
1587 * Deallocate the memory for a spinlock.
1588 */
1589void acpi_os_delete_lock(acpi_spinlock handle)
1590{
1591        ACPI_FREE(handle);
1592}
1593
1594/*
1595 * Acquire a spinlock.
1596 *
1597 * handle is a pointer to the spinlock_t.
1598 */
1599
1600acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1601{
1602        acpi_cpu_flags flags;
1603        spin_lock_irqsave(lockp, flags);
1604        return flags;
1605}
1606
1607/*
1608 * Release a spinlock. See above.
1609 */
1610
1611void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1612{
1613        spin_unlock_irqrestore(lockp, flags);
1614}
1615
1616#ifndef ACPI_USE_LOCAL_CACHE
1617
1618/*******************************************************************************
1619 *
1620 * FUNCTION:    acpi_os_create_cache
1621 *
1622 * PARAMETERS:  name      - Ascii name for the cache
1623 *              size      - Size of each cached object
1624 *              depth     - Maximum depth of the cache (in objects) <ignored>
1625 *              cache     - Where the new cache object is returned
1626 *
1627 * RETURN:      status
1628 *
1629 * DESCRIPTION: Create a cache object
1630 *
1631 ******************************************************************************/
1632
1633acpi_status
1634acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1635{
1636        *cache = kmem_cache_create(name, size, 0, 0, NULL);
1637        if (*cache == NULL)
1638                return AE_ERROR;
1639        else
1640                return AE_OK;
1641}
1642
1643/*******************************************************************************
1644 *
1645 * FUNCTION:    acpi_os_purge_cache
1646 *
1647 * PARAMETERS:  Cache           - Handle to cache object
1648 *
1649 * RETURN:      Status
1650 *
1651 * DESCRIPTION: Free all objects within the requested cache.
1652 *
1653 ******************************************************************************/
1654
1655acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1656{
1657        kmem_cache_shrink(cache);
1658        return (AE_OK);
1659}
1660
1661/*******************************************************************************
1662 *
1663 * FUNCTION:    acpi_os_delete_cache
1664 *
1665 * PARAMETERS:  Cache           - Handle to cache object
1666 *
1667 * RETURN:      Status
1668 *
1669 * DESCRIPTION: Free all objects within the requested cache and delete the
1670 *              cache object.
1671 *
1672 ******************************************************************************/
1673
1674acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1675{
1676        kmem_cache_destroy(cache);
1677        return (AE_OK);
1678}
1679
1680/*******************************************************************************
1681 *
1682 * FUNCTION:    acpi_os_release_object
1683 *
1684 * PARAMETERS:  Cache       - Handle to cache object
1685 *              Object      - The object to be released
1686 *
1687 * RETURN:      None
1688 *
1689 * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1690 *              the object is deleted.
1691 *
1692 ******************************************************************************/
1693
1694acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1695{
1696        kmem_cache_free(cache, object);
1697        return (AE_OK);
1698}
1699#endif
1700
1701static int __init acpi_no_static_ssdt_setup(char *s)
1702{
1703        acpi_gbl_disable_ssdt_table_install = TRUE;
1704        pr_info("ACPI: static SSDT installation disabled\n");
1705
1706        return 0;
1707}
1708
1709early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1710
1711static int __init acpi_disable_return_repair(char *s)
1712{
1713        printk(KERN_NOTICE PREFIX
1714               "ACPI: Predefined validation mechanism disabled\n");
1715        acpi_gbl_disable_auto_repair = TRUE;
1716
1717        return 1;
1718}
1719
1720__setup("acpica_no_return_repair", acpi_disable_return_repair);
1721
1722acpi_status __init acpi_os_initialize(void)
1723{
1724        acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1725        acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1726        acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1727        acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1728        if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1729                /*
1730                 * Use acpi_os_map_generic_address to pre-map the reset
1731                 * register if it's in system memory.
1732                 */
1733                int rv;
1734
1735                rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1736                pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1737        }
1738        acpi_os_initialized = true;
1739
1740        return AE_OK;
1741}
1742
1743acpi_status __init acpi_os_initialize1(void)
1744{
1745        kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1746        kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1747        kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1748        BUG_ON(!kacpid_wq);
1749        BUG_ON(!kacpi_notify_wq);
1750        BUG_ON(!kacpi_hotplug_wq);
1751        acpi_osi_init();
1752        return AE_OK;
1753}
1754
1755acpi_status acpi_os_terminate(void)
1756{
1757        if (acpi_irq_handler) {
1758                acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1759                                                 acpi_irq_handler);
1760        }
1761
1762        acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1763        acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1764        acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1765        acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1766        if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1767                acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1768
1769        destroy_workqueue(kacpid_wq);
1770        destroy_workqueue(kacpi_notify_wq);
1771        destroy_workqueue(kacpi_hotplug_wq);
1772
1773        return AE_OK;
1774}
1775
1776acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1777                                  u32 pm1b_control)
1778{
1779        int rc = 0;
1780        if (__acpi_os_prepare_sleep)
1781                rc = __acpi_os_prepare_sleep(sleep_state,
1782                                             pm1a_control, pm1b_control);
1783        if (rc < 0)
1784                return AE_ERROR;
1785        else if (rc > 0)
1786                return AE_CTRL_TERMINATE;
1787
1788        return AE_OK;
1789}
1790
1791void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1792                               u32 pm1a_ctrl, u32 pm1b_ctrl))
1793{
1794        __acpi_os_prepare_sleep = func;
1795}
1796
1797#if (ACPI_REDUCED_HARDWARE)
1798acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1799                                  u32 val_b)
1800{
1801        int rc = 0;
1802        if (__acpi_os_prepare_extended_sleep)
1803                rc = __acpi_os_prepare_extended_sleep(sleep_state,
1804                                             val_a, val_b);
1805        if (rc < 0)
1806                return AE_ERROR;
1807        else if (rc > 0)
1808                return AE_CTRL_TERMINATE;
1809
1810        return AE_OK;
1811}
1812#else
1813acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1814                                  u32 val_b)
1815{
1816        return AE_OK;
1817}
1818#endif
1819
1820void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1821                               u32 val_a, u32 val_b))
1822{
1823        __acpi_os_prepare_extended_sleep = func;
1824}
1825
1826acpi_status acpi_os_enter_sleep(u8 sleep_state,
1827                                u32 reg_a_value, u32 reg_b_value)
1828{
1829        acpi_status status;
1830
1831        if (acpi_gbl_reduced_hardware)
1832                status = acpi_os_prepare_extended_sleep(sleep_state,
1833                                                        reg_a_value,
1834                                                        reg_b_value);
1835        else
1836                status = acpi_os_prepare_sleep(sleep_state,
1837                                               reg_a_value, reg_b_value);
1838        return status;
1839}
1840